## **EPA FINALIZED TMDL**

South Carolina Department of Health and Environmental Control

Total Maximum Daily Load Development for the Little River Watershed (Hydrological Unit Code: 03050109-160); Stations: S-034, S-038, S-099, S-297, S-305, and S-135 Fecal Coliform Bacteria

September 29, 2004



Columbia, SC 29201

In compliance with the provisions of the Federal Clean Water Act, 33 U.S.C §1251 et.seq., as amended by the Water Quality Act of 1987, P.L. 400-4, the U.S Environmental Protection Agency is hereby establishing a Total Maximum Daily Load (TMDL) for fecal coliform bacteria in the Little River Basin. Subsequent actions must be consistent with this TMDL.

James D. Giattina, Director Water Management Division Date

## Abstract

The Little River watershed (11-digit HUC 03050109-160) is located in Laurens and Newberry Counties occupying 230 square miles (Figure 1-1). The watershed drains from north of the City of Laurens toward the southeast and the town of Silverstreet in the Piedmont region of South Carolina. Six water qualitymonitoring stations in the watershed have been placed on the South Carolina §303(d) list of impaired waters for violations of the fecal coliform bacteria standard, as shown in Table 1-1. The Little River watershed is composed of mostly forested land (72%) with some pastureland (11%) and cropland (9%). There is one active continuous point source discharging fecal coliform bacteria in the Little River watershed of South Carolina.

The load-duration curve methodology was used to establish allowable fecal coliform loads in the watershed. The existing load was determined using measured data from the impaired water quality monitoring stations. Loads were established from measured concentrations and a power trend line was fit to samples violating the instantaneous standard. The existing load and allowable total maximum daily load for impaired stations is presented in Table I. To achieve the TMDL target, reductions of fecal coliform loads will be necessary, as shown in Table I.

| Station | Existing<br>Waste Load     | TMDL WLA                                | Existing<br>Load | TMDL LA      | MOS          | TMDL <sup>2</sup> | Percent   |
|---------|----------------------------|-----------------------------------------|------------------|--------------|--------------|-------------------|-----------|
| ID      | Continuous<br>(counts/day) | Continuous <sup>1</sup><br>(counts/day) | (counts/day)     | (counts/day) | (counts/day) |                   | Reduction |
| S-034   | NA                         | NA                                      | 7.52E+11         | 1.84E+11     | 1.02E+10     | 1.95E+11          | 74%       |
| S-038   | 3.33E+09                   | 3.33E+09                                | 2.74E+12         | 5.60E+11     | 3.13E+10     | 5.95E+11          | 78%       |
| S-099   | 3.33E+09                   | 3.33E+09                                | 1.49E+12         | 6.76E+11     | 3.78E+10     | 7.18E+11          | 52%       |
| S-135   | NA                         | NA                                      | 2.99E+10         | 8.37E+09     | 4.65E+08     | 8.83E+09          | 70%       |
| S-297   | 3.33E+09                   | 3.33E+09                                | 1.01E+12         | 2.24E+11     | 1.26E+10     | 2.40E+11          | 76%       |
| S-305   | 3.33E+09                   | 3.33E+09                                | 1.80E+12         | 1.04E+12     | 5.80E+10     | 1.10E+12          | 39%       |

| Table I | Total Maximum     | Daily Loads | for Impaired | Water | Quality | Stations | in the |
|---------|-------------------|-------------|--------------|-------|---------|----------|--------|
|         | Little River Wate | rshed (0305 | 0109)        |       |         |          |        |

Table Notes:

Total monthly wasteload cannot exceed 5E+10 #/30 days.
 TMDLs expressed as monthly load (#/30 days) by station are listed in Table B-1.

# **Table of Contents**

| ABST                            | RACT                                   |                                                                                                                                                              | 2  |
|---------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| TABL                            | E OF CO                                | NTENTS                                                                                                                                                       | 4  |
| FIGU                            | RES                                    |                                                                                                                                                              | 5  |
| TABL                            | ÆS                                     |                                                                                                                                                              | 6  |
| 1.0                             | INTROD                                 | UCTION                                                                                                                                                       |    |
| 1.1<br>1.2<br>1.3               | WATER                                  | ROUND<br>SHED DESCRIPTION<br>QUALITY STANDARD                                                                                                                | 8  |
| 2.0                             | WATER                                  | QUALITY ASSESSMENT                                                                                                                                           | 10 |
| 3.0                             | SOURCE                                 | ASSESSMENT AND LOAD ALLOCATION                                                                                                                               |    |
| 3.<br>3.                        | NONPO<br>.2.1 Wi<br>.2.2 Ag<br>.2.3 Fa | SOURCES<br>INT SOURCES<br>ildlife<br>gricultural Activities and Grazing Animals<br>uiling Septic Systems and Illicit Discharges<br>ban and Impervious Runoff |    |
| 4.0                             | TECHNI                                 | CAL APPROACH – LOAD-DURATION METHOD                                                                                                                          |    |
| 5.0                             | DEVELC                                 | OPMENT OF TOTAL MAXIMUM DAILY LOAD                                                                                                                           | 17 |
| 5.1<br>5.2<br>5.3<br>5.4<br>5.5 | Existin<br>Existin<br>Margii           | AL CONDITIONS<br>NG LOAD<br>NG WASTELOAD<br>N OF SAFETY<br>MAXIMUM DAILY LOAD                                                                                |    |
| 6.0                             | IMPLEM                                 | IENTATION                                                                                                                                                    |    |
| 7.0                             | REFERE                                 | NCES                                                                                                                                                         |    |
| APPE                            | NDIX A                                 | DATA                                                                                                                                                         |    |
| APPE                            | NDIX B                                 | CALCULATIONS                                                                                                                                                 |    |
| APPE                            | NDIX C                                 | PUBLIC NOTIFICATION                                                                                                                                          |    |
| APPE                            | NDIX D                                 | MOVE.1                                                                                                                                                       | 47 |

# Figures

| Figure 1-1 | Little River Watershed (03050109-160)7                                 |
|------------|------------------------------------------------------------------------|
| Figure 1-2 | Little River Watershed Land Use                                        |
| Figure 2-1 | Fecal Coliform Bacteria Load-Duration Curve for Station S-034          |
|            | Illustrating Observed Fecal Coliform Bacteria Loads Over Various       |
|            | Hydrologic Conditions11                                                |
| Figure 4-1 | Water Yield (cubic feet per second per square mile) Based on Measured  |
|            | Daily Streamflow from USGS station 02160381 17                         |
| Figure 5-1 | Power Trendline Generated from Violating Fecal Coliform Bacteria at S- |
|            | 034                                                                    |
| Figure B-1 | Load Duration Curve with All Measured Data and Power Trend Line        |
| -          | Generated from Violating Fecal Coliform Bacteria Measured at S-03837   |
| Figure B-6 | Water Yield (cubic feet per second per square mile) Based on Measured  |
|            | Daily Streamflow from USGS station 02167450                            |
| Figure D-1 | Flow Duration Curve for the Durbin Creek above Fountain Inn, SC USGS   |
| -          | 02160381 (Estimated Using MOVE.1)                                      |
|            |                                                                        |

# Tables

| Table I   | Total Maximum Daily Loads for Impaired Water Quality Stations in the       | _  |
|-----------|----------------------------------------------------------------------------|----|
|           | Little River Watershed (03050109)                                          | 3  |
| Table 1-1 | Water Quality Monitoring Stations Impaired by Fecal Coliform in the        | ~  |
|           | Little River Watershed (03050109-160)                                      |    |
| Table 1-2 | MRLC Aggregated Land Use for the Little River Watershed (03050109) 9       | )  |
| Table 2-1 | Statistical Assessment of Observed Fecal Coliform Bacteria Collected       | _  |
|           | from 1996 through 2000 10                                                  |    |
| Table 3-1 | Permitted Facilities Actively Discharging Fecal Coliform Bacteria into the |    |
|           | Little River Watershed                                                     |    |
| Table 3-2 | Impaired Water Quality Monitoring Stations Draining NPDES Facilities in    |    |
|           | the Little River Watershed                                                 | 2  |
| Table 3-3 | Estimated Existing Fecal Coliform Bacteria Load for the Laurens STP in     |    |
|           | the Little River Watershed                                                 |    |
| Table 3-5 | 1997 USDA Agricultural Census Data Animal Estimates14                      |    |
| Table 4-1 | USGS Stations Used to Establish Area-Weighted Flows                        |    |
| Table 4-2 | USGS Stations and Associated Water Quality Stations                        | 5  |
| Table 5-1 | Existing Loads for Impaired Water Quality Stations in the Little River     |    |
|           | Watershed (03050109-160) 19                                                | )  |
| Table 5-2 | Wasteloads from the NPDES Continuous Discharge to Impaired Water           |    |
|           | Quality Stations in the Little River Watershed (03050109-160)19            | )  |
| Table 5-3 | Total Maximum Daily Loads for Impaired Water Quality Stations in the       |    |
|           | Little River Watershed (03050109-160)                                      | 1  |
| Table A-1 | Percent of Watershed Area Aggregated by Land Use Class for Areas           |    |
|           | Draining to Streamflow and Water Quality Monitoring Stations in the        |    |
|           | Little River Watershed                                                     | 1  |
| Table A-2 | Watershed Area in Square Miles Aggregated by Land Use Class for Areas      | j. |
|           | Draining to Streamflow and Water Quality Monitoring Stations in the        |    |
|           | Little River Watershed                                                     | 1  |
| Table A-3 | Fecal Coliform Data Collected between 1990 and 2001 at Water Quality       |    |
|           | Monitoring Stations in the Little River Watershed                          | 5  |
| Table A-4 | Currently DHEC permitted animal feeding operations in the Little River     |    |
|           | watershed                                                                  | 1  |
| Table B-1 | TMDL Loads                                                                 | 3  |
| Table B-2 | Existing Loads                                                             | 5  |
| Table D-1 | Statistical Parameters Derived from the MOVE.1 Analysis Comparing          |    |
|           | USGS 02160700 and USGS 02160381                                            | 3  |

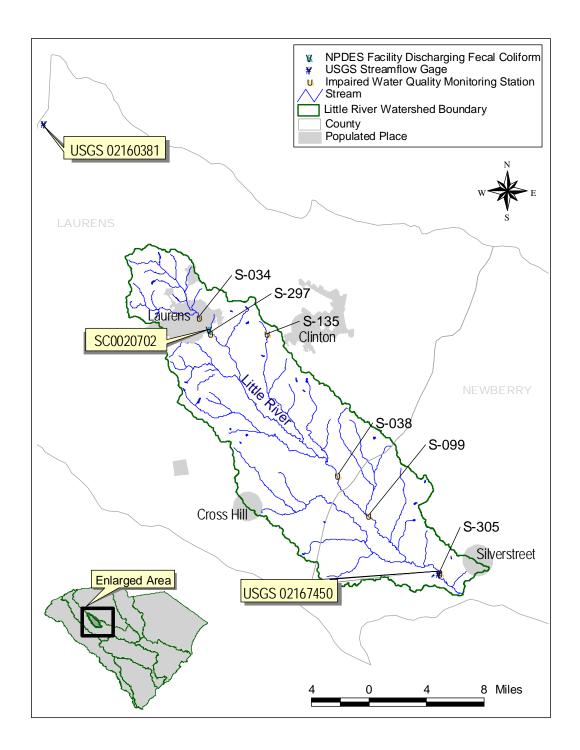



Figure 1-1 Little River Watershed (03050109-160)

