Total Maximum Daily Load Development for Twelve Mile Creek Watershed, SC Hydrological Unit Codes: 03060101-060 and 03060101-070

(Stations: SV-015, SV-136, SV-137, SV-206, SV-239) Fecal Coliform Bacteria

South Carolina Department of Health and Environmental Control Bureau of Water

June 19, 2003

SUMMARY SHEET

Total Maximum Daily Load (TMDL) Development for Twelve Mile Creek Watershed

1. 303(d) Listed Waterbody Information

State	South Carolina
County	Pickens
Major River Basin	Upper Savannah
Watershed	Twelve Mile Creek
Constituent(s) Causing Impairments	Fecal Coliform Bacteria
Designated Uses	Recreational

Impaired Stations (from South Carolina's 2002 Section 303(d) List):

Station	Station Location
SV-206	NORTH FORK 12 MI CREEK AT US 178 2.9 MI NORTH OF PICKENS
SV-239	GOLDEN CREEK AT S-39-222 1.2 MI NW OF LIBERTY
SV-015	TWELVE MILE CREEK AT S-39-51 N OF NORRIS
SV-137	TWELVE MILE CREEK AT S-39-337
SV-136	FIRST CREEK AFTER LEAVING CENTRAL AT CLVT ON MAW BRDG RD

Applicable fecal coliform bacteria water quality criteria for recreation (most stringent): The concentration of the fecal coliform bacteria group shall not exceed 200 counts per 100 mL as a geometric mean based on five consecutive samples during any 30 day period (hereafter referred to as the geometric mean standard or criteria); nor shall more than 10 percent of the total samples during any 30 day period exceed 400 counts per 100 mL (hereafter referred to as the instantaneous standard or criteria).

2. TMDL Development

Analysis/Modeling:

EPA's Watershed Characterization System and Fecal Coliform Loading Estimation Spreadsheet were used to assess watershed characteristics and develop estimates of bacteria loading from various sources. EPA's Loading Simulation Program in C++ (LSPC) was used to simulate water quality conditions in Twelve Mile Creek and evaluate results through comparison to the geometric mean criteria. An hourly time step was used to simulate hydrologic and water quality conditions with results expressed as daily averages. Loadduration curves were additionally developed for TMDL determination based on the instantaneous criteria.

Critical Conditions:

A simulation period of 6 years (1995-2000) was considered to determine a critical 30-day period for each impaired location. This time period was selected to reflect the most recent conditions in the watershed. For each subbasin, critical periods were identified for the geometric mean standard. Model results for the identified critical periods are consistent with observation data. A range of hydrologic and meteorological conditions was represented. Extreme low and high flow occurrences were eliminated from consideration in selecting the critical period.

Seasonal Variation:

Although a 6-year period was selected to identify critical conditions and to be consistent with the monitoring period upon which the Section 303(d) listing was based, a longer simulation period, nine years, was used to assess hydrologic variations for this TMDL. This period was selected to improve the accuracy of the hydrologic model and to represent a wide range of seasonal patterns associated with wet and dry years. A period of nine years was chosen to better represent the variety of possible weather conditions in the watershed.

Impaired Water Quality Station	WLAs (counts/day)	MS4 WLAs % Reduction	LAs (counts/day or % Reduction)	MOS** (counts/day)	TMDL*** (counts/day or % Reduction)	% Reduction
SV-136	1.14E+09	NA	1.08E+12	Explicit & Implicit	1.08E+12	56
SV-137	1.82E+10	64	64	Explicit & Implicit	64	64
SV-015	1.74E+10	64	64	Explicit & Implicit	64	64
SV-239	8.17E+09	64	64	Explicit & Implicit	64	64
SV-206	0.00E+00	NA	4.84E+11	Explicit & Implicit	4.84E+11	39

3. Fecal Coliform Bacteria Allocations by Impaired Station (Downstream to Upstream)

* Loading units are counts/ day or percent reduction.

** Margin of safety (MOS) equivalent to 5 percent of the target concentration. Also refer to section 6.5 *** TMDL – WLA = LA

Notes:

- All future permitted discharges shall meet the water quality criterion for fecal coliform bacteria of 200 counts/100mL (expressed as a monthly geometric mean)
- All future permitted discharges shall meet the water quality criterion for fecal coliform bacteria of 400 counts/100 mL (expressed as a daily maximum)

- 4. Public Notice Date:
- 5. Submittal Date:
- 6. Establishment Date:
- 7. Endangered Species (yes or blank):
- 8. EPA Lead on TMDL (EPA or blank):

9. TMDL Considers Point Source, Nonpoint Source, or both: Both

10. NPDES Discharges of Fecal Coliform Bacteria

		WLA
NPDES No.	Facility Name	(counts/day)
SC0000132	AMERICAN HOUSE SPINNING	3.33E+08
SC0000302	BASF CORP/FIBERS DIV/CLEMSON	6.93E+08
SC0000370	ALICE MFG/FOSTER & ELLJEAN PLT	3.21E+08
SC0000434	SPANGLER'S GROCERY	5.13E+07
SC0020010	CLEMSON WWTF	5.57E+09
SC0022012	PICKENS CO/CATEECHEE VILLAGE	1.51E+08
SC0023035	EASLEY/GOLDEN CREEK LAGOON	4.40E+09
SC0023141	ISAQUEENA MOBILE HOME PARK	1.82E+08
SC0024996	PICKENS CO PSC/CENTRAL-NORTH	1.14E+09
SC0026166	PICKENS CO-LIBERTY/CRAMER	1.19E+09
SC0026191	PICKENS CO-LIBERTY/ROPER	3.80E+09
SC0027049	MASSINGILL TRAILER COURT	1.82E+07
SC0028762	R C EDWARDS JR HIGH SCHOOL	1.36E+08
SC0038652	DANIEL HIGH SCHOOL/PICKENS CO	1.51E+08
SC0047716	PICKENS/12 MILE RV & WOLF CRK	7.20E+09
SC0047899	PICKENS COUNTY STOCKADE	4.53E+08

Notes:

No fecal coliform bacteria reductions are required from these point sources. The WLAs represent a constant fecal coliform load over a 30-day period based on the facility's permitted flow and permit limits of 200 counts/100ml. For "Measure and Report" permits, the average observed flow was used for the WLA calculation.

TABLE OF CONTENTS

	IARY SHEETi
	E OF CONTENTSv
	OF TABLESvi
LIST	OF FIGURESvi
1.0	INTRODUCTION1
1.1	BACKGROUND1
1.2	WATERSHED DESCRIPTION
1.3	WATER QUALITY STANDARDS
2.0	WATER QUALITY ASSESSMENT
3.0	SOURCE AND LOAD ASSESSMENT8
3.1	POINT SOURCES
3.	1.1 Permitted Point Sources
	1.2 Municipal Separate Storm System Permits
3.2	
	2.1 Urban Areas
	2.2 Failing Septic Systems
	2.3 Agriculture
3.	2.4 Wildlife
4.0	MODELING
4.1	MODEL SELECTION17
4.2	MODEL SET UP18
4.3	MODEL CALIBRATION
5.0	MODELING RESULTS
5.1	EXISTING CONDITIONS
6.0	TMDL
6.1	CRITICAL CONDITIONS
6.2	TMDL METHODOLOGY AND ENDPOINTS
6.3	WASTELOAD ALLOCATIONS
6.4	LOAD ALLOCATIONS
6.5	MARGIN OF SAFETY
6.6	SEASONAL VARIABILITY
6.7	TMDL RESULTS
7.0	IMPLEMENTATION
8.0	REFERENCES

LIST OF TABLES

Table 3-1. Activ	ve facilities permitted to discharge fecal coliform bacteria into waterbodies of
the Twelve	Mile Creek watershed
Table 3-2. NPD	DES facilities located in each impaired station's catchment area11
Table 3-3. Feca	l coliform bacteria concentration statistics for NPDES facilities in the Twelve
Mile Creek	watershed (1990-2002)11
Table 3-4. Estir	nated existing fecal coliform loads from each permitted NPDES facilities in
the Twelve	Mile Creek watershed
Table 3-5. Estir	nated population on septic systems for each impaired station's drainage area
(population	s are cumulative for each station)15
Table 3-6. 1997	Agricultural Census information for Pickens County16
Table 3-7. Feca	l coliform production rates for various animals16
Table 4-1. HSP	F modules used in LSPC for the Twelve Mile Creek TMDL analysis18
Table 4-2. Initia	al monthly accumulation rates (counts/acre/day) derived from FCLES21
Table 4-3. Fina	l (calibrated) monthly accumulation rates (counts/acre/day) used in the model
Table 4-4. Fina	l loading rates for cattle and septic systems (counts/day)21
Table 5-1. 30-d	ay existing loadings at impaired water quality stations from each different
source	
Table 6-1. Was	te load allocations (WLAs) for each NPDES permitted facility27
Table 6-2. TMI	DL Components for the Twelve Mile Creek watershed

LIST OF FIGURES

Figure 1-1. Twelve Mile Creek watershed with 14-digit HUCs and nearby cities
Figure 1-2. Land use coverage in the Twelve Mile Creek watershed
Figure 2-1. Load duration curve for station SV-2395
Figure 2-2. 2002 Section 303(d) listed waters of the Twelve Mile Creek watershed7
Figure 3-1. Location of NPDES facilities permitted to discharge fecal coliform bacteria into
waters of the Twelve Mile Creek watershed10
Figure 3-2. Landuse distribution in impaired stations' drainage areas
Figure 4-1. Delineated subwatersheds in the Twelve Mile Creek watershed, and weather
station data applied to them
Figure 4-2. Hydrology and water quality calibration locations
Figure 5-1. Cumulative existing loading percentages at impaired water quality stations from
different sources (loadings are based on counts/30days)25

1.0 INTRODUCTION

1.1 Background

Levels of fecal coliform bacteria can be elevated in waterbodies as the result of both point and nonpoint sources of pollution. Section 303(d) of the Clean Water Act and EPA's Water Quality Planning and Management Regulations (40 CFR Part 130) require states to develop total maximum daily loads (TMDLs) for waterbodies that are not meeting designated uses under technology-based pollution controls. The TMDL process establishes the allowable loadings of pollutants or other quantifiable parameters for a waterbody based on the relationship between pollution sources and in-stream water quality conditions so that states can establish water quality-based controls to reduce pollution and restore and maintain the quality of water resources (USEPA, 1991).

The State of South Carolina has placed five locations in the Twelve Mile Creek watershed (HUCs 03060101-070 and 03060101-060) on South Carolina's 2002 Section 303(d) list due to fecal coliform bacteria impairments. The impaired locations are identified by water quality sampling station locations from which the samples that exceeded criteria were taken. The presence of fecal coliform bacteria in aquatic environments indicates that the water has been contaminated with the fecal material of humans or other animals. Fecal coliform bacteria contamination is an indicator that a potential health risk exists for individuals exposed to the water.

1.2 Watershed Description

The Twelve Mile Creek watershed is located in Pickens County, South Carolina (Figure 1-1). Parts or all of the following towns fall within the watershed: Pickens, Easley, Liberty, Norris, Central, Clemson, and Six Mile. North Fork Twelve Mile Creek and Middle Fork Twelve Mile Creek join to form Twelve Mile Creek, which flows through the watershed and is joined, along the way, by Town Creek, Wolf Creek, Rices Creek, and Golden Creek. The lower reach of Twelve Mile Creek flows into and forms an arm of Lake Hartwell. Based on EPA's National Hydrography Dataset (NHD), there are a total of 139 miles of Level 1, 2 and 3 streams in the Twelve Mile Creek watershed.

The watershed occupies 98,835 acres of the Piedmont region of South Carolina (SCDHEC 1998). According to the Natural Resources Conservation Service's State Soil Geographic Database (STATSGO), soil types consist of an association of the Cecil-Hiwassee-Pacolet series. About 90 percent of the watershed contains soils classified as hydrologic group B, while the rest are classified as hydrologic group C.

Based on USGS's Multi-Resolution Land Characterization (MRLC) data, 72 percent of the watershed is forested. The remaining 28 percent is composed of pasture land (13%), cropland (6%), urban areas (7%), and a small mix of wetlands, barren, and transitional land uses. Figure 1-2 shows the land use distribution for the Twelve Mile Creek watershed.

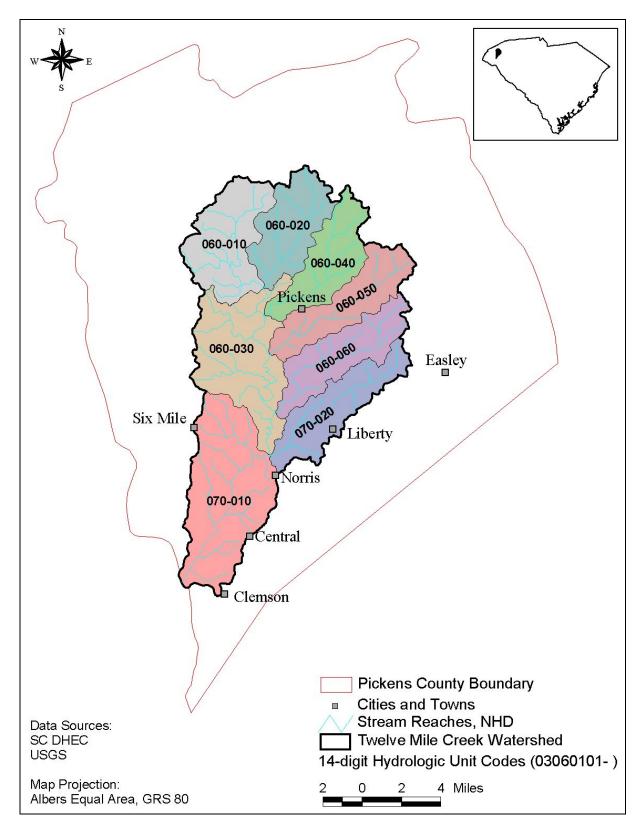


Figure 1-1. Twelve Mile Creek watershed with 14-digit HUCs and nearby cities

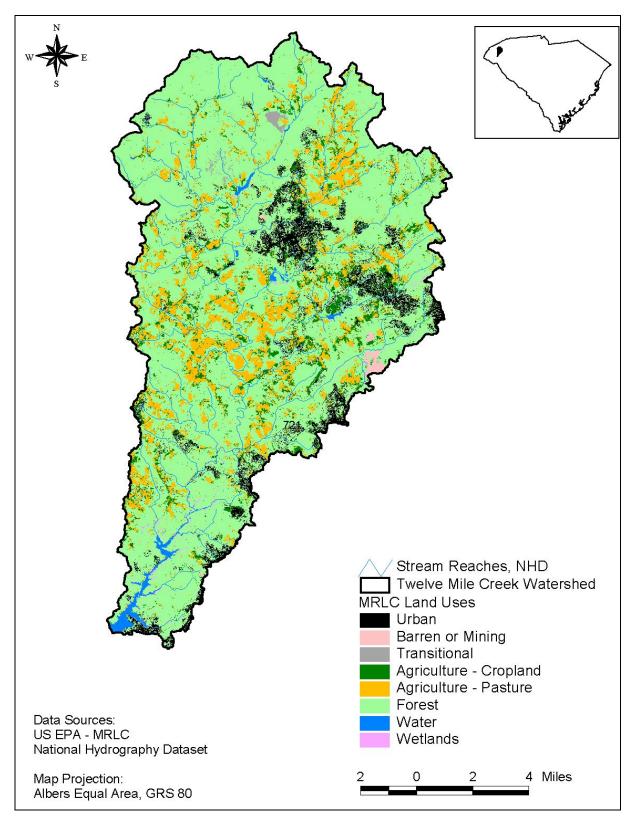


Figure 1-2. Land use coverage in the Twelve Mile Creek watershed

1.3 Water Quality Standards

The impaired streams, Twelve Mile Creek and its tributaries, are designated as Class Freshwater. Waters of this class are described as follows:

"Freshwaters suitable for primary and secondary contact recreation and as a source for drinking water supply after conventional treatment in accordance with the requirements of the Department. Suitable for fishing and the survival and propagation of a balanced indigenous aquatic community of fauna and flora. Suitable also for industrial and agricultural uses." (R.61-68)

South Carolina's standard for fecal coliform bacteria in Freshwater is:

"Not to exceed a geometric mean of 200/100ml, based on five consecutive samples during any 30 day period; nor shall more than 10 percent of the total samples during any 30 day period exceed 400/100ml." (R.61-68).

2.0 WATER QUALITY ASSESSMENT

The *State of South Carolina Section 303(d) List for 2002* was used to identify impaired water quality stations of the Twelve Mile Creek watershed. For fecal coliform bacteria, if 10 percent or less of the samples are greater than 400/100ml, then recreational uses are said to be fully supported. A percentage of criteria excursions greater than 10 percent indicates impairment of recreational uses and the waterbody is placed on the Section 303(d) list. Use attainment determinations for listing were made using water quality data collected from 1996 to 2000. Monitoring data for five stations in the Twelve Mile Creek watershed show violations of listing criteria, causing them to be placed on the Section 303 (d) List for 2002.

Available instream water quality monitoring data were evaluated with respect to seasonality, relation to flows, and magnitude of criteria exceedence. To develop a better understanding of the conditions under which bacteria loads are entering streams in the Twelve Mile Creek watershed, several different analyses were performed including an analysis of flow weighted concentration data, monthly concentrations, and load duration curves. The goal of flow weighted concentration analysis is to compare in stream observations with flow values to see whether violations generally occur during low flow periods or high flow periods. Data from all impaired stations in the Twelve Mile Creek watershed were evaluated. Results from this analysis indicate that fecal coliform bacteria violations are occurring in the Twelve Mile Creek watershed during both high and low flow periods. Load duration curves for the watershed support this assessment as well.

As an example, Figure 2-1 presents the load duration curve for Station SV-239. Load duration analysis involves using measured or estimated flow data, instream criteria, and fecal coliform observation data to assess flow conditions in which violations are occurring. For this analysis, the flow data was obtained from the modeled flow for the relevant sub-basin, since continuous measurements of flow are not available at the locations of the impaired stations (hydrologic modeling is further described later in this document). The flow was plotted based

on exceedence probability, which indicates the percentage of time in days that the flow (or load) is exceeded. This is a useful technique in examining loading events because it shows the load magnitude and also reveals the corresponding hydrological event. The allowable load is the modeled flow record multiplied by the instream fecal coliform criteria minus a five percent margin of safety; it represents the maximum load for the given flow that still satisfies water quality criteria. The line drawn through the allowable load data points is called the target line.

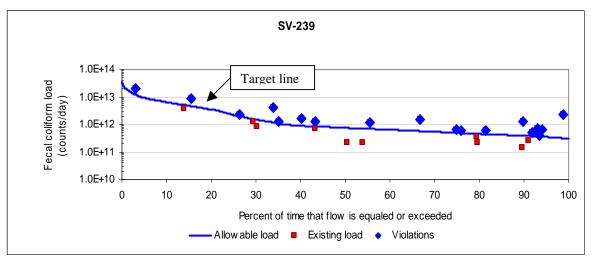


Figure 2-1. Fecal coliform bacteria load duration curve for station SV-239

The existing instream fecal coliform load (modeled flow multiplied by observed fecal coliform concentration) is compared to the allowable load for that flow. Any existing loads above the allowable load curves represent a violation of water quality criteria. For a low flow loading situation, one typically sees observations in excess of criteria at the low flow side of the chart; for a high flow loading situation one would see observations in excess of criteria at the high flow side of the chart. The load duration curve was developed for the time period for which the 303(d) listing was based (1995-2000) and existing loads were plotted. Existing loads are shown as dots; violations as starred dots. The load duration curve for station 239 indicates that there are occasional exceedences of the instantaneous standard under high, average, and low flow conditions. These exceedences are likely due to a combination of wet weather sources (surface runoff) and low flow direct sources. The load duration curves for each impaired station in the Twelve Mile Creek watershed show similar loading characteristics (i.e., existing loads above the criteria curve under a range of flow conditions). Usually, both low flow loading and high flow loading is occurring, but one is more of a critical source than the other, i.e. you see most exceedences for one loading mechanism, even though both are occurring.

Appendix A presents seasonal variations and general statistics for fecal coliform bacteria concentrations observed at each impaired water quality station. The data analysis shows that high fecal coliform bacteria concentrations tend to occur during both high and low flow periods. This indicates that runoff during storm events is a significant fecal coliform bacteria source, as well as the direct inputs to the stream during low flow periods (especially during

summer low flow). Examining the data in the context of existing land uses is also helpful in determining what types of sources are probably impacting a particular sub-basin. Figure 2-2 shows the location of impaired water quality stations in the Twelve Mile Creek watershed based on South Carolina's 2002 303(d) list. All sub-basins of the Twelve Mile Creek watershed show the characteristics of runoff-related and direct loading, although the sources of loading are most likely different.

Station SV-206 presents the least percentage of exceedences of all the impaired stations. Forests dominate its drainage area, with the second most prevalent land use being pastures. Direct contributions from wildlife, failing septic systems and livestock may be contributing factors. The area draining to SV-239 presents the most variety in terms of land use of all impaired stations in the Twelve Mile Creek watershed. The non-forest components of this drainage area have significant portions of urban land, pastures and cropland. Of the impaired stations, this exhibits the highest percentage of exceedences for all flow regimes from very high flows to very low flows, suggesting a combination of contributing sources. Similarly, Station SV-015 shows high exceedences for high and low flows so a combination of sources are likely contributing here as well—urban and pasture runoff during runoff related loading and failing septic systems and animals in streams during low-flow conditions. Station SV-136, exhibits no exceedences for very high or very low flows; a combination of sources during average flows may be causing exceedences in this drainage area. Low flows seem to be most critical in the drainage area of Station SV-137, the most downstream station, with most exceedences during average and low flows.

For some sub-basins, runoff during storm events is the more significant fecal coliform bacteria source, for others, direct inputs to streams during low flow periods (e.g. in-stream cattle or wildlife) may be equally or even more important. Stations SV-137 and SV-015 have been sampled throughout the year (all seasons). Data for stations SV-206, SV-239, SV-136 are not available during the winter months, but because land practices and bacteria load delivery mechanisms are relatively consistent over the course of the year, it is assumed that winter loading should be consistent with that of periods for which data do exist.

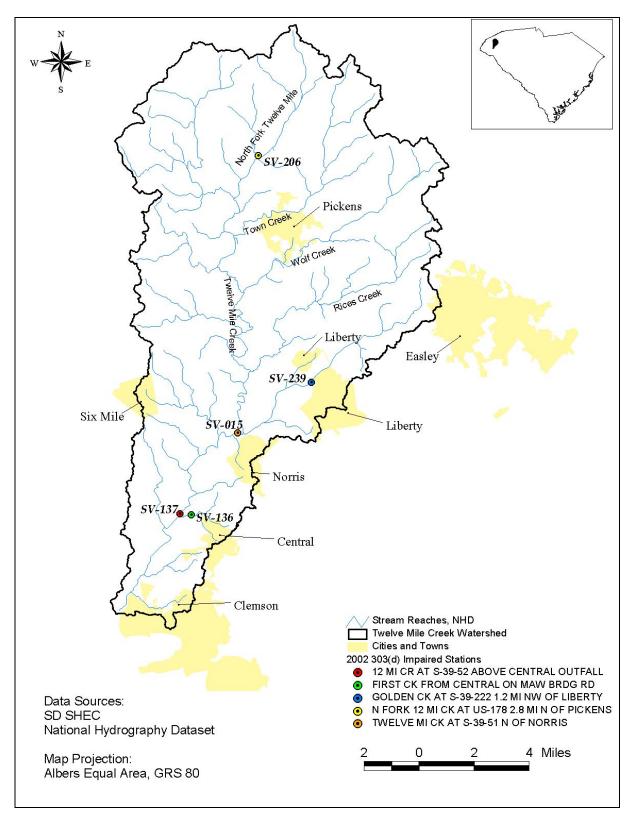


Figure 2-2. 2002 Section 303(d) listed waters of the Twelve Mile Creek watershed

3.0 SOURCE AND LOAD ASSESSMENT

Fecal coliform bacteria enter surface waters from both point and nonpoint sources. Point sources are facilities that discharge at a specific location from pipes, outfalls, and conveyance channels from either municipal wastewater treatment plants or industrial waste treatment facilities. All point sources must have a National Pollutant Discharge Elimination System (NPDES) permit. Nonpoint sources are diffuse sources that have multiple routes of entry into surface waters. Some sources are related to land use activities that accumulate fecal coliform bacteria on the land surface (i.e., pasture land) that runs off during storm events. Other sources, such as in-stream cattle, are more or less continuous, at least seasonally. Point source contributions can typically be attributed to the following sources:

- Municipal wastewater facilities,
- Municipal Separate Storm Sewers (MS4s),
- Illicit discharges, and
- Leaking or overflowing sewers.

Municipal wastewater treatment facilities are permitted through the National Pollutant Discharge Elimination System (NPDES). Larger treatment facilities have disinfection systems that remove fecal coliform bacteria in the effluent before it is discharged. Treatment facilities treat human waste received from the collection system and then discharge their effluent into a nearby stream.

Municipal Separate Stormwater Systems (MS4s) are point sources also regulated by the NPDES program. Discharge from stormwater pipes or conveyances potentially include urban runoff high in bacteria and other pollutants.

Illicit discharges are made when facilities or persons discharge fecal coliform bacteria without a permit, or violate their defined permit discharge limit by exceeding the fecal coliform concentration.

In urban settings, sewer lines typically run parallel to the stream in the floodplain. If there is a leaking or overflowing sewer line, high concentrations of fecal coliform can flow into the stream or leach into the groundwater. Groundwater monitoring wells can signal if there are leaking sewer lines contributing to the problem.

