Executive Summary

In June 1981, the CDC published a report which documented five cases of Pneumocystis carinii pneumonia in otherwise healthy young men in Los Angeles, California; these would be considered the first cases of AIDS identified in the United States. That report would prompt AIDS case reports from other areas of the U.S. such as New York, San Francisco, and in 1982, South Carolina.

Since 1986, more than 29,090 people have been diagnosed with HIV infection (including AIDS) in South Carolina through December 2016. During 1985-1990 an average of 860 cases were diagnosed each year. In the subsequent three years (1991-1993), newly diagnosed HIV/AIDS cases averaged 1,306. The increase during this period was in part due to the artificial rise in AIDS cases as a result of the change in case definition in 1993. For the past five years, the average number of newly diagnosed cases has been about 743 per year. According to the CDC however, many more people are infected but have not been tested.

Some of the changes over time in numbers of new cases are largely the result of reporting patterns or targeted testing initiatives. The initial steep rise in the epidemic reflects the early years when less was known about the transmission of HIV and effective medical treatments did not exist. As a result, infection rates increased and more HIV-infected individuals went on to develop AIDS. Most experts believe that when more was learned about HIV and the behaviors involved in its spread, effective prevention strategies reduced the overall number of new infections, and medical treatment, for some individuals, postponed the onset of AIDS. In more recent years, however, there is concern nationally that the epidemic may grow, particularly among young men who have sex with men.

Since 1994, new anti-retroviral drugs and strengthened care services have contributed to a decline in overall AIDS deaths. This decline is illustrated by the 136 AIDS related deaths in 2015, a 47 percent decrease from the 259 deaths in 2006. It is important to note that despite the decline in deaths due to AIDS and the apparent stabilization of the number of new HIV/AIDS cases diagnosed annually, the prevalence of HIV infection (the number of people estimated to be living with HIV/AIDS) is continuously increasing. The number of people living with HIV/AIDS (PLWHA) at the end of each year has increased 29 percent from 2007 to 2016. It is also important to note there are differences among certain populations in the number and rate of new and prevalent infections, as this profile will indicate.
Epidemiologic Profile

Figure 1.01 shows total incidence (the number of new cases within a specified time period), deaths, and prevalence of HIV/AIDS cases in South Carolina since 1997.

Figure 1.01: South Carolina HIV/AIDS incidence, prevalence, and deaths

Note: number of cases diagnosed in S.C. only; excludes out of state cases returning to S.C.

The epidemic in South Carolina is predominantly driven by sexual exposure, primarily among men who have sex with men and heterosexuals at risk. Injecting Drug Use (which had been declining) appears to have leveled off, averaging 20 new cases per year over the past five years (2012-2016). However, the CDC reports Heroin use is on the increase across the US among men and women, most age groups, and all income levels. Therefore, the number of cases reporting Injecting Drug Use as a risk for HIV should be closely monitored.

African-Americans are disproportionately affected by HIV/AIDS and are over-represented among all risk populations.
Table of Contents

Executive Summary .. i

Table of Contents .. iii

List of Figures .. vi

Overview of Epidemiologic Profile ... 1

Definitions ... 2

Types and Quality of Data .. 4

 Selected Data Source Description and Limitations: ... 5
 DHEC, Enhanced HIV/AIDS Reporting Surveillance System (eHARS) 5
 DHEC, Sexually Transmitted Diseases Management Information System (STD*MIS) .. 6
 HIV Counseling and Testing Program Data from DHEC Clinics 7
 Ryan White Program Data Report .. 8
 South Carolina Community Assessment Network (SCAN) 8
 U.S. Department of Health and Human Services (DHHS): National Survey on Drug Use and Health (NSDUH) .. 9
 Youth Risk Behavior Surveillance System (YRBSS) ... 10

What are the sociodemographic characteristics of the population? 11

 The State .. 11
 Populations ... 11
 Education & Earnings ... 12
 Poverty Level .. 12
 Insurance/Access to Primary Care ... 13
 Employment ... 13
 Housing .. 13
 Summary ... 13
Epidemiologic Profile

What is the impact of HIV/AIDS on the population? 14

- Gender ... 15
- Race/Ethnicity .. 16
- Age .. 19
- Risk Exposure ... 20
- Residence .. 23
- Mortality ... 25

Who is at risk for becoming infected with HIV? 27

- Characteristics of HIV/AIDS in People at Highest Risk 27
 - Men who have Sex with Men .. 29
 - Estimates of Men Who Have Sex with Men Behavior in South Carolina 29
 - Characteristics of men who have sex with men ... 29
 - Summary ... 30
 - High Risk Heterosexuals ... 31
 - Estimates of High-Risk Heterosexual Behavior in South Carolina 31
 - Characteristics of high risk heterosexuals ... 31
 - Summary ... 33
 - Injecting Drug Users .. 34
 - Characteristics of Injecting Drug Users (IDU) ... 34

- Other Populations at Risk ... 36
- People with Sexually Transmitted Diseases (STDs) 36
 - Chlamydia .. 37
 - Gonorrhea .. 38
 - Infectious Syphilis .. 39
- Infants and Children: (Children under 13 years of age) 40
- Perinatally HIV exposed births ... 40
- Teenage Pregnancy .. 41
Epidemiologic Profile

People Receiving HIV Counseling and Testing At County Health Departments..	42
Other Behavioral/Risk Data	42
Behavioral Risk Factor Surveillance System (BRFSS)	42
Youth Risk Behavior Survey (YRBS)	43
Substance Use	44

What are the patterns of service utilization of HIV-infected people? 45

| Ryan White Part B | 45 |
| AIDS Drug Assistance Program (ADAP) | 47 |

HIV Continuum of Care

Methodology	49
HIV Continuum of Care – Diagnosed Prevalence	50
HIV Continuum of Care – Linked to Care	54
List of Figures

Figure 1.01 South Carolina HIV/AIDS incidence, prevalence, and deaths
Figure 1.02 Selected demographic information South Carolina and United States
Figure 1.03 S.C. Per Capita Income by Race and Ethnicity
Figure 1.04 Percent of each racial/ethnic pop. living below federal poverty level
Figure 2.01 Disproportionate S.C. HIV impact by sex
Figure 2.02 HIV/AIDS case rate per 100,000 for males and females, 2007-2016
Figure 2.03 Proportion of persons living with HIV/AIDS by race/ethnicity, 2016
Figure 2.04 Disproportionate HIV impact by race/ethnicity/gender, S.C.
Figure 2.05 S.C. HIV/AIDS prevalence rates by race/gender, 2007-2016
Figure 2.06 S.C. HIV/AIDS case rates by race/gender and year of diagnosis, 2007-2016
Figure 2.07 Disproportionate S.C. HIV impact by age
Figure 2.08 S.C. HIV/AIDS case rate per 100,000 by age by year of diagnosis, 2007-2016
Figure 2.09 Proportion of persons living with HIV/AIDS by risk exposure, 2016
Figure 2.10 Proportion of HIV/AIDS cases by risk exposure, 2015-2016
Figure 2.11 Comparison of no risk identified cases with total S.C. HIV/AIDS reported cases, 2015-2016
Figure 2.12 Proportion of male HIV/AIDS cases by exposure category, diagnosed 2015-2016
Figure 2.13 Proportion of female HIV/AIDS cases by exposure category, diagnosed 2015-2016
Figure 2.14 Proportional distribution of male HIV/AIDS cases by exposure category, diagnosed 2005-2016
Figure 2.15 Proportional distribution of female HIV/AIDS cases, by exposure category, diagnosed 2005-2016
Figure 2.16 S.C. HIV prevalence rates (per 100,000 population) cases currently living, 2016 African-American
Figure 2.17 S.C. HIV/AIDS incidence rates (per 100,000 population) 2014-2016 average of cases African-American
Figure 2.18 S.C. HIV prevalence rates (per 100,000 population) cases currently living, 2016 whites
Figure 2.19 S.C. HIV/AIDS incidence rates (per 100,000 population) 2014-2016 average of cases whites
Figure 2.20 Deaths among persons with AIDS in South Carolina, 1996-2015
Figure 2.21 Characteristics of persons who died of AIDS, 2015
Epidemiologic Profile

Figure 3.01 Number of persons living with HIV/AIDS at end of year by risk, 2007-2016
Figure 3.02 Number of HIV/AIDS cases by year of diagnosis and risk, 2007-2016
Figure 3.03 Proportion of men with HIV/AIDS who have sex with men by race/ethnicity, diagnosed 2015-2016
Figure 3.04 Percent of MSM HIV/AIDS cases diagnosed 2015-2016 by age group & race
Figure 3.05 Percent of MSM living with HIV/AIDS by age/race, 2016
Figure 3.06 S.C. HIV/AIDS prevalence by MSM exposure category, 2016 reported cases by county
Figure 3.07 Proportion of heterosexual HIV/AIDS cases by race/ethnicity, diagnosed 2015-2016
Figure 3.08 S.C. HIV/AIDS cases attributed to heterosexual transmission, by sex and year of diagnosis
Figure 3.09 Percent heterosexual S.C. HIV/AIDS cases diagnosed 2015-2016 by age/race/sex
Figure 3.10 Percent of heterosexuals living with HIV/AIDS by age group and race/sex, 2016
Figure 3.11 S.C. HIV/AIDS prevalence by heterosexual contact exposure category, 2016 reported cases by county
Figure 3.12 S.C. HIV/AIDS incidence rates (per 1000,000 population) 2014-2016 average of cases - Females
Figure 3.13 Number of HIV/AIDS cases due to injecting drug use by sex and year of diagnosis, 2007-2016
Figure 3.14 Proportion of injecting drug users diagnosed with HIV/AIDS 2015-2016 by race/sex
Figure 3.15 Percent of injecting drug users diagnosed with HIV/AIDS 2015-2016 by age
Figure 3.16 Percent of IDU persons presumed living with HIV/AIDS by race/sex and age group, 2016
Figure 3.17 S.C. HIV/AIDS prevalence by injection drug users exposure category, 2016 reported cases by county
Figure 3.18 South Carolina reported Chlamydia cases by year of diagnosis, 2007-2016
Figure 3.19 Proportion of 2016 reported Chlamydia cases by year of diagnosis by age
Figure 3.20 South Carolina reported gonorrhea cases by year of diagnosis, 2007-2016
Figure 3.21 Proportion of 2016 reported Gonorrhea cases by year of diagnosis by age
Epidemiologic Profile

Figure 3.22 South Carolina reported Infectious Syphilis cases by year of diagnosis, 2007-2016