## **1.0 INTRODUCTION**

#### 1.1 Background

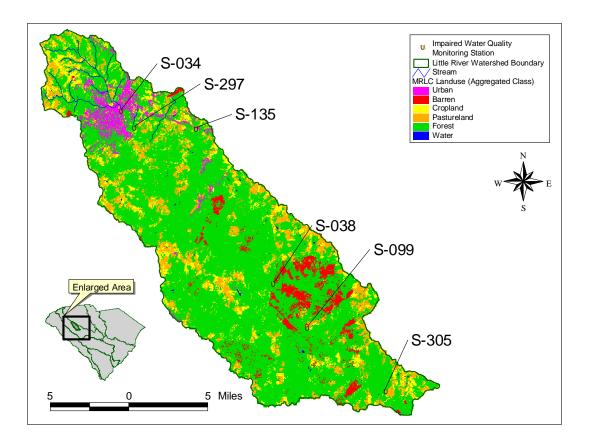
Levels of fecal coliform bacteria can be elevated in waterbodies as the result of both point and nonpoint sources of pollution. Section §303(d) of the Clean Water Act and EPA's Water Quality Planning and Management Regulations (40 CFR Part 130) require states to develop total maximum daily loads (TMDLs) for waterbodies that are not meeting designated uses under technology-based pollution controls. The TMDL process establishes the allowable loadings of pollutants or other quantifiable parameters for a waterbody based on the relationship between pollution sources and instream water quality conditions so that states can establish water quality-based controls to reduce pollution and restore and maintain the quality of water resources (USEPA, 1991).

The State of South Carolina has placed six monitoring stations in the Little River watershed (11-digit HUC 03050109-160) on South Carolina's 2002 Section §303(d) list for impairment due to fecal coliform bacteria. These stations are identified in Table 1-1.

| Table 1-1 | Water Quality Monitoring Stations Impaired by Fecal Coliform in the Little |
|-----------|----------------------------------------------------------------------------|
|           | River Watershed (03050109-160)                                             |

| Waterbody<br>Name | Waterbody<br>ID | Waterbody Location                                               |
|-------------------|-----------------|------------------------------------------------------------------|
| Little River      | S-034           | Little River at US 76 Business Route, in Laurens above the STP   |
| Little River      | S-038           | Little River at SC 560                                           |
| Little River      | S-099           | Little River at S-36-22 8.3 miles Northwest of Silverstreet, SC  |
| Little River      | S-297           | Little River at SC ROUTE 127                                     |
| Little River      | S-305           | Little River at SC 34                                            |
| North Creek       | S-135           | North Creek at Junction with US 76 2.8 miles West of Clinton, SC |

## 1.2 Watershed Description


The Little River watershed (11-digit HUC 03050109-160) (Figure 1-1) is located in the Saluda River basin. The 230 square mile watershed occupies the Piedmont region in Laurens and Newberry Counties from the City of Laurens south to Silverstreet. The Little River watershed consists primary of the Little River and its tributaries with a total of 190 stream miles.

Based on 1996 USGS Multi-Resolution Land Characteristic (MRLC) land use data, 72 percent of the watershed is forested. The remaining 28 percent is composed of pastureland (11%), cropland (9%), and a mix of urban area, water and barren land uses (8%). Urban areas in the watershed are concentrated in the upper watershed between the Cities of Laurens and Clinton. Downstream of state highway SC-560 and of impaired water quality monitoring station S-038, a larger percentage of the land is either barren or in transition.

Table 1-2 presents the percentage of total watershed area for each aggregated land use. The percentage of land use area in each monitoring station drainage area is presented in Appendix A (Table A-1). The actual areas in square miles are presented in Table A-2. Figure 1-2 illustrates land use activities in the basin.

| Aggregated Land Use | Percent of Total Area |
|---------------------|-----------------------|
| Urban               | 3.2%                  |
| Barren              | 4.4%                  |
| Row Crops           | 9.2%                  |
| Pasture             | 11.4%                 |
| Forest              | 71.6%                 |
| Water               | 0.2%                  |

| Table 1-2 | MRLC Aggregated Land Use for the Little River Watershed (03050109) |
|-----------|--------------------------------------------------------------------|
|-----------|--------------------------------------------------------------------|



#### Figure 1-2 Little River Watershed Land Use

#### 1.3 Water Quality Standard

The impaired stream segments of the Little River watershed are designated as Class Freshwater. Waters of this class are described as:

"Freshwaters suitable for primary and secondary contact recreation and as a source for drinking water supply after conventional treatment in accordance with the requirements of the Department. Suitable for fishing and the survival and propagation of a balanced indigenous aquatic community of fauna and flora. Suitable also for industrial and agricultural uses." (R.61-68)

South Carolina's standard for fecal coliform bacteria in freshwater is:

"Not to exceed a geometric mean of 200/100 mL, based on five consecutive samples during any 30 day period; nor shall more than 10 percent of the total samples during any 30 day period exceed 400/100 mL." (R.61-68).

## 2.0 WATER QUALITY ASSESSMENT

Fecal coliform bacteria data collected in the Little River watershed from 1996 through 2000 were assessed to determine impairment of standards for recreational use. The State of South Carolina monitors fecal coliform bacteria at six stations in the watershed. Figure 1-1 shows the location of water quality monitoring stations in the watershed.

Six water quality monitoring stations in the basin have been identified on the State of South Carolina's Section §303(d) list for 2002 as impaired (Table 1-1). Table 2-1 presents the statistical information supporting the listing of impaired water quality monitoring sites in the watershed. Waters in which no more than 10 percent of the samples collected over the five-year period are greater than 400 fecal coliform counts per 100 mL are considered to comply with the South Carolina water quality standard for fecal coliform bacteria. Waters with more than 10 percent of samples greater than 400 counts per 100 mL are considered impaired and were listed for fecal coliform bacteria on the State of South Carolina's Section §303(d) list. The fecal coliform bacteria data collected since 1990 at impaired water quality monitoring stations are presented in Appendix A (Table A-2).

|         | -                          |                                          |                                     |
|---------|----------------------------|------------------------------------------|-------------------------------------|
| Station | Total Number of<br>Samples | Total Number of<br>Samples >400 #/100 mL | Percent of Samples >400<br>#/100 mL |
| S-034   | 59                         | 34                                       | 58%                                 |
| S-038   | 15                         | 3                                        | 20%                                 |
| S-099   | 30                         | 5                                        | 17%                                 |
| S-135   | 29                         | 20                                       | 69%                                 |
| S-297   | 28                         | 14                                       | 50%                                 |
| S-305   | 12                         | 3                                        | 25%                                 |

| Table 2-1 | Statistical | Assessment   | of | Observed | Fecal | Coliform | Bacteria | Collected |
|-----------|-------------|--------------|----|----------|-------|----------|----------|-----------|
|           | from 1996   | through 2000 | )  |          |       |          |          |           |

The timeframe, both annually and seasonally, of water quality monitoring at each station varies greatly. The statistical assessment presented in Table 2-1 was based on data collected over the five-year period from 1996 through 2000.

After determining compliance with water quality standards, observed violations were assessed to determine conditions critical to impairment. Data were compared with estimated streamflows to establish a relationship between instream concentrations and hydrologic conditions. Due to limited streamflow data in the watershed, observed data were plotted with the load-duration curves generated based on area-weighted flows. The development of load-duration curves is discussed further in Section 4.0 of this report. Load-duration curves plotted for each station in Figures B-1 through B-5, and in Figure 2-1 (for S-034) are equal to the TMDL target based on the criteria for instantaneous events. The observed fecal coliform bacteria data were also converted from counts per 100 mL to loads in counts per day to assess hydrologic conditions when the standard is not attained.

The percent of flow exceeded in Figure 2-1 and Figures B-1 through B-5 represent flow conditions at each monitoring station. Hydrologic conditions for very dry events, likely to be exceeded in 99.99 percent of measured events, are represented as 99.99 percent. Extremely wet events that occur rarely are represented as 0.01 percent. Data collected at all impaired stations in the basin have violations during all flow conditions, except S-038. Water quality monitoring station S-038 has violations during above average flow events but not during either high or low flow extreme events. Violations during various flow events, including extreme events, suggest both overland, instream, and continuous sources, such as groundwater, of fecal coliform bacteria. Violations occurring within the range of the 10 to 60 percent of flow exceeded, as in S-038, suggest that overland flow contributions are the most likely source of fecal coliform bacteria.

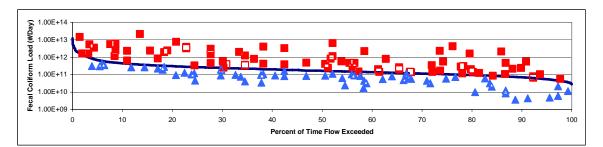



Figure 2-1 Fecal Coliform Bacteria Load-Duration Curve for Station S-034 Illustrating Observed Fecal Coliform Bacteria Loads Over Various Hydrologic Conditions

## 3.0 SOURCE ASSESSMENT AND LOAD ALLOCATION

Fecal coliform bacteria enter surface waters of the Little River watershed from both point and nonpoint sources. Point sources are facilities that discharge at a specific location through pipes, outfalls, and/or conveyance channels. All point sources must have a National Pollutant Discharge Elimination System (NPDES) permit and are often municipal wastewater treatment plants or industrial waste treatment facilities. Nonpoint sources are diffuse sources that have multiple routes of entry into surface waters. Some nonpoint sources are related to land use activities that accumulate fecal coliform bacteria on the land surface (i.e. pastureland) and runoff during storm events.

#### 3.1 Point Sources

There is one active continuous point source discharging fecal coliform bacteria in the Little River watershed, SC0020702 the Laurens Sewage Treatment Plant (STP). In South Carolina, NPDES permittees that discharge sanitary wastewater must meet the State criteria for fecal coliform bacteria at the point of discharge (i.e. a daily maximum concentration of 400 counts per 100 mL, and a 30-day geometric mean of 200 counts per 100 mL).

The Laurens STP (SC0020702) actively discharges to the Little River south of Laurens, as shown in Figure 1-1. The facility has a specified allowable flow limit of 0.22 MGD (million gallons per day). Table 3-1 lists permit information pertinent to fecal coliform bacteria TMDL development.

| Table 3-1 | Permitted Facilities Actively Discharging Fecal Coliform Bacteria into the |
|-----------|----------------------------------------------------------------------------|
|           | Little River Watershed                                                     |

| Facility Name | NPDES No. | Flow Limits * (MGD) | Receiving Stream |
|---------------|-----------|---------------------|------------------|
| Laurens STP   | SC0020702 | 0.22                | Little River     |

\* Note: Flow limits are either permit limits or design limits.

Table 3-2Impaired Water Quality Monitoring Stations Draining NPDES Facilities in<br/>the Little River Watershed

| SC0020702 |
|-----------|
| S-038     |
| S-099     |
| S-297     |
| S-305     |

The TMDLs presented in this report were developed using permitted flow and permitted concentrations for fecal coliform bacteria. Limited information was available to determine the survival rate of fecal coliform bacteria discharging from permitted facilities to establish the impact downstream. Therefore, for the purpose of fecal coliform bacteria TMDL development in the Little River watershed, the wasteload for SC0020702 is cumulative for a given drainage area. The estimated existing load and the permitted geometric mean concentration of 200 counts per 100 mL and instantaneous concentration of 400 counts per 100 mL are listed in Table 3-3.