3.1 Point Sources

3.1.1 Permitted Point Sources

Table 3-1 lists the 16 active facilities that are permitted to discharge fecal coliform bacteria into waterbodies of the Twelve Mile Creek watershed. Figure 3-1 shows their locations. The permitted flows range from 0.0024 to 1.15 million gallons per day (MGD). Four of the facilities do not have a specific allowable flow limit, and only need to measure and report their flow. In South Carolina, NPDES permittees that discharge sanitary wastewater must meet the state criterion for fecal coliform bacteria at the point of discharge (i.e. a daily

maximum concentration of 400 counts/100ml, and a 30-day maximum geometric mean of 200 counts/100ml).

NPDES No.	Facility Name	Principal Activity	Flow Limit (MGD)
SC0000132	AMERICAN HOUSE SPINNING	BROAD WOVEN FABRIC MILLS, SYNT	MR ¹
SC0000302	BASF CORP/FIBERS DIV/CLEMSON	PLSTC MAT./SYN RESINS/NV ELAST	MR
SC0000370	ALICE MFG/FOSTER & ELLJEAN PLT	BROAD WOVEN FABRIC MILLS, SYNT	MR
SC0000434	SPANGLER'S GROCERY	COIN-OPERATED LAUNDRIES/DRYCLE	MR
SC0020010	CLEMSON WWTF	SEWERAGE SYSTEMS	1.15
SC0022012	PICKENS CO/CATEECHEE VILLAGE	SEWERAGE SYSTEMS	0.02
SC0023035	EASLEY/GOLDEN CREEK LAGOON	SEWERAGE SYSTEMS	0.58
SC0023141	ISAQUEENA MOBILE HOME PARK	OPER OF RES MOBILE HOME SITES	0.024
SC0024996	PICKENS CO PSC/CENTRAL-NORTH	SEWERAGE SYSTEMS	0.15
SC0026166	PICKENS CO-LIBERTY/CRAMER	SEWERAGE SYSTEMS	0.157
SC0026191	PICKENS CO-LIBERTY/ROPER	SEWERAGE SYSTEMS	0.5
SC0027049	MASSINGILL TRAILER COURT	OPER OF RES MOBILE HOME SITES	0.0024
SC0028762	R C EDWARDS JR HIGH SCHOOL	ELEMENTARY & SECONDARY SCHOOLS	0.018
SC0038652	DANIEL HIGH SCHOOL/PICKENS CO	ELEMENTARY & SECONDARY SCHOOLS	0.02
SC0047716	PICKENS/12 MILE RV & WOLF CRK	SEWERAGE SYSTEMS	0.95
SC0047899	PICKENS COUNTY STOCKADE	SEWERAGE SYSTEMS	0.06

Table 3-1. Active facilities permitted to discharge fecal coliform bacteria into waterbodies of the
Twelve Mile Creek watershed

 1 MR = Measure and Report

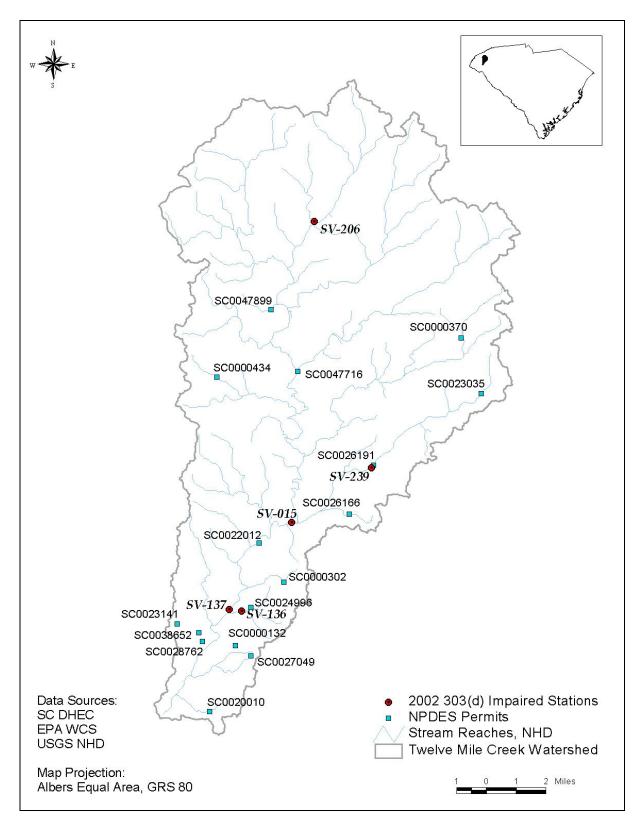


Figure 3-1. Location of NPDES facilities permitted to discharge fecal coliform bacteria into waters of the Twelve Mile Creek watershed

Table 3-2 presents the NPDES facilities located upstream of each of the impaired stations. Table 3-3 shows fecal coliform bacteria concentration statistics for each facility. Estimates of existing fecal coliform bacteria loading for each individual NPDES facility are shown in Table 3-4. These results were obtained using Discharge Monitoring Report (DMR) data provided by DHEC. The original DMR data is shown in Appendix A.

Impaired Station	NPDES Facilities				
SV-206	- None -				
SV-239	SC0023035	SC0026191			
SV-015	SC0023035	SC0026191	SC0047899	SC0000370	
	SC0000434	SC0047716	SC0026166		
SV-137	SC0023035	SC0026191	SC0047899	SC0000370	
	SC0000434	SC0047716	SC0026166	SC0022012	
	SC0000302				
SV-136	SC0024996				

Table 3-2. NPDES facilities located in each impaired station's catchment area

Table 3-3. Fecal coliform bacteria concentration statistics for NPDES facilities in the Twelve
Mile Creek watershed (1990-2002)

NPDES ID	Pipe	Count	Mean (counts/100ml)	Maximum (counts/100ml)	Geometric Mean (counts/100ml)	Exceedence based on 400counts/100ml	By-passes	Sanitary Sewer Overflow (SSO)
SC0000132	1	85	36	850	14	1	None	None
SC0000302	1	131	9	423	2	1	None	None
SC0000370	1	111	19	590	3	2	None	None
SC0000434	1	68	88	4100	13	2	None	None
SC0020010	1	130	20	296	14	0	None	None
SC0022012	1	76	793	33000	27	6	None	None
SC0023035	1	130	33	382	19	0	None	None
SC0023141	1	57	22	195	13	0	None	None
SC0024996	1	133	76	1023	34	1	None	None
SC0026166	1	127	60	708	18	5	None	None
SC0026191	1	128	111	954	30	10	None	None
SC0027049	1	19	102	1000	21	1	None	None
SC0028762	1	76	90	4700	16	1	None	None
SC0038652	1	72	53	2500	14	1	None	None
SC0047716	1	19	15	65	13	0	None	None
SC0047899	1	22	10	65	5	0	None	None

NPDES No.	Facility Name	Pipe	Concentration ¹ (counts/100ml)	Flow (MGD)	Load (counts/30days)
	AMERICAN HOUSE SPINNING	1	14.1	0.044	7.06E+08
	BASF CORP/FIBERS DIV/CLEMSON	1	2.2	0.092	2.29E+08
	ALICE MFG/FOSTER & ELLJEAN				
SC0000370	PLT	1	3.4	0.043	1.64E+08
SC0000434	SPANGLER'S GROCERY	1	13.4	0.006	1.03E+08
SC0020010	CLEMSON WWTF	1	13.7	0.735	1.14E+10
	PICKENS CO/CATEECHEE				
SC0022012	VILLAGE	1	26.5	0.013	3.88E+08
SC0023035	EASLEY/GOLDEN CREEK LAGOON	1	18.7	0.217	4.62E+09
SC0023141	ISAQUEENA MOBILE HOME PARK	1	13.3	0.010	1.45E+08
	PICKENS CO PSC/CENTRAL-				
SC0024996	NORTH	1	34.3	0.070	2.72E+09
SC0026166	PICKENS CO-LIBERTY/CRAMER	1	17.9	0.065	1.32E+09
SC0026191	PICKENS CO-LIBERTY/ROPER	1	30.4	0.148	5.12E+09
SC0027049	MASSINGILL TRAILER COURT	1	21.1	0.001	3.11E+07
SC0028762	R C EDWARDS JR HIGH SCHOOL	1	16.2	0.008	1.58E+08
	DANIEL HIGH SCHOOL/PICKENS				
SC0038652	СО	1	13.8	0.010	1.49E+08
SC0047716	PICKENS/12 MILE RV & WOLF CRK	1	12.9	0.313	4.58E+09
SC0047899	PICKENS COUNTY STOCKADE	1	4.8	0.008	4.68E+07

 Table 3-4. Estimated existing fecal coliform loads from each permitted NPDES facilities in the Twelve Mile Creek watershed

¹ The geometric mean fecal coliform concentration was used for this calculation.

3.1.2 Municipal Separate Storm System Permits

In 1990, EPA developed rules establishing Phase I of the National Pollutant Discharge Elimination System (NPDES) storm water program, designed to prevent harmful pollutants from being washed by storm water runoff into Municipal Separate Storm Sewer Systems (MS4s) (or from being dumped directly into the MS4) and then discharged from the MS4 into local waterbodies. Phase I of the program required operators of "medium" and "large" MS4s (those generally serving populations of 100,000 or greater) to implement a storm water management program as a means to control polluted discharges from MS4s. Approved storm water quality related issues including roadway runoff management, municipal owned operations, hazardous waste treatment, etc. There are no large or medium MS4s in the Twelve Mile Creek watershed.

Phase II of the rule extends coverage of the NPDES storm water program to certain "small" MS4s. Small MS4s are defined as any MS4 that is not a medium or large MS4 covered by Phase I of the NPDES Storm Water Program. Only a select subset of small MS4s, referred to as "regulated small MS4s", require an NPDES storm water permit. Regulated small MS4s are defined as all small MS4s located in "urbanized areas" as defined by the Bureau of the Census, and those small MS4s located outside of a UA that are designated by NPDES

permitting authorities. There are four regulated small MS4s in this watershed: the City of Easley, City of Liberty, City of Pickens, and Pickens County.

Phase II requires operators of regulated small MS4s to obtain a National Pollutant Discharge Elimination System (NPDES) permit and develop a storm water management program. Programs are to be designed to reduce discharges of pollutants to the "maximum extent practicable", protect water quality, and satisfy appropriate water quality requirements of the Clean Water Act. Small MS4 storm water programs must address the following minimum control measures:

- Public Education and Outreach
- Public Participation/Involvement
- Illicit Discharge Detection and Elimination
- Construction Site Runoff Control
- Post-Construction Runoff Control
- Pollution Prevention/Good Housekeeping

Implementation of small MS4s will usually involve development of measurable goals and implementation of BMPs to satisfy each of the control measures.

3.2 Nonpoint Sources

In addition to point sources, nonpoint sources also contribute fecal coliform bacteria loads into the waters of the Twelve Mile Creek watershed. Nonpoint sources represent contributions from diffuse sources, rather than from a defined outlet. On the land surface, fecal coliform bacteria accumulate over time and wash off during rain events. As the runoff transports the sediment over the land surface, more fecal coliform bacteria are collected and carried to the stream. While the concentrations of bacteria are accumulating, they also die. The net loading into the stream is determined by the local watershed hydrology.

The land use distribution of the Twelve Mile Creek watershed provides insight into determining nonpoint sources of fecal coliform bacteria (Figure 1-2). The predominant land uses in the Twelve Mile Creek watershed were identified based on the Multi-Resolution Land Characterization (MRLC) land use data (representative of the mid-1990s). Figure 3-2 displays the land use distribution of the catchment area of each impaired water quality station. Key nonpoint sources identified in the watershed include urban areas, failing septic systems, livestock, manure application, and natural sources.

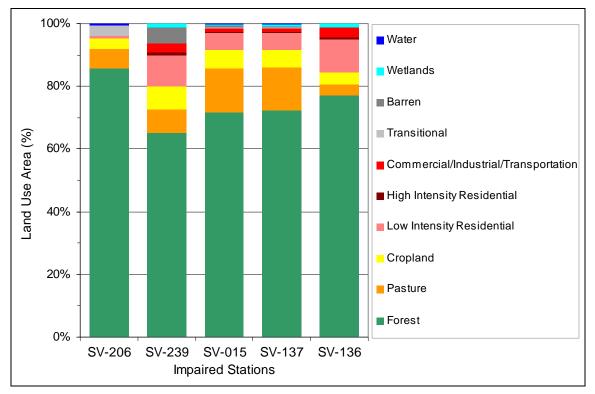


Figure 3-2. Landuse distribution in impaired stations' drainage areas

3.2.1 Urban Areas

Sources of fecal coliform bacteria in urban areas include wildlife and pets, particularly dogs. Much of the loading from urban areas is due simply to the increase in impervious surfaces relative to other land uses and the resulting increase in runoff. In estimating the potential loading of fecal coliform bacteria from urban areas, accumulation rates are often used to represent the aggregate of available sources. For this study, initial accumulation rates assumed for the built-up land were 1.0×10^7 counts/acre/day (Horner, 1992) for both the pervious and impervious fractions. The assumed perviousness percentages for built-up land were as follows:

- Low Intensity Residential—88 percent
- High Intensity Residential—35 percent
- High Intensity Commercial/Industrial/Transportation—15 percent
- Urban Grasses 100 percent.

3.2.2 Failing Septic Systems

Failing septic systems represent a nonpoint source that can contribute fecal coliform bacteria to receiving waterbodies through surface or subsurface malfunctions. Loadings from failing septic systems were represented by constant flows and concentrations in the analysis. The

estimate was derived by examining a combination of US Census data and technical references:

- Number of septic systems (derived from US Census 1990)
- Estimated population served by the septic systems (an average of 2.5 people per household, US Census 1990)
- An average daily discharge of 70 gallons/person/day (Horsley & Witten, 1996)
- Septic effluent concentration of 10⁴ counts/100mL (Horsley & Witten, 1996)
- Septic failure rate of 20 percent (initial estimate)

Since the estimates of the number of septic systems were based on 1990 Census data, population estimates from 1990 were also used in estimating septic loadings. To provide a margin of safety accounting for the uncertainty of the number, location, and behavior (e.g., surface vs. subsurface breakouts; proximity to stream) of these sources, failing septic systems and illegal discharges or leaky sewer lines are represented in the model as direct sources of fecal coliform to the stream reaches. Although quantifying loading from precise contributions from these sources is not feasible, the MOS included in the septic failure rate is assumed to address the uncertainty regarding these sources.

Table 3-5 presents the estimated population on septic systems. Population estimates are cumulative for each station.

Table 3-5. Estimated population on septic systems for each impaired station's drainage area (populations are cumulative for each station)

Impaired Station	Population
SV-206	1,771
SV-239	1,545
SV-015	23,048
SV-137	25,874
SV-136	923

3.2.3 Agriculture

Agricultural land can be a source of fecal coliform bacteria. Runoff from pastures, animal operations, the improper land application of animal wastes, and animals with access to waterbodies are all sources of fecal coliform bacteria. Agricultural Best Management Practices or BMPs such as buffer strips, alternative watering sources, limiting livestock access to creeks, and the proper land application of animal wastes reduce fecal coliform loading to waterbodies.

EPA's Fecal Coliform Load Estimation Spreadsheet (FCLES) tool was used to develop initial estimates of the amount of fecal coliform bacteria introduced directly to streams, as well as initial estimates of accumulation rates of fecal coliform bacteria on the land surface (USEPA, 2000.) The FCLES tool quantifies the fecal coliform bacteria component of waste generated

by warm-blooded animals and distributes these quantities to streams and to the land surface based on land use type and waste management practices. Estimates derived from the FCLES tool were used as inputs to the watershed loading model. These initial estimates were finetuned during the model testing (calibration) process to more closely match available monitoring data.

Grazing cattle are of more relevance in this watershed than confined animal operations. Based on the 1997 USDA census data for Pickens County (Table 3-6), it was estimated that 4,457 cattle, 2,561 beef cows, 38 dairy cows, 287 hogs, and 35 sheep are found in the watershed. Table 3-7 describes fecal coliform production rates for various animals used to calculate loadings from each livestock category. Livestock, except for the dairy cattle, are not usually confined and are typically grazing in the pastures. Manure deposited by cattle onto pasture land is a source of nonpoint pollution. It was assumed that cattle manure is applied to cropland and pasture and hog manure is applied to pasture only. It is also assumed that no manure is imported into the watershed.

Name	Number
Cattle	10,585
Beef Cow	6,079
Milk Cow	96
Hogs	686
Sheep	90
Chickens	0

 Table 3-6.
 1997 Agricultural Census information for Pickens County

Fecal Coliform Bacteria Production Rate* (counts/animal/day)
1.04E+11
1.01E+11
1.08E+10
1.20E+10
1.36E+08

*Source: ASAE, 1998

Loading of fecal coliform bacteria from cattle defecating directly into streams was estimated from the number of cattle and an assumption regarding the time cattle are expected to be standing or wading in the streams. This number was refined through model calibration, which considered bacteria monitoring data. The time that cattle are assumed to be in the stream is 0.045 percent of total grazing time.

3.2.4 Wildlife

Fecal coliform bacteria also originate in forested areas. Generally, sources include wild animals such as deer, raccoons, wild turkeys, and waterfowl. The Department of Natural Resources in South Carolina estimated a deer density of 45 deer per square mile of deer habitat (Data provided by Charles Ruth, Deer Project Supervisor, DNR, 5/1/01). Deer habitat was assumed to include forest, wetlands, cropland, and pasture. The fecal coliform bacteria production rate for deer was estimated based on best professional judgment using the rates for other animals, such as turkey and cattle, which are available in Metcalf and Eddy (1991). An interpolation was conducted based on animal weight. This method results in a rate of 5 x 10^8 counts/animal/day for deer. Using this rate and the assumption of an equally distributed population of deer across forest, wetlands, and agricultural land uses, the fecal coliform bacteriday, which represents background fecal coliform bacteria loading. It is important to note that the accuracy of predicted loading depends upon the accuracy of the various assumptions described above.

4.0 MODELING

Watersheds with varied land uses and numerous potential sources of pollutants typically require a complex model to ascertain the effect of source loadings on in-stream water quality. This relationship must be understood in order to develop an effective TMDL. In this section, the modeling techniques that were applied to simulate fecal coliform bacteria fate and transport in the watershed are discussed as applied to the Twelve Mile Creek watershed.

4.1 Model Selection

Selection of the appropriate analytical technique for TMDL development was based on an evaluation of technical and regulatory criteria. Key technical factors that were important in the selection process include:

- Point and nonpoint sources must be considered.
- Fecal coliform bacteria impairments are temporally-variable and occur at low, average, and high flow conditions.
- Time-variable aspects of land practices have a large effect on in-stream bacteria concentrations.
- Bacteria transport mechanisms are highly variable and often weather dependent.

The primary regulatory factor that drove the selection process was South Carolina's water quality standards. Compliance with the standards requires attaining both instantaneous and geometric mean-based criteria. To ensure a valid comparison to these criteria, results from a time-variable analysis are required.

The USEPA has assembled a variety of tools to use in the development of TMDLs. Of these tools, the geographic information system (GIS)-based Watershed Characterization System (WCS), the Fecal Coliform Loading Estimation Spreadsheet (FCLES), and the Loading Simulation Program in C++ (LSPC) were applied to model the Twelve Mile Creek watershed. WCS is similar to EPA's BASINS, however, it includes source loading calculation tools, as

well as updated agricultural data. WCS, a GIS tool, was used to display and analyze GIS information including land use, land type, point source discharges, soil types, population, and stream characteristics. FCLES is a spreadsheet tool used to quantify nonpoint source bacteria accumulation rates based on watershed-specific information.

LSPC is a system designed to support TMDL development for areas impacted by nonpoint and point sources. The most critical component of LSPC to TMDL development is the dynamic watershed model, because it provides the linkage between source contributions and in-stream response. LSPC is essentially a re-coded C++ version of selected Hydrological Simulation Program FORTRAN (HSPF) modules. LSPC is used to simulate watershed hydrology and pollutant transport as well as stream hydraulics and in-stream water quality. It is capable of simulating different flow regimes and bacteria loading variations. LSPC's algorithms are identical to those in HSPF. Table 4-1 presents the modules from HSPF used in LSPC for this study. Refer to the *Hydrologic Simulation Program FORTRAN User's Manual for Release 11* (USEPA, 1996) for a more detailed discussion of simulated processes and model parameters.

RCHRES Modules	HYDR	Simulates hydraulic behavior
	GQUAL	Simulates behavior of a generalized quality constituent
PQUAL and IQUAL Modules	PWATER	Simulates water budget for a pervious land segment
	IQUAL	Uses simple relationships with solids and water yield
	PQUAL	Simple relationships with sediment and water yield

Table 4-1. HSPF modules used in LSPC for the Twelve Mile Creek TMDL analysis

Source: EPA, 1996

4.2 Model Set Up

LSPC was configured for the Twelve Mile Creek watershed to simulate the watershed as a series of hydrologically connected sub-watersheds. Configuration of the model involved subdivision of the Twelve Mile Creek watershed into modeling units and continuous simulation of flow and water quality for these units using meteorological, land use, point source loading, and stream data. The Twelve Mile Creek watershed was delineated into 29 sub-watersheds to characterize the relative fecal coliform bacteria contributions from smaller units (see Figure 4-1). Some of the small sub-basins were created to ensure the stream network configuration within the basin. Watershed delineation was based on the NHD stream coverage and digital elevation data. This discretization allows for management and load reduction alternatives to be varied by sub-watershed.

A continuous simulation period of ten years (1990-1999) was used in the hydrologic simulation analysis. An important factor driving model simulations is precipitation data. The pattern and intensity of rainfall affects the build-up and wash-off of fecal coliform bacteria from the land into the streams, as well as the dilution potential of the stream. Two weather stations located in and just outside the basin were applied to the watersheds to simulate

hydrologic events. These stations are Pickens and Clemson University, as shown in Figure 4-1.

Modeled land uses contributing to bacteria loads include pasture, cropland, urban pervious lands, urban impervious lands, and forest (including barren and wetlands). Other sources, such as septic systems and livestock in streams were modeled as direct sources in the model. Development of initial loading rates for land uses and direct sources was based on the analysis described in Section 3. These initial estimates are presented in Table 4-2, and they were further refined during the model testing (calibration) process (described in Section 4.3). Table 4-3 presents the final bacteria accumulation rates for land use sources. Loading rates used in the model to represent cattle and septic system contributions are presented in Table 4-4. The septic system contribution represents a failure rate of 6 percent.

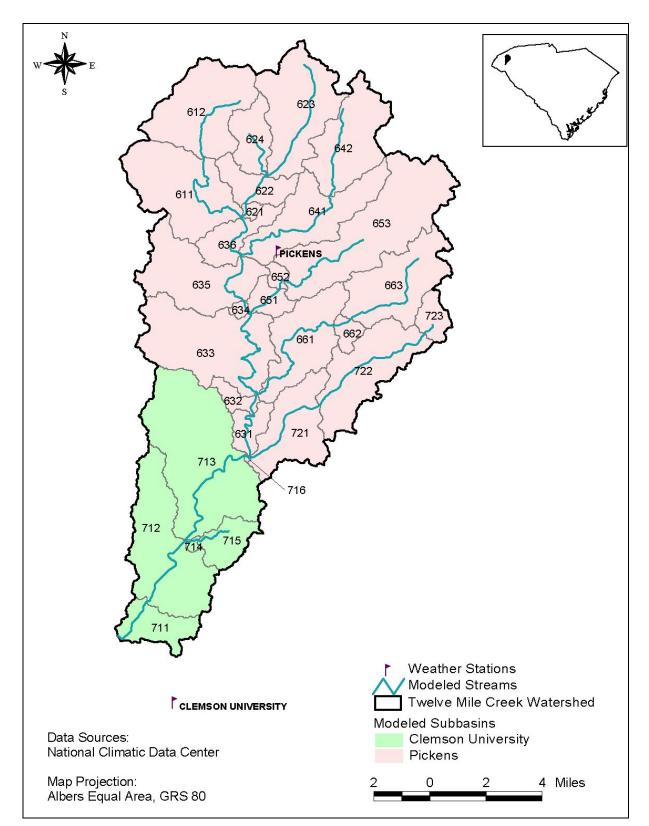


Figure 4-1. Delineated sub-watersheds in the Twelve Mile Creek watershed, and weather station data applied to them

Pickens County, SC	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Cropland	8.60E+09	9.52E+09	8.60E+09	8.89E+09	8.60E+09	8.90E+09	8.61E+09	8.61E+09	8.90E+09	8.60E+09	8.89E+09	8.60E+09
Forest	3.52E+07											
Pasture	2.33E+10	2.35E+10	2.33E+10	2.34E+10	2.33E+10	2.34E+10	2.33E+10	2.33E+10	2.34E+10	2.33E+10	2.34E+10	2.33E+10
Urban Pervious and impervious	1.02E+07											

Table 4-2. Initial monthly accumulation rates (counts/acre/day) derived from FCLES

Table 4-3. Final (calibrated) monthly accumulation rates (counts/acre/day) used in the model

Pickens County, SC	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Cropland	8.60E+09	9.52E+09	8.60E+09	8.89E+09	8.60E+09	8.90E+09	8.61E+09	8.61E+09	8.90E+09	8.60E+09	8.89E+09	8.60E+09
Forest	3.52E+07											
Pasture	2.33E+10	2.35E+10	2.33E+10	2.34E+10	2.33E+10	2.34E+10	2.33E+10	2.33E+10	2.34E+10	2.33E+10	2.34E+10	2.33E+10
Urban Pervious and												
impervious	1.02E+09											

Table 4-4. Final loading rates for cattle and septic systems (counts/day)

/	-											1
	Sub 611	Sub 612	Sub 621	Sub 622	Sub 623	Sub 624	Sub 631	Sub 632	Sub 633	Sub 634	Sub 635	Sub 636
Cattle loadings (counts/day)	5.74E+09	3.46E+09	2.81E+08	1.23E+09	4.62E+09	1.86E+09	1.72E+09	1.37E+09	2.59E+10	1.16E+09	1.04E+10	2.30E+09
Septic loadings (counts/day)	2.98E+09	2.89E+09	1.10E+08	9.00E+08	2.82E+09	9.89E+08	5.62E+08	3.42E+08	3.60E+09	1.07E+08	2.58E+09	9.21E+08
	Sub 641	Sub 642	Sub 651	Sub 652	Sub 653	Sub 661	Sub 662	Sub 663	Sub 711	Sub 712	Sub 713	Sub 714
Cattle loadings (counts/day)	7.55E+09	1.18E+10	1.72E+09	7.02E+08	1.03E+10	1.40E+10	1.30E+09	8.89E+09	5.26E+08	8.75E+09	1.40E+10	7.25E+06
Septic loadings (counts/day)	2.01E+09	2.29E+09	4.87E+08	1.53E+08	3.95E+09	2.20E+09	2.99E+08	2.49E+09	5.05E+08	3.25E+09	4.46E+09	6.53E+07
	Sub 715	Sub 716	Sub 721	Sub 722	Sub 723							
Cattle loadings (counts/day)	1.02E+09	7.02E+07	7.55E+09	7.20E+09	5.26E+08							
Septic loadings (counts/day)	1.47E+09	1.75E+07	1.56E+09	2.01E+09	4.46E+08							

4.3 Model Calibration

Hydrology and water quality calibration were performed in sequence, since water quality modeling is dependent on an accurate hydrology simulation. Flow data from the U.S. Geological Survey's (USGS) stream gauging station 02186000 (Figure 4-2) were obtained for comparison to model results. Calibration of the hydrologic model was accomplished by adjusting model parameters until the simulated and observed water budgets matched. The intensity and arrival time of storm peaks was then calibrated. The model was calibrated to observed data recorded from January 1st, 1990 to December 31st, 1990. The hydrology was validated for the period of January 1st, 1900 to December 31st, 1999. Results of the hydrology calibration and validation are included in Appendix B.