Figure 3.23 Proportion of 2016 reported Infectious Syphilis cases by age group

Figure 3.24 Number of children <13 years old diagnosed with HIV/AIDS in South Carolina, 1997-2016

Figure 3.25 Perinatally HIV exposed births by year of birth and rate by race and year of birth

Figure 3.26 South Carolina teenage live birth rates, ages 15 - 17

Figure 3.27 South Carolina teenage live birth rates, ages 18 - 19

Figure 3.28 Proportion of YRBS students indicating sexual risks, 2005-2015

Figure 4.01 Characteristics of Ryan White Part B clients compared to S.C. persons living with HIV/AIDS in 2016

Figure 4.02 South Carolina Ryan White Part B Service Utilization by Service Type, 2016

Figure 4.03 Characteristics of ADAP clients compared to S.C. PLWHA in 2016

Figure 4.04 2016 ADAP Patient Profile Compared to PLWHA

Figure 4.05 South Carolina ADAP Service Type, 2016

Figure 5.01 Number and percentage of persons engaged in each step of the HIV continuum of care, 2016

Figure 5.02 Number and percentage of persons engaged in each step of the HIV continuum of care, by diagnosis (2016)

Figure 5.03 Number and percentage of persons engaged in each step of the HIV continuum of care, by gender (2016)

Figure 5.04 Number and percentage of persons engaged in each step of the HIV continuum of care, by race/ethnicity (2016)

Figure 5.05 Number and percentage of persons engaged in each step of the HIV continuum of care, by age group (2016)

Figure 5.06 Number and percentage of persons engaged in each step of the HIV continuum of care, by reported risk (2016)

Figure 5.07 Percentage of persons linked to care within 3, 6, and 12 months after HIV diagnosis among total number of persons diagnosed with HIV infection in 2016.

Figure 5.08 Of Persons linked to care within 3 months of diagnosis: timing of test date relative to diagnosis date.
Overview of Epidemiologic Profile

The purpose of this Epidemiologic Profile is to provide information to the S.C. HIV Planning Council (HPC) on the number and characteristics of people becoming HIV infected. The HPC has a primary responsibility to review the Epidemiologic Profile and ensure that HIV prevention services and resources are directed by DHEC to the populations and geographic areas with the greatest disease burden.

This Epidemiologic Profile includes a list of definitions and describes the data sources used, the limitations of each data type, and presents the data in order to answer the following questions:

What are the socio-demographic characteristics of the population?

What is the impact of HIV/AIDS on the population?

Who is at risk for becoming infected with HIV?

What is the geographic distribution of HIV infection? *

What are the patterns of service utilization of people living with HIV/AIDS?

What are the characteristics of people who know they are HIV-positive but who are not in HIV primary care?

These questions will be explored through analyses of currently living with HIV/AIDS (prevalence) and newly diagnosed (incidence) HIV/AIDS cases; a description of seroprevalence data from HIV counseling and testing sites and other studies; a summary of other risk behavior profiles and community-based HIV risk assessment information; and a discussion of related sociodemographic, health and risk behavior indicators.
Definitions

AIDS – Acquired Immunodeficiency Syndrome, the end stage of HIV infection characterized by life-threatening or severely disabling disease.

HIV – Human Immunodeficiency Virus, the cause of HIV infection.

HIV/AIDS – Includes those people with HIV infection, as well as those who have progressed to AIDS. Unless noted, most HIV data in this profile includes people diagnosed with AIDS.

HIV Only – Includes only people with HIV infection who did not develop AIDS within 365 days of report of positive HIV test.

Health Professional Shortage Area (HPSA) – A Department of Health and Human Services (HHS) designation system to identify areas facing a critical shortage of primary medical, dental, or mental health care professionals.

Incidence – The number of new HIV/AIDS cases newly diagnosed and reported each year. Incidence cases may be combined in two or three year periods.

Incidence Rate – Number of new cases occurring during a period of time, divided by the annual average population, multiplied by 100,000. It is a measure of the frequency with which an event occurs in a population over a period of time. It is also a measure of risk of getting the disease.

Natural Breaks (Jenks) – Is a data classification method designed to determine the best arrangement of values into different classes. This is done by seeking to minimize each class's average deviation from the class mean, while maximizing each class's deviation from the means of the other groups (used primarily in maps).

Other Risks – In relation to Risk Exposures, the term “Other” or “Other Risks” is used to describe a group of risks which include such categories as: hemophilia, blood transfusion, and perinatally acquired infection.
PLWHA – People Living With HIV/AIDS – See Prevalence below.

Prevalence – The number or proportion of people estimated to be living with Diagnosed and Reported HIV/AIDS at the end of a particular period of time (e.g. year).

NOTICE: Beginning with the 2016 Epidemiologic Profile (2015 data), Prevalence numbers are based on Last Known Residence. This is a change from previous years Prevalence numbers, which were based on Residence at Time of Diagnosis. This change makes comparisons with Epidemiologic Profiles prior to 2016 inaccurate and should not be done.

Prevalence Rate – Total number of living HIV/AIDS cases (both old and new cases) during the year of report, divided by the annual average population multiplied by 100,000. It is the proportion of people in a population who have a particular disease or attribute at a specified point in time (or specified period of time).

Rates are used to:
- measure the frequency of disease (in this case, HIV/AIDS) or other outcomes of interest,
- describe the distribution of disease occurrence in human populations,
- allow comparison of the risk of disease or burden of disease across populations,
- characterize the risk of disease for a population, and
- identify determinants of disease.

They may also be used to help:
- prioritize prevention programs among competing causes,
- identify target groups for intervention,
- acquire funding for resources, and
- compare events across geopolitical boundaries.

Note: All rates are per 100,000 population, unless otherwise stated.
Types and Quality of Data

Because no one epidemiologic data set will provide a complete picture of HIV/AIDS in the community, or the state for that matter, we have assembled data from several categories and sources. Data from a variety of categories provide a more accurate picture of past, present and future HIV/AIDS infection trends. Keeping in mind that not all data are equal, data sources must be considered in the context of their objectives, strengths and limitations; who the target populations are; how the data were collected; and the validity of the data.

As described above, several data sets are used to illustrate the South Carolina populations diagnosed with HIV/AIDS and to characterize the nature of risk-taking behaviors. All of these data sets share limitations or have similar types of bias introduced, in that most are reported by third parties, largely providers, who must seek information from the affected individual as to illness, transmission mode, and demographic characteristics. These reports are limited both by the willingness of providers to ask about these factors and that of clients to report on personal behaviors. These data are also limited in their ability to broadly characterize populations. For instance, STD (sexually transmitted disease) or HIV/AIDS case report data can only characterize people with STD or HIV who seek treatment, or data on estimated condom use among women cannot characterize all women but only those who agree to participate in selected behavioral surveys. Individuals who seek treatment for STD (and who are offered HIV testing) may be very different from those individuals who do not. However, each of the data sets referred to in this profile provide information to describe the relative risk and impact of this disease on the people of South Carolina.

The following summarizes data sources, and limitations, used by the data work-group to complete the South Carolina Epidemiologic Profile of HIV/AIDS.
Selected Data Source Description and Limitations:

DHEC, Enhanced HIV/AIDS Reporting Surveillance System (eHARS)

All health care providers, hospitals, and laboratories in South Carolina are required to report people diagnosed with confirmed HIV infection and/or AIDS. Each year approximately one-third of new cases are reported from county health departments, one-third from hospitals, one-fifth from physicians, and the remainder from state/federal facilities (including prisons) and laboratories. DHEC’s surveillance system, eHARS, serves various functions: 1) monitoring the incidence and demographic profile of HIV/AIDS; 2) describing the modes of transmission among people with HIV/AIDS; 3) guiding the development and implementation of public health intervention and prevention programs; and 4) assisting in evaluating the efficacy of public health interventions. It is the principal source of knowledge regarding trends in the number and characteristics of HIV-infected people. It includes people in all age, gender, race/ethnic, and mode-of-HIV-exposure groups; and it provides a historical perspective in trends dating to the earliest recognition of the AIDS epidemic.

This profile primarily presents data on the total infection/disease spectrum: HIV infection including AIDS (not AIDS alone). Because of the long and variable period from HIV infection to the development of AIDS, trends in AIDS cases data do not represent recent HIV infections or all HIV-infected people. AIDS surveillance data do not represent people whose HIV infection is not recognized or diagnosed. AIDS cases have declined nationwide; however, because AIDS surveillance trends are affected by the incidence of HIV infection, as well as the effect of treatment on the progression of HIV disease, future AIDS trends cannot be predicted.

Because trends in new diagnoses of HIV infection are affected when in the course of disease a person seeks or is offered HIV testing, such trends do not reflect the total incidence of HIV infection in the population. In addition, because not all HIV-infected people in the population have been diagnosed, these data do not represent total HIV prevalence in the population. Interpretation of these data is complicated by several factors, ranging from a person having both HIV then AIDS diagnoses in the same year, varying time between reporting HIV and AIDS cases, and numerous reasons why the number of new HIV diagnoses changed (increased, decreased, or stable).

Some data is provided on HIV infection-only (people reported with HIV infection who do not have an AIDS diagnosis within 365 days of being diagnosed with HIV). This data, while highly dependent on people seeking or receiving HIV testing early in their infection stages, provide an opportunity to compare people presumably infected more recently with those infected as long as ten or so years ago (AIDS diagnosis).
Risk categories are assigned similar to the methods described above in HIV Counseling and Testing. There are some slight differences in the type of categories between HIV/AIDS surveillance reports and HIV Counseling and Testing reports. In South Carolina, about 34 percent of adult/adolescent HIV infection/AIDS cases reported in 2016 did not have risk categories reported. These cases are defined as “No Identified Risk” - (NIR). The proportion of NIR cases has been increasing nationally as well. The primary reason for incomplete risk information is that reports from laboratories do not include risk and an increasing proportion of cases result from heterosexual transmission but are not able to be defined in CDC’s definition of heterosexual transmission. For example, people who report having multiple heterosexual partners or who have sex for money/drugs but the status of their partners is not known, are not classified as “heterosexual”, they are “No Identified Risk”.

DHEC, Sexually Transmitted Diseases Management Information System (STD*MIS)

Health care providers and laboratories are required by law to report certain sexually transmitted diseases (including syphilis, chlamydia, gonorrhea, chancroid, hepatitis) to DHEC. A sexually transmitted disease, other than HIV infection, represents a visible and immediate health problem that stems from unprotected intercourse with an infected partner. Research from several studies strongly indicates that STDs increase the possibility of acquiring and transmitting HIV infection. The emerging problem of heterosexual HIV transmission in the South closely parallels that of syphilis and gonorrhea. Gonorrhea, syphilis, and chlamydia incidence and prevalence data are used by programs to: 1) monitor local, and state trends; 2) identify high-risk groups and geographic areas in which unsafe sexual behaviors occur, 3) guide the development and implementation of public health intervention and prevention programs; and 4) assist in evaluating the efficacy of public health interventions.