Sewage collection systems typically are placed adjacent to waterways. At these locations, there is a potential for collection system leaks which could result in elevated instream concentrations of fecal coliform bacteria. Sanitary sewer overflows (SSOs) are also a potential source, particularly after periods of intense rainfall. This source is associated with infrequent events, limited in duration and likely to have an insignificant long-term impact instream. Identified collection system and/or SSO problems are addressed by SCDHEC through compliance and enforcement mechanisms. Streams and monitoring sites that have significant collection systems present (based on a GIS analysis) are listed in Table 3-4.

Table 3-3Estimated Existing Fecal Coliform Bacteria Load for the Laurens STP in<br/>the Little River Watershed

| NPDES Facility | Flow (MGD) | Existing<br>Loading<br>(counts/days) | Existing Loading<br>(counts/30days) |  |  |
|----------------|------------|--------------------------------------|-------------------------------------|--|--|
| SC0020702      | 0.22       | 3.33E+09                             | 5.00E+10                            |  |  |

Table 3-4Waterbodies and impaired sites with the presence of collection systems.

| Waterbody    | Impaired Stations |
|--------------|-------------------|
| Little River | S-034, S-297      |
| North Creek  | S-135             |

#### 3.2 Nonpoint Sources

The land use distribution of the Little River watershed provides insight into determining nonpoint sources of fecal coliform bacteria (Figure 1-2). In the watershed, 72 percent of the land area is classified forested land, 11 percent is pastureland, and 9 percent of the area is cropland. Key nonpoint sources identified in the watershed include livestock, manure application, failing septic systems, illicit discharges (including leaking and overflowing sewers), over land contributions from impervious surfaces, and natural sources.

#### 3.2.1 Wildlife

Fecal coliform bacteria are found in forested areas, pastureland, and cropland due to the presence of wild animal sources such as deer, raccoons, wild turkeys and waterfowl. The Department of Natural Resources in South Carolina estimates the deer habitat in the basin at a density of more than 45 deer per square mile (SC Deer Density 2000 map). Deer habitat was assumed to include forests, cropland, and pastures. Wildlife waste is transported over land surfaces during rainfall events or may be directly deposited by animals into streams. The high percentage of permeable surfaces in forested areas increases the infiltration rate over the watershed area. This process ultimately reduces the runoff reaching streams by overland flow and reduces the significance of fecal coliform contributions transported over land.

## 3.2.2 Agricultural Activities and Grazing Animals

Agricultural land can be a source of fecal coliform bacteria. Runoff from grazing pastures, improper land application of animal wastes, livestock operations, and livestock with access to waterbodies are all agricultural sources of fecal coliform bacteria. Agricultural best management practices (BMPs) such as buffer strips, alternative watering sources, limiting livestock access to streams, and the proper land application of animal wastes reduce fecal coliform bacteria loading to waterbodies.

The number of grazing animals in the watershed, shown in Table 3-5, was estimated by area-weighting the 1997 USDA census data over the watershed area aggregated to pastureland for Laurens and Newberry Counties. Livestock, except for dairy cattle, are not usually confined and are typically grazing in pastures where deposited manure is a source of nonpoint pollution. The time that cattle spend in streams is assumed to be 0.15 percent of their total gazing time. Hogs are usually confined. However the number of permitted animals is smaller than indicated by the agricultural census (Table A-4 Appendix A). Horses and ponies are expected to spend the majority of spring, summer, and fall months grazing in pastureland where manure is a source of nonpoint pollution. SC DHEC also permits in the Little River watershed a number of animal feeding operations, which include in addition to swine and dairy cattle, broilers, layers, and turkeys (Table A-4 in Appendix A). The facilities that are in the watershed are permitted to have at any time about 1.7 million birds. Several facilities are outside of the watershed but have one or more fields within the watershed. While not all of the litter produced by these birds is applied to land in this watershed, there are 167 fields permitted for application of litter.

| Animal            | 1997 Census Estimate |
|-------------------|----------------------|
| Beef Cow          | 4055                 |
| Dairy Cow         | 943                  |
| Hog               | 1077                 |
| Sheep             | 27                   |
| Horses and Ponies | 232                  |

| Table 3-5 | 1997 USDA Agricultural Census Data Animal Estimates |
|-----------|-----------------------------------------------------|
|           | 5                                                   |

#### 3.2.3 Failing Septic Systems and Illicit Discharges

Failing septic systems and illegal discharges represent a nonpoint source that can contribute fecal coliform to receiving waterbodies through surface, subsurface malfunctions or direct discharges. Based on 1990 census information, population change from 1990 to 2000, and assuming an average of 2.5 people per household (U.S. Census, 2000), some 9,500 people in the Little River watershed use septic systems. Though the precise failure rate is unknown, Schueler (1999) suggests an average septic failure rate of 20 percent. Many of these areas are also on sewer systems that may leak and/or overflow during rain events contributing significant loads of fecal coliform bacteria directly to streams.

#### 3.2.4 Urban and Impervious Runoff

Runoff from urban areas may be a significant source of fecal coliform bacteria in the Little River watershed. Water quality data collected from streams draining the city of Laurens and the developed area within the watershed near Clinton show existing instream loads of fecal coliform bacteria violating the State's instantaneous standards in greater than 50 percent of samples. Best management practices such as buffer strips and the proper disposal of domestic animal wastes reduce fecal coliform bacteria loading to these water bodies.

## 4.0 TECHNICAL APPROACH – LOAD-DURATION METHOD

Load-duration curves were developed for impaired water quality monitoring stations in the Little River watershed to establish allowable fecal coliform bacteria loads under various hydrologic conditions. The load-duration methodology uses the cumulative frequency distribution of streamflow and pollutant concentration (fecal coliform bacteria) data to estimate the allowable loads for a waterbody. Allowable load-duration curves were established in the basin using the instantaneous concentration of fecal coliform bacteria, minus a five percent margin of safety (MOS), and streamflow measured at various USGS stations in the Little River watershed and surrounding watersheds, as shown in Figure 1-1 and listed in Table 4-1.

| Table 4-1 | USGS Stations Used to Establish Area-Weighted Flows |
|-----------|-----------------------------------------------------|
|-----------|-----------------------------------------------------|

| Site<br>Number | Site Name                           | From       | То         | Drainage Area<br>(mile <sup>2</sup> ) |
|----------------|-------------------------------------|------------|------------|---------------------------------------|
| 02160381       | Durbin Creek above Fountain Inn, SC | 1994-07-06 | 1999-09-30 | 14.5                                  |
| 02160700       | Enoree River at Whitmire, SC        | 1973-10-01 | 2001-09-30 | 444                                   |
| 02167450       | Little River near Silverstreet, SC  | 1990-03-30 | 2001-09-30 | 223.8                                 |

Streamflow data was not available at each impaired water quality monitoring station to develop load-duration curves. Therefore, flows were determined by area-weighted data collected at USGS stations listed in Table 4-1. Data collected at these stations through 2001 were used to develop loading curves. For USGS station 02160381, Durbin Creek above Fountain Inn, South Carolina, where data were not collected from 1990 through 1994 and 1999 through 2001, the program MOVE.1 was used to interpolate streamflow by comparing overlapping records with USGS station 02160700, Enoree River at Whitmire, South Carolina. Statistical analysis from matched stations and technical clarification of the MOVE.1 methods can be found in Appendix D.

Watershed characteristics (including the distribution of land use activities, ecoregions, and topography) for the USGS stations and impaired water quality monitoring sites were compared to associate stations to develop load-duration curves. Ideally streamflow available in the watershed would be used to establish loads for TMDLs but for some stations in the Little River watershed that was not appropriate and an USGS gage outside the watershed was used. The selection of USGS station 02160381 for use in the development of load-duration curves for S-034, S-135, and S-297 was made based on several factors. USGS 02160381 is located on Durbin Creek above Fountain in the Enoree River basin and drains a 14.5 square mile area. The small drainage area, distribution of landuse activates, and ecoregion made USGS 02160381 the most appropriate streamflow station to use in developing load-duration curves the stations listed above. Table 4-2 lists the impaired water quality monitoring stations and associated streamflow stations used to develop area-weighted flow relationships. The location of both USGS and water quality monitoring stations are identified in Figure 1-1.

| Monitoring Station ID | Station       |
|-----------------------|---------------|
| S-034                 | USGS 02160381 |
| S-038                 | USGS 02167450 |
| S-099                 | USGS 02167450 |
| S-135                 | USGS 02160381 |
| S-297                 | USGS 02160381 |
| S-305                 | USGS 02167450 |

 Table 4-2
 USGS Stations and Associated Water Quality Stations

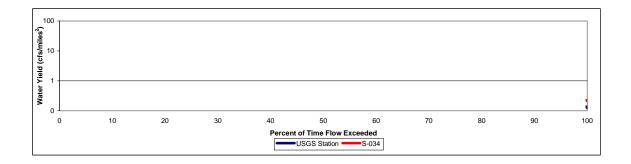



Figure 4-1 Water Yield (cubic feet per second per square mile) Based on Measured Daily Streamflow from USGS station 02160381

After calculating streamflow for each impaired monitoring station the data were ranked to determine the percent of time streamflow was exceeded. The streamflow was then multiplied by a concentration of 380 counts/100 mL (based on the instantaneous concentration and a five percent MOS) to generate a load-duration curve for each impaired station, shown in Figures B-6 through B-7 of Appendix B. The result of the load-duration curve is the TMDL target.

To define the TMDL for each station, an average of the load-duration curve was calculated. The average was calculated using loads at five percent intervals from the 10<sup>th</sup> percentile of flow exceeded to the 90<sup>th</sup> percentile of flow exceeded. Loads occurring at less than the 10<sup>th</sup> percentile of flow exceeded are extreme high flow events and the data collected at greater than the 90<sup>th</sup> percentile of flow exceeded are extreme low flow events and therefore were not considered in developing theses TMDLs. Loads established at intervals and the mean load for each station can be found in Appendix B, Table B-1.

## 5.0 DEVELOPMENT OF TOTAL MAXIMUM DAILY LOAD

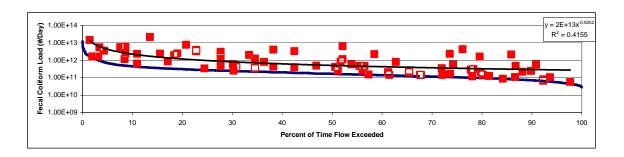
A total maximum daily load (TMDL) for a given pollutant and waterbody is comprised of the sum of individual wasteload allocations (WLAs) for point sources, and load allocations (LAs) for both nonpoint sources and natural background levels. In addition, the TMDL must include a margin of safety (MOS), either implicitly or explicitly, to account for the uncertainty in the relationship between pollutant loads and the quality of the receiving waterbody. Conceptually, this definition is represented by the equation:

$$TMDL = \sum WLAs + \sum LAs + MOS$$

The TMDL is the total amount of a pollutant that can be assimilated by the receiving waterbody while still achieving water quality standards. In TMDL development, allowable loadings from all pollutant sources that cumulatively amount to no more than the TMDL must be established and thereby provide the basis to establish water quality-based controls. For some pollutants, TMDLs are expressed on a mass-loading basis (e.g.,

pounds per day). For bacteria, however, TMDLs can be expressed in terms of organism counts (or resulting concentration), in accordance with 40 CFR 130.2(1).