Following hydrology calibration, the water quality was calibrated by comparing modeled versus observed in-stream fecal coliform bacteria concentrations. The water quality calibration consisted of executing the watershed model, comparing water quality time series output to available water quality observation data, and adjusting water quality parameters within a reasonable range. Water quality parameters that were adjusted to obtain a calibrated model were the build-up and washoff of fecal coliform bacteria from the land uses and the direct load estimates such as cattle in the streams and the failing septic systems as described in Section 3.2.

The approach taken to calibrate water quality focused on matching trends identified during the water quality analysis. Daily average in-stream fecal coliform concentrations from the model were compared directly to observed data. Observed fecal coliform data were obtained from EPA's STORET for 1990 through 2000. The objective was to best simulate low flow, mean flow, and storm peaks at representative water quality monitoring stations. The available water quality data for the water quality calibration locations are presented in Appendix C.

The time period of the model calibration was from 1995 to 1997. Validation was performed for the period 1998 to 2000. This time period was selected based on the availability and relevance of the observed data to the current conditions in the watershed. The period also includes various wet and dry conditions. The water quality calibration and validation results are shown in Appendix D.

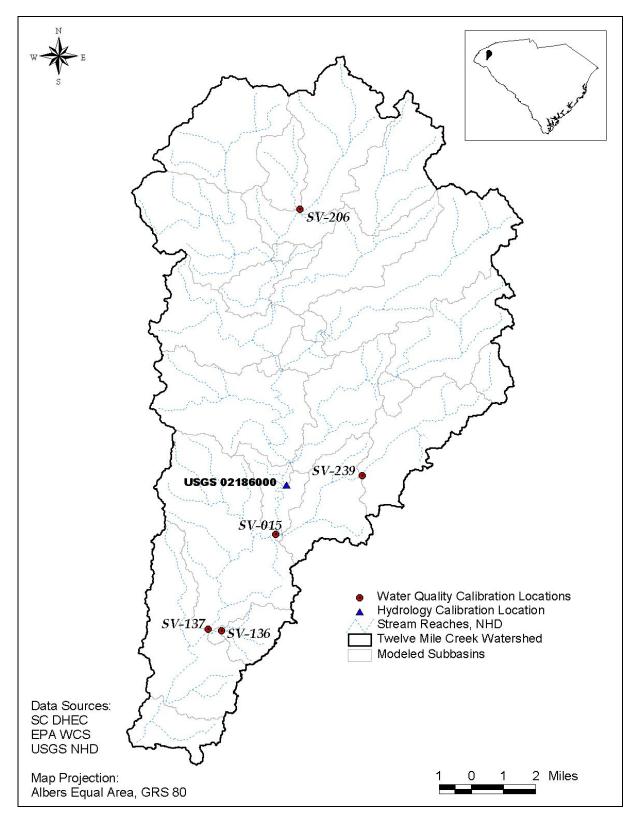


Figure 4-2. Hydrology and water quality calibration locations

5.0 MODELING RESULTS

5.1 Existing Conditions

An examination of the Twelve Mile Creek watershed indicates that the majority of the violations of the geometric mean standard occur in streams during low-flow conditions followed by a storm event. Storm events create high loading inputs from various land uses due to the accumulation of fecal coliform bacteria on the land surface. These high flow conditions, especially the high flows created by a storm after a long dry period, cause not only violations of the geometric mean standard, but also violations of the not to exceed criterion.

Existing conditions of each source are determined based on available information or simulated model results. Loadings from permitted facilities are calculated using their flow and fecal coliform bacteria concentration limits. Existing loading (Table 5-1 and Figure 5-1) from land, cattle in the streams, failing septic systems, and permitted facilities are simulated using the LSPC model during the critical condition determined based on the procedure described in Section 5.1. The loadings presented in Table 5-1 represent cumulative loadings from the contributions of upper watersheds at each impaired water quality station.

Impaired Station	Loading from Land (counts/30days)	Loading from Cattle in the Stream (counts/30days)	Loading from Permitted Facilities (counts/30days)	Loading from Septics (counts/30days)
SV-137	2.72E+14	3.96E+12	5.46E+11	1.18E+12
SV-15	2.44E+14	3.94E+12	5.21E+11	1.16E+12
SV-206	9.87E+12	5.58E+10	0.00E+00	2.97E+10
SV-136	1.10E+12	2.62E+11	3.41E+10	9.76E+10
SV-239	1.03E+13	3.26E+10	2.45E+11	4.45E+10

 Table 5-1. 30-day existing loadings at impaired water quality stations from each different source

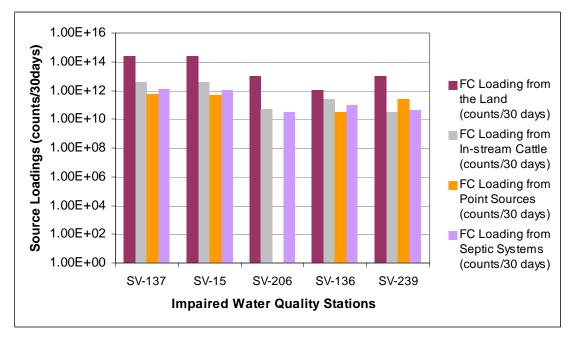


Figure 5-1. Cumulative existing loading percentages at impaired water quality stations from different sources (loadings are based on counts/30days)

6.0 TMDL

The TMDL process quantifies the amount of a pollutant that can be assimilated in a waterbody, identifies the sources of the pollutant, and recommends regulatory or other actions to be taken to achieve compliance with applicable water quality standards based on the relationship between pollution sources and in-stream water quality conditions. A TMDL can be expressed as the sum of all point source loads (Waste Load Allocations), non-point source loads (Load Allocations), and an appropriate margin of safety (MOS), which takes into account any uncertainty concerning the relationship between effluent limitations and water quality:

 $TMDL = \Sigma WLAs + \Sigma LAs + MOS$

The objective of a TMDL is to allocate loads among all of the known pollutant sources throughout a watershed so that appropriate control measures can be implemented and water quality standards achieved. 40 CFR §130.2 (i) states that TMDLs can be expressed in terms of mass per time (e.g. pounds per day), toxicity, or <u>other appropriate measure</u>. TMDLs for the impaired waterbodies are expressed in terms of a percent reduction, and where possible, as counts per day. The TMDL value represents the maximum one-day load the stream can transport over a 30-day period and maintain the water quality criterion.

6.1 Critical Conditions

EPA regulations at 40 CFR 130.7(c)(1) require TMDLs to take into account critical conditions for stream flow, loading, and water quality parameters. The critical condition for

the Twelve Mile Creek watershed was selected based on the six year simulation of fecal coliform bacteria concentrations from 1995 to 2000. A summary of how critical conditions were determined at each impaired water quality station is described below:

- 1. The running geometric mean of simulated concentrations was calculated over the entire simulation period and compared to South Carolina's geometric mean criterion of 200 fecal coliform bacteria counts per 100ml.
- 2. Each violation of the criterion was compared to the corresponding 30-day geometric mean simulated flow value.
- 3. If the violation occurred during a flow event that was below the 10th percentile (low flows) or above the 90th percentile (high flow) the violation was ignored because these flows were considered to be extreme conditions (USEPA Region 4, personal communication 2002).
- 4. Of the remaining violations, the largest was then identified and used to develop the TMDL. This resulted in meeting the criteria at all times. The date on which this violation occurred was determined to be the critical date. The critical period was established so that it represented the 30-day period leading up to the critical date. For example, if the critical date for a sub-basin was identified as January 30, the critical period for that sub-basin would be January 1 through January 30.

The critical period determined for each impaired station was applied to all unimpaired upstream watersheds contributing loads to that impaired station.

6.2 TMDL Methodology and Endpoints

TMDLs and source allocations were developed for impaired tributaries and the main stem in the Twelve Mile Creek watershed based on the 30-day geometric mean and instantaneous fecal coliform bacteria criteria. A top-down methodology was used to develop these TMDLs and allocate loads to sources. Impaired headwaters were analyzed first, because their impact frequently had a profound effect on down-stream water quality. Loading contributions were reduced from applicable sources for these waterbodies and TMDLs were developed.

TMDL endpoints represent the in-stream water quality targets used in quantifying TMDLs and their individual components. South Carolina's numeric water quality criteria for fecal coliform bacteria (identified in Section 1.3), including an explicit and implicit MOS, were used to identify endpoints for TMDL development. The endpoint was selected as the geometric mean of 190 counts/100ml (based on the 200 counts/100ml geometric mean criterion minus a 5 percent MOS) and the instantaneous endpoint of 380 counts/100ml (based on the 400 counts/100ml criterion minus a 5 percent MOS). The instantaneous criterion allows for 10 percent exceedence. The MOS is explained in greater detail in Section 6.5.

Reductions were determined through a comparison of model results to the geometric mean criteria during the geometric mean critical period. For the Twelve Mile Creek watershed, model results predicted that reductions are necessary to meet the geometric mean criteria for all impaired stations with the exception of SV-206. The instantaneous portion of the WQS was also evaluated because South Carolina water quality standards require that both the

geometric mean and instantaneous criteria be met. The instantaneous criteria was evaluated through development of load-duration curves, and this analysis is further identified in Appendix E. The instantaneous analysis identified that reductions are necessary at all impaired stations. Results of this analysis are presented in Appendix E and are used as the basis for the TMDL.

6.3 Wasteload Allocations

Table 6-1 shows the permitted NPDES facilities with their allocated loadings. Since these facilities were assumed to be discharging at their permitted limits, it was assumed that they are not contributing to the fecal coliform impairment at the each stations, and therefore, were not considered to be major contributing sources. This assumption was derived from DMR data provided from South Carolina (Refer to Table 3-2 and Appendix A).

NPDES	Facility Name	Pipe	Concentration	Permitted Flow	Load
Permit			(counts/100ml)	(MGD)	(counts/day)
SC0000132	AMERICAN HOUSE SPINNING*	1	200	0.044	3.33E+08
SC0000302	BASF CORP/FIBERS DIV/CLEMSON*	1	200	0.092	6.93E+08
SC0000370	ALICE MFG/FOSTER & ELLJEAN PLT*	1	200	0.043	3.21E+08
SC0000434	SPANGLER'S GROCERY*	1	200	0.006	5.13E+07
SC0020010	CLEMSON WWTF	1	200	0.735	8.70E+09
SC0022012	PICKENS CO/CATEECHEE VILLAGE	1	200	0.013	1.51E+08
SC0023035	EASLEY/GOLDEN CREEK LAGOON	1	200	0.217	4.40E+09
SC0023141	ISAQUEENA MOBILE HOME PARK	1	200	0.010	1.82E+08
SC0024996	PICKENS CO PSC/CENTRAL-NORTH	1	200	0.070	1.14E+09
SC0026166	PICKENS CO-LIBERTY/CRAMER	1	200	0.065	1.19E+09
SC0026191	PICKENS CO-LIBERTY/ROPER	1	200	0.148	3.80E+09
SC0027049	MASSINGILL TRAILER COURT	1	200	0.001	1.82E+07
SC0028762	R C EDWARDS JR HIGH SCHOOL	1	200	0.008	1.36E+08
SC0038652	DANIEL HIGH SCHOOL/PICKENS CO	1	200	0.010	1.51E+08
SC0047716	PICKENS/12 MILE RV & WOLF CRK	1	200	0.313	7.20E+09
SC0047899	PICKENS COUNTY STOCKADE	1	200	0.008	4.53E+08

Table 6-1. Waste load allocations (WLAs) for each NPDES permitted facility

*Permit is "Measure and Report". The number provided is a representative flow based on DMR data

Twelve Mile Creek watershed has four MS4s which were assigned the same percent reductions as the other nonpoint sources in the watershed of the impaired station. The reductions are given in Table 6-2.

Each of the MS4s was determined to have different reductions for each of the impaired locations. Therefore all MS4 WLAs and LAs for each impaired location with a MS4 will be given the same reduction of 64 %. This reduction percentage is largest reduction required of any MS4 or impaired waterbody station. These WLAs and LAs are conservative and protective of the water quality without being onerous to those required to implement the reduction.

MS4 Entity	Impaired Stations Affected	WLA (Pecent Reduction)
Easley, City of	SV-015, SV-137, SV-239	64
Liberty, City of	SV-015, SV-137	64
Pickens, City of	SV-015, SV-137	64
Pickens, County of	SV-015, SV-137, SV-239	64

Table 6-2. V	Waste load allocations	(WLAs) for each	MS4 Entity.
--------------	------------------------	-----------------	-------------

6.4 Load Allocations

There are two modes of transport for non-point source fecal coliform bacteria loading into the stream. First, loading from failing septic systems and animals in the stream are considered direct sources to the stream, as they are independent of precipitation. The second mode involves loading resulting from fecal coliform accumulation on land surfaces and is transported to the stream during storm events.

The positioning of the water quality data values on the load duration curve provide an indication of the mode of transport occurring during periods of violations. For streams in the Twelve Mile Creek watershed, violations are distributed along both sides of the curve, indicating violations occur during both dry and wet weather events. The LA components for stations SV-136 and SV-206 are represented in Table 6-3 are calculated as the difference between the TMDL and the WLA components. The LAs for the stations with MS4 are expressed as percent reductions.

6.5 Margin of Safety

There are two methods for incorporating an MOS in the analysis: a) implicitly incorporate the MOS using conservative model assumptions to develop allocations; or b) explicitly specify a portion of the TMDL as the MOS and use the remainder for allocations. In these TMDLs, both and explicit and implicit MOS were used. For the explicit margin of safety, the water quality target was set at 380 counts per 100ml for the instantaneous criterion, which is five percent lower than the water quality criteria of 400 counts per 100ml. The implicit MOS is based on using instream concentrations to estimate loads. The actual load that can be applied to the land and transported to the stream during a precipitation event would be greater as the instream concentration incorporate decay. Additionally, the use of a multiple year simulation period enabled the consideration of multiple hydrologic conditions; the TMDL was ultimately based on the most stringent. Conservative assumptions were employed in developing the TMDL. Permitted facilities were represented in the model using maximum permitted quantities. All cattle were assumed to have access to streams.

6.6 Seasonal Variability

Fecal coliform bacteria data in the Twelve Mile Creek watershed show that increased fecal coliform bacteria concentrations occur during both wet and dry weather periods. High concentrations are seen during high flows as well as during low summer flows. To

adequately address the wet and dry weather related problems, a long-term simulation period covering a variety of hydrologic and rainfall conditions must be evaluated. By using continuous flow simulation (estimating flow over a period of several years), seasonal hydrologic and source loading was inherently considered.

6.7 TMDL Results

The load duration curve methodology can be used to illustrate that water quality standards can be achieved under a range of flow conditions. To assign the TMDLs one value, representing the maximum daily load the stream can assimilate and maintain water quality standards, the target load corresponding to the median percentile of the data violations is chosen for the TMDLs. The target load is based on the maximum one-day concentration of 380 counts/100mL including the 5 percent of MOS.

The TMDLs are expressed in units of counts per day. The WLA component represents the maximum one-day load that can occur in any 30-day period. The WLA is based on the NPDES facilities' maximum design flow and the permitted one-day maximum concentration. The target load is reduced by the WLA, if any, to obtain the LA component. The TMDLs are presented in Table 6-3 for the instantaneous criteria. They are presented for each impaired water quality monitoring station, starting with the downstream stations and working upstream.

The percent reduction required to achieve the numerical criterion is also provided with the TMDL, and represents the average reduction over the range of flows measured, or estimated, in the impaired stream. The percent reduction is the average of the differences between the trend line through the existing data and the target load at each recurrence interval.

Impaired Water Quality Station	WLAs (counts/day)	MS4 WLAs (% Reduction)	LAs (counts/day or % Reduction)	MOS** (counts/day)	TMDL*** (counts/day or % Reduction)	Percent Reduction
SV-137	1.82E+10	64	64	Explicit & Implicit	64	64
SV-136	1.14E+09	NA	1.08E+12	Explicit & Implicit	1.08E+12	56
SV-015	1.74E+10	64	64	Explicit & Implicit	64	64
SV-239	8.17E+09	64	64	Explicit & Implicit	64	64
SV-206	0.00E+00	NA	4.84E+11	Explicit & Implicit	4.84E+11	39

 Table 6-3. TMDL Components for the Twelve Mile Creek watershed

* Each loading unit is counts/ day, reflecting the instantaneous criteria.

** Margin of safety (MOS) equivalent to 5 percent of the target concentration. Also refer to section 6.5 *** TMDL – WLA = LA

7.0 IMPLEMENTATION

South Carolina has several tools available to reduce loading of fecal coliform bacteria due to agricultural activities as discussed in the *Implementation Plan for Achieving Total Maximum Daily Load Reductions From Nonpoint Sources* for the State of South Carolina. Specifically, SCDHEC's animal agriculture permitting program addresses animal operations and land application of animal wastes. In addition, SCDHEC will work with existing agencies in the area to provide nonpoint source education in the Twelve Mile Creek Watershed. Local sources of nonpoint source education include Clemson Extension Service, the Natural Resource Conservation Service (NRCS) and the South Carolina Department of Natural Resources. Clemson Extension Service offers a 'Farm-A-Syst' package to farmers. Farm-A-Syst allows the farmer to evaluate practices on their property and determine the nonpoint source impact they may be having. It recommends best management practices (BMPs) to correct nonpoint source problems on the farm. Fencing cattle out of streams and restoring an adequate stream buffer have been shown to reduce pollution entering streams. NRCS can provide cost share money to land owners installing BMPs. SCDHEC employs a nonpoint source educator who can also provide BMP information.

SCDHEC is empowered under the State Pollution Control Act to perform investigations of and pursue enforcement for activities and conditions which threaten the quality of waters of the state. In addition, other interested parties (universities, local watershed groups, etc.) may apply for section 319 grants to install BMPs that will reduce fecal coliform bacteria loading to Cane Creek and its tributuaries.

SCDHEC will work with other Federal, State and Local agencies in the region to provide nonpoint source education in the Twelve Mile Creek watershed to reduce pollution from builtup areas. Also, Clemson Extension has developed a Home-A-Syst handbook that can help urban or rural homeowners reduce sources of NPS pollution on their property. This document guides homeowners through a self-assessment, including information on proper maintenance practices for septic tanks. SCDHEC also employs a nonpoint source educator who can assist with distribution of these tools as well as provide additional BMP information. In built-up areas, failing septic systems should be repaired or replaced. Also, maintenance of sanitary sewers and prevention of sewer overflows (from blockages) should be emphasized.

DHEC will continue to monitor, according to the basin monitoring schedule, the effectiveness of implementation measures and evaluate stream water quality as the implementation strategy progresses. This TMDL may be revised if additional monitoring data and better modeling tools become available.

8.0 REFERENCES

- ASAE. 1998. ASAE Standards 1998: Standards Engineering Practices Data. 45th edition. American Society of Agricultural Engineers, St. Joseph, Michigan.
- Doran, J.W., J.S. Schepers, and N.P. Swanson. 1981. *Chemical and Bacteriological Quality* of *Pasture Runoff.* J. Soil Water Conserv. May-June:166-171.
- Horner. 1992. Water Quality Criteria/Pollutant Loading Estimation/Treatment Effectiveness Estimation. In R.W. Beck and Associates. Covington Master Drainage Plan. King County Surface Water Management Division, Seattle, WA.
- Horsley & Witten, Inc. 1996. Identification and Evaluation of Nutrient and Bacterial Loadings to Maquoit Bay, Brunswick, and Freeport, Maine. Casco Bay Estuary Project.
- Metcalf & Eddy. 1991. Wastewater Engineering: Treatment, Disposal, Reuse. 3rd edition. McGraw-Hill, Inc., New York.
- Novotny, V. and H. Olem. 1994. Water Quality Prevention, Identification, and Management of Diffuse Pollution. Van Nostrand Reinhold, New York.
- SCDHEC. 1998. Implementation Plan for Achieving Total Maximum Daily Load Reductions From Nonpoint Sources for the State of South Carolina.
- SCDHEC. 1998. Watershed Water Quality Assessment. SCDHEC Bureau of Water. Columbia, SC.
- SCDHEC. 2002. NPDES Stormwater Program. www.scdhec.net (accessed January 8, 2003).
- Scheuler, T. R. 1999. *Microbes and Urban Watersheds: Concentrations, Sources, and Pathways*. Watershed Protection Techniques 3(1): 554-565.
- United States Environmental Protection Agency (USEPA). 1991. Guidance for Water Quality-.21 Based Decisions: The TMDL Process. Office of Water, EPA 440/4-91-001.
- United States Environmental Protection Agency (USEPA). 1998. Better Assessment Science Integrating Point and Nonpoint Sources. BASINS version 2.0. EPA-823-B-98-006.
- United States Geological Survey. 1998. 1998 Water Resources Data South Carolina Water Year 1998. United States Geological Survey Water-Data Report 98-1.