Considering the short incubation periods for these infections, gonorrhea, syphilis, and chlamydia incidence represent recent consequences of unsafe sexual behavior and point to populations who are potentially at very high risk for acquiring and transmitting HIV infection. Unfortunately, an often unrecognized aspect of STDs, including bacterial STDs, is how frequently people with these infections have no symptoms or do not recognize symptoms. Most studies of STDs are conducted in health-care settings specifically for people who do recognize symptoms; therefore, these studies usually overestimate the proportion of infected people who are symptomatic. Studies of STD screening in non-health-care settings (e.g., jails, workplaces, and communities) or health-care settings where STD treatment is not the primary function (e.g., family-planning clinics) suggests that most people with gonorrhea or chlamydia are asymptomatic.

Limitations: STD data lack much information that would help to better understand HIV risk, such as mode of transmission. Also, bias is introduced for some diseases, such as
chlamydia, where screening of asymptomatic people is done much more frequently in women than in men. For example, all women <25 years attending family planning and STD clinics in county health departments are routinely screened for chlamydia and gonorrhea. Also, there may be bias in that the majority of reports are from public clinics; the personal nature of STD’s may affect providers' willingness to report. This may account, in part, for the likelihood of some STDs to occur at much higher rates among African-Americans who are more likely to seek care in public clinics, where there is more complete reporting.

HIV Counseling and Testing Program Data from DHEC Clinics

Counseling and testing data, while highly informative about people who seek counseling and testing, does not tell us anything about people who do not seek testing or choose not to test. All states provide HIV counseling and testing services and maintain data to quantify HIV counseling and testing services delivered in publicly-funded sites and to determine the characteristics of people receiving those services. These data are used by prevention programs to plan and target services for high-risk individuals. The type of data collected in South Carolina includes the counseling and testing site type, number of clients tested and number positive for each risk group, number tested, number positive by type of test site, and number tested and number positive by race/ethnicity gender, and age group. Clients receive confidential counseling and testing in each of the 46 county health department clinics.

The counseling and testing data system is standardized and has been in place for several years. Data in this Epi-Profile reflect number of individual clients tested during a specific period of time. People who received multiple tests during the report period are only counted once. It includes people tested in family clinics, maternity clinics, TB, STD clinics and people voluntarily requesting services or referred through partner counseling services. Approximately one third of the total of newly diagnosed and reported people with HIV infection each year is from DHEC counseling and testing sites. People tested in other settings, such as physician offices, hospitals, state facilities, etc. are not included in the DHEC counseling and testing database.

To determine a client's level of risk, each person is assigned a risk status: men who have sex with men (MSM), injection drug use (IDU), or heterosexual contact with a person at risk for or infected with HIV. Since most clients acknowledge multiple risks, risk status is determined by using the CDC's hierarchy of risk. This process assigns the client's “highest” risk. The highest possible risk in the hierarchy is sex with a person with HIV/AIDS, while the least significant risk is “no acknowledged risk”. A person is only represented in their highest risk category regardless of how many risks the client acknowledges.
The CDC’s hierarchy of risk includes a category for the combined risks of MSM and IDU; in previous HIV/AIDS Epidemiologic Profiles, the combined risks of MSM and IDU have been grouped and reported within the single category of ‘Injection Drug Use’. This report leaves the combined risks of MSM and IDU as a stand-alone category. This CDC risk hierarchy can limit interpretability of data; it also does not reflect associated risks such as other non-injecting substance use, i.e. crack-cocaine.

Counseling and testing data in South Carolina and nationally is distinct from blinded, HIV seroprevalence surveys which generate an estimate of HIV seroprevalence that is unbiased by client self-selection. The DHEC counseling and testing system only includes clients who seek out counseling and testing services or agree to be tested after consultation with a counselor at a clinic site. However, for those clinic sites in which clients can obtain services other than counseling and testing for HIV, and in which all or nearly all clients actually receive HIV testing, (for example, maternity and STD clinics), data for those sites approximates the reliability of the blinded surveys.

Ryan White Program Data Report

The Ryan White HIV/AIDS Program Data Report (RDR) is an annual report that captures information regarding the services provided by all Ryan White funded entities. The RDR is divided into sections including: service provider information; client information; service information; HIV counseling and testing; and medical information. Providers report on all clients who received services eligible for Ryan White Parts A, B, C or D funding, regardless of the actual funding source used to pay for those services. The South Carolina Ryan White Part B contractors complete the RDR forms and submit them to DHEC. DHEC assembles all of the reports and submits the data to Health Resources and Services Administration (HRSA).

South Carolina Community Assessment Network (SCAN)

Its purpose is to provide basic reference data for a variety of users. The primary use of SCAN is to enumerate and characterize mortality attributed to HIV infection. The data were also used to compare trends in HIV infection mortality with other leading causes of death and to characterize the impact of HIV infection on mortality. Data on causes of death are based on information recorded by hospitals, physicians, coroners, midwives and funeral directors. Recorded information may be inaccurate or incomplete due to underreporting of certain causes of deaths, the number of HIV-related deaths and the conditions may be underestimated. Vital statistics data are not as timely as AIDS case reports due in part to processing time. SCAN is also used to enumerate and characterize birth attributes.
U.S. Department of Health and Human Services (DHHS): National Survey on Drug Use and Health (NSDUH)

The National Survey on Drug Use and Health is an annual nationwide survey involving interviews with approximately 70,000 randomly selected individuals aged 12 and older. The Substance Abuse and Mental Health Services Administration (SAMHSA), which funds NSDUH, is an agency of the U.S. Public Health Service in the U.S. Department of Health and Human Services (DHHS). Supervision of the project comes from SAMHSA's Center for Behavioral Health Statistics and Quality (CBHSQ).

Through a competitive bidding process, SAMHSA selected Research Triangle Institute (RTI) to conduct the NSDUH through 2014. RTI has successfully conducted the survey since 1988. RTI's role in this long-term national effort includes study design, sample selection, data collection, data processing, analysis, and reporting.

Data from the NSDUH provide national and state-level estimates on the use of tobacco products, alcohol, illicit drugs (including non-medical use of prescription drugs) and mental health in the United States. To assess and monitor the nature of drug and alcohol use and the consequences of abuse, NSDUH strives to:

- provide accurate data on the level and patterns of alcohol, tobacco and illegal substance use and abuse;
- track trends in the use of alcohol, tobacco, and various types of drugs;
- assess the consequences of substance use and abuse; and
- identify those groups at high risk for substance use and abuse.

A scientific random sample of households is selected across the United States, and a professional RTI interviewer makes a personal visit to each selected household. After answering a few general questions during the in-person visit by the interviewer, one or two residents of the household may be asked to participate in the survey by completing an interview. Since the survey is based on a random sample, each selected person represents more than 4,500 United States residents.

Participants complete the interview in the privacy of their own home. A professional RTI interviewer personally visits each selected person to administer the interview using a laptop computer. Individuals answer most of the interview questions in private and enter their responses directly into the computer so even the interviewer does not know the answer entered. For some items, the interviewer reads the question aloud and enters the participant's response into the computer.

Each interview data file – identified only by a code number – is electronically transmitted to RTI on the same day the interview is conducted. Combined with all other participants'
answers, the data are then coded, totaled, and turned into statistics for analysis. As a quality control measure, participants may receive a telephone call or letter from RTI to verify the interviewer completed the interview with them in a professional manner.

Youth Risk Behavior Surveillance System (YRBSS)

The Youth Risk Behavior Survey (YRBS) was developed cooperatively by the Centers for Disease Control and Prevention (CDC), several federal agencies, and state departments of education to measure the extent to which adolescents engage in health risk and health enhancing behaviors. The system consists of national, state, and local school-based surveys. In South Carolina, the YRBS consists of questionnaires administered to middle school (6th-8th grade) and high school (9th-12th grade) students in the public school system. A two-stage sampling process is used to provide a state-wide sample at each level. In the first stage, regular public schools with any of the target grades are sampled with probability proportional to the school enrollment. In the second stage, intact classes are sampled randomly and all students in these classes are eligible to participate. The overall response rate is calculated as the percentage of sampled schools that participate multiplied by the percentage of sampled students that complete useable surveys. If this overall response rate is 60% or greater, the resulting data are weighted to be representative of the state as a whole.

There are 367 private K-12 schools in South Carolina; however, none of them are included in the survey. Also, while schools are randomly selected for participation some may choose not to participate. The survey includes questions about injury and violence, tobacco use, alcohol and other drug use, sexual risk behaviors, physical activity, and nutrition behaviors (the specific questions can vary from year to year).

This survey is conducted by S.C. Healthy Schools at the Department of Education, and relies heavily on surveillance methods and self-reports; so it depends on how well respondents understand the questions and how well they can accurately and honestly answer the question. However, the questionnaire has demonstrated good test-retest validity and the data are edited, checked and weighted. These data are representative of only public middle school students (grades 6-8) or public high school students (grades 9-12) in South Carolina.
What are the sociodemographic characteristics of the population?

The HIV epidemic in the United States, and in South Carolina, is a composite of multiple, unevenly distributed epidemics in different regions and among different populations. These populations may comprise people who practice similar high-risk behavior, such as injecting drugs or having unprotected sex with an infected person. Although race and ethnicity are not risk factors for HIV transmission, they are markers for complex underlying social, economic, and cultural factors that affect personal behavior and health. Low socioeconomic status is associated with increased disease morbidity and premature mortality. Unemployment status is correlated to limited access to health care services, resulting in increased risk for disease. This section provides background information on South Carolina's populations and contextual information, i.e. education, poverty level, housing, etc., for assessing potential HIV impact. The social, economic, and cultural context of HIV infection must be considered when funding, designing, implementing and evaluating HIV prevention programs for diverse populations.

The State

South Carolina lies on the southeastern seaboard of the United States. Shaped like an inverted triangle, the state is bounded on the north by North Carolina, on the southeast by the Atlantic Ocean, and on the southwest by Georgia. It ranks 40th among the 50 states in size and has a geographic area of 30,061 square miles. South Carolina has a diverse geography that stretches from the Blue Ridge Mountains in the northwest corner to the beaches along the Atlantic coast. Manufacturing is the state's leading industry, followed by tourism and forestry.