## 5.1 Critical Conditions


Critical conditions for fecal coliform bacteria in the Little River watershed occur at various flow regimes. The load-duration curve methodology used to establish TMDLs in the watershed considers various hydrologic conditions critical in maintaining water quality standards.

## 5.2 Existing Load

The existing load for each impaired station was established using observed fecal coliform bacteria data and area-weighted streamflow. The measured data occurring at less than the  $10^{th}$  percentile of flow exceeded is an extreme high flow event and the data collected at greater than the 90<sup>th</sup> percentile of flow exceeded is an extreme low flow event and therefore not considered as critical conditions for these TMDLs.

The data violating the instantaneous concentration were isolated and a best-fit trendline was fit to violating data. The power trendline was determined using a best-fit relationship that was most representative of the violating data. The equation representing the trendline was then used to calculate the average violating load that occurred between the 10<sup>th</sup> and 90<sup>th</sup> percentiles, at every fifth percentile. This average load is equal to the existing instream fecal coliform bacteria load at the associated station. The existing nonpoint source load is equal to the existing instream load minus the wasteload from point sources.

Figure 5-1 presents the power best-fit trendline for station S-034, the impaired station on Little River at US-76 Business Route, in Laurens above the STP. Interval loads calculated for existing instream conditions are presented in Table B-2. Power trendlines are presented in Figures B-1 through B-5 of Appendix B. Existing nonpoint loads calculated for each station are listed in Table 5-1.



#### Figure 5-1 Power Trendline Generated from Violating Fecal Coliform Bacteria at S-034

| Table 5-1 | Existing | Loads   | for | Impaired | Water | Quality | Stations | in | the | Little | River |
|-----------|----------|---------|-----|----------|-------|---------|----------|----|-----|--------|-------|
|           | Watersh  | ed (030 | 501 | 09-160)  |       |         |          |    |     |        |       |

| Station<br>ID | Existing<br>Load<br>(counts/day) |
|---------------|----------------------------------|
|               | (counts/uay)                     |
| S-034         | 7.52E+11                         |
| S-038         | 2.74E+12                         |
| S-099         | 1.49E+12                         |
| S-135         | 2.99E+10                         |
| S-297         | 1.01E+12                         |
| S-305         | 1.80E+12                         |

#### 5.3 Existing Wasteload

The existing wasteload was calculated for the NPDES permitted continuous discharge. The facility is assumed to discharge at a permitted flow of 0.22 MGD and permitted limits of fecal coliform bacteria equal to the State criteria for both instantaneous and geometric mean loads. In South Carolina, NPDES permittees that discharge sanitary wastewater must meet the State's criteria for fecal coliform bacteria at the point of discharge (i.e. a daily maximum concentration of 400 counts per 100 mL, and a 30-day geometric mean of 200 counts per 100 mL). Under these permitted concentrations facilities should not be in exceedance of the fecal coliform bacteria water quality criteria, and therefore, not considered to be a major contributing source. If facilities are discharging at greater than permitted concentrations this is an illicit discharge and regulated through the NPDES program. Allowable TMDL wasteloads for impaired stations, as shown in Table 5-2, are equal to load calculated for the facility, if it is within the station's drainage area.

| Table 5-2 | Wasteloads from the NPDES Continuous Discharge to Impaired Water |
|-----------|------------------------------------------------------------------|
|           | Quality Stations in the Little River Watershed (03050109-160)    |

| Station<br>ID | Existing<br>Waste Load<br>Continuous<br>(counts/day) |
|---------------|------------------------------------------------------|
| S-038         | 3.33E+09                                             |
| S-099         | 3.33E+09                                             |
| S-297         | 3.33E+09                                             |
| S-305         | 3.33E+09                                             |

#### 5.4 Margin of Safety

There are two methods for incorporating a margin of safety (MOS) in the analysis: a) by implicitly incorporating the MOS using conservative assumptions to develop allocations; or b) by explicitly specifying a portion of the TMDL as the MOS and using the remainder for allocations. For the Little River watershed TMDLs, both methods were applied to incorporate a MOS. An implicit MOS was incorporated through the use of conservative assumptions in developing the TMDL, such as the use of the design or permitted flow for NPDES facilities and the use of a trendline to establish a total instream load. A five percent explicit MOS was reserved from the water quality criteria in developing the load-duration curves. Specifically, the water quality target was set at 190 counts per 100 mL for the instantaneous criterion, which is five percent lower than the water quality criteria of 200 and 400 counts per 100 mL, respectively.

#### 5.5 Total Maximum Daily Load

The TMDL represents the maximum fecal coliform bacteria load the stream may carry and still meet water quality standards. The TMDL is presented in fecal coliform counts to be protective of both the instantaneous, per day, and geometric mean, per 30-day, criteria. Table 5-3 defines the fecal coliform bacteria total maximum daily load for protection of water quality standards for impaired stations in the Little River watershed.

| Table 5-3 | Total Maximum Daily Loads for Impaired Water Quality Stations in the |
|-----------|----------------------------------------------------------------------|
|           | Little River Watershed (03050109-160)                                |

| Station ID | Existing<br>Waste Load     | TMDL WLA                                | Existing Load | TMDL LA      | MOS          | TMDL <sup>2</sup> | Percent   |
|------------|----------------------------|-----------------------------------------|---------------|--------------|--------------|-------------------|-----------|
| Station ID | Continuous<br>(counts/day) | Continuous <sup>1</sup><br>(counts/day) | (counts/day)  | (counts/day) | (counts/day) | (counts/day)      | Reduction |
| S-034      | NA                         | NA                                      | 7.52E+11      | 1.84E+11     | 1.02E+10     | 1.95E+11          | 74%       |
| S-038      | 3.33E+09                   | 3.33E+09                                | 2.74E+12      | 5.60E+11     | 3.13E+10     | 5.95E+11          | 78%       |
| S-099      | 3.33E+09                   | 3.33E+09                                | 1.49E+12      | 6.76E+11     | 3.78E+10     | 7.18E+11          | 52%       |
| S-135      | NA                         | NA                                      | 2.99E+10      | 8.37E+09     | 4.65E+08     | 8.83E+09          | 70%       |
| S-297      | 3.33E+09                   | 3.33E+09                                | 1.01E+12      | 2.24E+11     | 1.26E+10     | 2.40E+11          | 76%       |
| S-305      | 3.33E+09                   | 3.33E+09                                | 1.80E+12      | 1.04E+12     | 5.80E+10     | 1.10E+12          | 39%       |

Table Notes:

1. Total monthly wasteload cannot exceed 5E+10 #/30 days.

2. TMDLs expressed as monthly load (#/30 days) by station are listed in Table B-1.

## 6.0 IMPLEMENTATION

As discussed in the *Implementation Plan for Achieving Total Maximum Daily Load Reductions From Nonpoint Sources for the State of South Carolina* (SCDHEC,1998), South Carolina has several tools available for implementing this nonpoint source TMDL. Specifically, SCDHEC's animal agriculture permitting program addresses animal operations and land application of animal wastes. In addition, SCDHEC will work with the existing agencies in the area to provide nonpoint source education in the Little River watershed. Local sources of nonpoint source education and assistance include Clemson Extension Service, the Natural Resource Conservation Service (NRCS), the Laurens and Newberry Counties Soil and Water Conservation Service offers a 'Farm-A-Syst' package to farmers. Farm-A-Syst allows the farmer to evaluate practices on their property and determine the nonpoint source impact they may be having. It recommends best management practices (BMPs) to correct nonpoint source problems on the farm. NRCS can provide cost share money to land owners installing BMPs.

SCDHEC is empowered under the State Pollution Control Act to perform investigations of and pursue enforcement for activities and conditions which threaten the quality of waters of the state.

In addition, other interested parties (universities, local watershed groups, etc.) may apply for section 319 grants to install BMPs that will reduce fecal coliform loading to Little River and North Creek. TMDL implementation projects are given highest priority for 319 funding.

In addition to the resources cited above for the implementation of this TMDL in the Little River watershed, Clemson Extension has developed a Home-A-Syst handbook that can help urban or rural homeowners reduce sources of NPS pollution on their property. This document guides homeowners through a self-assessment, including information on proper maintenance practices for septic tanks. SCDHEC also employs a nonpoint source educator who can assist with distribution of these tools as well as provide additional BMP information.

Using existing authorities and mechanisms, these measures will be implemented in the Little River watershed in order to bring about the necessary reductions in fecal coliform bacteria loading to Little River and North Creek. DHEC will continue to monitor, according to the basin monitoring schedule, the effectiveness of implementation measures and evaluate stream water quality as the implementation strategy progresses.

# 7.0 REFERENCES

SC Department of Health and Environmental Control. 1998. Watershed Water Quality Assessment – Saluda River Basin. Technical Report No. 005-98.

SC Department of Health and Environmental Control. 1999. Implementation Plan for Achieving Total Maximum Daily Load Reductions from Nonpoint Sources for the State of South Carolina.

SC Department of Health and Environmental Control. 2002. State of South Carolina Section §303(d) List for 2002. Bureau of Water, SCDHEC.

SC Department of Health and Environmental Control. 2003. Total Maximum Daily Load Development for Allison Creek.

Schueler, T.R. 1987. Controlling Urban Runoff: A Practical Manual for Planning and Designing Urban BMPs. Publ. No. 87703. Metropolitan Washington Council of Governments, Washington, DC.

Schueler, T.R. 1999. Microbes and Urban Watersheds: Concentrations, Sources, and Pathways. Watershed Protection Techniques 3(1):554-565.

US Environmental Protection Agency (USEPA). 1983. Final Report of the Nationwide Urban Runoff Program, Vol 1. Water Planning Division, USEPA, Washington, DC.

US Environmental Protection Agency (USEPA). 1991. Guidance for Water Quality Based Decisions: The TMDL Process. Office of Water, EPA 440/4-91-001.

US Environmental Protection Agency (USEPA). 2001 Protocol for Developing Pathogen TMDLs. First Edition. Office of Water, EPA 841-R-00-002.

US Environmental Protection Agency (USEPA). 2004 Storage and Retrieval (STORET) Database. <u>http://www.epa.gov/storet/</u>. January 2004.

US Geological Survey. 2004. NWIS Web Data for South Carolina. <u>http://waterdata.usgs.gov/sc/nwis/nwis</u>, January 2004.