Appendix A DMR Data

Table A	-1. Dr	VIK uata	I IOF IN	FDES	permit SC	0000152,	Amer	Icall H	Juse 5	Jiiiiiig	
NPDES	Pipe	Date	Average Flow (MGD)	Coliform	Permit Exceedence	NPDES	Pipe	Date	Average Flow (MGD)	Coliform	Permit Exceedence
SC0000132	1	1/31/1994	0.0165			SC0023035	1	1/31/2000	0.1803		
SC0000132	1	3/31/1994	0.0103			SC0023035	1	2/29/2000	0.1803		
SC0000132	1	4/30/1994	0.023			SC0023035	1	3/31/2000	0.13		
SC0000132	1	5/31/1994	0.023			SC0023035	1	4/30/2000	0.22		
SC0000132		6/30/1994	0.057			SC0023035	1	5/31/2000	0.23		
SC0000132	1	7/31/1994	0.037			SC0023035	1	6/30/2000	0.18		
SC0000132	1	8/31/1994	0.044			SC0023035	1	7/31/2000	0.2158		
SC0000132	1	9/30/1994	0.0408			SC0023035	1	8/31/2000	0.2138		
	1						1			2	
SC0000132		10/31/1994				SC0023035		9/30/2000	0.2241		
SC0000132	1	11/30/1994				SC0023035	1	10/31/2000	0.2108		
SC0000132	1	12/31/1994				SC0023035	1	11/30/2000	0.2659		
SC0000132	1	1/31/1995	0.042			SC0023035	1	12/31/2000		9.8	
SC0000132		2/28/1995	0.034			SC0023141	1	3/31/1994	0.016		
SC0000132	1	3/31/1995	0.022			SC0023141	1	4/30/1994	0.017		
SC0000132	1	4/30/1995	0.041			SC0023141	1	6/30/1994	0.014		
SC0000132	1	5/31/1995	0.103			SC0023141	1	7/31/1994	0.018		
SC0000132	1	6/30/1995	0.053			SC0023141	1	8/31/1994	0.015		
SC0000132	1	7/31/1995	0.043			SC0023141	1	9/30/1994	0.017		
SC0000132	1	8/31/1995	0.046			SC0023141	1	11/30/1994	0.016		
SC0000132	1	9/30/1995	0.05			SC0023141	1	12/31/1994			
SC0000132	1	10/31/1995	0.035			SC0023141	1	1/31/1995	0.02	28	
SC0000132	1	11/30/1995	0.0192	< 10		SC0023141	1	2/28/1995	0.02	< 10	
SC0000132	1	12/31/1995	0.018	< 10		SC0023141	1	4/30/1997	0.0088		
SC0000132	1	1/31/1996	0.0176			SC0023141	1	5/31/1997	0.0088		
SC0000132	1	2/29/1996	0.023	< 10		SC0023141	1	6/30/1997	0.0088	< 10	
SC0000132	1	3/31/1996	0.025	9		SC0023141	1	7/31/1997	0.0088		
SC0000132	1	4/30/1996	0.063	< 10		SC0023141	1	8/31/1997	0.0088	18	
SC0000132	1	5/31/1996	0.046	< 10		SC0023141	1	9/30/1997	0.0088	< 10	
SC0000132	1	6/30/1996	0.041	< 10		SC0023141	1	10/31/1997	0.0088	< 10	
SC0000132	1	7/31/1996	0.051	< 10		SC0023141	1	11/30/1997	0.0088	< 10	
SC0000132	1	8/31/1996	0.046	< 10		SC0023141	1	12/31/1997	0.0088	< 10	
SC0000132	1	9/30/1996	0.043	< 10		SC0023141	1	1/31/1998	0.0088	< 10	
SC0000132	1	10/31/1996	0.04	< 10		SC0023141	1	2/28/1998	0.0088	< 10	
SC0000132	1	11/30/1996	0.027	< 10		SC0023141	1	3/31/1998	0.0088	< 10	
SC0000132	1	12/31/1996	0.015	< 10		SC0023141	1	4/30/1998	0.0088	< 10	
SC0000132	1	1/31/1997	0.032	< 10		SC0023141	1	5/31/1998	0.0088	< 10	

Table A-1. DMR data for NPDES permit SC0000132, American House Spinning

NPDES	Pipe	Date	Average Flow (MGD)	Fecal Coliform (#/100 ml)	Permit Exceedence	NPDES	Pipe	Date	Average Flow (MGD)	Fecal Coliform (#/100 ml)	Permit Exceedence
SC0000132	1	2/28/1997	0.03	< 10		SC0023141	1	6/30/1998	0.0088	< 10	
SC0000132	1	3/31/1997	0.027	< 10		SC0023141	1	7/31/1998	0.0088	< 10	
SC0000132	1	4/30/1997	0.041	< 10		SC0023141	1	8/31/1998	0.0013	18	
SC0000132	1	5/31/1997	0.038	< 10		SC0023141	1	9/30/1998	0.003	< 10	
SC0000132	1	6/30/1997	0.059	< 10		SC0023141	1	10/31/1998	0.0058	< 10	
SC0000132	1	7/31/1997	0.054	16.4		SC0023141	1	11/30/1998	0.0022	< 10	
SC0000132	1	8/31/1997	0.068	< 10		SC0023141	1	12/31/1998	0.002	< 10	
SC0000132	1	10/31/1997	0.055	< 10		SC0023141	1	1/31/1999	0.0073	< 10	
SC0000132	1	11/30/1997	0.053	< 10		SC0023141	1	2/28/1999	0.0105	< 10	
SC0000132	1	12/31/1997	0.044	< 10		SC0023141	1	3/31/1999	0.0038	< 10	
SC0000132	1	1/31/1998	0.05	126		SC0023141	1	4/30/1999	0.0022	< 10	
SC0000132	1	2/28/1998	0.07	< 10		SC0023141	1	5/31/1999	0.0013	< 10	
SC0000132	1	3/31/1998	0.055	108		SC0023141	1	6/30/1999	0.0105	< 10	
SC0000132	1	4/30/1998	0.079	< 10		SC0023141	1	7/31/1999	0.0105	< 10	
SC0000132	1	5/31/1998	0.056	< 10		SC0023141	1	8/31/1999	0.0135	< 10	
SC0000132	1	6/30/1998	0.068	36		SC0023141	1	9/30/1999	0.006	< 10	
SC0000132	1	7/31/1998	0.063	< 10		SC0023141	1	10/31/1999	0.014	< 10	
SC0000132	1	8/31/1998	0.067	< 10		SC0023141	1	11/30/1999	0.0053	< 10	
SC0000132	1	9/30/1998	0.062	< 10		SC0023141	1	12/31/1999	0.0018	< 10	
SC0000132	1	10/31/1998	0.045	< 10		SC0023141	1	1/31/2000	0.0053	< 10	
SC0000132	1	11/30/1998	0.043	< 10		SC0023141	1	2/29/2000	0.0018	< 10	
SC0000132	1	12/31/1998	0.033	< 105		SC0023141	1	3/31/2000	0.0073	< 10	
SC0000132	1	1/31/1999	0.047	< 10		SC0023141	1	4/30/2000	0.0135	< 10	
SC0000132	1	2/28/1999	0.034	< 10		SC0023141	1	5/31/2000	0.0209	< 10	
SC0000132	1	3/31/1999	0.033	< 10		SC0023141	1	6/30/2000	0.0135	< 10	
SC0000132	1	4/30/1999	0.059	< 10		SC0023141	1	7/31/2000	0.0073	< 10	
SC0000132	1	5/31/1999	0.054	< 10		SC0023141	1	8/31/2000	0.0073	54	
SC0000132	1	6/30/1999	0.053	< 107.3		SC0023141	1	9/30/2000	0.0105	< 10	
SC0000132	1	7/31/1999	0.055	281	-	SC0023141	1	10/31/2000	0.0022	10	
SC0000132	1	8/31/1999	0.076	< 10		SC0023141	1	11/30/2000	0.0073	< 10	
SC0000132	1	9/30/1999	0.073	< 10		SC0023141	1	12/31/2000	0.0073	< 1	
SC0000132	1	10/31/1999	0.055	< 10		SC0024996	1	1/31/1990	0.109	20	
SC0000132	1	11/30/1999	0.049	< 10		SC0024996	1	2/28/1990	0.101	< 10	
SC0000132	1	12/31/1999	0.041	< 10		SC0024996	1	3/31/1990	0.09	73	
SC0000132	1	1/31/2000	0.066	< 10		SC0024996	1	4/30/1990	0.073	173	
SC0000132	1	2/29/2000	0.0086	< 10		SC0024996	1	5/31/1990	0.075	12.2	
SC0000132	1	4/30/2000	0.041	< 10		SC0024996	1	6/30/1990	0.065	25	

NPDES	Pipe	Date	Average Flow (MGD)	Fecal Coliform (#/100 ml)	Permit Exceedence	NPDES	Pipe	Date	Average Flow (MGD)	Fecal Coliform (#/100 ml)	Permit Exceedence
SC0000132	1	5/31/2000	0.045	< 10		SC0024996	1	7/31/1990	0.068		
SC0000132	1	6/30/2000	0.055	< 10		SC0024996	1	8/31/1990	0.068	270	-
SC0000132	1	7/31/2000	0.044	< 10		SC0024996	1	9/30/1990	0.078	44.7	
SC0000132	1	8/31/2000	0.052	< 10		SC0024996	1	10/31/1990	0.083	178	
SC0000132	1	9/30/2000	0.0497	< 10		SC0024996	1	11/30/1990	0.041	151	
SC0000132	1	10/31/2000	0.044	< 10		SC0024996	1	12/31/1990	0.042	100	
SC0000132	1	11/30/2000	0.0647	< 10		SC0024996	1	1/31/1991	0.075	25	
SC0000132	1	12/31/2000	0.071	< 10		SC0024996	1	2/28/1991	0.046	79	
SC0000302	1	1/31/1990	0.0464	194		SC0024996	1	3/31/1991	0.059	159	
SC0000302	1	2/28/1990	0.0461	11.2		SC0024996	1	4/30/1991	0.052	28	
SC0000302	1	3/31/1990	0.0362	80		SC0024996	1	5/31/1991	0.056	96	
SC0000302	1	4/30/1990	0.0289	8		SC0024996	1	6/30/1991	0.053	79	
SC0000302	1	5/31/1990	0.039	3		SC0024996	1	7/31/1991	0.049	104	
SC0000302	1	6/30/1990	0.0412	4		SC0024996	1	8/31/1991	0.06	125	
SC0000302	1	7/31/1990	0.0431	< 1		SC0024996	1	9/30/1991	0.044	174	
SC0000302	1	8/31/1990	0.0513	1		SC0024996	1	10/31/1991	0.039	50	
SC0000302	1	9/30/1990	0.0598	2		SC0024996	1	2/29/1992	0.054	56	
SC0000302	1	10/31/1990	0.0497	< 1		SC0024996	1	3/31/1992	0.064	32	
SC0000302	1	11/30/1990	0.0387	2		SC0024996	1	4/30/1992	0.061	100	
SC0000302	1	12/31/1990	0.0381	57		SC0024996	1	5/31/1992	0.07	39.8	
SC0000302	1	1/31/1991	0.044	423	х	SC0024996	1	6/30/1992	0.068	40	
SC0000302	1	2/28/1991	0.047	13		SC0024996	1	7/31/1992	0.068	145	
SC0000302	1	3/31/1991	0.0569	9.4		SC0024996	1	8/31/1992	0.072	141	
SC0000302	1	4/30/1991	0.0493	3		SC0024996	1	9/30/1992	0.089	129	
SC0000302	1	5/31/1991	0.0562	3		SC0024996	1	10/31/1992	0.069	200	-
SC0000302	1	6/30/1991	0.0572	2		SC0024996	1	11/30/1992	0.096	100	
SC0000302	1	7/31/1991	0.0584	3		SC0024996	1	12/31/1992	0.073	50	
SC0000302	1	8/31/1991	0.0788	4		SC0024996	1	1/31/1993	0.146	40	
SC0000302	1	9/30/1991	0.0775	10		SC0024996	1	2/28/1993	0.121	10	
SC0000302	1	10/31/1991	0.0599	4		SC0024996	1	3/31/1993	0.138	158	
SC0000302	1	11/30/1991	0.0564	34		SC0024996	1	4/30/1993	0.122	50	
SC0000302	1	12/31/1991	0.0547	19		SC0024996	1	5/31/1993	0.13	281	-
SC0000302	1	2/29/1992	0.0577	27		SC0024996	1	6/30/1993	0.08	35	
SC0000302	1	3/31/1992	0.0608	5		SC0024996	1	7/31/1993	0.785	8.5	
SC0000302	1	4/30/1992	0.0495	< 1		SC0024996	1	8/31/1993	0.042	141	
SC0000302	1	5/31/1992	0.0633	1		SC0024996	1	9/30/1993	0.094	60	
SC0000302	1	6/30/1992	0.0643	4		SC0024996	1	10/31/1993	0.075	25	

NPDES	Pipe	Date	Average Flow (MGD)	Fecal Coliform (#/100 ml)	Permit Exceedence	NPDES	Pipe	Date	Average Flow (MGD)	Fecal Coliform (#/100 ml)	Permit Exceedence
SC0000302	1	7/31/1992	0.0797	3	Litteration	SC0024996	1	11/30/1993	0.077		Excedence
SC0000302	1	8/31/1992	0.0768	1		SC0024996	1	12/31/1993	0.077	49	
SC0000302	1	9/30/1992	0.0599	1		SC0024996	1	1/31/1994	0.078	14	
SC0000302	1	10/31/1992	0.064	1		SC0024996	1	2/28/1994	0.066	230	-
SC0000302	1	11/30/1992	0.0684	1		SC0024996	1	3/31/1994	0.083	79	
SC0000302	1	12/31/1992	0.0649	3		SC0024996	1	4/30/1994	0.043	205	-
SC0000302	1	1/31/1993	0.0659	3		SC0024996	1	5/31/1994	0.079	46	
SC0000302	1	2/28/1993	0.0554	2		SC0024996	1	6/30/1994	0.062	10	
SC0000302	1	3/31/1993	0.0666	3		SC0024996	1	7/31/1994	0.071	178	
SC0000302	1	4/30/1993	0.0604	6		SC0024996	1	8/31/1994	0.08	1023	x
SC0000302	1	5/31/1993	0.0588	7		SC0024996	1	8/31/1994	0.08	1023	x
SC0000302	1	6/30/1993	0.0681	1		SC0024996	1	8/31/1994	0.08	1023	x
SC0000302	1	7/31/1993	0.0801	1		SC0024996	1	8/31/1994	0.08	1023	x
SC0000302	1	8/31/1993	0.079	1		SC0024996	1	9/30/1994	0.044	126	
SC0000302	1	9/30/1993	0.0764	1		SC0024996	1	9/30/1994	0.044	126	
SC0000302	1	10/31/1993	0.06331	2		SC0024996	1	9/30/1994	0.044	126	
SC0000302	1	11/30/1993	0.062	1		SC0024996	1	9/30/1994	0.044	126	
SC0000302	1	12/31/1993	0.0611	5		SC0024996	1	10/31/1994	0.043	79	
SC0000302	1	1/31/1994	0.0517	15		SC0024996	1	10/31/1994	0.043	79	
SC0000302	1	2/28/1994	0.0632	7		SC0024996	1	10/31/1994	0.043	79	
SC0000302	1	3/31/1994	0.0718	1		SC0024996	1	10/31/1994	0.043	79	
SC0000302	1	4/30/1994	0.0775	1		SC0024996	1	11/30/1994	0.036	85	
SC0000302	1	5/31/1994	0.0714	1		SC0024996	1	12/31/1994	0.05	99	
SC0000302	1	6/30/1994	0.0972	3		SC0024996	1	1/31/1995	0.069	10	
SC0000302	1	7/31/1994	0.1205	1		SC0024996	1	2/28/1995	0.068	10	
SC0000302	1	8/31/1994	0.1117	1		SC0024996	1	3/31/1995	0.054	142	
SC0000302	1	9/30/1994	0.1147	1		SC0024996	1	4/30/1995	0.043	16	
SC0000302	1	10/31/1994	0.1098	1		SC0024996	1	5/31/1995	0.046	48	
SC0000302	1	11/30/1994	0.08396	4		SC0024996	1	6/30/1995	0.052	61	
SC0000302	1	12/31/1994	0.0923	1		SC0024996	1	7/31/1995	0.059	10	
SC0000302	1	1/31/1995	0.0786	2		SC0024996	1	8/31/1995	0.09	54	
SC0000302	1	2/28/1995	0.068	1		SC0024996	1	9/30/1995	0.049	9	
SC0000302	1	3/31/1995	0.0676	1		SC0024996	1	10/31/1995	0.061	18	
SC0000302	1	4/30/1995	0.0692	1		SC0024996	1	11/30/1995	0.08	9	
SC0000302	1	5/31/1995	0.0757	< 1		SC0024996	1	12/31/1995	0.036	10	
SC0000302	1	7/31/1996	0.0974	5		SC0024996	1	1/31/1996	0.077	10	
SC0000302	1	8/31/1996	0.0888	7		SC0024996	1	2/29/1996	0.079	13	

NPDES	Pipe	Date	Average Flow (MGD)	Fecal Coliform (#/100 ml)	Permit Exceedence	NPDES	Pipe	Date	Average Flow (MGD)	Fecal Coliform (#/100 ml)	Permit Exceedence
SC0000302	1	9/30/1996	0.088	2		SC0024996	1	3/31/1996	0.09	25	
SC0000302	1	10/31/1996	0.0815	3		SC0024996	1	4/30/1996	0.071	10	
SC0000302	1	11/30/1996	0.0884	1		SC0024996	1	5/31/1996	0.073	10	
SC0000302	1	12/31/1996	0.0761	1		SC0024996	1	6/30/1996	0.061	10	
SC0000302	1	1/31/1997	0.072	1		SC0024996	1	7/31/1996	0.062	103	
SC0000302	1	2/28/1997	0.0757	3		SC0024996	1	8/31/1996	0.051	124	
SC0000302	1	3/31/1997	0.09	1		SC0024996	1	9/30/1996	0.058	10	
SC0000302	1	4/30/1997	0.0716	2		SC0024996	1	10/31/1996	0.04	10	
SC0000302	1	5/31/1997	0.085	1		SC0024996	1	11/30/1996	0.036	16	
SC0000302	1	6/30/1997	0.1229	1		SC0024996	1	12/31/1996	0.046	10	
SC0000302	1	7/31/1997	0.1306	1		SC0024996	1	1/31/1997	0.061	10	
SC0000302	1	8/31/1997	0.1204	1		SC0024996	1	2/28/1997	0.064	10	
SC0000302	1	9/30/1997	0.1105	1		SC0024996	1	3/31/1997	0.061	13	
SC0000302	1	10/31/1997	0.1009	1		SC0024996	1	4/30/1997	0.057	43	
SC0000302	1	11/30/1997	0.0886	1		SC0024996	1	5/31/1997	0.053	10	
SC0000302	1	12/31/1997	0.0884	1		SC0024996	1	6/30/1997	0.047	10	
SC0000302	1	1/31/1998	0.1024	1		SC0024996	1	7/31/1997	0.048	10	
SC0000302	1	2/28/1998	0.9613	1		SC0024996	1	8/31/1997	0.046	10	
SC0000302	1	3/31/1998	0.0951	1		SC0024996	1	9/30/1997	0.059	10	
SC0000302	1	4/30/1998	0.106	3		SC0024996	1	10/31/1997	0.052	10	
SC0000302	1	5/31/1998	0.1273	1		SC0024996	1	11/30/1997	0.038	10	
SC0000302	1	6/30/1998	0.1339	1		SC0024996	1	12/31/1997	0.053	115	
SC0000302	1	7/31/1998	0.1436	1		SC0024996	1	1/31/1998	0.079	10	
SC0000302	1	8/31/1998	0.1429	1		SC0024996	1	2/28/1998	0.085	10	
SC0000302	1	9/30/1998	0.1474	2		SC0024996	1	3/31/1998	0.05	10	
SC0000302	1	10/31/1998	0.1286	1		SC0024996	1	4/30/1998	0.056	10	
SC0000302	1	11/30/1998	0.1138	1		SC0024996	1	5/31/1998	0.04	10	
SC0000302	1	12/31/1998	0.1123	1		SC0024996	1	6/30/1998	0.042	37	
SC0000302	1	1/31/1999	0.1028	12		SC0024996	1	7/31/1998	0.046	10	
SC0000302	1	2/28/1999	0.1259	1		SC0024996	1	8/31/1998	0.049	10	
SC0000302	1	3/31/1999	0.1032	2		SC0024996	1	9/30/1998	0.041	66	
SC0000302	1	4/30/1999	0.1019	2		SC0024996	1	10/31/1998	0.058	147.6	
SC0000302	1	5/31/1999	0.1124	3		SC0024996	1	11/30/1998	0.055	196	
SC0000302	1	6/30/1999	0.1204	1		SC0024996	1	12/31/1998	0.056	16	
SC0000302	1	7/31/1999	0.1458	1		SC0024996	1	1/31/1999	0.046	10	
SC0000302	1	8/31/1999	0.1249	1		SC0024996	1	2/28/1999	0.072	< 10	
SC0000302	1	9/30/1999	0.1076	2		SC0024996	1	3/31/1999	0.05	10	

NPDES	Pipe	Date	Average Flow (MGD)	Fecal Coliform (#/100 ml)	Permit Exceedence	NPDES	Pipe	Date	Average Flow (MGD)	Fecal Coliform (#/100 ml)	Permit Exceedence
SC0000302	1	10/31/1999	0.131	1		SC0024996	1	4/30/1999	0.061	< 10	
SC0000302	1	11/30/1999	0.1044	1		SC0024996	1	5/31/1999	0.063	13	
SC0000302	1	12/31/1999	0.0848	1		SC0024996	1	6/30/1999	0.05	139	
SC0000302	1	1/31/2000	0.09016	1		SC0024996	1	7/31/1999	0.054	27	
SC0000302	1	2/29/2000	0.0937	1		SC0024996	1	8/31/1999	0.061	63	
SC0000302	1	3/31/2000	0.1019	1		SC0024996	1	9/30/1999	0.068	57	
SC0000302	1	4/30/2000	0.0982	3		SC0024996	1	10/31/1999	0.073	< 10	
SC0000302	1	5/31/2000	0.1084	3		SC0024996	1	11/30/1999	0.072	59	
SC0000302	1	6/30/2000	0.1244	2		SC0024996	1	12/31/1999	0.068	10	
SC0000302	1	7/31/2000	0.1234	1		SC0024996	1	1/31/2000	0.078	2	
SC0000302	1	8/31/2000	0.1322	2		SC0024996	1	2/29/2000	0.076	5	
SC0000302	1	9/30/2000	0.1252	2		SC0024996	1	3/31/2000	0.072	78	
SC0000302	1	10/31/2000	0.095	1		SC0024996	1	4/30/2000	0.082	2	
SC0000302	1	11/30/2000	0.1024	1		SC0024996	1	5/31/2000	0.055	15	
SC0000302	1	12/31/2000	0.0989	2		SC0024996	1	6/30/2000	0.05	107	
SC0000370	1	2/28/1991	0.0304	10		SC0024996	1	7/31/2000	0.052	378	-
SC0000370	1	3/31/1991	0.0445	10		SC0024996	1	8/31/2000	0.055	97	
SC0000370	1	4/30/1991	0.0623	< 10		SC0024996	1	9/30/2000	0.055	< 2	
SC0000370	1	5/31/1991	0.0544	100		SC0024996	1	10/31/2000	0.046	80	
SC0000370	1	7/31/1991	0.0576	10		SC0024996	1	11/30/2000	0.055	13	
SC0000370	1	8/31/1991	0.0778	590	х	SC0024996	1	12/31/2000	0.054	3	
SC0000370	1	9/30/1991	0.0544	10		SC0026166	1	1/31/1990	0.087	10	
SC0000370	1	11/30/1991	0.0321	< 10		SC0026166	1	2/28/1990	0.07	< 10	
SC0000370	1	12/31/1991	0.0337	260	-	SC0026166	1	3/31/1990	0.089	< 700	х
SC0000370	1	1/31/1992	0.0323	< 10		SC0026166	1	4/30/1990	0.063	79	
SC0000370	1	7/31/1992	0.0467	< 10		SC0026166	1	5/31/1990	0.072	224	-
SC0000370	1	8/31/1992	0.0577	< 10		SC0026166	1	6/30/1990	0.063	< 63	
SC0000370	1	9/30/1992	0.0576	< 10		SC0026166	1	7/31/1990	0.081	468	х
SC0000370	1	10/31/1992	0.0479	< 10		SC0026166	1	8/31/1990	0.071	94	
SC0000370	1	11/30/1992	0.0606	10		SC0026166	1	9/30/1990	0.077	141	
SC0000370	1	12/31/1992	0.0382	< 10		SC0026166	1	10/31/1990	0.088	178	
SC0000370	1	1/31/1993	0.0256	50		SC0026166	1	11/30/1990	0.054	< 22	
SC0000370	1	2/28/1993	0.0151	10		SC0026166	1	12/31/1990	0.053	63	
SC0000370	1	3/31/1993	0.0341	< 10		SC0026166	1	1/31/1991	0.074	69	
SC0000370	1	4/30/1993	0.0357	10		SC0026166	1	2/28/1991	0.067	47	
SC0000370	1	5/31/1993	0.0406	10		SC0026166	1	3/31/1991	0.08	126	
SC0000370	1	6/30/1993	0.0566	< 10		SC0026166	1	4/30/1991	0.083	355	-

NPDES	Pipe	Date	Average Flow (MGD)	Fecal Coliform (#/100 ml)	Permit Exceedence	NPDES	Pipe	Date	Average Flow (MGD)	Fecal Coliform (#/100 ml)	Permit Exceedence
SC0000370	1	7/31/1993	0.0419	< 2.0		SC0026166	1	5/31/1991	0.08	708	x
SC0000370	1	8/31/1993	0.0444	30		SC0026166	1	6/30/1991	0.084	355	-
SC0000370	1	9/30/1993	0.0447	2		SC0026166	1	7/31/1991	0.059	398	-
SC0000370	1	10/31/1993	0.0388	10		SC0026166	1	8/31/1991	0.081	457	x
SC0000370	1	12/31/1993	0.0313	423	x	SC0026166	1	9/30/1991	0.053	178	
SC0000370	1	1/31/1994	0.0388	< 4		SC0026166	1	10/31/1991	0.042	100	
SC0000370	1	2/28/1994	0.0412	< 4		SC0026166	1	2/29/1992	0.088	< 40	
SC0000370	1	3/31/1994	0.0446	< 4		SC0026166	1	3/31/1992	0.084	32	
SC0000370	1	4/30/1994	0.0326	4		SC0026166	1	4/30/1992	0.067	< 40	
SC0000370	1	5/31/1994	0.0305	4		SC0026166	1	5/31/1992	0.07	158	
SC0000370	1	6/30/1994	0.0406	10		SC0026166	1	6/30/1992	0.071	251	-
SC0000370	1	7/31/1994	0.0413	4		SC0026166	1	7/31/1992	0.061	85	
SC0000370	1	8/31/1994	0.0573	10		SC0026166	1	8/31/1992	0.087	45	
SC0000370	1	9/30/1994	0.0332	4		SC0026166	1	9/30/1992	0.051	226	-
SC0000370	1	10/31/1994	0.0339	4		SC0026166	1	10/31/1992	0.023	76	
SC0000370	1	11/30/1994	0.0201	4		SC0026166	1	11/30/1992	0.048	> 82	
SC0000370	1	12/31/1994	0.0295	< 4		SC0026166	1	12/31/1992	0.045	< 4	
SC0000370	1	1/31/1995	0.0315	< 10		SC0026166	1	1/31/1993	0.077	< 4	
SC0000370	1	2/28/1995	0.0297	< 4		SC0026166	1	2/28/1993	0.032	< 12	
SC0000370	1	3/31/1995	0.03	< 10		SC0026166	1	3/31/1993	0.043	< 4	
SC0000370	1	4/30/1995	0.0324	< 4		SC0026166	1	4/30/1993	0.02	< 10	
SC0000370	1	5/31/1995	0.0321	4		SC0026166	1	5/31/1993	0.026	< 15	
SC0000370	1	6/30/1995	0.0453	< 4		SC0026166	1	6/30/1993	0.02	< 10	
SC0000370	1	7/31/1995	0.0488	8		SC0026166	1	7/31/1993	0.025	< 7	
SC0000370	1	8/31/1995	0.058	4		SC0026166	1	8/31/1993	0.031	< 7	
SC0000370	1	9/30/1995	0.0429	< 10		SC0026166	1	9/30/1993	0.028	< 5	
SC0000370	1	10/31/1995	0.046	18		SC0026166	1	10/31/1993	0.045	17	
SC0000370	1	11/30/1995	0.03	10		SC0026166	1	11/30/1993	0.06	480	x
SC0000370	1	12/31/1995	0.0248	10		SC0026166	1	12/31/1993	0.06	< 7	
SC0000370	1	1/31/1996	0.0357	10		SC0026166	1	1/31/1994	0.075	< 10	
SC0000370	1	2/29/1996	0.0305	10		SC0026166	1	2/28/1994	0.084	< 7	
SC0000370	1	3/31/1996	0.0339	10		SC0026166	1	3/31/1994	0.085	< 5	
SC0000370	1	4/30/1996	0.0277	10		SC0026166	1	5/31/1994	0.054	32	
SC0000370	1	5/31/1996	0.0381	10		SC0026166	1	6/30/1994	0.062	< 10	
SC0000370	1	6/30/1996	0.0415	10		SC0026166	1	7/31/1994	73	< 10	
SC0000370	1	7/31/1996	0.0434	10		SC0026166	1	8/31/1994	0.098	< 10	
SC0000370	1	8/31/1996	0.0597	< 10		SC0026166	1	9/30/1994	0.084	< 10	