Populations

Based on Census Bureau data, the total number of South Carolinians is 4,961,119 (2016 estimate). Of this total, 64 percent are Caucasian, 27 percent are African-American, and 6 percent are of Hispanic origin. Fifty-one percent are female and 49 percent are male. 67 percent of the population distribution in South Carolina is defined as metropolitan; 33 percent is non-metropolitan. (Figure 1.02).

<table>
<thead>
<tr>
<th>Figure 1.02: Selected demographic information South Carolina and United States</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Carolina</td>
</tr>
<tr>
<td>Population</td>
</tr>
<tr>
<td>Proportion of Persons Living in Non-Metropolitan Areas</td>
</tr>
<tr>
<td>Median Age</td>
</tr>
<tr>
<td>Racial/Ethnic Distribution of Pop.</td>
</tr>
<tr>
<td>White</td>
</tr>
<tr>
<td>Black</td>
</tr>
<tr>
<td>Hispanic</td>
</tr>
<tr>
<td>Educational Attainment</td>
</tr>
<tr>
<td>High school grad. or higher</td>
</tr>
<tr>
<td>Bachelor’s degree or higher</td>
</tr>
<tr>
<td>Unemployment Rate</td>
</tr>
<tr>
<td>Median Household Income</td>
</tr>
</tbody>
</table>

Sources: U.S. Census Bureau.
Education & Earnings
Educational attainment is strongly correlated with poverty, and South Carolina continues to rank low in percent of people over 25 years of age who have bachelor’s degrees or higher (27 percent). Just over thirteen percent (13.4 percent) of the population has less than a high school education. By race, 10 percent of the white population, and 19 percent of the African American population, over the age of 25 in South Carolina have an educational attainment of less than a high school diploma.

In comparison, African-Americans and people of Hispanic origin have lower per capita incomes, averaging 37 percent below the state’s mean income, while whites earned 17 percent above the state’s mean income. (Figure 1.3)

Poverty Level
Despite the economic strides made in recent years, South Carolina remains among states with the highest percentage of people who live below the poverty level. According to US Census Bureau data, in South Carolina approximately 15.3 percent of individuals and 10.8 percent of families live below the poverty level.

Figure 1.03: S.C. Per Capita Income by Race and Ethnicity

<table>
<thead>
<tr>
<th>Per Capita (mean) Income (2016 Inflation-Adjusted Dollars)</th>
<th>Estimate</th>
<th>Relative to African-Americans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Native Hawaiian/Other Pacific Islander</td>
<td>$ 12,814</td>
<td>0.7</td>
</tr>
<tr>
<td>Hispanic or Latino origin (of any race)</td>
<td>$ 15,928</td>
<td>0.9</td>
</tr>
<tr>
<td>African-American</td>
<td>$ 17,884</td>
<td>1.0</td>
</tr>
<tr>
<td>American Indian/Alaska Native</td>
<td>$ 24,050</td>
<td>1.3</td>
</tr>
<tr>
<td>Asian</td>
<td>$ 25,976</td>
<td>1.5</td>
</tr>
<tr>
<td>White</td>
<td>$ 31,518</td>
<td>1.8</td>
</tr>
<tr>
<td>South Carolina Overall</td>
<td>$ 27,016</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Data Sources: U.S. Census Bureau

An estimated 24.8 percent of African-American South Carolinians were below the poverty level in 2016, compared to 25.8 percent of people of Hispanic descent, 10.8 percent among whites and 17.3 percent of people categorized as ‘Other’, which includes Asian, Pacific Islanders and Native Americans (Figure 1.04).

Figure 1.04: Percent of each racial/ethnic pop. living below federal poverty level: S.C. 2016

Data Source: U.S. Census Bureau, American Community Survey.
Insurance/Access to Primary Care
Ten percent of South Carolinians do not have health insurance. In South Carolina, all or part of forty-five (out of forty-six) counties are designated as Health Professional Shortage Areas (HPSA). An estimated 1,253,951 South Carolinians live in HPSAs; or approximately 27.1 percent of the South Carolina’s population, compared to 17.7 percent of the total U.S. population.

Employment
South Carolina’s unemployment rate at mid-year 2016 was 4.8 percent, slightly lower than the US rate of 4.9 percent and significantly lower than the same time in 2015 (5.7 percent). The median household income in South Carolina was $49,501 ($8,116 below the US median income of $57,617).

Housing
According to the US Census, 69 percent of the state’s homes were owned. The S.C. Council on Homelessness estimates there were 5,354 homeless adults and children in 2015.

Summary
South Carolina, as many southern states, ranks high for poverty, low educational attainment and uninsured population compared to other US states. These factors can affect one’s ability to access prevention and health care services and adhere to regimens for treatment and care of diseases that may lead to more severe consequences.
What is the impact of HIV/AIDS on the population?

In the United States, HIV/AIDS remains a significant cause of illness, disability, and death, despite declines in new AIDS cases and deaths. Current surveillance activities provide population-based HIV/AIDS data for tracking trends in the epidemic, targeting and allocating resources for prevention and treatment services, and planning and conducting program evaluation activities.

In South Carolina, AIDS cases have been reported since 1981, and confirmed cases of HIV infection have been reportable since February 1986. During the calendar year of 2015, according to the CDC HIV/AIDS Surveillance Report, South Carolina ranked 8th among states, the District of Columbia, and U.S. dependent areas with an AIDS case rate of 9.4 per 100,000 population. The epidemic is continuing to grow with an average of 66 cases of HIV infection reported each month during 2016. The incidence rate in South Carolina for 2016 is 16.1 per 100,000 population. As of December 31, 2016, there are an estimated 18,998 South Carolina residents living with diagnosed HIV infection (including AIDS). This section summarizes the overall toll of the epidemic in South Carolina based on total reported HIV/AIDS cases and deaths.
Gender

Figure 2.01 shows the impact of HIV on the men and women in South Carolina. Men are disproportionately affected by HIV/AIDS. Men make up 49 percent of South Carolina’s total population, but comprise 71 percent of PLWHA (prevalence). HIV/AIDS diagnosed cases during the two-year period 2015-2016 gives an estimate of more recent infections or potentially emerging populations.

Figure 2.01: Disproportionate S.C. HIV impact by sex

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>2,407,934</td>
<td>13,500</td>
<td>1,197</td>
</tr>
<tr>
<td>Female</td>
<td>2,553,185</td>
<td>5,498</td>
<td>314</td>
</tr>
<tr>
<td>Total</td>
<td>4,961,119</td>
<td>18,998</td>
<td>1,511</td>
</tr>
</tbody>
</table>

Women have seen the sharpest decline in the rate of newly diagnosed HIV/AIDS during the last ten years, with the rate decreasing by 34 percent from 2007 (9.8) to 2016 (6.5), and while the rate may fluctuate from year to year, on average, women have had a four percent, per year, decrease in the rate for new cases.

Men, however, have not seen the same decline in the rate of new cases as women have, with the rate decreasing by only one percent from 2007 (26.5) to 2016 (26.2). For males, the rate has more pronounced fluctuations and, on average, men have only had a less than one percent, per year, decrease in the rate for new cases.
Race/Ethnicity

African-Americans are disproportionately impacted by HIV/AIDS in South Carolina. African-Americans comprise 28 percent of the state’s total population, yet 69 percent of the total people living with HIV are African-American. Four percent of total cases are Hispanics, who comprise six percent of the state’s population (Figure 2.03).

African-American men, who comprise only 13 percent of the state’s population, make up the largest proportion of both PLWHA in 2016 and new diagnosis in 2015-2016 (46 percent and 53 percent respectively). African-American women, who similarly comprise 15 percent of the population, make up 23 percent of PLWHA in 2016 and 15 percent of new diagnosis in 2015-2016. Whites, who comprise the largest proportion of the population in South Carolina (32 percent males; 33 percent females), make up 25 percent of PLWHA in 2016 (20 percent males; five percent females) and 22 percent of new diagnosis in 2015-2016 (18 percent males; four percent females), (Figure 2.04).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>%</td>
<td>No.</td>
</tr>
<tr>
<td>Black Males</td>
<td>642,143</td>
<td>13%</td>
<td>8,753</td>
</tr>
<tr>
<td>Black Females</td>
<td>728,010</td>
<td>15%</td>
<td>4,316</td>
</tr>
<tr>
<td>White Males</td>
<td>1,568,856</td>
<td>32%</td>
<td>3,770</td>
</tr>
<tr>
<td>White Females</td>
<td>1,640,592</td>
<td>33%</td>
<td>917</td>
</tr>
<tr>
<td>Hispanic Males</td>
<td>146,343</td>
<td>3%</td>
<td>666</td>
</tr>
<tr>
<td>Hispanic Females</td>
<td>128,253</td>
<td>3%</td>
<td>177</td>
</tr>
</tbody>
</table>
Each year the number of people living with HIV/AIDS continues to grow. Case rates per 100,000 by race and gender show the disparate burden of HIV among African-Americans. As Figure 2.05 shows, the rate per 100,000 population in 2016 is six times higher for black males than for white males, and eleven times higher for black females compared to white females.
In South Carolina, the trend in the number and rate of people newly diagnosed with HIV/AIDS each year has been declining, with a ten percent decrease in the rate per 100,000 population between 2007 (17.9) and 2016 (16.1). However, during this ten year time period, there have been high and low fluctuations from one year to the next: the 2016 rate is ten percent higher than the rate in 2015 (14.6). There are also important differences in the rates among race/gender populations (Figure 2.06).

While women in general have seen a decline in the rate of newly diagnosed HIV/AIDS, African-American women specifically have seen a 32 percent decrease between 2007 (25.3) and 2016 (17.1) and on average, had a three percent, per year, decrease in the rate for new cases. While white women have also seen a significant decreased over the same time period: 14 percent decrease from 2007 (2.1) to 2016 (1.8), white women have only averaged a one half (0.4) percent, per year, decrease in the rate for new cases.

Men, have not seen the same decline in the rate of newly diagnosed HIV/AIDS as women. African-American men did not have a significant change in the rate between 2007 (65.7) and 2016 (65.5) and have averaged over one-half percent (0.6), per year, increase in the rate for new cases. The rate for white men decreased six percent over the same time period (9.5 to 8.9) and have also averaged over one-half percent (0.6), per year, increase in the rate for new cases.

Figure 2.06: S.C. HIV/AIDS incidence rates by race/gender, 2007-2016
Age

When analyzing HIV/AIDS data by age, the differences between the two measures (incidence and prevalence) become pronounced. With incidence, 65 percent of new cases diagnosed in 2015-2016 are under the age of 40, and with 2016 prevalence, 71 percent are over the age of 40. For incidence, people age 20-29 comprise the largest proportion, 39 percent of newly diagnosed cases (20-24 20 percent and 25-29 19 percent), and people 30-39 comprise 21 percent. People under the age of 20 comprise just over five percent of new diagnosis. For prevalence, 24 percent are age 40-49, 31 percent are age 50-59, and 16 percent are age 60+. (Figure 2.07).