## APPENDIX A Data

Table A-1Percent of Watershed Area Aggregated by Land Use Class for Areas<br/>Draining to Streamflow and Water Quality Monitoring Stations in the Little<br/>River Watershed

| Monitoring Station ID | Water | Urban | Row Crop | Pasture | Forest | Barren |
|-----------------------|-------|-------|----------|---------|--------|--------|
| S-034                 | 0.4%  | 11.7% | 16.3%    | 14.6%   | 56.4%  | 0.5%   |
| S-038                 | 0.2%  | 6.0%  | 9.9%     | 11.5%   | 70.9%  | 1.5%   |
| S-099                 | 0.2%  | 5.0%  | 9.3%     | 11.6%   | 69.3%  | 4.6%   |
| S-135                 | 0.3%  | 14.4% | 26.9%    | 15.7%   | 42.6%  | 0.1%   |
| S-297                 | 0.4%  | 15.8% | 15.6%    | 12.9%   | 54.9%  | 0.4%   |
| S-305/USGS 02167450   | 0.2%  | 3.3%  | 8.9%     | 11.2%   | 71.9%  | 4.4%   |
| USGS 02160381         | 0.1%  | 14.4% | 17.2%    | 16.7%   | 51.5%  | 0.1%   |

Table A-2Watershed Area in Square Miles Aggregated by Land Use Class for<br/>Areas Draining to Streamflow and Water Quality Monitoring Stations in<br/>the Little River Watershed

| Monitoring Station ID | Water | Urban | Row Crop | Pasture | Forest | Barren | Total |
|-----------------------|-------|-------|----------|---------|--------|--------|-------|
| S-034                 | 0.1   | 2.9   | 4.0      | 3.6     | 14     | 0.1    | 25    |
| S-038                 | 0.3   | 7.2   | 12       | 14      | 86     | 1.8    | 121   |
| S-099                 | 0.4   | 7.2   | 14       | 17      | 101    | 6.7    | 146   |
| S-135                 | 0.0   | 0.2   | 0.3      | 0.2     | 0.5    | 0.0    | 1.1   |
| S-297                 | 0.1   | 4.8   | 4.7      | 3.9     | 17     | 0.1    | 30    |
| S-305/USGS 02167450   | 0.5   | 7.4   | 20       | 25      | 161    | 10     | 224   |
| USGS 02160381         | 0.0   | 2.1   | 2.5      | 2.4     | 7.5    | 0.0    | 15    |

| S-03       | 34    | S-034      |       | S-0        | )34          |
|------------|-------|------------|-------|------------|--------------|
| Date       | Value | Date       | Value | Date       | Value        |
| 1/2/1990   | 230   | 9/9/1993   | 19    | 5/16/1997  | 370          |
| 2/15/1990  | 220   | 10/6/1993  | 35    | 6/26/1997  | 1200         |
| 3/15/1990  | 470   | 11/5/1993  | 1200  | 7/8/1997   | 600          |
| 4/19/1990  | 1400  | 12/9/1993  | 45    | 8/19/1997  | 640          |
| 5/1/1990   | 490   | 1/19/1994  | 120   | 9/4/1997   | 500          |
| 6/4/1990   | 410   | 2/1/1994   | 290   | 10/20/1997 | 440          |
| 7/5/1990   | 1300  | 3/9/1994   | 64    | 11/13/1997 | 1000         |
| 8/1/1990   | 680   | 4/21/1994  | 65    | 1/15/98    | 600          |
| 9/4/1990   | 6500  | 5/27/1994  | 1200  | 3/5/98     | 260          |
| 10/2/1990  | 480   | 6/21/1994  | 120   | 4/23/98    | 140          |
| 11/1/1990  | 130   | 7/6/1994   | 580   | 5/7/98     | 270          |
| 12/3/1990  | 1200  | 8/2/1994   | 87    | 6/30/98    | 390          |
| 1/3/1991   | 180   | 9/6/1994   | 7600  | 7/20/98    | 6000         |
| 2/6/1991   | 320   | 10/12/1994 | 9800  | 8/5/98     | 520          |
| 3/1/1991   | 400   | 11/9/1994  | 640   | 9/1/98     | 390          |
| 4/5/1991   | 2300  | 12/7/1994  | 2200  | 10/29/98   | 160          |
| 5/2/1991   | 330   | 1/26/1995  | 5300  | 11/23/98   | 240          |
| 6/5/1991   | 160   | 2/28/1995  | 22000 | 1/11/1999  | 330          |
| 7/18/1991  | 1400  | 3/17/1995  | 4400  | 2/16/1999  | 200          |
| 8/7/1991   | 2300  | 4/13/1995  | 800   | 3/18/1999  | 71           |
| 9/19/1991  | 960   | 5/3/1995   | 190   | 4/15/1999  | 800          |
| 10/21/1991 | 90    | 6/26/1995  | 2300  | 5/20/1999  | 150          |
| 11/15/1991 | 110   | 7/28/1995  | 3100  | 6/14/1999  | 140          |
| 12/4/1991  | 590   | 8/9/1995   | 820   | 7/7/1999   | 700          |
| 1/10/1992  | 470   | 9/7/1995   | 600   | 8/12/1999  | 120          |
| 2/6/1992   | 150   | 10/12/1995 | 180   | 9/9/1999   | 580          |
| 3/3/1992   | 140   | 11/7/1995  | 2200  | 10/12/1999 | 470          |
| 4/7/1992   | 170   | 12/8/1995  | 270   | 11/2/1999  | 2000         |
| 5/26/1992  | 160   | 1/11/1996  | 630   | 12/14/1999 | 800          |
| 6/4/1992   | 230   | 2/6/1996   | 250   | 1/19/2000  | 220          |
| 7/10/1992  | 40    | 3/21/1996  | 580   | 2/17/2000  | 170          |
| 8/4/1992   | 25    | 4/30/1996  | 4200  | 3/15/2000  |              |
| 9/2/1992   | 8300  | 5/10/1996  | 630   | 4/18/2000  |              |
| 10/5/1992  | 1700  | 6/25/1996  | 1100  | 5/2/2000   |              |
| 11/5/1992  | 900   | 7/24/1996  | 2800  | 6/22/2000  |              |
| 12/4/1992  | 170   | 8/13/1996  | 2000  |            | *Present >QL |
| 1/26/1993  | 180   | 9/10/1996  | 520   | 8/28/2000  |              |
| 2/26/1993  | 280   | 10/8/1996  | 6700  | 9/6/2000   | 450          |
| 3/25/1993  | 3200  | 11/25/1996 | 16000 | 10/23/2000 |              |
| 4/20/1993  | 2600  | 12/4/1996  | 16000 | 11/1/2000  |              |
| 5/26/1993  | 3400  | 1/10/1997  | 4800  | 12/27/2000 | 260          |
| 6/15/1993  | 2000  | 2/3/1997   | 4700  |            |              |
| 7/14/1993  | 1100  | 3/7/1997   | 2100  |            |              |
| 8/3/1993   | 390   | 4/10/1997  | 170   |            |              |

# Table A-3Fecal Coliform Data Collected between 1990 and 2001 at Water Quality<br/>Monitoring Stations in the Little River Watershed

| S-034      |                            |  |
|------------|----------------------------|--|
| Date       | Value                      |  |
| 1/24/2001  | 270                        |  |
| 2/21/2001  | 210                        |  |
| 3/15/2001  | 3000                       |  |
| 4/5/2001   | *Present <ql< td=""></ql<> |  |
| 6/11/2001  | 280                        |  |
| 9/25/2001  | 940                        |  |
| 10/10/2001 | 60                         |  |
| 11/5/2001  | 40                         |  |
| 12/18/2001 | 2300                       |  |

| S-         | 038          |
|------------|--------------|
| Date       | Value        |
| 5/26/1992  | 210          |
| 6/4/1992   | 560          |
| 7/10/1992  | 250          |
| 8/4/1992   | 240          |
| 9/2/1992   | 280          |
| 10/5/1992  | 9200         |
| 12/4/1996  | 590          |
| 2/3/1997   | 150          |
| 3/7/1997   | 260          |
| 4/10/1997  | 100          |
| 5/16/1997  | 150          |
| 6/30/1997  | 230          |
| 7/9/1997   | 200          |
| 8/19/1997  | 350          |
| 9/4/1997   | 280          |
| 10/2/1997  | 190          |
| 11/13/1997 | 600          |
| 01/15/98   | 170          |
| 02/19/98   | 390          |
| 4/25/2000  | *Present >QL |
| 1/16/2001  | 83           |
| 2/14/2001  | 140          |
| 3/6/2001   | 220          |
| 4/2/2001   | 130          |
| 5/2/2001   | 280          |
| 6/5/2001   | 140          |
| 6/5/2001   | 140          |
| 7/9/2001   | 230          |
| 7/9/2001   | 230          |
| 8/23/2001  | 130          |
| 9/12/2001  | 190          |
| 10/16/2001 | 160          |
| 11/15/2001 | 180          |
| 12/10/2001 | 80           |

| S-099      |       |  |  |
|------------|-------|--|--|
| Date       | Value |  |  |
| 5/10/1990  | 2600  |  |  |
| 6/18/1990  | 150   |  |  |
| 7/27/1990  | 120   |  |  |
| 8/24/1990  | 4900  |  |  |
| 9/14/1990  | 510   |  |  |
| 10/4/1990  | 520   |  |  |
| 5/16/1991  | 420   |  |  |
| 6/26/1991  | 180   |  |  |
| 7/19/1991  | 640   |  |  |
| 8/23/1991  | 350   |  |  |
| 9/19/1991  | 190   |  |  |
| 10/3/1991  | 450   |  |  |
| 5/7/1992   | 420   |  |  |
| 6/4/1992   | 480   |  |  |
| 7/21/1992  | 230   |  |  |
| 8/6/1992   | 100   |  |  |
| 9/24/1992  | 1500  |  |  |
| 10/22/1992 | 70    |  |  |
| 6/22/1993  | 160   |  |  |
| 7/27/1993  | 190   |  |  |
| 8/17/1993  | 110   |  |  |
| 9/8/1993   | 220   |  |  |
| 10/20/1993 | 250   |  |  |
| 5/17/1994  | 150   |  |  |
| 6/29/1994  | 3600  |  |  |
| 7/12/1994  | 180   |  |  |
| 8/9/1994   | 180   |  |  |
| 9/26/1994  | 400   |  |  |
| 10/18/1994 | 320   |  |  |
| 5/5/1995   | 250   |  |  |
| 6/26/1995  | 450   |  |  |
| 7/18/1995  | 500   |  |  |
| 8/10/1995  | 230   |  |  |
| 9/26/1995  | 240   |  |  |
| 10/10/1995 | 410   |  |  |
| 5/23/1996  | 110   |  |  |
| 6/12/1996  | 470   |  |  |
| 7/18/1996  | 230   |  |  |
| 8/12/1996  | 700   |  |  |
| 9/23/1996  | 280   |  |  |

| S-099      |       |  |
|------------|-------|--|
| Date       | Value |  |
| 10/15/1996 | 250   |  |
| 5/14/1997  | 230   |  |
| 6/17/1997  | 530   |  |
| 7/9/1997   | 180   |  |
| 8/20/1997  | 310   |  |
| 9/16/1997  | 260   |  |
| 10/15/1997 | 320   |  |
| 05/20/98   | 170   |  |
| 06/02/98   | 570   |  |
| 07/08/98   | 150   |  |
| 08/05/98   | 190   |  |
| 09/01/98   | 300   |  |
| 10/29/98   | 91    |  |
| 5/4/1999   | 80    |  |
| 6/9/1999   | 190   |  |
| 7/19/1999  | 210   |  |
| 8/19/1999  | 130   |  |
| 9/16/1999  | 230   |  |
| 10/4/1999  | 2200  |  |
| 5/1/2000   | 120   |  |
| 6/27/2000  | 220   |  |
| 7/11/2000  | 100   |  |
| 8/2/2000   | 40    |  |
| 9/6/2000   | 130   |  |
| 10/18/2000 | 100   |  |
| 1/16/2001  | 160   |  |
| 2/14/2001  | 130   |  |
| 3/6/2001   | 220   |  |
| 4/2/2001   | 100   |  |
| 5/2/2001   | 110   |  |
| 6/5/2001   | 170   |  |
| 6/5/2001   | 170   |  |
| 7/9/2001   | 170   |  |
| 7/9/2001   | 170   |  |
| 8/23/2001  | 270   |  |
| 9/12/2001  | 130   |  |
| 10/16/2001 | 99    |  |
| 11/27/2001 | 270   |  |
| 12/10/2001 | 65    |  |