NPDES	Pipe	Date	Average Flow (MGD)	Fecal Coliform (#/100 ml)	Permit Exceedence	NPDES	Pipe	Date	Average Flow (MGD)	Fecal Coliform (#/100 ml)	Permit Exceedence
SC0000370	1	9/30/1996	0.0559	< 10		SC0026166	1	10/31/1994	0.069	< 17	
SC0000370	1	10/31/1996	0.0604	< 10		SC0026166	1	11/30/1994	0.059	10	
SC0000370	1	11/30/1996	0.0563	197.5		SC0026166	1	12/31/1994	0.061	7	
SC0000370	1	12/31/1996	0.0375	< 10		SC0026166	1	1/31/1995	0.11	< 10	
SC0000370	1	1/31/1997	0.0355	< 4		SC0026166	1	2/28/1995	0.113	40	
SC0000370	1	2/28/1997	0.0659	1		SC0026166	1	3/31/1995	0.066	13	
SC0000370	1	3/31/1997	0.032	< 0.60206		SC0026166	1	4/30/1995	0.053	78	
SC0000370	1	4/30/1997	0.0364	0.60206		SC0026166	1	5/31/1995	0.05	10	
SC0000370	1	5/31/1997	0.039	< 0.60206		SC0026166	1	6/30/1995	0.046	10	
SC0000370	1	6/30/1997	0.0451	0.60206		SC0026166	1	7/31/1995	0.047	10	
SC0000370	1	7/31/1997	0.0511	< 2.24055		SC0026166	1	8/31/1995	0.118	10	
SC0000370	1	8/31/1997	0.038	< 0.60206		SC0026166	1	9/30/1995	0.066	10	
SC0000370	1	9/30/1997	0.0406	< 0.60206		SC0026166	1	10/31/1995	0.091	10	
SC0000370	1	10/31/1997	0.0415	< 0.60206		SC0026166	1	11/30/1995	0.078	10	
SC0000370	1	11/30/1997	0.0281	< 0.60206		SC0026166	1	12/31/1995	0.052	10	
SC0000370	1	12/31/1997	0.0494	< 0.60206		SC0026166	1	1/31/1996	0.08	10	
SC0000370	1	1/31/1998	0.0561	< 0.60206		SC0026166	1	2/29/1996	0.073	10	
SC0000370	1	2/28/1998	0.0477	< 0.60206		SC0026166	1	3/31/1996	0.077	10	
SC0000370	1	3/31/1998	0.04	0.60206		SC0026166	1	4/30/1996	0.06	10	
SC0000370	1	4/30/1998	0.0508	< 0.60206		SC0026166	1	5/31/1996	0.052	10	
SC0000370	1	5/31/1998	0.0489	< 0.60206		SC0026166	1	6/30/1996	0.045	10	
SC0000370	1	6/30/1998	0.0414	< 0.60206		SC0026166	1	7/31/1996	0.02	10	
SC0000370	1	7/31/1998	0.0368	1.5563		SC0026166	1	8/31/1996	0.043	10	
SC0000370	1	8/31/1998	0.0575	< 0.60206		SC0026166	1	9/30/1996	0.045	10	
SC0000370	1	9/30/1998	0.0537	< 0.60206		SC0026166	1	10/31/1996	0.043	10	
SC0000370	1	10/31/1998	0.0519	< 0.60206		SC0026166	1	11/30/1996	0.047	10	
SC0000434	1	11/30/1994	0.0004	10		SC0026166	1	12/31/1996	0.047	10	
SC0000434	1	12/31/1994	0.004	< 10		SC0026166	1	1/31/1997	0.073	10	
SC0000434	1	1/31/1995	0.009	10		SC0026166	1	2/28/1997	0.076	10	
SC0000434	1	2/28/1995	0.009	< 10		SC0026166	1	3/31/1997	0.061	10	
SC0000434	1	3/31/1995	0.009	< 10		SC0026166	1	4/30/1997	0.062	10	
SC0000434	1	4/30/1995	0.009	4100	x	SC0026166	1	5/31/1997	0.061	10	
SC0000434	1	5/31/1995	0.009	590	x	SC0026166	1	6/30/1997	0.047	10	
SC0000434	1	8/31/1995	0.009	< 10		SC0026166	1	7/31/1997	0.049	10	
SC0000434	1	9/30/1995	0.009	350	-	SC0026166	1	8/31/1997	0.038	10	
SC0000434	1	10/31/1995	0.009	< 10		SC0026166	1	10/31/1997	0.075	10	
SC0000434	1	11/30/1995	0.009	6		SC0026166	1	11/30/1997	0.067	10	

NPDES	Pipe	Date	Average Flow (MGD)	Fecal Coliform (#/100 ml)	Permit Exceedence	NPDES	Pipe	Date	Average Flow (MGD)	Fecal Coliform (#/100 ml)	Permit Exceedence
SC0000434	1	12/31/1995	0.009	< 10		SC0026166	1	12/31/1997	0.089	10	
SC0000434	1	1/31/1996	0.009	< 10		SC0026166	1	1/31/1998	0.139	10	
SC0000434	1	2/29/1996	0.009	< 10		SC0026166	1	2/28/1998	0.13	10	
SC0000434	1	5/31/1996	0.009	81		SC0026166	1	3/31/1998	0.095	10	
SC0000434	1	7/31/1996	0.009	< 10		SC0026166	1	4/30/1998	0.104	10	
SC0000434	1	8/31/1996	0.009	27		SC0026166	1	5/31/1998	0.1	10	
SC0000434	1	9/30/1996	0.009	9		SC0026166	1	6/30/1998	0.055	13	
SC0000434	1	11/30/1996	0.009	< 10		SC0026166	1	7/31/1998	0.055	32	
SC0000434	1	12/31/1996	0.009	< 10		SC0026166	1	8/31/1998	0.056	10	
SC0000434	1	1/31/1997	0.009	< 10		SC0026166	1	9/30/1998	0.058	10	
SC0000434	1	3/31/1997	0.009	< 10		SC0026166	1	10/31/1998	0.0781	13.4	
SC0000434	1	4/30/1997	0.009	144		SC0026166	1	11/30/1998	0.07	57	
SC0000434	1	5/31/1997	0.009	< 10		SC0026166	1	12/31/1998	0.084	19	
SC0000434	1	6/30/1997	0.009	27		SC0026166	1	1/31/1999	0.085	10	
SC0000434	1	7/31/1997	0.009	< 10		SC0026166	1	2/28/1999	0.118	< 10	
SC0000434	1	10/31/1997	0.009	< 10		SC0026166	1	3/31/1999	0.083	16	
SC0000434	1	11/30/1997	0.009	< 10		SC0026166	1	4/30/1999	0.065	< 10	
SC0000434	1	12/31/1997	0.009	< 10		SC0026166	1	5/31/1999	0.064	10	
SC0000434	1	1/31/1998	0.009	< 10		SC0026166	1	6/30/1999	0.051	63	
SC0000434	1	2/28/1998	0.009	< 10		SC0026166	1	7/31/1999	0.0459	< 10	
SC0000434	1	3/31/1998	0.009	< 10		SC0026166	1	8/31/1999	0.046	49	
SC0000434	1	4/30/1998	0.009	< 10		SC0026166	1	9/30/1999	0.051	108	
SC0000434	1	5/31/1998	0.009	< .10		SC0026166	1	10/31/1999	0.069	10	
SC0000434	1	6/30/1998	0.009	< 10		SC0026166	1	11/30/1999	0.0469	6	
SC0000434	1	7/31/1998	0.009	< 10		SC0026166	1	12/31/1999	0.054	5	
SC0000434	1	8/31/1998	0.009	< 10		SC0026166	1	1/31/2000	0.065	5	
SC0000434	1	9/30/1998	0.009	< 10		SC0026166	1	2/29/2000	0.063	2	
SC0000434	1	10/31/1998	0.009	< 10		SC0026166	1	3/31/2000	0.072	2	
SC0000434	1	11/30/1998	0.004	< 10		SC0026166	1	4/30/2000	0.06846	2	
SC0000434	1	12/31/1998	0.008	< 10		SC0026166	1	5/31/2000	0.05	21	
SC0000434	1	1/31/1999	0.004	< 10		SC0026166	1	6/30/2000	0.043	< 2	
SC0000434	1	2/28/1999	0.004	< 10		SC0026166	1	7/31/2000	0.042	< 2	
SC0000434	1	3/31/1999	0.004	< 10		SC0026166	1	8/31/2000	0.061	< 2.0	
SC0000434	1	4/30/1999	0.004	< 10		SC0026166	1	9/30/2000	0.055	< 2	
SC0000434	1	5/31/1999	0.004	< 10		SC0026166	1	10/31/2000	0.049	< 2	
SC0000434	1	6/30/1999	0.009	36		SC0026166	1	11/30/2000	0.057	< 2	
SC0000434	1	7/31/1999	0.006	< 10		SC0026166	1	12/31/2000	0.048	< 2	

NPDES	Pipe	Date	Average Flow (MGD)	Fecal Coliform (#/100 ml)	Permit Exceedence	NPDES	Pipe	Date	Average Flow (MGD)	Fecal Coliform (#/100 ml)	Permit Exceedence
SC0000434	1	8/31/1999	0.004	< 10		SC0026191	1	1/31/1990	0.167	305	-
SC0000434	1	9/30/1999	0.007	< 10		SC0026191	1	2/28/1990	0.185	65	
SC0000434	1	10/31/1999	0.005	< 10		SC0026191	1	3/31/1990	0.193	237	-
SC0000434	1	11/30/1999	0.003	< 10		SC0026191	1	4/30/1990	0.131	95	
SC0000434	1	12/31/1999	0.002	< 10		SC0026191	1	5/31/1990	0.128	36	
SC0000434	1	1/31/2000	0.003	< 10		SC0026191	1	6/30/1990	0.126	< 20	
SC0000434	1	2/29/2000	0.004	< 10		SC0026191	1	7/31/1990	0.136	603	х
SC0000434	1	3/31/2000	0.002	36		SC0026191	1	8/31/1990	0.136	283	-
SC0000434	1	4/30/2000	0.005	< 10		SC0026191	1	9/30/1990	0.147	141	
SC0000434	1	5/31/2000	0.003	< 10		SC0026191	1	10/31/1990	0.174	562	х
SC0000434	1	6/30/2000	0.001	< 10		SC0026191	1	11/30/1990	0.104	< 16	
SC0000434	1	7/31/2000	0.002	< 10		SC0026191	1	12/31/1990	0.085	89	
SC0000434	1	8/31/2000	0.003	< 10		SC0026191	1	1/31/1991	0.12	285	-
SC0000434	1	9/30/2000	0.002	< 10		SC0026191	1	2/28/1991	0.098	240	-
SC0000434	1	10/31/2000	0.002	< 10		SC0026191	1	3/31/1991	0.132	56	
SC0000434	1	11/30/2000	0.002	< 10		SC0026191	1	4/30/1991	0.136	794	х
SC0000434	1	12/31/2000	0.005	< 10		SC0026191	1	5/31/1991	0.146	355	-
SC0020010	1	1/31/1990	0.687	< 10		SC0026191	1	6/30/1991	0.134	< 40	
SC0020010	1	2/28/1990	0.822	< 10		SC0026191	1	7/31/1991	0.14	79	
SC0020010	1	3/31/1990	0.721	< 10		SC0026191	1	8/31/1991	0.18	251	-
SC0020010	1	4/30/1990	0.767	< 10		SC0026191	1	9/30/1991	0.134	354	-
SC0020010	1	5/31/1990	0.59	< 28		SC0026191	1	10/31/1991	0.118	< 20	
SC0020010	1	6/30/1990	0.551	< 10		SC0026191	1	2/29/1992	0.262	> 94	
SC0020010	1	7/31/1990	0.515	< 10		SC0026191	1	3/31/1992	0.194	355	-
SC0020010	1	8/31/1990	0.561	< 10		SC0026191	1	4/30/1992	0.17	794	х
SC0020010	1	9/30/1990	0.795	< 10		SC0026191	1	5/31/1992	0.174	631	х
SC0020010	1	10/31/1990	0.753	< 12		SC0026191	1	6/30/1992	0.169	794	х
SC0020010	1	11/30/1990	0.757	< 10		SC0026191	1	7/31/1992	0.16	145	
SC0020010	1	12/31/1990	0.631	12		SC0026191	1	8/31/1992	0.202	837	х
SC0020010	1	1/31/1991	0.62	< 10		SC0026191	1	9/30/1992	0.164	954	х
SC0020010	1	2/28/1991	0.681	< 28		SC0026191	1	10/31/1992	0.171	310	-
SC0020010	1	3/31/1991	0.657	< 10		SC0026191	1	11/30/1992	0.242	82	
SC0020010	1	4/30/1991	0.857	< 10		SC0026191	1	12/31/1992	0.235	< 16	
SC0020010	1	5/31/1991	0.779	< 10		SC0026191	1	1/31/1993	0.262	450	Х
SC0020010	1	6/30/1991	0.615	< 9		SC0026191	1	2/28/1993	0.169	490	Х
SC0020010	1	7/31/1991	0.595	< .35		SC0026191	1	3/31/1993	0.0273	49	
SC0020010	1	8/31/1991	0.788	< 47		SC0026191	1	4/30/1993	0.18	< 7	

NPDES	Pipe	Date	Average Flow (MGD)	Fecal Coliform (#/100 ml)	Permit Exceedence	NPDES	Pipe	Date	Average Flow (MGD)	Fecal Coliform (#/100 ml)	Permit Exceedence
SC0020010	1	9/30/1991	0.818	< 10		SC0026191	1	5/31/1993	0.16		
SC0020010	1	10/31/1991	0.73	< .10		SC0026191	1	6/30/1993	0.14	> 420	x
SC0020010	1	11/30/1991	0.775	< 10		SC0026191	1	7/31/1993	0.149	77	
SC0020010	1	2/29/1992	0.906	< 10		SC0026191	1	8/31/1993	0.111	24	
SC0020010	1	3/31/1992	0.795	< 90		SC0026191	1	9/30/1993	0.126	47	
SC0020010	1	4/30/1992	0.784	< 25		SC0026191	1	10/31/1993	0.105	81	
SC0020010	1	5/31/1992	0.696	< 14		SC0026191	1	11/30/1993	0.164	14	
SC0020010	1	6/30/1992	0.707	< 36		SC0026191	1	12/31/1993	0.194	< 10	
SC0020010	1	7/31/1992	0.669	< 23		SC0026191	1	1/31/1994	0.199	< 23	
SC0020010	1	8/31/1992	0.91	67		SC0026191	1	2/28/1994	0.232	25	
SC0020010	1	9/30/1992	0.969	< 7		SC0026191	1	3/31/1994	0.234	20	
SC0020010	1	10/31/1992	0.844	< 20		SC0026191	1	4/30/1994	0.181	33	
SC0020010	1	11/30/1992	0.97	14		SC0026191	1	5/31/1994	0.184	20	
SC0020010	1	12/31/1992	0.836	65		SC0026191	1	6/30/1994	0.189	49	
SC0020010	1	1/31/1993	0.972	< 36		SC0026191	1	7/31/1994	0.153	< 17	
SC0020010	1	2/28/1993	0.839	< 13		SC0026191	1	8/31/1994	0.279	24	
SC0020010	1	3/31/1993	0.889	< 24		SC0026191	1	9/30/1994	0.21	< 10	
SC0020010	1	4/30/1993	0.932	24		SC0026191	1	10/31/1994	0.177	< 10	
SC0020010	1	5/31/1993	0.711	< 13		SC0026191	1	11/30/1994	0.134	42	
SC0020010	1	6/30/1993	0.664	< 12		SC0026191	1	12/31/1994	0.159	17	
SC0020010	1	7/31/1993	0.682	< 14		SC0026191	1	1/31/1995	0.18	< 10	
SC0020010	1	8/31/1993	0.893	< 44		SC0026191	1	2/28/1995	0.127	37	
SC0020010	1	9/30/1993	0.835	< 31		SC0026191	1	3/31/1995	0.144	557	х
SC0020010	1	10/31/1993	0.771	< 16		SC0026191	1	4/30/1995	0.121	10	
SC0020010	1	11/30/1993	0.781	< 87		SC0026191	1	5/31/1995	0.133	21	
SC0020010	1	12/31/1993	0.673	< 296	-	SC0026191	1	6/30/1995	0.13	10	
SC0020010	1	1/31/1994	0.74	< 21		SC0026191	1	7/31/1995	0.14	16	
SC0020010	1	2/28/1994	0.827	< 15		SC0026191	1	8/31/1995	0.13	20	
SC0020010	1	3/31/1994	0.78	< 22		SC0026191	1	9/30/1995	0.13	40	
SC0020010	1	4/30/1994	0.779	< 18		SC0026191	1	10/31/1995	0.137	30	
SC0020010	1	5/31/1994	0.72	< 31		SC0026191	1	11/30/1995	0.126	41	
SC0020010	1	6/30/1994	0.748	< 16		SC0026191	1	12/31/1995	0.125	31	
SC0020010	1	7/31/1994	0.783	< 15		SC0026191	1	1/31/1996	0.121	19	
SC0020010	1	8/31/1994	0.945	< 16		SC0026191	1	2/29/1996	0.121	< 10	
SC0020010	1	9/30/1994	0.834	< 37		SC0026191	1	3/31/1996	0.122	73	
SC0020010	1	10/31/1994	0.852	< 25		SC0026191	1	4/30/1996	0.112	80	
SC0020010	1	11/30/1994	0.747	< 17		SC0026191	1	5/31/1996	0.11	36	

NPDES	Pipe	Date	Average Flow (MGD)	Fecal Coliform (#/100 ml)	Permit Exceedence	NPDES	Pipe	Date	Average Flow (MGD)	Fecal Coliform (#/100 ml)	Permit Exceedence
SC0020010	1	12/31/1994	0.696	< 65		SC0026191	1	6/30/1996	0.115	13	
SC0020010	1	1/31/1995	0.744	< 12		SC0026191	1	7/31/1996	0.12	195	
SC0020010	1	2/28/1995	0.78	< 13		SC0026191	1	9/30/1996	0.096	113	
SC0020010	1	3/31/1995	0.745	< 17		SC0026191	1	10/31/1996	0.097	10	
SC0020010	1	4/30/1995	0.723	< 16		SC0026191	1	11/30/1996	0.11	10	
SC0020010	1	5/31/1995	0.679	< 37		SC0026191	1	12/31/1996	0.137	10	
SC0020010	1	6/30/1995	0.672	< 17		SC0026191	1	1/31/1997	0.172	10	
SC0020010	1	7/31/1995	0.652	9.74		SC0026191	1	2/28/1997	0.148	10	
SC0020010	1	8/31/1995	0.796	< 19		SC0026191	1	3/31/1997	0.14	10	
SC0020010	1	9/30/1995	0.833	< 10		SC0026191	1	4/30/1997	0.17	10	
SC0020010	1	10/31/1995	0.856	< 10		SC0026191	1	5/31/1997	0.129	10	
SC0020010	1	11/30/1995	0.832	< 65		SC0026191	1	6/30/1997	0.127	21	
SC0020010	1	12/31/1995	0.662	12		SC0026191	1	7/31/1997	0.117	9	
SC0020010	1	1/31/1996	0.756	< 57		SC0026191	1	8/31/1997	0.116	13	
SC0020010	1	2/29/1996	0.772	< 10		SC0026191	1	9/30/1997	0.143	10	
SC0020010	1	3/31/1996	0.917	< 13		SC0026191	1	10/31/1997	0.146	41.3	
SC0020010	1	4/30/1996	0.822	< 12		SC0026191	1	11/30/1997	0.139	10	
SC0020010	1	5/31/1996	0.699	< 23		SC0026191	1	12/31/1997	0.159	10	
SC0020010	1	6/30/1996	0.662	< 10		SC0026191	1	1/31/1998	0.211	10	
SC0020010	1	7/31/1996	0.627	< 10		SC0026191	1	2/28/1998	0.205	10	
SC0020010	1	8/31/1996	0.714	< 10		SC0026191	1	3/31/1998	0.195	10	
SC0020010	1	9/30/1996	0.794	< 10		SC0026191	1	4/30/1998	0.21	10	
SC0020010	1	10/31/1996	0.81	< 10		SC0026191	1	5/31/1998	0.167	10	
SC0020010	1	11/30/1996	0.723	< 10		SC0026191	1	6/30/1998	0.124	76	
SC0020010	1	12/31/1996	0.597	< 10		SC0026191	1	7/31/1998	0.115	35	
SC0020010	1	1/31/1997	0.755	< 47		SC0026191	1	8/31/1998	0.116	19	
SC0020010	1	2/28/1997	0.766	< 10		SC0026191	1	9/30/1998	0.12	18	
SC0020010	1	3/31/1997	0.8	< 10		SC0026191	1	10/31/1998	0.131	21.2	
SC0020010	1	4/30/1997	0.745	< 10		SC0026191	1	11/30/1998	0.117	16.4	
SC0020010	1	5/31/1997	0.775	< 10		SC0026191	1	12/31/1998	0.123	< 10	
SC0020010	1	6/30/1997	0.654	< 10		SC0026191	1	1/31/1999	0.147	10	
SC0020010	1	7/31/1997	0.659	< 10		SC0026191	1	2/28/1999	0.174	126	
SC0020010	1	8/31/1997	0.68	< 10		SC0026191	1	3/31/1999	0.126	19	
SC0020010	1	9/30/1997	0.743	< 10		SC0026191	1	4/30/1999	0.146	13	
SC0020010	1	10/31/1997	0.742	< 10		SC0026191	1	5/31/1999	0.172	128	
SC0020010	1	11/30/1997	0.745	< 10		SC0026191	1	6/30/1999	0.108	23	
SC0020010	1	12/31/1997	0.613	< 10		SC0026191	1	7/31/1999	0.116	10	

NPDES	Pipe	Date	Average Flow (MGD)	Fecal Coliform (#/100 ml)	Permit Exceedence	NPDES	Pipe	Date	Average Flow (MGD)	Fecal Coliform (#/100 ml)	Permit Exceedence
SC0020010	1	1/31/1998	0.764	< 21		SC0026191	1	8/31/1999	0.108	10	
SC0020010	1	2/28/1998	0.95	< 10		SC0026191	1	9/30/1999	0.104	< 10	
SC0020010	1	3/31/1998	0.751	< 10		SC0026191	1	10/31/1999	0.152	< 4	
SC0020010	1	4/30/1998	0.91	< 10		SC0026191	1	11/30/1999	0.13	5	
SC0020010	1	5/31/1998	0.727	< 10		SC0026191	1	12/31/1999	0.143	2	
SC0020010	1	6/30/1998	0.644	< 10		SC0026191	1	1/31/2000	0.166	2	
SC0020010	1	7/31/1998	0.605	< 10		SC0026191	1	2/29/2000	0.174	2	
SC0020010	1	8/31/1998	0.673	< 10		SC0026191	1	3/31/2000	0.175	2	
SC0020010	1	9/30/1998	0.757	< 10		SC0026191	1	4/30/2000	0.161	3	
SC0020010	1	10/31/1998	0.792	< 10		SC0026191	1	5/31/2000	0.123	< 2	
SC0020010	1	11/30/1998	0.671	< 10		SC0026191	1	6/30/2000	0.101	2	
SC0020010	1	12/31/1998	0.555	< 10		SC0026191	1	7/31/2000	0.087	< 2	
SC0020010	1	1/31/1999	0.684	< 10		SC0026191	1	8/31/2000	0.102	< 2	
SC0020010	1	2/28/1999	0.758	< 10		SC0026191	1	9/30/2000	0.121	4	
SC0020010	1	3/31/1999	0.663	< 10		SC0026191	1	10/31/2000	0.108	5	
SC0020010	1	4/30/1999	0.746	< 10		SC0026191	1	11/30/2000	0.139	< 2	
SC0020010	1	5/31/1999	0.653	< 27		SC0026191	1	12/31/2000	0.15	< 2	
SC0020010	1	6/30/1999	0.548	< 10		SC0027049	1	4/30/1997	0.002	< 10	
SC0020010	1	7/31/1999	0.624	< 10		SC0027049	1	3/31/1998	0.002	< 10	
SC0020010	1	8/31/1999	0.689	< 10		SC0027049	1	4/30/1998	0.001	< 10	
SC0020010	1	9/30/1999	0.695	< 10		SC0027049	1	12/31/1998	0.0016	< 10	
SC0020010	1	10/31/1999	0.789	< 10		SC0027049	1	6/30/1999	0.0015	< 10	
SC0020010	1	11/30/1999	0.659	< 10		SC0027049	1	1/31/2000	0.0009	< 10	
SC0020010	1	12/31/1999	0.588	< 10		SC0027049	1	2/29/2000	0.0001	< 10	
SC0020010	1	1/31/2000	0.659	< 10		SC0028762	1	11/30/1993	0.0092	< 10	
SC0020010	1	2/29/2000	0.716	< 10		SC0028762	1	12/31/1993	0.0092	< 10	
SC0020010	1	3/31/2000	0.704	< 10		SC0028762	1	1/31/1994	0.0092	< 10	
SC0020010	1	4/30/2000	0.729	< 10		SC0028762	1	2/28/1994	0.0058	<10	
SC0020010	1	5/31/2000	0.638	< 10		SC0028762	1	3/31/1994	0.009	9	
SC0020010	1	6/30/2000	0.588	< 10		SC0028762	1	4/30/1994	0.009	< 10	
SC0020010	1	7/31/2000	0.604	< 10		SC0028762	1	5/31/1994	0.018	< 10	
SC0020010	1	8/31/2000	0.634	< 15		SC0028762	1	9/30/1994	0.014	< 10	
SC0020010	1	9/30/2000	0.694	< 10		SC0028762	1	10/31/1994	0.009	10	
SC0020010	1	10/31/2000	0.724	< 10		SC0028762	1	11/30/1994	0.011	10	
SC0020010	1	11/30/2000	0.636	< 10		SC0028762	1	1/31/1995	0.009	10	
SC0020010	1	12/31/2000	0.57	< 10		SC0028762	1	2/28/1995	0.009	< 10	
SC0022012	1	10/31/1994	0.0112	10		SC0028762	1	5/31/1995	0.01	< 10	