Figure 2.08 shows the HIV/AIDS incidence rates by age groups. From 2012 to 2016, the rate for both the 15-19 age group and the 40-49 age group decrease (7.1 and 6.0 percent per year respectively), while the other age groups had increases. The 25-29 age group (7.9 percent), the 50-59 age group (7.6 percent), and the 60+ age group (8.3 percent) experienced the largest increases.
Risk Exposure

Of the cases with an identified risk factor, men who have sex with men was the highest reported risk factor in 2016 for PLWHA (53 percent). Heterosexual contact accounted for 31 percent of reported risk factors. Nine percent reported a risk of injecting drug use (IDU). Four percent reported the combined risks of MSM and IDU (Figure 2.09).

The risk category ‘Other’ includes blood transfusion, hemophilia, and perinatal transmission; all of which account for a very small proportion of PLWHA (2 percent). Of the total estimated number of PLWHA in 2016, 21 percent had no risk identified.

Figure 2.10 shows reported risk for people newly diagnosed with HIV/AIDS during 2015-2016. The proportion of new cases with a reported risk of MSM was 77 percent and with a reported risk of heterosexual contact was 17 percent; IDUs made up five percent and the combined risk of MSM and IDU one percent. Thirty-three percent of new cases had no risk identified. Over time, the proportion of cases with no risk identified in a given year decreases as risks are determined through follow-up surveillance activities.
The race/gender profile of newly diagnosed cases in 2015-2016 with no risk reported is reflective of the total proportion of HIV/AIDS cases by race/gender (Figure 2.11).

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% with No Risk Identified</td>
</tr>
<tr>
<td></td>
<td>(N=476)</td>
</tr>
<tr>
<td></td>
<td>% Cases Reported</td>
</tr>
<tr>
<td></td>
<td>(N=1,451)</td>
</tr>
<tr>
<td>Black Male</td>
<td>43%</td>
</tr>
<tr>
<td>Black Female</td>
<td>28%</td>
</tr>
<tr>
<td>White Male</td>
<td>13%</td>
</tr>
<tr>
<td>White Female</td>
<td>6%</td>
</tr>
<tr>
<td>Hispanic Male</td>
<td>8%</td>
</tr>
<tr>
<td>Hispanic Female</td>
<td>2%</td>
</tr>
</tbody>
</table>

Note: Primary reasons for risk exposure information not reported were explained in the South Carolina HIV/AIDS Surveillance System section of the introduction.

Of reported risks for newly diagnosed case in 2015-2016: among African-American men, most cases were attributed to MSM contact (89 percent), heterosexual risk (seven percent), and IDU only (three percent). For white men, most cases were attributed to MSM contact (92 percent), IDU only (five percent), the combined risk of MSM and IDU (two percent), and heterosexual risk (one percent). Of Hispanic men with reported risk factors, most cases were attributed to MSM contact (77 percent) and heterosexual risk (13 percent), (Figure 2.12). Twenty-seven percent of men diagnosed in 2015-2016 had no indicated risk.
Among women diagnosed during 2015-2016 Heterosexual contact is the most often reported risk (89 percent). Ninety-six percent of African-American women reported Heterosexual contact as their risk, while 75 percent of Hispanic women and 74 percent of white women reported a risk of Heterosexual contact. White women report Injecting Drug Use more often (26 percent) than African-American women (four percent), (Figure 2.13). Fifty-seven percent of women diagnosed in 2015-2016 had no indicated risk.

Figures 2.14 and 2.15 show the proportion of total HIV/AIDS cases diagnosed during four periods from 2005 to 2016 by sex and risk exposure category for males and females in South Carolina. Heterosexual Contact has decrease 71 percent from 2005/2007 to 2014/2016 as a reported risk for men, while the reported risk of MSM has increased 29 percent over the same time period.

The proportion of reported risks for women is consistent across all of the time periods. Heterosexual contact is consistent at 87-90 percent, IDU at 9-12 percent, and Other at 1-2 percent.
Residence

People living with HIV/AIDS are widespread throughout the state. Figure 2.16 shows the 2016 prevalence rate and Figure 2.17 shows the three year average (2014-2016) incidence rate for African-Americans. Twenty-two percent of South Carolina counties have a prevalence rate greater than the state prevalence rate for African-Americans (953.8). Thirty-seven percent of South Carolina counties have a three year average (2014-2016) incidence rate for African-American greater than the state three year average incidence rate for African-Americans (38.6).
While the HIV/AIDS rate for whites in South Carolina is significantly lower than for African-Americans, the distribution throughout the state is not dissimilar. Figure 2.18 shows the 2016 prevalence rate and Figure 2.19 shows the three year average (2014-2016) incidence rate for whites. Thirty percent of South Carolina counties have a prevalence rate greater than the state prevalence rate for whites (146.1). Fourty-one percent of South Carolina counties have a three year average (2014-2016) incidence rate for whites greater than the state three year average incidence rate (5.3).
Mortality

Note: 2015 was the last year of data available when this report was published. With the advent of combination therapies and the use of prophylaxis, people infected with HIV are living longer and delaying the progression of AIDS, which is the advanced stage of the disease. These medications have also led to the decrease in AIDS-related deaths.

Large declines in AIDS mortality nationally essentially occurred during 1996-1997. Officials at the Centers for Disease Control and Prevention (CDC) cautiously attributed the sudden drops in deaths to new antiretrovirals, protease inhibitors, combination therapies, and increased prophylaxis for opportunistic illnesses. However, the initially reported gains were tempered by reports of demographic differentials that suggested only certain groups were benefiting from these new therapies.

Figure 2.20 shows the largest decline in deaths in South Carolina was in 1997, with AIDS related deaths dropping to 317 from 532 the previous year. Since 1997, the number of AIDS deaths per year has continued to decline; however, as seen in the graph, there are fluctuations in the number of AIDS deaths from year to year. Reasons for this may include delay in diagnosis of HIV infection until severe symptoms arise, difficulty in adherence to prescribed medical treatments, and development of viral resistance to therapy.
In addition to representing 46 percent of PLWHA (in 2016), African-American males accounted for the majority of people who died from AIDS (50 percent) in 2015. African-American females accounted for 30 percent of AIDS related deaths followed by white males (17 percent). By age group, the majority of deaths occurred among people age 45 and older (68 percent) (Figure 2.21).

<table>
<thead>
<tr>
<th>Race/Sex</th>
<th>Number</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black Male</td>
<td>68</td>
<td>50%</td>
</tr>
<tr>
<td>Black Female</td>
<td>41</td>
<td>30%</td>
</tr>
<tr>
<td>White Male</td>
<td>23</td>
<td>17%</td>
</tr>
<tr>
<td>White Female</td>
<td>4</td>
<td>3%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Number</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td><19</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>20-24</td>
<td>4</td>
<td>3%</td>
</tr>
<tr>
<td>25-34</td>
<td>12</td>
<td>9%</td>
</tr>
<tr>
<td>35-44</td>
<td>27</td>
<td>20%</td>
</tr>
<tr>
<td>45-54</td>
<td>39</td>
<td>29%</td>
</tr>
<tr>
<td>55-64</td>
<td>38</td>
<td>28%</td>
</tr>
<tr>
<td>65+</td>
<td>16</td>
<td>12%</td>
</tr>
</tbody>
</table>

Who is at risk for becoming infected with HIV?

HIV can be transmitted via blood coming in contact with an infected person’s blood, breast milk, or sexual fluids. The people most likely to become infected with HIV are those who engage in high-risk behaviors which place them at greater than normal risk. Transmission happens most often during sexual or drug-using activity, and the frequency of the high-risk behavior combined with HIV prevalence in sexual or drug-using networks determines a person’s risk for becoming infected. In order to accurately target STD/HIV prevention and treatment activities, it is important for community planning groups (and program providers) to have information on the number and characteristics of people who become newly infected with HIV and people whose behaviors or other exposures put them at various levels of risk for STD and HIV infection. This section summarizes HIV infection among population groups at high risk for HIV infection, sexually transmitted disease data, and behavioral data.

Characteristics of HIV/AIDS in People at Highest Risk

Analysis of characteristics of people with HIV/AIDS helps identify people at greatest risk for becoming infected. Risk for infection can be determined by assessing the frequency of high-risk behavior (e.g., unprotected sex, needle-sharing) in combination with the estimated prevalence of HIV/AIDS and incidence of HIV/AIDS.

Figure 3.01 shows the number of people in South Carolina living with HIV/AIDS at the end of each year by reported risk. MSM comprise the greatest number of people living with HIV, followed by heterosexuals. IDU, MSM and IDU, and other risks comprise fewer numbers.

![Figure 3.01: Number of people living with HIV/AIDS by year and reported risk, 2012-2016](image)

Excludes persons with no risk reported.
Figure 3.02 is a graph of the number of each reported risk for newly diagnosed cases, by year. Similar to the prevalence graph above, MSM is the most often reported risk among newly diagnosed cases; followed by heterosexual contact, IDU, combined MSM and IDU, and other risks.

![Figure 3.02: Number of new HIV/AIDS cases by year of diagnosis and reported risk, 2012-2016](image)

Excludes persons with no risk reported.

Based on data in this profile, the following primary populations have been identified as being at the highest risk of HIV/AIDS: men who have sex with men (MSM), high-risk heterosexuals, injecting drug users (IDUs), and men who have sex with men and injecting drug use. Women will be described in the heterosexual and injecting drug user section, and teenagers/young adults will be described within each population category.
Men who have Sex with Men

Estimates of Men Who Have Sex with Men Behavior in South Carolina

According to the U.S. Census Bureau, there are an estimated 1,428,804 males in South Carolina between the ages of 15-64, which is the age range when people are most sexually active. Review of literature and other state profiles, indicates that the estimated percentage of men who have sex with men (MSM) ranges from 1.0 percent to 12.9 percent. This would mean the number of MSM in South Carolina could be estimated to between 14,288 and 184,316.

Characteristics of men who have sex with men

Of PLWHA in South Carolina with a reported risk, the largest proportion is men who have sex with men (53 percent). MSM also accounted for the highest proportion (77 percent) of recently diagnosed adult/adolescent cases.