| S-         | 135   |
|------------|-------|
| Date       | Value |
| 5/1/1990   | 270   |
| 6/4/1990   | 740   |
| 7/5/1990   | 360   |
| 8/1/1990   | 540   |
| 9/4/1990   | 3600  |
| 10/2/1990  | 380   |
| 5/2/1991   | 75    |
| 6/5/1991   | 2200  |
| 7/18/1991  | 340   |
| 8/7/1991   | 1100  |
| 9/19/1991  | 2100  |
| 10/21/1991 | 310   |
| 5/26/1992  | 210   |
| 6/4/1992   | 310   |
| 7/10/1992  | 3500  |
| 8/4/1992   | 1200  |
| 9/2/1992   | 2400  |
| 10/5/1992  | 1500  |
| 5/26/1993  | 730   |
| 6/15/1993  | 39    |
| 7/14/1993  | 980   |
| 8/3/1993   | 1100  |
| 9/9/1993   | 190   |
| 10/6/1993  | 380   |
| 5/27/1994  | 290   |
| 6/21/1994  | 360   |
| 7/6/1994   | 420   |
| 8/2/1994   | 130   |
| 9/6/1994   | 790   |
| 10/12/1994 | 900   |
| 5/3/1995   | 180   |
| 6/26/1995  | 620   |
| 7/28/1995  | 790   |
| 8/9/1995   | 1400  |
| 9/7/1995   | 1000  |
| 10/12/1995 | 250   |
| 5/10/1996  | 900   |
| 6/25/1996  | 950   |

| S-         | S-135                      |  |  |  |
|------------|----------------------------|--|--|--|
| Date       | Value                      |  |  |  |
| 7/24/1996  | 860                        |  |  |  |
| 9/10/1996  | 420                        |  |  |  |
| 10/8/1996  | 800                        |  |  |  |
| 5/16/1997  | 150                        |  |  |  |
| 6/26/1997  | 350                        |  |  |  |
| 7/8/1997   | 500                        |  |  |  |
| 8/19/1997  | 1000                       |  |  |  |
| 9/4/1997   | 51000                      |  |  |  |
| 10/20/1997 | 160                        |  |  |  |
| 05/07/98   | 170                        |  |  |  |
| 06/30/98   | 180                        |  |  |  |
| 07/20/98   | 340                        |  |  |  |
| 08/05/98   | 450                        |  |  |  |
| 09/01/98   | 2300                       |  |  |  |
| 10/29/98   | 350                        |  |  |  |
| 5/20/1999  | 430                        |  |  |  |
| 6/14/1999  | 150                        |  |  |  |
| 7/7/1999   | 820                        |  |  |  |
| 8/12/1999  | 1500                       |  |  |  |
| 9/9/1999   | 3700                       |  |  |  |
| 10/12/1999 | 1500                       |  |  |  |
| 5/2/2000   | 530                        |  |  |  |
| 6/22/2000  | 940                        |  |  |  |
| 7/31/2000  | *Present >QL               |  |  |  |
| 8/28/2000  | 870                        |  |  |  |
| 9/6/2000   | 350                        |  |  |  |
| 10/23/2000 | 2300                       |  |  |  |
| 1/24/2001  | 1800                       |  |  |  |
| 2/23/2001  | 1100                       |  |  |  |
| 3/15/2001  | 2400                       |  |  |  |
|            | *Present <ql< td=""></ql<> |  |  |  |
| 6/11/2001  | 200                        |  |  |  |
| 7/11/2001  | 360                        |  |  |  |
| 8/23/2001  | 500                        |  |  |  |
| 9/25/2001  | 1900                       |  |  |  |
| 10/10/2001 | 1500                       |  |  |  |
| 11/5/2001  | 820                        |  |  |  |
| 12/18/2001 | 12000                      |  |  |  |

| S-297      |       |  |  |  |  |
|------------|-------|--|--|--|--|
| Date       | Value |  |  |  |  |
| 7/5/1990   | 5000  |  |  |  |  |
| 8/1/1990   | 1300  |  |  |  |  |
| 9/4/1990   | 5400  |  |  |  |  |
| 10/2/1990  | 1200  |  |  |  |  |
| 5/2/1991   | 760   |  |  |  |  |
| 6/5/1991   | 24000 |  |  |  |  |
| 7/18/1991  | 23000 |  |  |  |  |
| 8/7/1991   | 2400  |  |  |  |  |
| 9/19/1991  | 420   |  |  |  |  |
| 10/21/1991 | 160   |  |  |  |  |
| 5/26/1992  | 100   |  |  |  |  |
| 6/4/1992   | 360   |  |  |  |  |
| 7/10/1992  | 210   |  |  |  |  |
| 8/4/1992   | 75    |  |  |  |  |
| 9/2/1992   | 360   |  |  |  |  |
| 10/5/1992  | 3500  |  |  |  |  |
| 5/26/1993  | 1000  |  |  |  |  |
| 6/15/1993  | 2500  |  |  |  |  |
| 7/14/1993  | 310   |  |  |  |  |
| 8/3/1993   | 15000 |  |  |  |  |
| 9/9/1993   | 280   |  |  |  |  |
| 10/6/1993  | 160   |  |  |  |  |
| 5/27/1994  | 700   |  |  |  |  |
| 6/21/1994  | 140   |  |  |  |  |
| 7/6/1994   | 1100  |  |  |  |  |
| 8/2/1994   | 80    |  |  |  |  |
| 9/6/1994   | 5600  |  |  |  |  |
| 10/12/1994 | 2100  |  |  |  |  |
| 5/3/1995   | 240   |  |  |  |  |
| 6/27/1995  | 1800  |  |  |  |  |
| 7/28/1995  | 1100  |  |  |  |  |
| 8/9/1995   | 740   |  |  |  |  |
| 9/7/1995   | 440   |  |  |  |  |
| 10/12/1995 | 220   |  |  |  |  |
| 5/10/1996  | 160   |  |  |  |  |
| 6/25/1996  | 680   |  |  |  |  |
| 7/24/1996  | 1300  |  |  |  |  |

| S-297      |       |  |  |  |  |
|------------|-------|--|--|--|--|
| Date       | Value |  |  |  |  |
| 8/13/1996  | 1600  |  |  |  |  |
| 9/10/1996  | 440   |  |  |  |  |
| 10/8/1996  | 8100  |  |  |  |  |
| 5/16/1997  | 540   |  |  |  |  |
| 6/26/1997  | 380   |  |  |  |  |
| 7/8/1997   | 220   |  |  |  |  |
| 8/19/1997  | 310   |  |  |  |  |
| 9/4/1997   | 520   |  |  |  |  |
| 10/20/1997 | 520   |  |  |  |  |
| 06/30/98   | 270   |  |  |  |  |
| 07/20/98   | 10000 |  |  |  |  |
| 08/05/98   | 280   |  |  |  |  |
| 09/01/98   | 180   |  |  |  |  |
| 10/29/98   | 81    |  |  |  |  |
| 5/20/1999  | 100   |  |  |  |  |
| 6/14/1999  | 270   |  |  |  |  |
| 7/7/1999   | 490   |  |  |  |  |
| 8/12/1999  | 45    |  |  |  |  |
| 9/9/1999   | 160   |  |  |  |  |
| 10/12/1999 | 480   |  |  |  |  |
| 5/2/2000   | 70    |  |  |  |  |
| 6/22/2000  | 950   |  |  |  |  |
| 7/31/2000  | 4200  |  |  |  |  |
| 8/28/2000  | 590   |  |  |  |  |
| 10/23/2000 | 310   |  |  |  |  |
| 1/24/2001  | 180   |  |  |  |  |
| 2/21/2001  | 250   |  |  |  |  |
| 3/15/2001  | 7600  |  |  |  |  |
| 4/5/2001   | 100   |  |  |  |  |
| 6/11/2001  | 700   |  |  |  |  |
| 7/11/2001  | 200   |  |  |  |  |
| 8/23/2001  | 370   |  |  |  |  |
| 9/25/2001  | 1100  |  |  |  |  |
| 10/10/2001 | 600   |  |  |  |  |
| 11/5/2001  | 130   |  |  |  |  |
| 12/18/2001 | 1700  |  |  |  |  |

| S-305      |       |  |  |  |  |  |
|------------|-------|--|--|--|--|--|
| Date       | Value |  |  |  |  |  |
| 5/7/1992   | 580   |  |  |  |  |  |
| 6/4/1992   | 490   |  |  |  |  |  |
| 7/21/1992  | 300   |  |  |  |  |  |
| 8/6/1992   | 380   |  |  |  |  |  |
| 9/24/1992  | 1700  |  |  |  |  |  |
| 10/22/1992 | 110   |  |  |  |  |  |
| 11/14/1996 | 180   |  |  |  |  |  |
| 12/4/1996  | 700   |  |  |  |  |  |
| 1/6/1997   | 430   |  |  |  |  |  |
| 2/25/1997  | 210   |  |  |  |  |  |
| 3/17/1997  | 230   |  |  |  |  |  |
| 4/2/1997   | 130   |  |  |  |  |  |
| 5/14/1997  | 170   |  |  |  |  |  |
| 6/18/1997  | 480   |  |  |  |  |  |
| 7/8/1997   | 190   |  |  |  |  |  |
| 8/20/1997  | 370   |  |  |  |  |  |
| 9/17/1997  | 300   |  |  |  |  |  |
| 10/15/1997 | 390   |  |  |  |  |  |
| 1/10/2001  | 140   |  |  |  |  |  |
| 2/20/2001  | 140   |  |  |  |  |  |
| 3/27/2001  | 100   |  |  |  |  |  |
| 4/16/2001  | 91    |  |  |  |  |  |
| 5/22/2001  | 100   |  |  |  |  |  |
| 6/5/2001   | 250   |  |  |  |  |  |
| 6/5/2001   | 250   |  |  |  |  |  |
| 7/9/2001   | 130   |  |  |  |  |  |
| 7/9/2001   | 130   |  |  |  |  |  |
| 8/23/2001  | 100   |  |  |  |  |  |
| 9/17/2001  | 240   |  |  |  |  |  |
| 10/17/2001 | 120   |  |  |  |  |  |
| 11/15/2001 | 86    |  |  |  |  |  |
| 12/10/2001 | 74    |  |  |  |  |  |

 Table A-4
 Currently DHEC permitted animal feeding operations in the Little River watershed.

| Permit #  | # Type of Animal<br>Livestock Counts |         | # of Fields |
|-----------|--------------------------------------|---------|-------------|
| ND0003387 | Broilers 65000                       |         | 0           |
| ND0006246 | Dairy                                | 275     | 0           |
| ND0006491 | Layers                               | 220000* | 2           |
| ND0008681 | Broilers                             | 61000   | 0           |
| ND0014214 | Dairy                                | 400*    | 1           |
| ND0014991 | Swine                                | 300     | 3           |
| ND0015105 | Dairy                                | 200     | 0           |
| ND0015750 | Dairy                                | 400     | 0           |
| ND0016683 | Broilers                             | 115000* | 1           |
| ND0064173 | Layers                               | 896000  | 19          |
| ND0073156 | Dairy                                | 40      | 0           |
| ND0077909 | Broilers                             | 121000  | 0           |
| ND0078981 | Broilers                             | 16000   | 11          |
| ND0079502 | Turkey                               | 16000   | 7           |
| ND0079511 | Broilers                             | 16000   | 10          |
| ND0079685 | Broilers                             | 16000   | 10          |
| ND0079707 | Broilers                             | 60000   | 12          |
| ND0081469 | Broilers                             | 92000*  | 5           |
| ND0081663 | Broilers                             | 93000*  | 14          |
| ND0081825 | Broilers                             | 93000   | 20          |
| ND0081914 | Broilers                             | 168000  | 21          |
| ND0082465 | Broilers                             | 56000   | 0           |
| ND0082473 | Broilers                             | 114800  | 0           |

Note: \* Animal buildings not in Little River watershed.