NPDES	Pipe	Date	Average Flow (MGD)	Fecal Coliform (#/100 ml)	Permit Exceedence	NPDES	Pipe	Date	Average Flow (MGD)	Fecal Coliform (#/100 ml)	Permit Exceedence
SC0022012	1	1/31/1995	0.0155	10		SC0028762	1	9/30/1995	0.0018		
SC0022012	1	8/31/1995	0.019	10		SC0028762	1	10/31/1995	0.0095	< 10	
SC0022012	1	9/30/1995	0.015	18		SC0028762	1	11/30/1995	0.01	4700	x
SC0022012	1	10/31/1995	0.015	< 10		SC0028762	1	1/31/1996	0.014	< 10	
SC0022012	1	2/29/1996	0.035	10		SC0028762	1	2/29/1996	0.009	< 10	
SC0022012	1	3/31/1996	0.02	10		SC0028762	1	3/31/1996	0.012	< 10	
SC0022012	1	4/30/1996	0.013	10		SC0028762	1	4/30/1996	0.009	< 10	
SC0022012	1	5/31/1996	0.01	< 10		SC0028762	1	5/31/1996	0.009	< 10	
SC0022012	1	6/30/1996	0.009	10		SC0028762	1	9/30/1996	0.009	< 10	
SC0022012	1	7/31/1996	0.01	10		SC0028762	1	10/31/1996	0.009	< 10	
SC0022012	1	8/31/1996	0.01	10		SC0028762	1	11/30/1996	0.011	< 10	
SC0022012	1	9/30/1996	0.01	164		SC0028762	1	1/31/1997	0.008	< 10	
SC0022012	1	10/31/1996	0.009	114		SC0028762	1	2/28/1997	0.011	< 10	
SC0022012	1	11/30/1996	0.009	73.7		SC0028762	1	3/31/1997	0.011	< 10	
SC0022012	1	12/31/1996	0.012	18		SC0028762	1	4/30/1997	0.01	< 10	
SC0022012	1	1/31/1997	0.018	36		SC0028762	1	5/31/1997	0.008	< 10	
SC0022012	1	2/28/1997	0.023	10		SC0028762	1	9/30/1997	0.008	< 10	
SC0022012	1	3/31/1997	0.027	137		SC0028762	1	10/31/1997	0.007	< 10	
SC0022012	1	4/30/1997	0.014	10		SC0028762	1	11/30/1997	0.014	< 10	
SC0022012	1	5/31/1997	0.012	10		SC0028762	1	12/31/1997	0.009	< 10	
SC0022012	1	6/30/1997	0.009	10		SC0028762	1	1/31/1998	0.009	< 10	
SC0022012	1	7/31/1997	0.009	10		SC0028762	1	2/28/1998	0.009	< 10	
SC0022012	1	8/31/1997	0.008	10		SC0028762	1	3/31/1998	0.011	54	
SC0022012	1	9/30/1997	0.009	152		SC0028762	1	4/30/1998	0.01	< 10	
SC0022012	1	10/31/1997	0.011	10		SC0028762	1	5/31/1998	0.008	< 10	
SC0022012	1	11/30/1997	0.011	10		SC0028762	1	7/31/1998	0.003	< 10	
SC0022012	1	12/31/1997	0.014	80		SC0028762	1	8/31/1998	0.0049	295	-
SC0022012	1	1/31/1998	0.02	10		SC0028762	1	9/30/1998	0.0058	< 10	
SC0022012	1	2/28/1998	0.022	10		SC0028762	1	10/31/1998	0.011	< 10	
SC0022012	1	3/31/1998	0.016	10		SC0028762	1	11/30/1998	0.011	< 10	
SC0022012	1	4/30/1998	0.022	9		SC0028762	1	12/31/1998	0.009	< 10	
SC0022012	1	5/31/1998	0.0167	10		SC0028762	1	1/31/1999	0.0062	< 10	
SC0022012	1	6/30/1998	0.0091	10		SC0028762	1	2/28/1999	0.008	< 10	
SC0022012	1	7/31/1998	0.01	10		SC0028762	1	3/31/1999	0.0068	47.4	
SC0022012	1	8/31/1998	0.0099	63		SC0028762	1	4/30/1999	0.0017	< 10	
SC0022012	1	9/30/1998	0.0097	< 10		SC0028762	1	5/31/1999	0.0135	36	
SC0022012	1	10/31/1998	0.0087	10		SC0028762	1	8/31/1999	0	72	

NPDES	Pipe	Date	Average Flow (MGD)	Fecal Coliform (#/100 ml)	Permit Exceedence	NPDES	Pipe	Date	Average Flow (MGD)	Fecal Coliform (#/100 ml)	Permit Exceedence
SC0022012	1	11/30/1998	0.009	141		SC0028762	1	9/30/1999	0.0073	< 10	
SC0022012	1	12/31/1998	0.0119	< 10		SC0028762	1	10/31/1999	0.006	< 10	
SC0022012	1	1/31/1999	0.015	10		SC0028762	1	11/30/1999	0.009	< 10	
SC0022012	1	2/28/1999	0.016	< 10		SC0028762	1	12/31/1999	0.006	27	
SC0022012	1	3/31/1999	0.009	10		SC0028762	1	1/31/2000	0.0068	< 10	
SC0022012	1	4/30/1999	0.018	18		SC0028762	1	2/29/2000	0.0062	< 10	
SC0022012	1	5/31/1999	0.01	10		SC0028762	1	3/31/2000	0.006	< 10	
SC0022012	1	7/31/1999	0.005	< 10		SC0028762	1	4/30/2000	0.007	< 10	
SC0022012	1	8/31/1999	0.004	10		SC0028762	1	5/31/2000	0.007	< 10	
SC0022012	1	9/30/1999	0.007	10		SC0028762	1	9/30/2000	0.005	< 10	
SC0022012	1	10/31/1999	0.011	< 10		SC0028762	1	10/31/2000	0.007	< 10	
SC0022012	1	11/30/1999	0.01	2		SC0028762	1	11/30/2000	0.006	< 10	
SC0022012	1	12/31/1999	0.009	50		SC0038652	1	1/31/1994	0.012	< 10	
SC0022012	1	1/31/2000	0.012	2		SC0038652	1	3/31/1994	0.0012	< 10	
SC0022012	1	2/29/2000	0.013	22		SC0038652	1	4/30/1994	0.014	< 10	
SC0022012	1	3/31/2000	0.015	2		SC0038652	1	5/31/1994	0.012	< 10	
SC0022012	1	4/30/2000	0.02	55		SC0038652	1	9/30/1994	0.009	< 10	
SC0022012	1	5/31/2000	0.011	< 2		SC0038652	1	10/31/1994	0.012	10	
SC0022012	1	6/30/2000	0.011	90		SC0038652	1	11/30/1994	0.012	10	
SC0022012	1	7/31/2000	0.01	35		SC0038652	1	1/31/1995	0.011	9	
SC0022012	1	8/31/2000	0.01	128		SC0038652	1	2/28/1995	0.012	9	
SC0022012	1	9/30/2000	0.009	76		SC0038652	1	3/31/1995	0.012	< 10	
SC0022012	1	10/31/2000	0.0079	2		SC0038652	1	4/30/1995	0.007	9	
SC0022012	1	11/30/2000	0.013	< 2		SC0038652	1	5/31/1995	0.012	9	
SC0022012	1	12/31/2000	0.012	57		SC0038652	1	9/30/1995	0.011	< 10	
SC0023035	1	1/31/1990	0.24	5		SC0038652	1	11/30/1995	0.011	< 10	
SC0023035	1	2/28/1990	0.21	8		SC0038652	1	1/31/1996	0.011	< 10	
SC0023035	1	3/31/1990	0.25	13		SC0038652	1	2/29/1996	0.011	< 10	
SC0023035	1	4/30/1990	0.2014	3		SC0038652	1	3/31/1996	0.014	< 10	
SC0023035	1	5/31/1990	0.18	27		SC0038652	1	4/30/1996	0.011	< 10	
SC0023035	1	6/30/1990	0.2	49		SC0038652	1	5/31/1996	0.014	< 10	
SC0023035	1	7/31/1990	0.23	28		SC0038652	1	9/30/1996	0.01	2500	х
SC0023035	1	8/31/1990	0.23	> 18		SC0038652	1	10/31/1996	0.008	< 10	
SC0023035	1	9/30/1990	0.24	> 29		SC0038652	1	11/30/1996	0.009	< 10	
SC0023035	1	10/31/1990	0.29	< 4		SC0038652	1	1/31/1997	0.009	< 10	
SC0023035	1	11/30/1990	0.21	< 3		SC0038652	1	2/28/1997	0.008	< 10	
SC0023035	1	12/31/1990	0.21	< 3		SC0038652	1	3/31/1997	0.009	< 10	

NPDES	Pipe	Date	Average Flow (MGD)	Fecal Coliform (#/100 ml)	Permit Exceedence	NPDES	Pipe	Date	Average Flow (MGD)	Fecal Coliform (#/100 ml)	Permit Exceedence
SC0023035	1	1/31/1991	0.221	< 3		SC0038652	1	4/30/1997	0.011	< 10	
SC0023035	1	2/28/1991	0.22	> 27		SC0038652	1	5/31/1997	0.009	< 10	
SC0023035	1	3/31/1991	0.2067	< 3		SC0038652	1	9/30/1997	0.009	< 10	
SC0023035	1	4/30/1991	0.1911	< 17		SC0038652	1	10/31/1997	0.009	9	
SC0023035	1	5/31/1991	0.1966	< 25		SC0038652	1	11/30/1997	0.01	< 10	
SC0023035	1	6/30/1991	0.2015	< 8		SC0038652	1	12/31/1997	0.011	< 10	
SC0023035	1	7/31/1991	0.2167	< 5		SC0038652	1	1/31/1998	0.011	< 10	
SC0023035	1	8/31/1991	0.2684	30		SC0038652	1	2/28/1998	0.011	< 10	
SC0023035	1	9/30/1991	0.189	5		SC0038652	1	3/31/1998	0.007	< 10	
SC0023035	1	10/31/1991	0.1649	< 18		SC0038652	1	4/30/1998	0.012	< 10	
SC0023035	1	11/30/1991	0.1377	> 17		SC0038652	1	5/31/1998	0.0076	< 10	
SC0023035	1	1/31/1992	0.1277	< 4		SC0038652	1	7/31/1998	0.0014	< 10	
SC0023035	1	2/29/1992	0.2105	> 136		SC0038652	1	8/31/1998	0.008	212	-
SC0023035	1	3/31/1992	0.2512	> 140		SC0038652	1	9/30/1998	0.0064	< 10	
SC0023035	1	4/30/1992	0.2147	> 29		SC0038652	1	10/31/1998	0.012	< 10	
SC0023035	1	5/31/1992	0.2019	> 136		SC0038652	1	11/30/1998	0.013	< 10	
SC0023035	1	6/30/1992	0.2044	> 32		SC0038652	1	12/31/1998	0.0085	< 10	
SC0023035	1	7/31/1992	0.2315	> 86		SC0038652	1	1/31/1999	0.0089	< 10	
SC0023035	1	8/31/1992	0.2855	> 77		SC0038652	1	2/28/1999	0.0063	< 10	
SC0023035	1	9/30/1992	0.25	> 158		SC0038652	1	3/31/1999	0.0066	< 10	
SC0023035	1	10/31/1992	0.19	> 86		SC0038652	1	4/30/1999	0.012	< 10	
SC0023035	1	11/30/1992	0.24	> 38		SC0038652	1	5/31/1999	0.0093	9	
SC0023035	1	12/31/1992	0.3813	> 22		SC0038652	1	8/31/1999	0.003	99	
SC0023035	1	1/31/1993	0.2198	> 74		SC0038652	1	9/30/1999	0.01	< 10	
SC0023035	1	2/28/1993	0.1675	> 66		SC0038652	1	10/31/1999	0.014	< 10	
SC0023035	1	4/30/1993	0.2131	> 34		SC0038652	1	11/30/1999	0.0045	< 10	
SC0023035	1	5/31/1993	0.3052	> 41		SC0038652	1	12/31/1999	0.011	< 10	
SC0023035	1	6/30/1993	0.2088	> 51		SC0038652	1	1/31/2000	0.0152	< 10	
SC0023035	1	7/31/1993	0.1999	< 41		SC0038652	1	2/29/2000	0.0084	< 10	
SC0023035	1	8/31/1993	0.2099	77		SC0038652	1	3/31/2000	0.008	< 10	
SC0023035	1	9/30/1993	0.2232	12		SC0038652	1	4/30/2000	0.007	< 10	
SC0023035	1	10/31/1993	0.2371	53		SC0038652	1	5/31/2000	0.007	< 10	
SC0023035	1	11/30/1993	0.2051	> 35		SC0038652	1	8/31/2000	0.007	108	
SC0023035	1	12/31/1993	0.1833	4		SC0038652	1	9/30/2000	0.007	< 10	
SC0023035	1	1/31/1994	0.2243	24		SC0038652	1	10/31/2000	0.006	< 10	
SC0023035	1	2/28/1994	0.245	33		SC0038652	1	11/30/2000	0.005	< 10	
SC0023035	1	3/31/1994	0.2728	> 382	-	SC0047716	1	6/30/1999	0.341	65	

NPDES	Pipe	Date	Average Flow (MGD)	Fecal Coliform (#/100 ml)	Permit Exceedence	NPDES	Pipe	Date	Average Flow (MGD)	Fecal Coliform (#/100 ml)	Permit Exceedence
SC0023035	1	4/30/1994	0.19	> 108		SC0047716	1	7/31/1999	0.473		
SC0023035	1	5/31/1994	0.1782	22		SC0047716	1	8/31/1999	0.37	10	
SC0023035	1	6/30/1994	0.239	> 30		SC0047716	1	9/30/1999	0.29	12	
SC0023035	1	7/31/1994	0.2296	3		SC0047716	1	10/31/1999	0.36	9	
SC0023035	1	8/31/1994	0.2723	10		SC0047716	1	11/30/1999	0.26	10	
SC0023035	1	9/30/1994	0.215	22		SC0047716	1	12/31/1999	0.28	10	
SC0023035	1	10/31/1994	0.2414	10		SC0047716	1	1/31/2000	0.29	10	
SC0023035	1	11/30/1994	0.2159	13		SC0047716	1	2/29/2000	0.25	10	
SC0023035	1	12/31/1994	0.2371	6		SC0047716	1	3/31/2000	0.34	10	
SC0023035	1	1/31/1995	0.2744	20		SC0047716	1	4/30/2000	0.35	10	
SC0023035	1	2/28/1995	0.2632	< 18		SC0047716	1	5/31/2000	0.28	10	
SC0023035	1	3/31/1995	0.2224	6		SC0047716	1	6/30/2000	0.28	10	
SC0023035	1	4/30/1995	0.195	19		SC0047716	1	7/31/2000	0.35	36	
SC0023035	1	5/31/1995	0.2021	> 11		SC0047716	1	8/31/2000	0.29	13	
SC0023035	1	6/30/1995	0.2091	29		SC0047716	1	9/30/2000	0.29	10	
SC0023035	1	7/31/1995	0.1983	35		SC0047716	1	10/31/2000	0.23	< 10	
SC0023035	1	8/31/1995	0.2925	9		SC0047716	1	11/30/2000	0.31	19	
SC0023035	1	9/30/1995	0.1786	< 82		SC0047716	1	12/31/2000	0.308	10	
SC0023035	1	10/31/1995	0.2401	69		SC0047899	1	9/30/1999	0.0053	10	
SC0023035	1	11/30/1995	0.2362	40		SC0047899	1	10/31/1999	0.0166	< 10	
SC0023035	1	12/31/1995	0.1867	3		SC0047899	1	11/30/1999	0.007	2	
SC0023035	1	1/31/1996	0.2307	3		SC0047899	1	12/31/1999	0.007	2	
SC0023035	1	2/29/1996	0.2806	> 10		SC0047899	1	1/31/2000	0.008	2	
SC0023035	1	3/31/1996	0.2566	16		SC0047899	1	2/29/2000	0.007	3	
SC0023035	1	4/30/1996	0.2052	6		SC0047899	1	3/31/2000	0.008	2	
SC0023035	1	5/31/1996	0.2309	9		SC0047899	1	4/30/2000	0.01	2	
SC0023035	1	6/30/1996	0.211	33		SC0047899	1	5/31/2000	0.008	19	
SC0023035	1	7/31/1996	0.1986	18		SC0047899	1	6/30/2000	0.008	< 2	
SC0023035	1	8/31/1996	0.1926	37		SC0047899	1	7/31/2000	0.0075	< 2	
SC0023035	1	9/30/1996	0.1978	32		SC0047899	1	8/31/2000	0.009	7	
SC0023035	1	10/31/1996	0.1605	37		SC0047899	1	9/30/2000	0.0075	42	
SC0023035	1	11/30/1996	0.181	24		SC0047899	1	10/31/2000	0.0045	42	
SC0023035	1	12/31/1996	0.2197	22		SC0047899	1	11/30/2000	0.0059	4	
SC0023035	1	1/31/1997	0.2221	21		SC0047899	1	12/31/2000	0.0069	< 2	
SC0023035	1	2/28/1997	0.2519	5		SC0047899	1	1/31/2001	0.0063	< 2	
SC0023035	1	3/31/1997	0.2184	> 101		SC0047899	1	2/28/2001	0.0067	< 2	
SC0023035	1	4/30/1997	0.1929	> 31		SC0047899	1	3/31/2001	0.0068	< 2	

			Average Flow	Fecal Coliform	Permit
NPDES	Pipe	Date	(MGD)		Exceedence
SC0023035	1	5/31/1997	0.1675	13	
SC0023035	1	6/30/1997	0.1721	31	
SC0023035	1	7/31/1997	0.1975	37	
SC0023035	1	8/31/1997	0.1548	45	
SC0023035	1	9/30/1997	0.1833	39	
SC0023035	1	10/31/1997	0.2252	22	
SC0023035	1	11/30/1997	0.2026	8	
SC0023035	1	12/31/1997	0.2361	8	
SC0023035	1	1/31/1998	0.2869	10	
SC0023035	1	2/28/1998	0.2851	15	
SC0023035	1	3/31/1998	0.2445	19	
SC0023035	1	4/30/1998	0.2433	16	
SC0023035	1	5/31/1998	0.2225	42	
SC0023035	1	6/30/1998	0.1841	59	
SC0023035	1	7/31/1998	0.1926	10	
SC0023035	1	8/31/1998	0.1971	13	
SC0023035	1	9/30/1998	0.1839	13	
SC0023035	1	10/31/1998	0.2092	12	
SC0023035	1	11/30/1998	0.2143	7	
SC0023035	1	12/31/1998	0.2383	13	
SC0023035	1	1/31/1999	0.2561	6	
SC0023035	1	2/28/1999	0.2494	9	
SC0023035	1	3/31/1999	0.2021	3	
SC0023035	1	4/30/1999	0.2045	40	
SC0023035	1	5/31/1999	0.1951	13	
SC0023035	1	6/30/1999	0.2053	66	
SC0023035	1	7/31/1999	0.2105	46	
SC0023035	1	8/31/1999	0.1844	> 81	
SC0023035	1	9/30/1999	0.1957	102	
SC0023035	1	10/31/1999	0.2181	25	
SC0023035	1	11/30/1999	0.1587	24	
SC0023035	1	12/31/1999	0.1839	7.5	

			Average Flow	Fecal Coliform	Permit
NPDES	Pipe	Date	(MGD)		Exceedence
SC0047899	1	4/30/2001	0.0067	< 2	
SC0047899	1	5/31/2001	0.008	2	
SC0047899	1	6/30/2001	0.0078	2	
SC0047899	1	7/31/2001	0.0095	43	
SC0047899	1	8/31/2001	0.0107	4	
SC0047899	1	9/30/2001	0.011	65	
SC0047899	1	10/31/2001	0.0104	13	
SC0047899	1	11/30/2001	0.0083	2	
SC0047899	1	12/31/2001	0.0097	2	
SC0047899	1	1/31/2002	0.0066	10	
SC0047899	1	2/28/2002	0.0079	13	
SC0047899	1	3/31/2002	0.009	2	
SC0047899	1	4/30/2002	0.0098	2	
SC0047899	1	5/31/2002	0.0115	2	
SC0047899	1	6/30/2002	0.015	8	
SC0047899	1	7/31/2002	0.0145	25	

Appendix B Hydrology Calibration and Validation

The following pages present graphs depicting model runs versus observed flow data for the calibration period (January 1, 1990 to December 1, 1990). Additional tables are provided as validation of the model calibration. The hydrology was validated for the longer time period of January 1, 1990 to December 31, 1999.

Although the nearest weather stations (Clemson University Station and Pickens) were selected for modeling, localized rainfall events were not always reflected in actual rainfall recorded data. This resulted in discrepancies between modeled and observed flow for various storms throughout the calibration and validation time period.