The majority of MSM cases diagnosed during 2015-2016 were African-American (68 percent). White men accounted for 24 percent of the new cases and eight percent were Hispanic or other races. (Figure 3.03)

The majority of MSM diagnosed during 2015-2016, were 20-29 years of age (54 percent); 19 percent were 30-39 years of age, ten percent were 40-49 years of age, and nine percent were 50+ years of age. For men recently diagnosed, African-Americans accounted for the highest proportion for each age group below the age of 40, and whites accounted the highest proportion over the age of 40 (Figure 3.04).
Of men who have sex with men living with HIV/AIDS in 2016, 59 percent were African-American, 34 percent were white and four percent were Hispanic. The majority of MSM living with HIV/AIDS, were over the age of 40 (59 percent), with the highest percentage in the 50-59 age group (27 percent). 22 percent were 30-39 years of age, and nineteen percent are below the age of 30. African-Americans accounted for the highest proportion for each age group below the age of 50, and whites the highest proportion over the age of 50 (Figure 3.05).

Richland County has the greatest number of MSM living with HIV/AIDS in 2016 (1,516), with Charleston (945) and Greenville (769) having the next highest numbers. Most South Carolina counties had fewer than 123 MSM living with HIV/AIDS (Figure 3.06).

Summary
Among men who have sex with men, African-American men account for over half the proportion of both living with HIV/AIDS (59 percent) and newly diagnosed HIV/AIDS cases (67 percent). And of men who have sex with men ages twenty to forty, African-American men comprised 76 percent of cases living with HIV/AIDS and 73 percent of newly diagnosed HIV/AIDS.
High Risk Heterosexuals

Estimates of High-Risk Heterosexual Behavior in South Carolina

It is difficult to make an assessment of the number of people in South Carolina who engage in heterosexual contact that puts them at high risk for becoming infected with HIV. While there are some differences in the population of people with HIV/AIDS and the population of those with a non-HIV STD, most experts acknowledge that a diagnosis of an STD would suggest the individual is engaging in unsafe sexual practices. During 2016, 28,413 cases of chlamydia, 9,301 cases of gonorrhea and 314 cases of infectious syphilis were reported in South Carolina. More data on STDs, as well as other behavioral indicators such as teenage pregnancy and condom use, is described later.

In order for a case of HIV or AIDS to be considered as heterosexual transmission, it must be reported that the individual had heterosexual contact with a person who has documented HIV infection or AIDS, or had heterosexual contact with a person who is in a high risk group for HIV (MSM or IDU).

Characteristics of high risk heterosexuals

People with reported high-risk heterosexual contact comprise 31 percent of the total PLWHA at the end of 2016. Of PLWHA who reported a risk of heterosexual contact, over half were African-American women (54 percent), 28 percent were African-American men, 10 percent were white women, and three percent were white men.

Seventeen percent of people diagnosed during 2015-2016 reported high-risk heterosexual contact. Figure 3.07 shows that African-American men and women comprise a disproportionate 76 percent of recently diagnosed heterosexual HIV/AIDS cases. African-American women account for 53 percent of recent cases and 24 percent are African-American men. White women account for 15 percent while white men account for only one percent. Hispanic men and women together account for six percent of recent cases with a reported risk of heterosexual contact.
On average, the number of heterosexual cases diagnosed each year has decreased 12 percent per year from 2012 to 2016. Figure 3.08 shows the number of heterosexually acquired HIV cases in men and women in South Carolina from 2012 to 2016. During most of this period, the proportion of female cases averaged 88 percent higher than males.

The majority of high risk heterosexuals diagnosed in 2015-2016 were 20-29 years of age (29 percent); however, the 30-39 age group (19 percent), 40-49 age group (22 percent), and 50-59 age group (18 percent) were not that different in numbers and percent. African-American women and men comprised the greatest proportion of cases in each age group (Figure 3.09).

Of PLWHA in 2016 who reported a risk of heterosexual contact, 80 percent were age 40 and over; 40-49 (29 percent), 50-59 (32 percent), and 60+ (18 percent). African-American women comprised the greatest proportion (54 percent), followed by African-American men (28 percent) (Figure 3.10). White men and women account for 13 percent and Hispanic/Other men and women account for five percent of PLWHA who reported a risk of heterosexual contact.
Figure 3.11 shows the counties with the highest prevalence of PLWHA due to heterosexual transmission. Richland county has the highest number of reported cases (754), followed closely by Charleston, Florence, Sumter, Greenville, Horry, and Spartanburg. Eighty-three percent of South Carolina counties each have less than 169 PLWHA who reported a risk of heterosexual contact.

Figure 3.12 shows the case rate for 2014-2016 among women; an indicator for more recent heterosexual risk. Lee and Bamberg counties have the highest case rates in the state (34.2 and 25.7 per 100,000 population respectively). Ninety-six percent of counties have case rates below 16.9 (the state rate is 6.1).

Summary

Among heterosexually exposed cases, African-American women account for over half of newly diagnosed HIV/AIDS cases (53 percent) and African-American men account for 24 percent. Of people living with HIV/AIDS with a reported risk of heterosexual contact, African-American women account for 54 percent and African-American men account for 28 percent. Of people with a reported risk of heterosexual contact, African-American men and women age 20-59 account for seven out of every ten PLWHA and five out of every ten people diagnosed in 2015-2016.
Injecting Drug Users

Characteristics of Injecting Drug Users (IDU)

Injecting drug users’ account for nine percent of reported risks for people living with HIV/AIDS in 2016 and five percent of people recently diagnosed with HIV/AIDS during 2015-2016.

Over the past ten years, the number of new HIV/AIDS diagnosis with a reported risk of injecting drug use has been declining; however, the number of IDU reported risk increased in both 2015 and 2016. In light of the national opioid crisis, it is important to monitor this risk category closely. Men account for the largest proportion of those reporting injecting-drug-use as their risk. (Figure 3.13).

Figure 3.14 shows race and gender proportions of recently diagnosed (2015-2016) IDU cases. Men account for 68 percent: African-American men 36 percent, white men 21 percent, and Hispanic/other 11 percent. African-American women accounted for nine percent and white women 19 percent.
Figure 3.15 shows that 60 percent of IDU cases diagnosed in 2015-2016 are over the age of 40: 40-49 15 percent, 50-59 28 percent, and 60+ eight percent. Of those reporting IDU as their risk, 26 percent were age 20-29, and 15 percent were age 30-39.

Of PLWHA with IDU as identified risk factor, most (92 percent) are 40 years of age and older. African-Americans account for the greatest proportion of cases over the age of 40, with African-American men accounting for 46 percent and African-American women accounting for 27 percent. Within the 20-39 age groups, white women account for the greatest proportion (30 percent) and African-American men the next highest proportion (22 percent), followed by African-American women 19 percent and white men 16 percent. (Figure 3.16).
Other Populations at Risk

Other populations at varying risk for HIV are described below and include people with sexually transmitted diseases, infants and children, and pregnant teen age women.

People with Sexually Transmitted Diseases (STDs)

STDs are primary risk factors for HIV infection and a marker of high risk, unprotected sexual behavior. Many STDs cause lesions or other skin conditions that facilitate HIV infection. Trends in STD infection among different populations (e.g. adolescents, women, men who have sex with men) may reflect changing patterns in HIV infection that have not yet become evident in the HIV/AIDS caseload of a particular area.
Chlamydia
Over the past decade, reported cases of chlamydia have been averaged about 28,000 per year. Some of this high number may be attributed to initiating routine screening for all young women attending family planning and STD clinics in health departments statewide. In 2016, there were 28,413 cases of chlamydia diagnosed in South Carolina. Among those cases with a reported race, 48 percent were African-American women and 21 percent were white women. African-American men comprised 22 percent of chlamydia cases, and white men accounted for six percent (Figure 3.18). Twenty-seven percent of chlamydia cases have ‘Unknown’ race; this is attributed to the fact that these conditions are primarily reported by labs, which frequently do not collect a race.

Of cases diagnosed in 2016, 86 percent were adolescents and adults under the age of 30. 15-19, 29 percent; 20-24, 38 percent; and 25-29, 18 percent. Persons age 30 and over accounted for 14 percent of chlamydia cases. Figure 3.19
Gonorrhea

In 2016, 9,301 gonorrhea cases were diagnosed in South Carolina. Of cases with a reported race, African-American men and women account for 74 percent of reported cases; African-American women 37 percent and African-American men 37 percent. As with chlamydia, twenty percent of reported gonorrhea cases have an ‘Unknown’ race. Figure 3.20 shows trends among reported race/gender by year.

Figure 3.20: South Carolina count of reported gonorrhea cases by year of diagnosis, 2007-2016

76 percent of Gonorrhea cases diagnosed in 2016 were between the ages of 15 and 29. Twenty percent of cases were age 15-19, thirty-five percent were age 20-24, and 20 percent were age 25-29. Persons age 30 and over accounted for 24 percent (Figure 3.21).

Figure 3.21: Proportion of 2016 Gonorrhea cases by age group
Infectious Syphilis
The number of infectious syphilis diagnosed each year in South Carolina has dramatically increased over the past ten years. In 2016, 314 cases of infectious syphilis were diagnosed; this is a 234 percent increase from 2007 (94 cases). On average, the number of infectious syphilis cases diagnosed each year has increased 16 percent per year over the last decade.

Figure 3.22 shows men continue to represent the majority of cases (85 percent): African-American men specifically, are most impacted, accounting for 54 percent of total cases, white men accounting for 27 percent, and Hispanic/other men three percent. Women account for 15 percent of the total infectious syphilis cases: African-American women comprised nine percent, white women five percent, and Hispanic women one percent. Less than one percent of infectious syphilis cases have ‘unknown’ or ‘other’ for race.

Fifty-six percent of infectious syphilis cases diagnosed in 2016 were under the age of 30. Six percent age 15-19, Twenty-seven percent were age 20-24, and 24 percent were age 25-29. Forty-four percent were over the age of 30; 20 percent 30-39, 13 percent 40-49, and 10 percent age 50+ (Figure 3.23).
Infants and Children: (Children under 13 years of age)
Cumulatively, through December 2016, there have been 286 cases of HIV infection diagnosed among children less than 13 years of age; this represents one percent of the total reported AIDS and HIV infection cases.

Most infants and children infected with HIV acquired it perinatally from their mother. There has been significant progress over the past twenty years in reducing the number of infants with perinatal acquired HIV infection (see Perinatally HIV exposed births below). When reporting small numbers of cases, trend graphs, such as the one in Figure 3.24, tend to display a lot of fluctuation over the given time period. The highest number of cases reported was 21 in 1993 (not on graph); the lowest number is two cases. There were two cases in 2016.