APPENDIX B Calculations

#### Table B-1 TMDL Loads

| Station                        | S-034 | Station                        | S-038 | Station                        | S-099 |
|--------------------------------|-------|--------------------------------|-------|--------------------------------|-------|
| Instantaneous Conc. (#/100 ml) | 380   | Instantaneous Conc. (#/100 ml) | 380   | Instantaneous Conc. (#/100 ml) | 380   |
| Geo. Mean Conc. (#/100 ml)     | 190   | Geo. Mean Conc. (#/100 ml)     | 190   | Geo. Mean Conc. (#/100 ml)     | 190   |

| Mean                           | 1.95E+11 | Mean                           | 5.95E+11 | Mean                           | 7.18E+11 |
|--------------------------------|----------|--------------------------------|----------|--------------------------------|----------|
| Allowable Load (#/day)         | 1.95E+11 | Allowable Load (#/day)         | 5.95E+11 | Allowable Load (#/day)         | 7.18E+11 |
| Geometric Mean Load (#/30days) | 2.92E+12 | Geometric Mean Load (#/30days) | 8.93E+12 | Geometric Mean Load (#/30days) | 1.08E+13 |

| Percent Exceedance (%) | Load(#/Day) | Percent Exceedance (%) | Load(#/Day) | Percent Exceedance (%) | Load(#/Day) |
|------------------------|-------------|------------------------|-------------|------------------------|-------------|
| 10                     | 4.45E+11    | 10                     | 1.67E+12    | 10                     | 2.02E+12    |
| 15                     | 3.61E+11    | 15                     | 1.22E+12    | 15                     | 1.48E+12    |
| 20                     | 3.13E+11    | 20                     | 1.01E+12    | 20                     | 1.22E+12    |
| 25                     | 2.67E+11    | 25                     | 8.69E+11    | 25                     | 1.05E+12    |
| 30                     | 2.44E+11    | 30                     | 7.58E+11    | 30                     | 9.14E+11    |
| 35                     | 2.20E+11    | 35                     | 6.68E+11    | 35                     | 8.05E+11    |
| 40                     | 2.04E+11    | 40                     | 5.92E+11    | 40                     | 7.14E+11    |
| 45                     | 1.86E+11    | 45                     | 5.32E+11    | 45                     | 6.42E+11    |
| 50                     | 1.68E+11    | 50                     | 4.77E+11    | 50                     | 5.75E+11    |
| 55                     | 1.54E+11    | 55                     | 4.27E+11    | 55                     | 5.15E+11    |
| 60                     | 1.41E+11    | 60                     | 3.82E+11    | 60                     | 4.60E+11    |
| 65                     | 1.27E+11    | 65                     | 3.41E+11    | 65                     | 4.12E+11    |
| 70                     | 1.16E+11    | 70                     | 3.01E+11    | 70                     | 3.63E+11    |
| 75                     | 1.06E+11    | 75                     | 2.66E+11    | 75                     | 3.21E+11    |
| 80                     | 9.59E+10    | 80                     | 2.36E+11    | 80                     | 2.85E+11    |
| 85                     | 8.49E+10    | 85                     | 1.96E+11    | 85                     | 2.36E+11    |
| 90                     | 7.11E+10    | 90                     | 1.61E+11    | 90                     | 1.94E+11    |

| Station                        | S-135 | Station                        | S-297 | Station                        | S-305 |
|--------------------------------|-------|--------------------------------|-------|--------------------------------|-------|
| Instantaneous Conc. (#/100 ml) | 380   | Instantaneous Conc. (#/100 ml) | 380   | Instantaneous Conc. (#/100 ml) | 380   |
| Geo. Mean Conc. (#/100 ml)     | 190   | Geo. Mean Conc. (#/100 ml)     | 190   | Geo. Mean Conc. (#/100 ml)     | 190   |

| Mean                           | 8.83E+09 | Mean                           | 2.40E+11 | Mean                           | 1.10E+12 |
|--------------------------------|----------|--------------------------------|----------|--------------------------------|----------|
| Allowable Load (#/day)         | 8.83E+09 | Allowable Load (#/day)         | 2.40E+11 | Allowable Load (#/day)         | 1.10E+12 |
| Geometric Mean Load (#/30days) | 1.33E+11 | Geometric Mean Load (#/30days) | 3.60E+12 | Geometric Mean Load (#/30days) | 1.65E+13 |

| Percent Exceedance (%) | Load(#/Day) | Percent Exceedance (%) | Load(#/Day) | Percent Exceedance (%) | Load(#/Day) |
|------------------------|-------------|------------------------|-------------|------------------------|-------------|
| 10                     | 2.02E+10    | 10                     | 5.49E+11    | 10                     | 3.10E+12    |
| 15                     | 1.64E+10    | 15                     | 4.46E+11    | 15                     | 2.27E+12    |
| 20                     | 1.42E+10    | 20                     | 3.86E+11    | 20                     | 1.88E+12    |
| 25                     | 1.21E+10    | 25                     | 3.29E+11    | 25                     | 1.61E+12    |
| 30                     | 1.11E+10    | 30                     | 3.01E+11    | 30                     | 1.40E+12    |
| 35                     | 9.99E+09    | 35                     | 2.71E+11    | 35                     | 1.24E+12    |
| 40                     | 9.28E+09    | 40                     | 2.52E+11    | 40                     | 1.10E+12    |
| 45                     | 8.45E+09    | 45                     | 2.30E+11    | 45                     | 9.85E+11    |
| 50                     | 7.64E+09    | 50                     | 2.08E+11    | 50                     | 8.83E+11    |
| 55                     | 6.99E+09    | 55                     | 1.90E+11    | 55                     | 7.90E+11    |
| 60                     | 6.41E+09    | 60                     | 1.74E+11    | 60                     | 7.07E+11    |
| 65                     | 5.78E+09    | 65                     | 1.57E+11    | 65                     | 6.32E+11    |
| 70                     | 5.28E+09    | 70                     | 1.43E+11    | 70                     | 5.58E+11    |
| 75                     | 4.83E+09    | 75                     | 1.31E+11    | 75                     | 4.93E+11    |
| 80                     | 4.35E+09    | 80                     | 1.18E+11    | 80                     | 4.37E+11    |
| 85                     | 3.85E+09    | 85                     | 1.05E+11    | 85                     | 3.63E+11    |
| 90                     | 3.23E+09    | 90                     | 8.77E+10    | 90                     | 2.97E+11    |

## Table B-2 Existing Loads

|                               | Station      | S-034       |  |  |  |  |
|-------------------------------|--------------|-------------|--|--|--|--|
| Trend Line:                   |              | Power       |  |  |  |  |
| Equation: y=2E+13*x^(-0.9252) |              |             |  |  |  |  |
|                               |              |             |  |  |  |  |
| Existing Load (#/Day):        |              | 7.52E+11    |  |  |  |  |
| Average (#/Day):              |              | 7.52E+11    |  |  |  |  |
|                               |              |             |  |  |  |  |
| Percent Exceedance            | <b>)</b> (%) | Load(#/Day) |  |  |  |  |
| 10                            |              | 2.38E+12    |  |  |  |  |
| 15                            |              | 1.63E+12    |  |  |  |  |
| 20                            |              | 1.25E+12    |  |  |  |  |
| 25                            |              | 1.02E+12    |  |  |  |  |
| 30                            |              | 8.60E+11    |  |  |  |  |
| 35                            |              | 7.46E+11    |  |  |  |  |
| 40                            |              | 6.59E+11    |  |  |  |  |
| 45                            |              | 5.91E+11    |  |  |  |  |
| 50                            |              | 5.36E+11    |  |  |  |  |
| 55                            |              | 4.91E+11    |  |  |  |  |
| 60                            |              | 4.53E+11    |  |  |  |  |
| 65                            |              | 4.20E+11    |  |  |  |  |
| 70                            |              | 3.93E+11    |  |  |  |  |
| 75                            |              | 3.68E+11    |  |  |  |  |
| 80                            |              | 3.47E+11    |  |  |  |  |
| 85                            |              | 3.28E+11    |  |  |  |  |
| 90                            |              | 3.11E+11    |  |  |  |  |

|                               | Station | S-038 |  |  |
|-------------------------------|---------|-------|--|--|
| Trend Line:                   |         | Power |  |  |
| Equation: y=8E+12*x^(-0.2907) |         |       |  |  |

| Existing Load (#/Day): | 2.74E+12 |
|------------------------|----------|
| Average (#/Day):       | 2.74E+12 |

| Percent Exceedance(%) | Load(#/Day) |
|-----------------------|-------------|
| 10                    | 4.10E+12    |
| 15                    | 3.64E+12    |
| 20                    | 3.35E+12    |
| 25                    | 3.14E+12    |
| 30                    | 2.98E+12    |
| 35                    | 2.85E+12    |
| 40                    | 2.74E+12    |
| 45                    | 2.65E+12    |
| 50                    | 2.57E+12    |
| 55                    | 2.50E+12    |
| 60                    | 2.43E+12    |
| 65                    | 2.38E+12    |
| 70                    | 2.33E+12    |
| 75                    | 2.28E+12    |
| 80                    | 2.24E+12    |
| 85                    | 2.20E+12    |
| 90                    | 2.16E+12    |

| Station                       | S-099 |
|-------------------------------|-------|
| Trend Line:                   | Power |
| Equation: y=2E+14*x^(-1.4307) |       |

| Existing Load (#/Day): | 1.49E+12 |
|------------------------|----------|
| Average (#/Day):       | 1.49E+12 |

| Percent Exceedance(%) | Load(#/Day) |
|-----------------------|-------------|
| 10                    | 7.42E+12    |
| 15                    | 4.15E+12    |
| 20                    | 2.75E+12    |
| 25                    | 2.00E+12    |
| 30                    | 1.54E+12    |
| 35                    | 1.24E+12    |
| 40                    | 1.02E+12    |
| 45                    | 8.63E+11    |
| 50                    | 7.42E+11    |
| 55                    | 6.47E+11    |
| 60                    | 5.72E+11    |
| 65                    | 5.10E+11    |
| 70                    | 4.58E+11    |
| 75                    | 4.15E+11    |
| 80                    | 3.79E+11    |
| 85                    | 3.47E+11    |
| 90                    | 3.20E+11    |