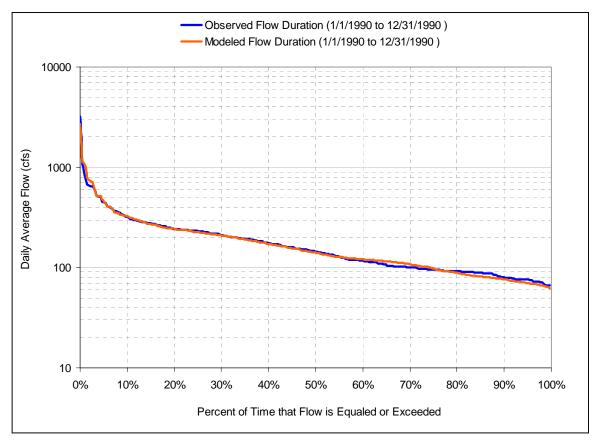


Figure B-1. Hydrology Calibration: Flow Duration Analysis, 1990

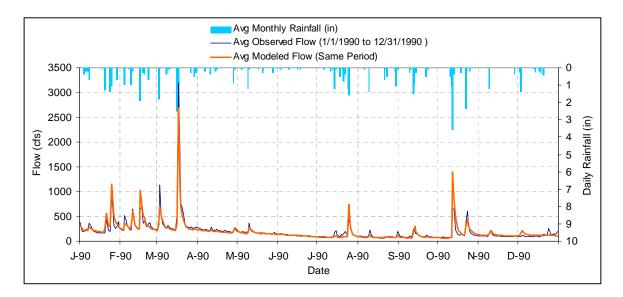


Figure B-2. Hydrology Calibration: Modeled vs. Observed Flow, 1990

Table B-1. Statistical Hydrology Calibration Analysis, 1990

LSPC Simulated Flow	Observed Flow	Gage		
REACH OUTFLOW FROM SUBBASIN 632 1-Year Analysis Period: 1/1/1990 - 12/31/1990 Flow volumes are (inches/year) for upstream drainage are	Pickens County, South Hydrologic Unit Code	03060101 ongitude 82°44'55" NAD27	IBERTY, SC	
Total Simulated In-stream Flow:	25.14	Total Observed In-stre	eam Flow:	25.23
Total of simulated highest 10% flows:	7.97	Total of Observed highest 10% flows:		7.91
Total of Simulated lowest 50% flows:	6.36	Total of Observed Lov	vest 50% flows:	6.37
Simulated Summer Flow Volume (months 7-9):	3.21	Observed Summer Flo	ow Volume (7-9):	3.51
Simulated Fall Flow Volume (months 10-12):	5.18	Observed Fall Flow Vo	olume (10-12):	4.40
Simulated Winter Flow Volume (months 1-3):	11.58	Observed Winter Flow	v Volume (1-3):	11.80
Simulated Spring Flow Volume (months 4-6):	5.17	Observed Spring Flow	v Volume (4-6):	5.51
Total Simulated Storm Volume:	6.81	Total Observed Storm	Volume:	6.94
Simulated Summer Storm Volume (7-9):	0.73	Observed Summer St	orm Volume (7-9):	0.83
Errors (Simulated-Observed)	% Error	Recommended Criteria		
Error in total volume:	-0.35	10		
Error in 50% lowest flows:	-0.20	10		
Error in 10% highest flows:	0.70	15		
Seasonal volume error - Summer:	-9.52	30		
Seasonal volume error - Fall:	15.10	30		
Seasonal volume error - Winter:	-1.93	30		
Seasonal volume error - Spring:	-6.58	30		
Error in storm volumes:	-1.92	20		
Error in summer storm volumes:	-13.29	50		

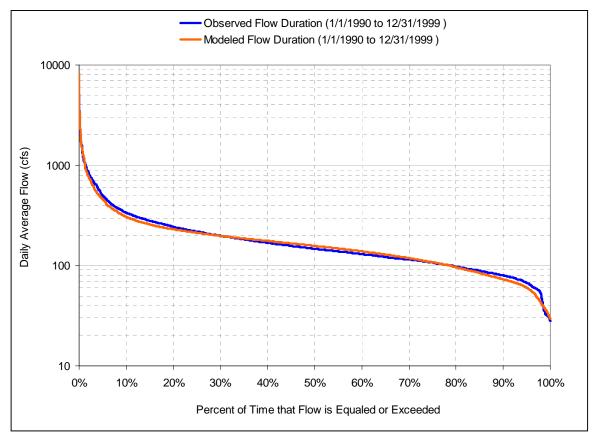


Figure B-3. Hydrology Validation: Flow duration analysis, 1990-1999

Table B-2.	Statistical	Hydrology	Validation	analysis.	1990-1999
	Statistical	ilyulology	vanuation	anarysis,	1))0-1)))

LSPC Simulated Flow		Observed Flow	Gage	
REACH OUTFLOW FROM SUBBASIN 632 10-Year Analysis Period: 1/1/1990 - 12/31/1999 Flow volumes are (inches/year) for upstream drainage are	USGS 02186000 TWELVEMILE CREEK NEAR LIBERTY, SC Pickens County, South Carolina Hydrologic Unit Code 03060101 Latitude 34°48'05", Longitude 82°44'55" NAD27 Drainage area 106.00 square miles			
Total Simulated In-stream Flow:	25.76	Total Observed In-stream Flow:		26.30
Total of simulated highest 10% flows: Total of Simulated lowest 50% flows:	8.43 6.74	Total of Observed hig Total of Observed Low		8.84 6.66
Simulated Summer Flow Volume (months 7-9): Simulated Fall Flow Volume (months 10-12): Simulated Winter Flow Volume (months 1-3):	4.81 5.15 9.12	Observed Summer Flow Volume (7-9): Observed Fall Flow Volume (10-12): Observed Winter Flow Volume (1-3):		4.62 5.34 9.83
Simulated Spring Flow Volume (months 1-3).	6.67	Observed Spring Flow	(.)	6.52
Total Simulated Storm Volume: Simulated Summer Storm Volume (7-9):	7.09 1.18	Total Observed Storm Observed Summer St		8.12 1.50
Errors (Simulated-Observed)	% Error	Recommended Criteria		
Error in total volume:	-2.09	10		
Error in 50% lowest flows:	1.32	10		
Error in 10% highest flows:	-4.87	15		
Seasonal volume error - Summer:	4.05	30		
Seasonal volume error - Fall:	-3.64	30		
Seasonal volume error - Winter:	-7.69	30		
Seasonal volume error - Spring:	2.33	30		
Error in storm volumes:	-14.53	20		
Error in summer storm volumes:	-27.43	50		

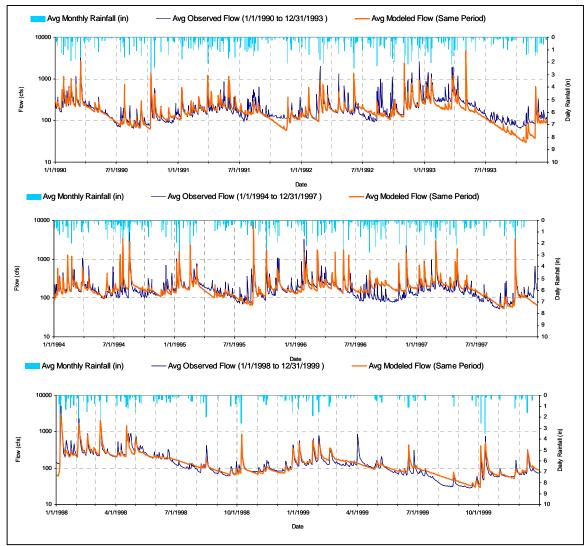


Figure B-4. Hydrology Validation: Observed vs. Modeled Flow, 1990-1999

Appendix C Water Quality Data

Station ID	Station Name	Date	Value: FC (#/100ml)	Comment
SV-015	TWELVE MI CK AT S-39-51 N OF NORRIS	5/24/1990	280	
SV-015	TWELVE MI CK AT S-39-51 N OF NORRIS	6/18/1990	200	
SV-015	TWELVE MI CK AT S-39-51 N OF NORRIS	7/24/1990	730	Estimated
SV-015	TWELVE MI CK AT S-39-51 N OF NORRIS	8/29/1990	550	
SV-015	TWELVE MI CK AT S-39-51 N OF NORRIS	9/13/1990	7200	Estimated
SV-015	TWELVE MI CK AT S-39-51 N OF NORRIS	10/23/1990	3800	
SV-015	TWELVE MI CK AT S-39-51 N OF NORRIS	5/13/1991	5800	
SV-015	TWELVE MI CK AT S-39-51 N OF NORRIS	6/27/1991	680	Estimated
SV-015	TWELVE MI CK AT S-39-51 N OF NORRIS	7/16/1991	290	
SV-015	TWELVE MI CK AT S-39-51 N OF NORRIS	8/28/1991	420	
SV-015	TWELVE MI CK AT S-39-51 N OF NORRIS	9/18/1991	260	
SV-015	TWELVE MI CK AT S-39-51 N OF NORRIS	10/14/1991	130	Estimated
SV-015	TWELVE MI CK AT S-39-51 N OF NORRIS	5/20/1993	390	
SV-015	TWELVE MI CK AT S-39-51 N OF NORRIS	11/17/1995	130	Estimated
SV-015	TWELVE MI CK AT S-39-51 N OF NORRIS	12/11/1995	270	
SV-015	TWELVE MI CK AT S-39-51 N OF NORRIS	1/11/1996	130	Estimated
SV-015	TWELVE MI CK AT S-39-51 N OF NORRIS	2/2/1996	3000	
SV-015	TWELVE MI CK AT S-39-51 N OF NORRIS	3/6/1996	6400	Estimated
SV-015	TWELVE MI CK AT S-39-51 N OF NORRIS	4/3/1996	530	
SV-015	TWELVE MI CK AT S-39-51 N OF NORRIS	5/29/1996	1700	Estimated
SV-015	TWELVE MI CK AT S-39-51 N OF NORRIS	6/21/1996	810	Estimated
SV-015	TWELVE MI CK AT S-39-51 N OF NORRIS	7/10/1996	250	
SV-015	TWELVE MI CK AT S-39-51 N OF NORRIS	8/23/1996	460	
SV-015	TWELVE MI CK AT S-39-51 N OF NORRIS	9/25/1996	490	
SV-015	TWELVE MI CK AT S-39-51 N OF NORRIS	10/22/1996	310	
SV-015	TWELVE MI CK AT S-39-51 N OF NORRIS	11/30/1999	320	
SV-015	TWELVE MI CK AT S-39-51 N OF NORRIS	12/9/1999	230	
SV-015	TWELVE MI CK AT S-39-51 N OF NORRIS	1/11/2000	860	
SV-015	TWELVE MI CK AT S-39-51 N OF NORRIS	2/23/2000	180	
SV-015	TWELVE MI CK AT S-39-51 N OF NORRIS	3/14/2000	110	
SV-015	TWELVE MI CK AT S-39-51 N OF NORRIS	4/12/2000	400	
SV-015	TWELVE MI CK AT S-39-51 N OF NORRIS	5/11/2000	150	
SV-015	TWELVE MI CK AT S-39-51 N OF NORRIS	6/6/2000	530	
SV-015	TWELVE MI CK AT S-39-51 N OF NORRIS	7/12/2000	280	
SV-015	TWELVE MI CK AT S-39-51 N OF NORRIS	8/7/2000	350	
SV-015	TWELVE MI CK AT S-39-51 N OF NORRIS	9/18/2000	210	
SV-015	TWELVE MI CK AT S-39-51 N OF NORRIS	10/10/2000	290	
SV-015	TWELVE MI CK AT S-39-51 N OF NORRIS	11/1/2000	180	
SV-015	TWELVE MI CK AT S-39-51 N OF NORRIS	12/4/2000	190	
SV-136	FIRST CK FROM CENTRAL ON MAW BRDG RD	5/24/1990	50	Estimated
SV-136	FIRST CK FROM CENTRAL ON MAW BRDG RD	6/18/1990	180	
SV-136	FIRST CK FROM CENTRAL ON MAW BRDG RD	7/24/1990	160	
SV-136	FIRST CK FROM CENTRAL ON MAW BRDG RD	8/30/1990	240	

Table C-1 Fecal coliform bacteria data for impaired water quality stations on Twelve Mile Creek

Station ID	Station Name	Date	Value: FC (#/100ml)	Comment
SV-136	FIRST CK FROM CENTRAL ON MAW BRDG RD	9/20/1990	160	
SV-136	FIRST CK FROM CENTRAL ON MAW BRDG RD	10/10/1990	140	
SV-136	FIRST CK FROM CENTRAL ON MAW BRDG RD	5/14/1991	45	Estimated
SV-136	FIRST CK FROM CENTRAL ON MAW BRDG RD	6/13/1991	50	
SV-136	FIRST CK FROM CENTRAL ON MAW BRDG RD	7/12/1991	120	
SV-136	FIRST CK FROM CENTRAL ON MAW BRDG RD	8/6/1991	110	
SV-136	FIRST CK FROM CENTRAL ON MAW BRDG RD	9/16/1991	320	Estimated
SV-136	FIRST CK FROM CENTRAL ON MAW BRDG RD	10/3/1991	330	Estimated
SV-136	FIRST CK FROM CENTRAL ON MAW BRDG RD	5/13/1993	170	
SV-136	FIRST CK FROM CENTRAL ON MAW BRDG RD	6/2/1993	29	Estimated
SV-136	FIRST CK FROM CENTRAL ON MAW BRDG RD	7/19/1993	310	
SV-136	FIRST CK FROM CENTRAL ON MAW BRDG RD	8/17/1993	120	
SV-136	FIRST CK FROM CENTRAL ON MAW BRDG RD	9/16/1993	140	
SV-136	FIRST CK FROM CENTRAL ON MAW BRDG RD	10/22/1993	260	
SV-136	FIRST CK FROM CENTRAL ON MAW BRDG RD	5/17/1994	84	
SV-136	FIRST CK FROM CENTRAL ON MAW BRDG RD	6/8/1994	240	
SV-136	FIRST CK FROM CENTRAL ON MAW BRDG RD	7/8/1994	200	
SV-136	FIRST CK FROM CENTRAL ON MAW BRDG RD	8/23/1994	84	
SV-136	FIRST CK FROM CENTRAL ON MAW BRDG RD	9/13/1994	180	
SV-136	FIRST CK FROM CENTRAL ON MAW BRDG RD	5/9/1995	400	
SV-136	FIRST CK FROM CENTRAL ON MAW BRDG RD	6/14/1995	440	
SV-136	FIRST CK FROM CENTRAL ON MAW BRDG RD	7/21/1995	760	Estimated
SV-136	FIRST CK FROM CENTRAL ON MAW BRDG RD	8/11/1995	420	Listillated
SV-136	FIRST CK FROM CENTRAL ON MAW BRDG RD	9/21/1995	280	
SV-136	FIRST CK FROM CENTRAL ON MAW BRDG RD	10/20/1995	140	
SV-136	FIRST CK FROM CENTRAL ON MAW BRDG RD	5/29/1996	290	
SV-136	FIRST CK FROM CENTRAL ON MAW BRDG RD	6/21/1996	620	Estimated
SV-136	FIRST CK FROM CENTRAL ON MAW BRDG RD	7/19/1996	320	Listillated
SV-136	FIRST CK FROM CENTRAL ON MAW BRDG RD	8/29/1996	220	
SV-136	FIRST CK FROM CENTRAL ON MAW BRDG RD	9/20/1996	160	
SV-136	FIRST CK FROM CENTRAL ON MAW BRDG RD	10/28/1996	60	Estimated
SV-136	FIRST CK FROM CENTRAL ON MAW BRDG RD	5/20/1997	87	Lstillated
SV-136	FIRST CK FROM CENTRAL ON MAW BRDG RD	6/5/1997	230	
SV-136	FIRST CK FROM CENTRAL ON MAW BRDG RD	7/30/1997	500	Estimated
SV-136	FIRST CK FROM CENTRAL ON MAW BRDG RD	8/29/1997	200	Lstillated
SV-136	FIRST CK FROM CENTRAL ON MAW BRDG RD	9/25/1997	3200	
SV-136	FIRST CK FROM CENTRAL ON MAW BRDG RD	10/10/1997	120	
SV-136	FIRST CK FROM CENTRAL ON MAW BRDG RD	5/26/1998	68	
SV-136	FIRST CK FROM CENTRAL ON MAW BRDG RD	6/23/1998	180	
SV-136		7/31/1998		
SV-136	FIRST CK FROM CENTRAL ON MAW BRDG RD	8/18/1998	520	
SV-136	FIRST CK FROM CENTRAL ON MAW BRDG RD	10/19/1998 5/11/1000	220	
SV-136	FIRST CK FROM CENTRAL ON MAW BRDG RD	5/11/1999	180	
SV-136	FIRST CK FROM CENTRAL ON MAW BRDG RD	6/1/1999	160	
SV-136 SV-136	FIRST CK FROM CENTRAL ON MAW BRDG RD	7/8/1999 9/16/1999	310 840	

Station ID	Station Name	Date	Value: FC (#/100ml)	Comment
SV-136	FIRST CK FROM CENTRAL ON MAW BRDG RD	10/21/1999	390	
SV-136	FIRST CK FROM CENTRAL ON MAW BRDG RD	5/11/2000	280	
SV-136	FIRST CK FROM CENTRAL ON MAW BRDG RD	6/6/2000	330	
SV-136	FIRST CK FROM CENTRAL ON MAW BRDG RD	7/12/2000	220	
SV-136	FIRST CK FROM CENTRAL ON MAW BRDG RD	8/7/2000	420	
SV-136	FIRST CK FROM CENTRAL ON MAW BRDG RD	9/18/2000	55	
SV-136	FIRST CK FROM CENTRAL ON MAW BRDG RD	10/10/2000	140	
SV-137	12 MI CR AT S-39-52 ABOVE CENTRAL OUTFALL	5/24/1990	160	
SV-137	12 MI CR AT S-39-52 ABOVE CENTRAL OUTFALL	6/18/1990	110	
SV-137	12 MI CR AT S-39-52 ABOVE CENTRAL OUTFALL	7/26/1990	2200	Estimated
SV-137 SV-137	12 MI CR AT S-39-52 ABOVE CENTRAL OUTFALL	8/30/1990	500	Estimated
SV-137	12 MI CR AT S-39-52 ABOVE CENTRAL OUTFALL	9/20/1990	140	
SV-137	12 MI CR AT 5-39-52 ABOVE CENTRAL OUTFALL 12 MI CR AT S-39-52 ABOVE CENTRAL OUTFALL	10/10/1990	210	
SV-137 SV-137	12 MI CR AT 5-39-52 ABOVE CENTRAL OUTFALL 12 MI CR AT S-39-52 ABOVE CENTRAL OUTFALL	5/14/1991	460	
SV-137 SV-137	12 MI CR AT 5-39-52 ABOVE CENTRAL OUTFALL 12 MI CR AT S-39-52 ABOVE CENTRAL OUTFALL	6/13/1991	50	Estimated
SV-137			4	Estimated
SV-137 SV-137	12 MI CR AT S-39-52 ABOVE CENTRAL OUTFALL	7/12/1991 8/6/1991	160	Estimated
	12 MI CR AT S-39-52 ABOVE CENTRAL OUTFALL			
SV-137	12 MI CR AT S-39-52 ABOVE CENTRAL OUTFALL	9/16/1991	270	E-timeted
SV-137	12 MI CR AT S-39-52 ABOVE CENTRAL OUTFALL	10/3/1991	130	Estimated
SV-137	12 MI CR AT S-39-52 ABOVE CENTRAL OUTFALL	5/13/1993	310	
SV-137	12 MI CR AT S-39-52 ABOVE CENTRAL OUTFALL	11/17/1995	200	
SV-137	12 MI CR AT S-39-52 ABOVE CENTRAL OUTFALL	12/11/1995	130	
SV-137	12 MI CR AT S-39-52 ABOVE CENTRAL OUTFALL	1/11/1996	100	
SV-137	12 MI CR AT S-39-52 ABOVE CENTRAL OUTFALL	2/2/1996	440	
SV-137	12 MI CR AT S-39-52 ABOVE CENTRAL OUTFALL	3/6/1996	1700	Estimated
SV-137	12 MI CR AT S-39-52 ABOVE CENTRAL OUTFALL	4/3/1996	410	
SV-137	12 MI CR AT S-39-52 ABOVE CENTRAL OUTFALL	5/29/1996	1300	Estimated
SV-137	12 MI CR AT S-39-52 ABOVE CENTRAL OUTFALL	6/21/1996	1300	Estimated
SV-137	12 MI CR AT S-39-52 ABOVE CENTRAL OUTFALL	7/10/1996	97	
SV-137	12 MI CR AT S-39-52 ABOVE CENTRAL OUTFALL	8/23/1996	110	
SV-137	12 MI CR AT S-39-52 ABOVE CENTRAL OUTFALL	9/25/1996	180	
SV-137	12 MI CR AT S-39-52 ABOVE CENTRAL OUTFALL	10/22/1996	250	
SV-137	12 MI CR AT S-39-52 ABOVE CENTRAL OUTFALL	11/30/1999	100	
SV-137	12 MI CR AT S-39-52 ABOVE CENTRAL OUTFALL	12/9/1999	82	
SV-137	12 MI CR AT S-39-52 ABOVE CENTRAL OUTFALL	1/11/2000	1000	
SV-137	12 MI CR AT S-39-52 ABOVE CENTRAL OUTFALL	2/23/2000	170	
SV-137	12 MI CR AT S-39-52 ABOVE CENTRAL OUTFALL	3/14/2000	20	
SV-137	12 MI CR AT S-39-52 ABOVE CENTRAL OUTFALL	4/12/2000	100	
SV-137	12 MI CR AT S-39-52 ABOVE CENTRAL OUTFALL	5/11/2000	40	
SV-137	12 MI CR AT S-39-52 ABOVE CENTRAL OUTFALL	6/6/2000	290	
SV-137	12 MI CR AT S-39-52 ABOVE CENTRAL OUTFALL	7/12/2000	50	
SV-137	12 MI CR AT S-39-52 ABOVE CENTRAL OUTFALL	8/7/2000	80	
SV-137	12 MI CR AT S-39-52 ABOVE CENTRAL OUTFALL	9/18/2000	42	
SV-137	12 MI CR AT S-39-52 ABOVE CENTRAL OUTFALL	10/10/2000	130	
SV-137	12 MI CR AT S-39-52 ABOVE CENTRAL OUTFALL	11/1/2000	120	
SV-137	12 MI CR AT S-39-52 ABOVE CENTRAL OUTFALL	12/4/2000	130	

Station ID	Station Name	Date	Value: FC (#/100ml)	Comment
SV-206	N FORK 12 MI CK AT US-178 2.8 MI N OF PICKENS	5/24/1990	250	
SV-206	N FORK 12 MI CK AT US-178 2.8 MI N OF PICKENS	6/18/1990	1000	Estimated
SV-206	N FORK 12 MI CK AT US-178 2.8 MI N OF PICKENS	7/24/1990	62	
SV-206	N FORK 12 MI CK AT US-178 2.8 MI N OF PICKENS	8/29/1990	100	
SV-206	N FORK 12 MI CK AT US-178 2.8 MI N OF PICKENS	9/13/1990	440	
SV-206	N FORK 12 MI CK AT US-178 2.8 MI N OF PICKENS	10/23/1990	740	Estimated
SV-206	N FORK 12 MI CK AT US-178 2.8 MI N OF PICKENS	5/13/1991	760	
SV-206	N FORK 12 MI CK AT US-178 2.8 MI N OF PICKENS	6/27/1991	75	Estimated
SV-206	N FORK 12 MI CK AT US-178 2.8 MI N OF PICKENS	7/16/1991	250	Listimated
SV-206	N FORK 12 MI CK AT US-178 2.8 MI N OF PICKENS	8/28/1991	60	Estimated
SV-206	N FORK 12 MI CK AT US-178 2.8 MI N OF PICKENS	9/18/1991	230	Listinated
SV-200	N FORK 12 MI CK AT US-178 2.8 MI N OF FICKENS	10/14/1991	160	
SV-200	N FORK 12 MI CK AT US-178 2.8 MI N OF FICKENS	5/20/1993	190	
SV-200	N FORK 12 MI CK AT US-178 2.8 MI N OF FICKENS	6/4/1993	68	
SV-200 SV-206	N FORK 12 MI CK AT US-178 2.8 MI N OF FICKENS	7/21/1993	40	Estimated
	N FORK 12 MI CK AT US-178 2.8 MI N OF FICKENS	8/9/1993	40	
SV-206		9/20/1993	43	Estimated
SV-206	N FORK 12 MI CK AT US-178 2.8 MI N OF PICKENS		240	
SV-206 SV-206	N FORK 12 MI CK AT US-178 2.8 MI N OF PICKENS	10/14/1993 5/26/1994		
	N FORK 12 MI CK AT US-178 2.8 MI N OF PICKENS		120	
SV-206	N FORK 12 MI CK AT US-178 2.8 MI N OF PICKENS	6/17/1994	130	
SV-206	N FORK 12 MI CK AT US-178 2.8 MI N OF PICKENS	7/28/1994	13000	Estimated
SV-206	N FORK 12 MI CK AT US-178 2.8 MI N OF PICKENS	8/18/1994	3600	
SV-206	N FORK 12 MI CK AT US-178 2.8 MI N OF PICKENS	10/16/1994	100	
SV-206	N FORK 12 MI CK AT US-178 2.8 MI N OF PICKENS	5/4/1995	130	
SV-206	N FORK 12 MI CK AT US-178 2.8 MI N OF PICKENS	6/8/1995	35	Estimated
SV-206	N FORK 12 MI CK AT US-178 2.8 MI N OF PICKENS	7/25/1995	120	
SV-206	N FORK 12 MI CK AT US-178 2.8 MI N OF PICKENS	8/25/1995	220	
SV-206	N FORK 12 MI CK AT US-178 2.8 MI N OF PICKENS	9/22/1995	100	
SV-206	N FORK 12 MI CK AT US-178 2.8 MI N OF PICKENS	10/13/1995	230	
SV-206	N FORK 12 MI CK AT US-178 2.8 MI N OF PICKENS	5/29/1996	520	
SV-206	N FORK 12 MI CK AT US-178 2.8 MI N OF PICKENS	6/21/1996	510	
SV-206	N FORK 12 MI CK AT US-178 2.8 MI N OF PICKENS	7/10/1996	120	
SV-206	N FORK 12 MI CK AT US-178 2.8 MI N OF PICKENS	8/23/1996	180	
SV-206	N FORK 12 MI CK AT US-178 2.8 MI N OF PICKENS	9/6/1996	210	
SV-206	N FORK 12 MI CK AT US-178 2.8 MI N OF PICKENS	10/22/1996	140	
SV-206	N FORK 12 MI CK AT US-178 2.8 MI N OF PICKENS	5/28/1997	180	
SV-206	N FORK 12 MI CK AT US-178 2.8 MI N OF PICKENS	6/19/1997	400	
SV-206	N FORK 12 MI CK AT US-178 2.8 MI N OF PICKENS	7/24/1997	1300	Estimated
SV-206	N FORK 12 MI CK AT US-178 2.8 MI N OF PICKENS	8/7/1997	140	
SV-206	N FORK 12 MI CK AT US-178 2.8 MI N OF PICKENS	9/18/1997	190	
SV-206	N FORK 12 MI CK AT US-178 2.8 MI N OF PICKENS	10/17/1997	370	Estimated
SV-206	N FORK 12 MI CK AT US-178 2.8 MI N OF PICKENS	5/27/1998	100	
SV-206	N FORK 12 MI CK AT US-178 2.8 MI N OF PICKENS	6/5/1998	1700	
SV-206	N FORK 12 MI CK AT US-178 2.8 MI N OF PICKENS	7/28/1998	86	
SV-206	N FORK 12 MI CK AT US-178 2.8 MI N OF PICKENS	8/13/1998	30	Estimated
SV-206	N FORK 12 MI CK AT US-178 2.8 MI N OF PICKENS	9/10/1998	89	