Perinatally HIV exposed births
The number of perinatally HIV exposed births averages around 72 per year, while perinatally acquired HIV cases average one per year. This translates into 1.4 percent of perinatally HIV exposed births testing positive for HIV. Figure 3.25 shows number of perinatally HIV exposed births (values on left) and the rate by race of mother (values on right). In 2016, the exposure rate for African-American women is 11 times higher compared to white women.
Teenage Pregnancy

Pregnancy birth and abortion rates, like STD rates, are indications of the extent of unprotected sexual activity in a population.

African-American girls between the ages of 10 and 14 have continued to have higher rates of live births than their white counterparts. However, the rate has decreased from 1.4 in 2007 to 0.6 per 1,000 live births in 2015.

Figure 3.26: South Carolina teens age 15 - 17 live birth rate

Teenage live births among 15-17 year old South Carolinians have decreased from a rate of 27.3 per 1,000 live births in 2007 to 10.0 in 2016; a 63 percent decline (Figure 3.26). This success is also seen when viewing teen birth rates by racial/ethnic subgroups. The rate for white 15-17 year old teens was 21.6 in 2007 and 8.8 in 2016, representing a 59 percent decline. The rate for African-American 15-17 year old teens declined 65 percent from 37.1 per 1,000 live births in 2007 to 12.9 in 2016.

Figure 3.27 shows the teen birth rates (per 1,000 live births) for 18 and 19 year olds. As with the 15-17 age group, African-American teenage girls continue to have higher live birth rate than other races. All races have seen an overall decrease in the live birth rates from 2007 (93.2 per 1,000 live births) to 2016 (44.3 per 1,000 live births).
People Receiving HIV Counseling and Testing At County Health Departments

Data from local HIV counseling and testing sites (county health departments) generally reflect similar trends as HIV/AIDS surveillance data in terms of who is most likely to be HIV infected, risk category, and county of residence. As stated in the Introduction, the data reflects only those people tested voluntarily in local health departments. This data reflects number of individuals tested, not the number of tests. In 2016, African-Americans comprised 66 percent of the total people tested, and 80 percent of the total positive. Men accounted for 32 percent of people tested and 83 percent of total positive. People 20-39 years of age represented the highest proportion tested (78 percent) and the highest proportion total positive people (72 percent). People over the age of 40 comprised 14 percent of the total people tested, and 26 percent of the total positive.

Public Health Regions (PHR) that accounted for the greatest proportion of people tested who were positive include those with the same urban counties of highest prevalence:
- Lowcountry PHR (includes Charleston County) – 18 percent of total positives;
- Midlands PHR (includes Richland County) - 31 percent of total positives tested;
- Pee Dee PHR (includes Sumter and Florence counties) – 18 percent of total positives;
- Upstate PHR (includes Greenville and Spartanburg Counties) – 29 percent of total positives;

Other Behavioral/Risk Data

Behavioral Risk Factor Surveillance System (BRFSS)

Behavior Risk Factor Surveillance System is the world's largest random telephone survey of non-institutionalized population aged 18 or older that is used to track health risks in the United States. In 1981, the Centers for Disease Control and Prevention (CDC), in collaboration with selected states, initiated a telephone based behavioral risk factor surveillance system to monitor health risk behaviors. South Carolina began administering BRFSS in 1984. Several core questions address knowledge, attitudes, beliefs, and behaviors regarding sexually transmitted diseases, particularly AIDS.

The HIV/AIDS questions for the 2015 survey focused on respondents HIV/AIDS testing history. Results show that when asked about ever being tested for HIV themselves, only 36 percent of respondents indicated ever being tested. African-Americans were more likely (52%) to have been tested then Caucasians (30%). Men are only slightly less likely to have been tested then women (36% versus 37%).
Youth Risk Behavior Survey (YRBS)

The YRBS has been conducted in SC high schools every other year since 1991 and in middle schools since 2005. The survey is part of a national effort to monitor priority health risk behaviors that contribute to the leading causes of death, disability, and social problems among youth and adults in the United States. Figure 3.28 shows the proportion of high school students who have been sexually active, report having had four or more lifetime partners, and report using a condom at last sexual intercourse (had intercourse in past 3 months). Number of partners and condom use are important because of the increased risk of exposure to HIV.

Figure 3.28: Proportion of high school students indicating sexual risks, 2005-2015

Source – SC Dept. of Education
Substance Use

Drug use is known to be a major factor in the spread of HIV infection. The Centers for Disease Control (CDC) specifically includes Injection Drug Use (IDU) as a transmission category for the classification of cases that summarizes a person's possible HIV risk factor. IDU is considered a high risk because shared equipment (primarily used needles, but also other equipment) can carry HIV, which is drawn up into a syringe and then injected along with the drug by the next user of the syringe. Sharing equipment for using drugs can also be a means for transmitting hepatitis B, hepatitis C, and other serious diseases.

Additionally, non-injecting drug use, including methamphetamine or alcohol, is linked with unsafe sexual activity, which increases the risk of becoming infected with HIV or another sexually transmitted disease. Often, substance users have multiple sexual partners and do not protect themselves during sexual activity. Also, substance users may have an increased risk of carrying sexually transmitted diseases; this can increase the risk of becoming infected with HIV, or of transmitting HIV infection.

According to the South Carolina Department of Alcohol and Other Drug Abuse Services (DAODAS), Six percent of discharged episodes in federal fiscal year 2016 reported active or historical injection use. Additionally, 43 percent of the discharged episodes reported using an illicit drug other than marijuana (17 percent Opiates, 16 percent Cocaine, and 11 percent Amphetamines).
What are the patterns of service utilization of HIV-infected people?

Ryan White Part B

In 1990, Congress enacted the Ryan White CARE Act to provide funding for states, territories and Eligible Metropolitan Areas to offer medical care and support services for people living with HIV disease who lack health insurance and financial resources for their care. Congress reauthorized the Ryan White CARE Act in 1996 and 2000 to support Titles I through IV, Special Projects of National Significance (SPNS), the HIV/AIDS Education Training Centers and the Dental Reimbursement Program, all of which are part of the CARE Act. The legislation was reauthorized again in 2006 when it became the Ryan White HIV/AIDS Treatment Modernization Act and finally in 2009 with the Ryan White HIV/AIDS Treatment Extension Act.

Ryan White Part B funding is used to assist States and Territories in developing and/or enhancing access to a comprehensive continuum of high quality, community-based care for low-income individuals and families living with HIV.

During 2016, 9,089 clients received services through the Ryan White Part B funds. Figure 4.01 presents the distribution of Part B clients by race/ethnicity, sex and age as well as for PLWHA in South Carolina through December 2016. Clients served through Part B are representative of the population affected with HIV/AIDS in all categories.

<table>
<thead>
<tr>
<th>Race/Ethnicity</th>
<th>Ryan White Part B Clients, N=9,089</th>
<th>Persons Living with HIV/AIDS, N=18,998</th>
</tr>
</thead>
<tbody>
<tr>
<td>White, non-Hispanic</td>
<td>23%</td>
<td>25%</td>
</tr>
<tr>
<td>Black, non-Hispanic</td>
<td>73%</td>
<td>68%</td>
</tr>
<tr>
<td>Hispanic</td>
<td>3%</td>
<td>4%</td>
</tr>
<tr>
<td>Other</td>
<td>1%</td>
<td>2%</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>67%</td>
<td>71%</td>
</tr>
<tr>
<td>Female</td>
<td>33%</td>
<td>29%</td>
</tr>
<tr>
<td>Transgender</td>
<td><1%</td>
<td>—</td>
</tr>
</tbody>
</table>

Age Group

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Ryan White Part B Clients, N=9,089</th>
<th>Persons Living with HIV/AIDS, N=18,998</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 24</td>
<td>5%</td>
<td>—</td>
</tr>
<tr>
<td>25-44</td>
<td>37%</td>
<td>—</td>
</tr>
<tr>
<td>45+</td>
<td>58%</td>
<td>—</td>
</tr>
</tbody>
</table>

HRSA has directed that states should allocate funds for essential core services:
1) Primary Medical Care consistent with Public Health Service (PHS) Treatment Guidelines;
2) HIV Related Medications;
3) Mental Health Treatment;
4) Substance Abuse Treatment;
5) Oral Health; and
6) Medical Case Management.
Figure 4.02 shows a breakdown of Ryan White Part B clients who received six of the core services through funding and the average number of visits per clients. Among the 9,089 clients who received services, the majority of clients obtained medical case management services (n=7,897) followed by medical care, Medication Assistance (utilization of HIV related medications is described in the ADAP section), mental health services, dental care and substance abuse services.

Of those services utilized most by clients (visits/clients), medical case management services were among the highest (12 visits per clients), followed by medical care (4 visits per client), dental care (2 visits per client), mental health services (2 visits per client), and substance abuse (1 visits per client).

Additional services obtained by clients in 2016 included treatment adherence, counseling, food bank/home delivered meals, health education/risk reduction, referral for health care and supportive services, psychological support services, housing assistance and transportation services.
AIDS Drug Assistance Program (ADAP)

The South Carolina AIDS Drug Assistance Program (S.C. ADAP) operates under the Ryan White HIV/AIDS Treatment Modernization Act to provide access to medications that treat HIV disease and to prevent the serious deterioration of health arising from HIV disease in eligible individuals. The S.C. ADAP provides medication assistance via the following service tiers: 1) Direct Dispensing to provide medications via mail-order through a contracted pharmacy; 2) Insurance Assistance to reimburse costs for private insurance premiums, copayments, and deductibles; and 3) Medicare Assistance to provide support for Medicare Part D copayment and deductible costs. S.C. ADAP enrollment and services are centrally managed by the S.C. Department of Health and Environmental Control.

Currently there are 90 drugs on the approved S.C. ADAP formulary. The S.C. ADAP has an advisory body of infectious disease (ID) physicians and program staff that meet regularly to review the S.C. ADAP formulary and make recommendations for program improvements. In the past, once an antiretroviral medication received FDA approval, it was automatically added to the S.C. ADAP formulary. With the new development of extremely expensive therapies, such drugs are added as appropriate, after a thorough medical and fiscal review and in compliance with ADAP performance measures. Fuzeon, Selzentry, and pegylated interferon currently require prior authorization for approval. As of April 1, 2014, prior authorization is not required for abacavir-containing medications or ribavirin. There are no restrictions or caps on the number of antiretroviral medications per client.

Eligibility for S.C. ADAP includes verified HIV-positive status, South Carolina residency, and income criteria per ADAP service tier. The financial requirement is measured according to the Federal Poverty Guidelines. Eligibility for the ADAP direct dispensing service tier is 300 percent of the Federal Poverty Level (FPL). Eligibility for the ADAP insurance assistance service tier is 550 percent of FPL. Eligibility for the Medicare Assistance service tier is 550 percent of FPL and applies for individuals who do not qualify for the Medicare Part D Full Low-income Subsidy (FLIS). Expenditures are carefully monitored and projections are reviewed monthly.
Figure 4.03 lists the characteristics of clients enrolled in ADAP during 2016. Clients served through ADAP have a similar distribution to that of PLWHA in South Carolina. The majority of the clients are non-Hispanic African-American (70 percent), male (73 percent) and age 45 and over (52 percent).

Figure 4.03: Characteristics of ADAP clients compared to S.C. persons living with HIV/AIDS in 2016

<table>
<thead>
<tr>
<th>Race/Ethnicity</th>
<th>ADAP Clients, N=5,759</th>
<th>Persons Living with HIV/AIDS, N=18,998</th>
</tr>
</thead>
<tbody>
<tr>
<td>White, non-Hispanic</td>
<td>23%</td>
<td>24%</td>
</tr>
<tr>
<td>Black, non-Hispanic</td>
<td>70%</td>
<td>71%</td>
</tr>
<tr>
<td>Hispanic</td>
<td>5%</td>
<td>4%</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>73%</td>
<td>71%</td>
</tr>
<tr>
<td>Female</td>
<td>26%</td>
<td>29%</td>
</tr>
<tr>
<td>Transgender</td>
<td>1%</td>
<td>N/A</td>
</tr>
<tr>
<td>Age Group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 25</td>
<td><1%</td>
<td>–</td>
</tr>
<tr>
<td>25-44</td>
<td>4%</td>
<td>–</td>
</tr>
<tr>
<td>45-64</td>
<td>43%</td>
<td>–</td>
</tr>
<tr>
<td>65+</td>
<td>4%</td>
<td>–</td>
</tr>
</tbody>
</table>

Figure 4.04 shows a similar list of characteristics by Service Type. Men comprise the largest proportion across all three service types. ADAP’s Direct Dispensing served the largest number of clients and has a similar distribution to that of PLWHA in South Carolina. African-American’s also comprise the largest proportion within the Insurance Program and Medicare Part D Assistance.

Figure 4.04: 2016 ADAP Patient Profile Compared to Persons Living with HIV/AIDS

<table>
<thead>
<tr>
<th></th>
<th>S.C. HIV/AIDS Prevalence</th>
<th>Direct Dispensing</th>
<th>Insurance Program</th>
<th>Medicare Part D Assistance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N=18,998</td>
<td>N=3,187</td>
<td>N=3,125</td>
<td>N=849</td>
</tr>
<tr>
<td>Race/Ethnicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White, non-Hispanic</td>
<td>25%</td>
<td>18%</td>
<td>27%</td>
<td>47%</td>
</tr>
<tr>
<td>Black, non-Hispanic</td>
<td>69%</td>
<td>73%</td>
<td>70%</td>
<td>50%</td>
</tr>
<tr>
<td>Hispanic</td>
<td>4%</td>
<td>8%</td>
<td>2%</td>
<td>3%</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>71%</td>
<td>74%</td>
<td>73%</td>
<td>74%</td>
</tr>
<tr>
<td>Female</td>
<td>29%</td>
<td>25%</td>
<td>27%</td>
<td>26%</td>
</tr>
</tbody>
</table>

Figure 4.05 shows a breakdown of SC ADAP clients who received each of three types of services that support access to medications and the average number of services per client. The majority of SC ADAP enrollees received prescriptions, via mail order for uninsured clients and at retail pharmacies with insurance copayment/deductible assistance from SC ADAP. The SC ADAP paid health insurance premiums for enrollees with access to private insurance and supported out-of-pocket costs for enrollees with Medicare Part D coverage.

Figure 4.05: South Carolina ADAP Service Type, 2016

<table>
<thead>
<tr>
<th>Service Type</th>
<th>Number of clients receiving service</th>
<th>Number of visits per category</th>
<th>Average number of Services per client</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prescription Refills: (Direct Dispensing & insurance Copayments/Deductibles)</td>
<td>5396</td>
<td>97319</td>
<td>18</td>
</tr>
<tr>
<td>Premiums: Health Insurance Premiums (including Pre-existing Condition Plans)</td>
<td>1724</td>
<td>17465</td>
<td>10</td>
</tr>
<tr>
<td>Medicare Copayments/Deductibles*</td>
<td>349</td>
<td>8179</td>
<td>23</td>
</tr>
</tbody>
</table>

*Insurance Copayments and Deductibles are associated with specific prescribtions and are reported as Refills/Allocations.
HIV Continuum of Care

Methodology

The HIV Continuum of Care is a metrics developed by the Center for Disease Control and Prevention (CDC) as a way to monitor and report on the objectives outlined in the National HIV/AIDS Strategy for the United States, specifically: linked to care, received any care, retained in care, and viral suppression. Although the CDC developed the Continuum of Care metrics, each state has the discretion to modify the variables used in the metrics to meet a specific need. For the South Carolina Epidemiologic Profile, the following methodology was used.

- All persons with reported diagnoses of HIV infection (regardless of stage of disease) through year-end 2016, who were alive at year-end 2016
- All ages
- Last known state of residence is South Carolina
- Use CD4 and viral load tests as a surrogate for evidence of HIV care
- ‘Linked to care’ is persons with a CD4 or viral load test within 3 months after HIV diagnosis, among persons newly diagnosed with HIV infection in 2016
- ‘Received Any Care’ is persons with ≥1 CD4 or viral load test result during 2016
- ‘Retention in Continuous Care’ is persons who had ≥2 CD4 or viral load test results at least 3 months apart during 2016
- ‘Viral Suppression’ is persons who had a Viral Load <=200 copies/mL at most recent test during 2016

NOTE: Because the HIV Continuum of Care in this Epidemiologic Profile uses a different methodology from the CDC methodology, this Continuum of Care should not be used for comparison with national or other state’s Continuum of Care.
HIV Continuum of Care – Diagnosed Prevalence

The National HIV/AIDS Strategy objectives of received any care, retained in care, and viral suppression in this epidemiologic profile use Diagnosed Prevalence (all people living with diagnosed HIV/AIDS). The objective Linked to Care uses incidence data (only people newly diagnosed with HIV/AIDS in 2016), and is discussed later.

Figure 5.01 shows the number and percentage of PLWHA engaged in each step of the HIV continuum of care. Of the 18,998 PLWHA, Sixty-nine percent had at least one CD4 or viral load test during 2016; 54 percent of PLWHA had two or more CD4 or viral load tests at least 3 months apart during 2016; and 53 percent of PLWHA had a Viral Load <=200 copies/mL at most recent test during 2016.

Figure 5.01 Number and percentage of persons engaged in each step of the HIV continuum of care, 2016
The following figures show the HIV continuum of care stratified by stage of HIV diagnosis, gender, race/ethnicity, age group, and transmission category (risk).
Figure 5.04: Percentage of PLWHA engaged in each step of the HIV continuum of care, by race/ethnicity (2016)

- White (n=4,687)
 - Received Any Care: 67%
 - Retention in Continuous Care: 52%
 - Viral Suppression: 56%

- Black (n=13,089)
 - Received Any Care: 70%
 - Retention in Continuous Care: 56%
 - Viral Suppression: 54%

- Hispanic (n=843)
 - Received Any Care: 52%
 - Retention in Continuous Care: 42%
 - Viral Suppression: 41%

Figure 5.05: Percentage of PLWHA engaged in each step of the HIV continuum of care, by age group (2016)

- < 15 (n=97)
 - Received Any Care: 59%
 - Retention in Continuous Care: 47%
 - Viral Suppression: 32%

- 15-19 (n=73)
 - Received Any Care: 44%
 - Retention in Continuous Care: 52%
 - Viral Suppression: 66%

- 20-24 (n=692)
 - Received Any Care: 76%
 - Retention in Continuous Care: 52%
 - Viral Suppression: 69%

- 25-29 (n=1,488)
 - Received Any Care: 77%
 - Retention in Continuous Care: 65%
 - Viral Suppression: 72%

- 30-39 (n=3,228)
 - Received Any Care: 64%
 - Retention in Continuous Care: 58%
 - Viral Suppression: 57%

- 40-49 (n=4,557)
 - Received Any Care: 49%
 - Retention in Continuous Care: 54%
 - Viral Suppression: 47%

- 50-59 (n=5,845)
 - Received Any Care: 64%
 - Retention in Continuous Care: 66%
 - Viral Suppression: 62%

- 60+ (n=3,018)
 - Received Any Care: 60%
 - Retention in Continuous Care: 60%
 - Viral Suppression: 53%
Figure 5.06: Percentage of PLWHA engaged in each step of the HIV continuum of care, by reported risk (2016)

- **MSM** (n=7,991): 71% received any care, 55% retained in continuous care, 56% achieved viral suppression.
- **IDU** (n=1,424): 59% received any care, 47% retained, 46% achieved.
- **MSM_IDU** (n=591): 63% received, 49% retained, 50% achieved.
- **Hetero** (n=4,705): 74% received, 60% retained, 58% achieved.

Colors in the diagram indicate:
- Dark gray: Received Any Care
- Light blue: Retention in Continuous Care
- Dark blue: Viral Suppression

The chart shows the distribution of PLWHA across different risk categories, detailing the percentage of individuals who received care, retained in care, and achieved viral suppression.
HIV Continuum of Care – Linked to Care

To optimize HIV outcomes, prompt linkage to HIV medical care is necessary. That is, persons should enter HIV medical care very soon after initial HIV diagnosis. A person is considered linked to HIV medical care if there is at least one CD4 or viral load test result within three months of the initial diagnosis. Figure 5.07 shows the percentage of people diagnosed in 2016 who were linked to care within 3, 6, and 12 months of diagnosis.
In July 2015, the new National HIV/AIDS Strategy 2020 changed the ‘linked to care’ objective from linkage within 90 days to linkage within 30 days. This change generated much discussion because, within the first 30 days, there is no accurate way to distinguish between a lab test done as part of the diagnosis confirmation process and a lab test done at a follow-up medical visit.

Figure 5.08 shows a break-down of the timing between the date of diagnosis and the lab test used to determine if the person was linked to care within 90 days. Of the 719 people linked to care within 90 days of diagnosis, 23 percent had a lab date the same as the date of diagnosis; 13 percent had a lab date between one and seven days of diagnosis; 33 percent had a lab date between eight and 30 days of diagnosis; 29 percent had a lab date between 31 and 60 days of diagnosis; and two percent had a lab date between 61 and 90 days of diagnosis.