Station ID	Station Name	Date	Value: FC (#/100ml)	Comment
SV-206	N FORK 12 MI CK AT US-178 2.8 MI N OF PICKENS	10/16/1998	71	
SV-206	N FORK 12 MI CK AT US-178 2.8 MI N OF PICKENS	5/13/1999	94	
SV-206	N FORK 12 MI CK AT US-178 2.8 MI N OF PICKENS	6/10/1999	100	
SV-206	N FORK 12 MI CK AT US-178 2.8 MI N OF PICKENS	7/8/1999	68	
SV-206	N FORK 12 MI CK AT US-178 2.8 MI N OF PICKENS	8/19/1999	30	
SV-206	N FORK 12 MI CK AT US-178 2.8 MI N OF PICKENS	9/16/1999	390	
SV-206	N FORK 12 MI CK AT US-178 2.8 MI N OF PICKENS	10/14/1999	240	
SV-206	N FORK 12 MI CK AT US-178 2.8 MI N OF PICKENS	5/1/2000	100	
SV-206	N FORK 12 MI CK AT US-178 2.8 MI N OF PICKENS	7/18/2000	90	
SV-206	N FORK 12 MI CK AT US-178 2.8 MI N OF PICKENS	8/10/2000	200	
SV-206	N FORK 12 MI CK AT US-178 2.8 MI N OF FICKENS	9/6/2000	180	
SV-200	N FORK 12 MI CK AT US-178 2.8 MI N OF TICKENS	10/6/2000	200	
			190	
SV-239	GOLDEN CK AT S-39-222 1.2 MI NW OF LIBERTY	5/24/1990		
SV-239	GOLDEN CK AT S-39-222 1.2 MI NW OF LIBERTY	6/18/1990	450	
SV-239	GOLDEN CK AT S-39-222 1.2 MI NW OF LIBERTY	7/24/1990	410	
SV-239	GOLDEN CK AT S-39-222 1.2 MI NW OF LIBERTY	8/29/1990	390	
SV-239	GOLDEN CK AT S-39-222 1.2 MI NW OF LIBERTY	9/13/1990	16000	Estimated
SV-239	GOLDEN CK AT S-39-222 1.2 MI NW OF LIBERTY	10/23/1990	1300	Estimated
SV-239	GOLDEN CK AT S-39-222 1.2 MI NW OF LIBERTY	5/13/1991	970	Estimated
SV-239	GOLDEN CK AT S-39-222 1.2 MI NW OF LIBERTY	6/27/1991	280	
SV-239	GOLDEN CK AT S-39-222 1.2 MI NW OF LIBERTY	7/16/1991	260	
SV-239	GOLDEN CK AT S-39-222 1.2 MI NW OF LIBERTY	8/28/1991	1100	
SV-239	GOLDEN CK AT S-39-222 1.2 MI NW OF LIBERTY	9/18/1991	820	
SV-239	GOLDEN CK AT S-39-222 1.2 MI NW OF LIBERTY	10/14/1991	470	
SV-239	GOLDEN CK AT S-39-222 1.2 MI NW OF LIBERTY	5/20/1993	270	
SV-239	GOLDEN CK AT S-39-222 1.2 MI NW OF LIBERTY	6/4/1993	3000	
SV-239	GOLDEN CK AT S-39-222 1.2 MI NW OF LIBERTY	7/21/1993	370	
SV-239	GOLDEN CK AT S-39-222 1.2 MI NW OF LIBERTY	8/9/1993	560	
SV-239	GOLDEN CK AT S-39-222 1.2 MI NW OF LIBERTY	9/20/1993	7900	Estimated
SV-239	GOLDEN CK AT S-39-222 1.2 MI NW OF LIBERTY	10/14/1993	400	
SV-239	GOLDEN CK AT S-39-222 1.2 MI NW OF LIBERTY	5/26/1994	370	
SV-239	GOLDEN CK AT S-39-222 1.2 MI NW OF LIBERTY	6/17/1994	3300	
SV-239	GOLDEN CK AT S-39-222 1.2 MI NW OF LIBERTY	7/28/1994	12000	Estimated
SV-239	GOLDEN CK AT S-39-222 1.2 MI NW OF LIBERTY	8/18/1994	1000	
SV-239	GOLDEN CK AT S-39-222 1.2 MI NW OF LIBERTY	10/16/1994	290	
SV-239	GOLDEN CK AT S-39-222 1.2 MI NW OF LIBERTY	5/4/1995	220	
SV-239	GOLDEN CK AT S-39-222 1.2 MI NW OF LIBERTY	6/8/1995	480	
SV-239	GOLDEN CK AT S-39-222 1.2 MI NW OF LIBERTY	7/25/1995	420	
SV-239	GOLDEN CK AT S-39-222 1.2 MI NW OF LIBERTY	8/25/1995	900	
SV-239	GOLDEN CK AT S-39-222 1.2 MI NW OF LIBERTY	9/22/1995	250	
SV-239	GOLDEN CK AT S-39-222 1.2 MI NW OF LIBERTY	10/13/1995	110	Estimated
SV-239	GOLDEN CK AT S-39-222 1.2 MI NW OF LIBERTY	5/29/1996	620	
SV-239	GOLDEN CK AT S-39-222 1.2 MI NW OF LIBERTY	6/21/1996	440	
SV-239	GOLDEN CK AT S-39-222 1.2 MI NW OF LIBERTY	7/19/1996	580	
SV-239	GOLDEN CK AT S-39-222 1.2 MI NW OF LIBERTY	8/29/1996	740	
SV-239	GOLDEN CK AT S-39-222 1.2 MI NW OF LIBERTY	9/20/1996	500	

Station ID	Station Name	Date	Value: FC (#/100ml)	Comment
SV-239	GOLDEN CK AT S-39-222 1.2 MI NW OF LIBERTY	10/28/1996	140	
SV-239	GOLDEN CK AT S-39-222 1.2 MI NW OF LIBERTY	5/20/1997	1000	Estimated
SV-239	GOLDEN CK AT S-39-222 1.2 MI NW OF LIBERTY	6/5/1997	1300	Estimated
SV-239	GOLDEN CK AT S-39-222 1.2 MI NW OF LIBERTY	7/30/1997	700	Estimated
SV-239	GOLDEN CK AT S-39-222 1.2 MI NW OF LIBERTY	8/29/1997	210	
SV-239	GOLDEN CK AT S-39-222 1.2 MI NW OF LIBERTY	9/25/1997	1200	Estimated
SV-239	GOLDEN CK AT S-39-222 1.2 MI NW OF LIBERTY	10/10/1997	120	Estimated
SV-239	GOLDEN CK AT S-39-222 1.2 MI NW OF LIBERTY	5/26/1998	460	
SV-239	GOLDEN CK AT S-39-222 1.2 MI NW OF LIBERTY	6/23/1998	500	
SV-239	GOLDEN CK AT S-39-222 1.2 MI NW OF LIBERTY	7/31/1998	260	
SV-239	GOLDEN CK AT S-39-222 1.2 MI NW OF LIBERTY	8/18/1998	700	
SV-239	GOLDEN CK AT S-39-222 1.2 MI NW OF LIBERTY	10/19/1998	330	Estimated
SV-239	GOLDEN CK AT S-39-222 1.2 MI NW OF LIBERTY	5/11/1999	650	
SV-239	GOLDEN CK AT S-39-222 1.2 MI NW OF LIBERTY	6/1/1999	420	
SV-239	GOLDEN CK AT S-39-222 1.2 MI NW OF LIBERTY	7/8/1999	700	
SV-239	GOLDEN CK AT S-39-222 1.2 MI NW OF LIBERTY	9/16/1999	270	
SV-239	GOLDEN CK AT S-39-222 1.2 MI NW OF LIBERTY	10/21/1999	300	
SV-239	GOLDEN CK AT S-39-222 1.2 MI NW OF LIBERTY	4/24/2000	320	
SV-239	GOLDEN CK AT S-39-222 1.2 MI NW OF LIBERTY	5/1/2000	190	
SV-239	GOLDEN CK AT S-39-222 1.2 MI NW OF LIBERTY	7/18/2000	400	
SV-239	GOLDEN CK AT S-39-222 1.2 MI NW OF LIBERTY	8/10/2000	2700	
SV-239	GOLDEN CK AT S-39-222 1.2 MI NW OF LIBERTY	9/6/2000	490	
SV-239	GOLDEN CK AT S-39-222 1.2 MI NW OF LIBERTY	10/6/2000	890	

Appendix D Water Quality Calibration

The following pages present water quality simulation graphs depicting model runs versus observed water quality data for impaired stations in the Twelve Mile Creek Watershed. The water quality calibration was performed for the period 1995 to 1997. The validation period was from 1998 to 2000.

At water quality station SV-206 some of the higher observed concentrations (around 1500 counts/100ml) are not simulated by the model. This may be the result of temporally localized sources that the model does not include (i.e. animals in the stream).

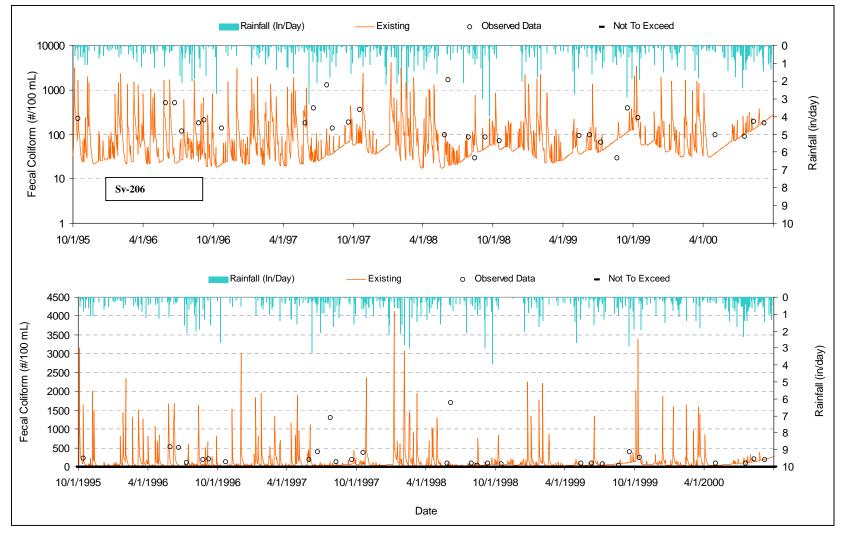


Figure D-1. Fecal coliform bacteria calibration at water quality station SV-206

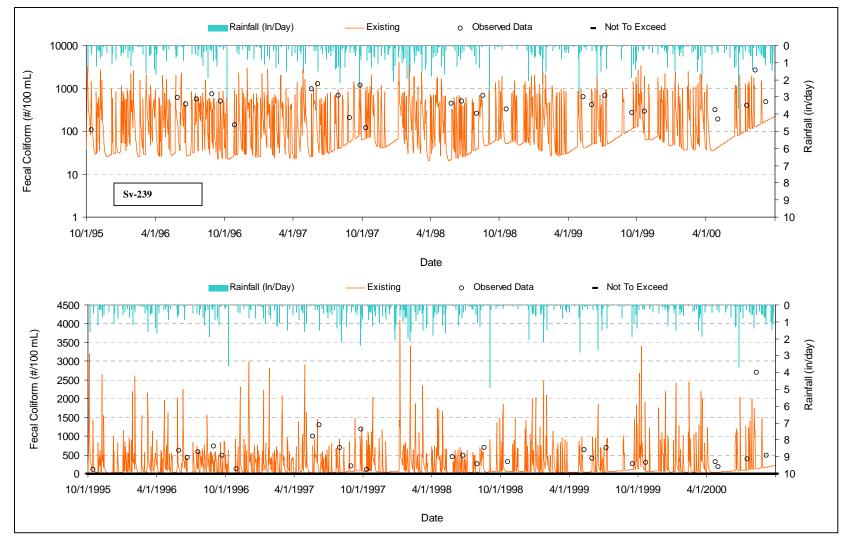


Figure D-2. Fecal coliform bacteria calibration at water quality station at SV-239

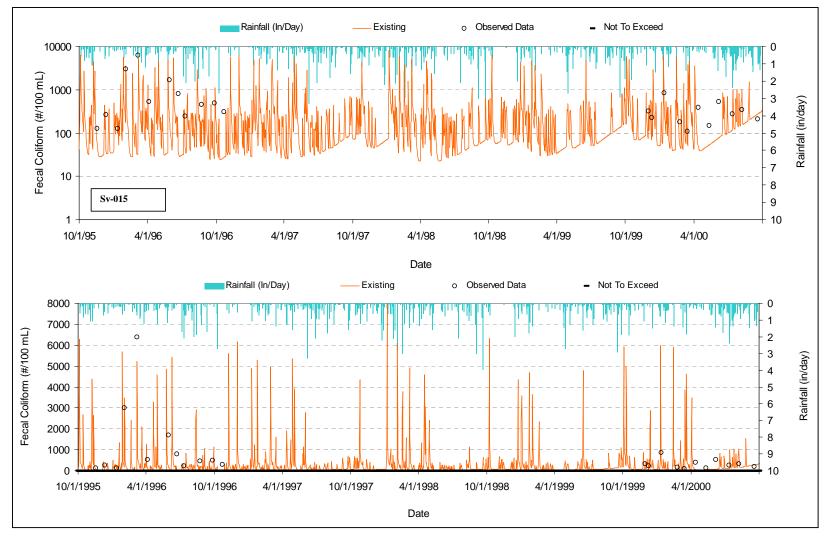


Figure D-3. Fecal coliform bacteria calibration at water quality station at Station SV-015

Figure D-4. Fecal coliform bacteria calibration at water quality station at Station SV-137

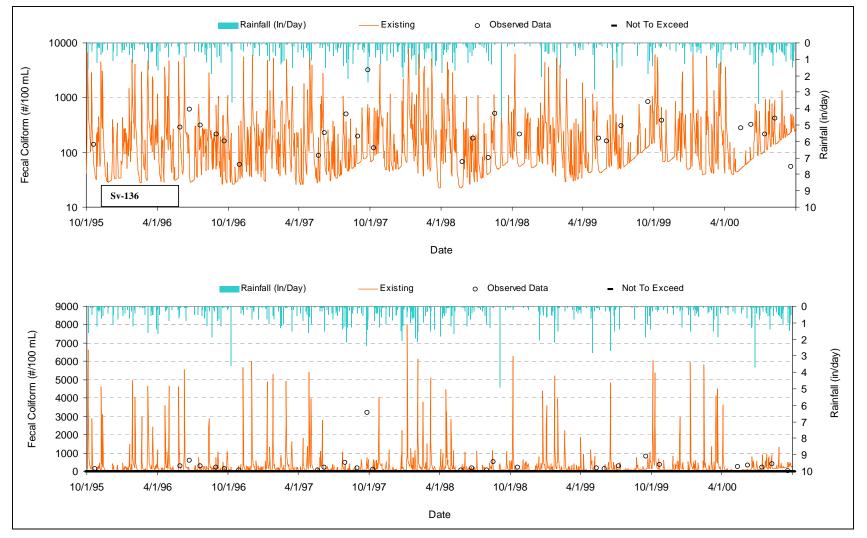


Figure D-5. Fecal coliform bacteria calibration at water quality station at Station SV-136

Appendix E Load Reduction Curves for Impaired Water Quality Stations The LSPC Twelve Mile Creek model allowed for examining bacterial loading on a dynamic basis. Based on the calibrated model predictions, loading reductions required to meet the geometric mean standard in the watershed were smaller than those required to meet the instantaneous standard. As a result, bacteria load reductions in the Twelve Mile Creek TMDL were developed to meet the instantaneous criteria, incorporating a five per cent margin of safety. This section describes the methodology used to develop the necessary reductions based on load duration curves developed for each impaired water quality station. While based on instantaneous observations, this methodology utilizes modeled flow based on the calibrated LSPC model of the Twelve Mile Creek watershed.

For each impaired station a load duration graph was generated and a trend line drawn through the data points representing water quality violations. In the load curve application, trend lines are used to predict the load at other flow recurrence intervals. The type of line that can be drawn through the data can have several shapes, ranging from linear (simplest form) to moving average. The type of the line chosen should result in a relatively high correlation factor, denoted by the variable R^2 . The correlation factor provides an indication of how well the equation of the line represents the data. For the Twelve Mile Creek stations, exponential and power functions resulted in the best fit of the data.

In this method, the percent reduction for the subbasin is the average of the differences between the trend line through the existing data and the target load at each recurrence interval. For example, in Figure E-1 the existing load violates the target when the flow is exceeded less than 40 percent of the time. At each recurrence interval between 10 and 40 (using recurrence intervals in multiples of 5) the equation of the trend line is used to estimate the existing load. Flows exceeded less than 10 percent of the time represent abnormally high events and are not considered in the TMDL analysis. In the trend line equation, the x-variable represents the percent of time the flow is exceeded. The percent reduction required to achieve the target load is calculated at each interval. The final percent reduction is the average of these values.

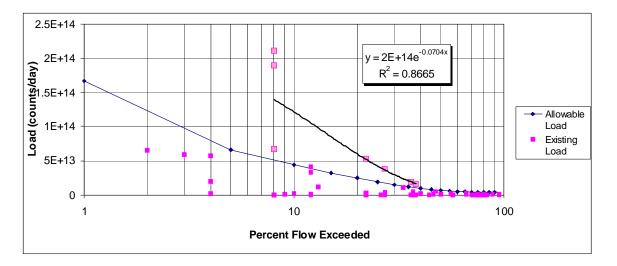


Figure E-1. Example fecal coliform bacteria load duration curve with trendline

Table E-1 though E-5 shows the required percent reductions and loads (allowable and existing) for each impaired subbasin based on the load duration curve reduction method. Figures E-2 through E-6 present the load duration curves with the trendline equation and correlation factor for each impaired segment.

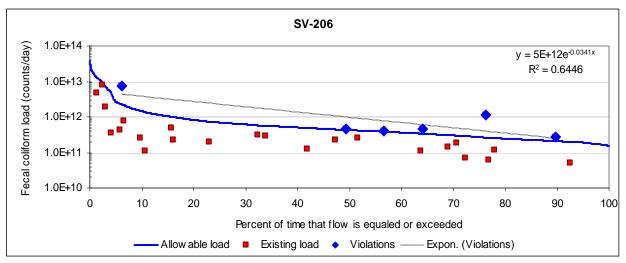


Figure E-2. Load duration curve and trendline for station SV-206

Maximum			
of the	Allowable		
Interval	Load	Existing Load	Percent
(%)	(counts/day)	(counts/day)	Reduction
100	1.55E+11	2.98E+11	48
95	1.91E+11	3.15E+11	39
90	2.07E+11	3.35E+11	38
85	2.26E+11	3.57E+11	37
80	2.43E+11	3.82E+11	36
75	2.70E+11	4.10E+11	34
70	3.03E+11	4.43E+11	32
65	3.32E+11	4.81E+11	31
60	3.62E+11	5.26E+11	31
55	3.96E+11	5.79E+11	32
50	4.26E+11	6.44E+11	34
45	4.63E+11	7.24E+11	36
40	5.07E+11	8.26E+11	39
35	5.52E+11	9.58E+11	42
30	6.17E+11	1.14E+12	46
25	6.96E+11	1.39E+12	50
20	8.24E+11	1.79E+12	54
15	1.05E+12	2.46E+12	57
10	1.44E+12	3.86E+12	63
5	2.67E+12	8.35E+12	68

Table E-1. Allocation loads and reduction percentage at SV-206

Average Reduction (90%<interval<10%) at SV-206: 39% reduction

Average Allowable Load (90%<interval<10%) at SV-206: 4.84E+11 (counts/day)

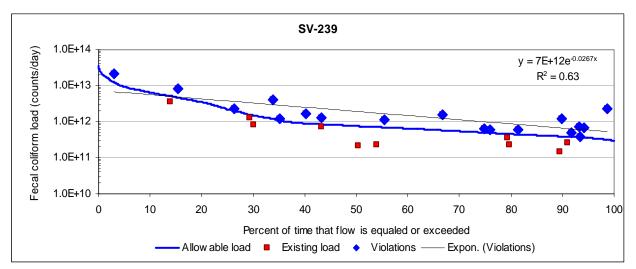


Figure E-3. Load duration curve and trendline for station SV-239

Maximum of the Interval (%)	Allowable Load (counts/day)	Existing Load (counts/day)	Percent Reduction
100	3.01E+11	6.47E+11	53
95	3.56E+11	6.83E+11	48
90	3.91E+11	7.22E+11	46
85	4.22E+11	7.67E+11	45
80	4.53E+11	8.17E+11	45
75	4.97E+11	8.74E+11	43
70	5.46E+11	9.4E+11	42
65	5.92E+11	1.02E+12	42
60	6.50E+11	1.1E+12	41
55	7.01E+11	1.21E+12	42
50	7.58E+11	1.34E+12	43
45	8.29E+11	1.49E+12	44
40	8.95E+11	1.69E+12	47
35	1.09E+12	1.94E+12	44
30	1.51E+12	2.28E+12	34
25	2.18E+12	2.76E+12	21
20	3.52E+12	3.48E+12	-1
15	4.84E+12	4.71E+12	-3
10	6.53E+12	7.19E+12	9
5	9.34E+12	1.49E+13	37

Table E-2. Allocation loads and reduction	n percentage at SV-239
---	------------------------

Average Reduction (90%<interval<10%) at SV-239: 41% reduction

Average Allowable Load (90%<interval<10%) at SV-239: 1.30E+12 (counts/day)

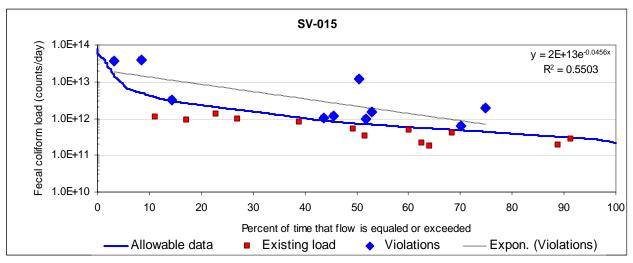


Figure E-4. Load duration curve and trendline for station SV-015

Maximum			
of the	Allowable	Existing	-
Interval	Load	Load	Percent
(%)	(counts/day)	(counts/day)	Reduction
100	2.19E+11	9.25E+11	76
95	2.77E+11	9.82E+11	72
90	3.13E+11	1.05E+12	70
85	3.46E+11	1.12E+12	69
80	3.87E+11	1.2E+12	68
75	4.34E+11	1.29E+12	66
70	4.79E+11	1.4E+12	66
65	5.30E+11	1.53E+12	65
60	5.78E+11	1.68E+12	66
55	6.57E+11	1.86E+12	65
50	7.26E+11	2.08E+12	65
45	8.38E+11	2.35E+12	64
40	1.02E+12	2.7E+12	62
35	1.25E+12	3.15E+12	60
30	1.55E+12	3.77E+12	59
25	1.86E+12	4.67E+12	60
20	2.31E+12	6.05E+12	62
15	2.88E+12	8.47E+12	66
10	4.16E+12	1.36E+13	69
5	7.95E+12	3.05E+13	74

Table E-3. Allocation loads and reduction percentage at SV-015

Average Reduction (90%<interval<10%) at SV-015: 64% reduction

Average Allowable Load (90%<interval<10%) at SV-015: 1.06E+12 (counts/day)

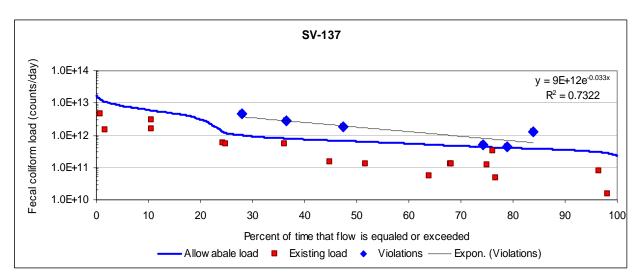


Figure E-5. Load duration curve and trendline for station SV-137

Maximum			
of the	Allowable	Estada a la sel	Demonst
Interval	Load (counts/day)	Existing Load (counts/day)	Percent Reduction
(%)			
100	2.35E+11	-7.56E+10	411
95	3.15E+11	8.50E+10	-271
90	3.52E+11	2.54E+11	-38
85	3.79E+11	4.33E+11	12
80	4.03E+11	6.23E+11	35
75	4.33E+11	8.25E+11	48
70	4.68E+11	1.04E+12	55
65	5.04E+11	1.27E+12	60
60	5.53E+11	1.52E+12	64
55	6.00E+11	1.80E+12	67
50	6.49E+11	2.09E+12	69
45	6.92E+11	2.42E+12	71
40	7.46E+11	2.79E+12	73
35	8.18E+11	3.21E+12	75
30	9.25E+11	3.69E+12	75
25	1.15E+12	4.26E+12	73
20	3.08E+12	4.96E+12	38
15	4.74E+12	5.86E+12	19
10	6.13E+12	7.13E+12	14
5	8.13E+12	9.30E+12	13

Average Reduction (90%<interval<10%) at SV-137: 56% reduction

Average Allowable Load (90%<interval<10%) at SV-137: 1.08E+12 (counts/day)

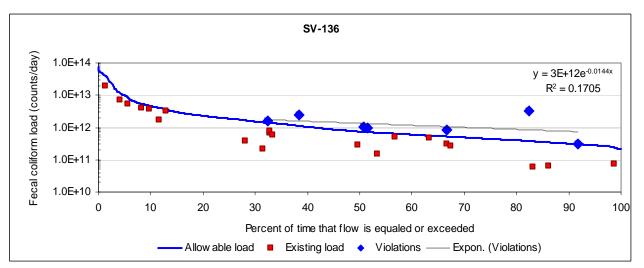


Figure E-6. Load duration curve and trendline for station SV-136

Maximum			
of the	Allowable	Existing	
Interval	Load	Load	Percent
(%)	(counts/day)	(counts/day)	Reduction
100	2.15E+11	7.11E+11	70
95	2.81E+11	7.64E+11	63
90	3.15E+11	8.21E+11	62
85	3.52E+11	8.82E+11	60
80	4.03E+11	9.48E+11	57
75	4.44E+11	1.02E+12	56
70	4.91E+11	1.09E+12	55
65	5.39E+11	1.18E+12	54
60	6.00E+11	1.26E+12	53
55	6.68E+11	1.36E+12	51
50	7.48E+11	1.46E+12	49
45	8.56E+11	1.57E+12	45
40	1.05E+12	1.69E+12	38
35	1.29E+12	1.81E+12	29
30	1.52E+12	1.95E+12	22
25	1.88E+12	2.09E+12	10
20	2.31E+12	2.25E+12	-3
15	3.00E+12	2.42E+12	-24
10	4.58E+12	2.6E+12	-76
5	9.82E+12	2.79E+12	-252

Average Reduction (90%<interval<10%) at SV-136: 45% reduction Average Allowable Load (90%<interval<10%) at SV-136: 1.08E+12 (counts/day)