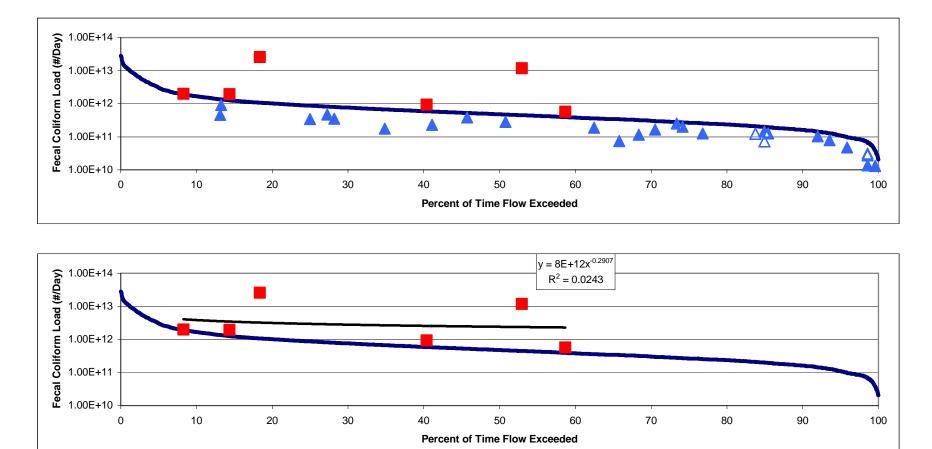
|                        | Station  | S-135 |
|------------------------|----------|-------|
| Trend Line:            |          | Power |
| Equation: y=6E+11*x^(- | -0.8405) |       |

| Existing Load (#/Day): | 2.99E+10 |
|------------------------|----------|
| Average (#/Day):       | 2.99E+10 |

| Percent Exceedance(%) | Load(#/Day) |
|-----------------------|-------------|
| 10                    | 8.66E+10    |
| 15                    | 6.16E+10    |
| 20                    | 4.84E+10    |
| 25                    | 4.01E+10    |
| 30                    | 3.44E+10    |
| 35                    | 3.02E+10    |
| 40                    | 2.70E+10    |
| 45                    | 2.45E+10    |
| 50                    | 2.24E+10    |
| 55                    | 2.07E+10    |
| 60                    | 1.92E+10    |
| 65                    | 1.80E+10    |
| 70                    | 1.69E+10    |
| 75                    | 1.59E+10    |
| 80                    | 1.51E+10    |
| 85                    | 1.43E+10    |
| 90                    | 1.37E+10    |

| Stati                         | ion S-297 |  |
|-------------------------------|-----------|--|
| Trend Line:                   | Power     |  |
| Equation: y=2E+13*x^(-0.8367) |           |  |

| Existing Load (#/Day): | 1.01E+12 |
|------------------------|----------|
| Average (#/Day):       | 1.01E+12 |


| Percent Exceedance(%) | Load(#/Day) |
|-----------------------|-------------|
| 10                    | 2.91E+12    |
| 15                    | 2.07E+12    |
| 20                    | 1.63E+12    |
| 25                    | 1.35E+12    |
| 30                    | 1.16E+12    |
| 35                    | 1.02E+12    |
| 40                    | 9.13E+11    |
| 45                    | 8.28E+11    |
| 50                    | 7.58E+11    |
| 55                    | 7.00E+11    |
| 60                    | 6.51E+11    |
| 65                    | 6.08E+11    |
| 70                    | 5.72E+11    |
| 75                    | 5.40E+11    |
| 80                    | 5.11E+11    |
| 85                    | 4.86E+11    |
| 90                    | 4.63E+11    |

| Station                       | <b>S-305</b> |
|-------------------------------|--------------|
| Trend Line:                   | Power        |
| Equation: y=4E+13*x^(-0.8718) |              |

| Existing Load (#/Day): | 1.80E+12 |
|------------------------|----------|
| Average (#/Day):       | 1.80E+12 |

| Percent Exceedance(%) | Load(#/Day) |
|-----------------------|-------------|
| 10                    | 5.37E+12    |
| 15                    | 3.77E+12    |
| 20                    | 2.94E+12    |
| 25                    | 2.42E+12    |
| 30                    | 2.06E+12    |
| 35                    | 1.80E+12    |
| 40                    | 1.60E+12    |
| 45                    | 1.45E+12    |
| 50                    | 1.32E+12    |
| 55                    | 1.22E+12    |
| 60                    | 1.13E+12    |
| 65                    | 1.05E+12    |
| 70                    | 9.85E+11    |
| 75                    | 9.28E+11    |
| 80                    | 8.77E+11    |
| 85                    | 8.32E+11    |
| 90                    | 7.91E+11    |

Figure B-1 Load Duration Curve with All Measured Data and Power Trend Line Generated from Violating Fecal Coliform Bacteria Measured at S-038



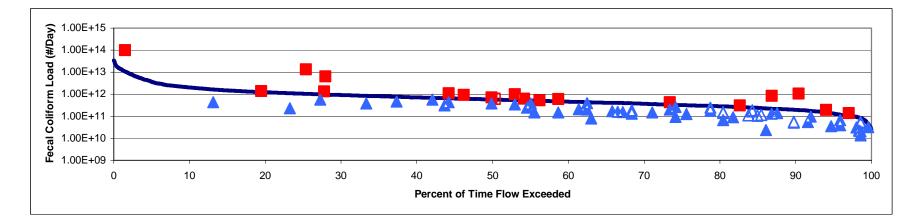
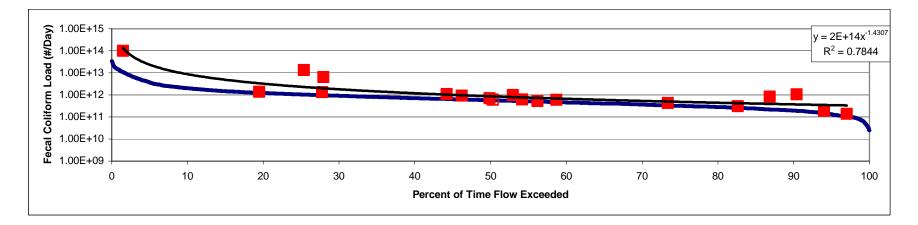
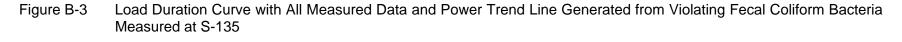
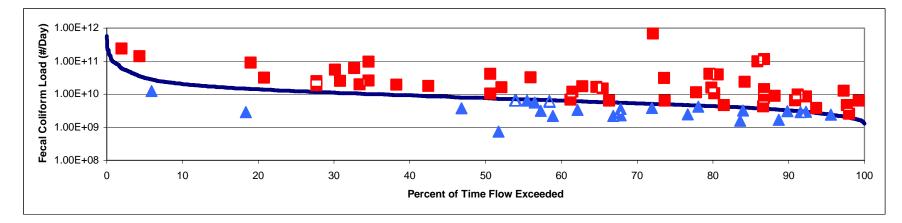






Figure B-2 Load Duration Curve with All Measured Data and Power Trend Line Generated from Violating Fecal Coliform Bacteria Measured at S-099







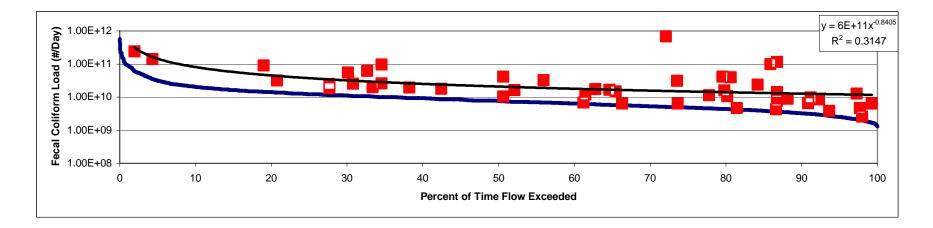
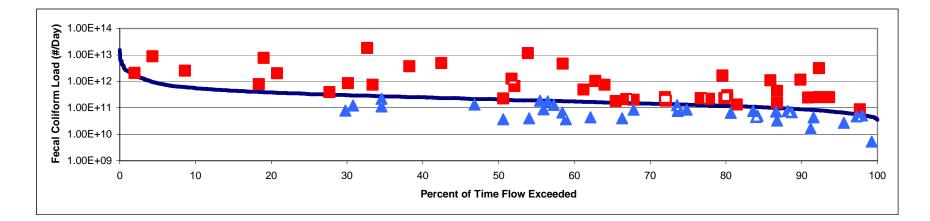
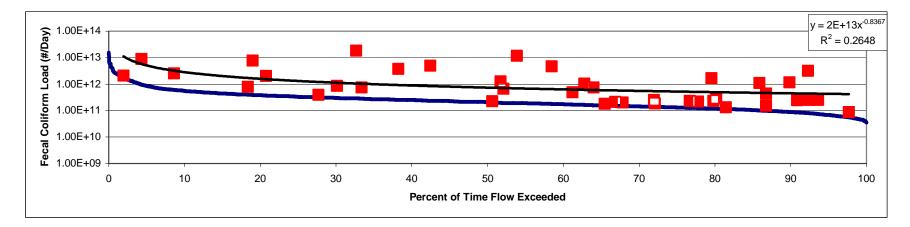





Figure B-4 Load Duration Curve with All Measured Data and Power Trend Line Generated from Violating Fecal Coliform Bacteria Measured at S-297





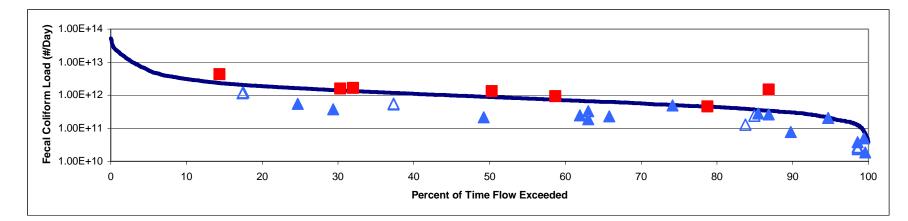
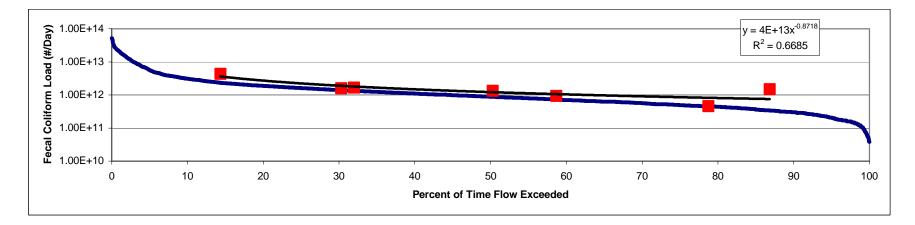
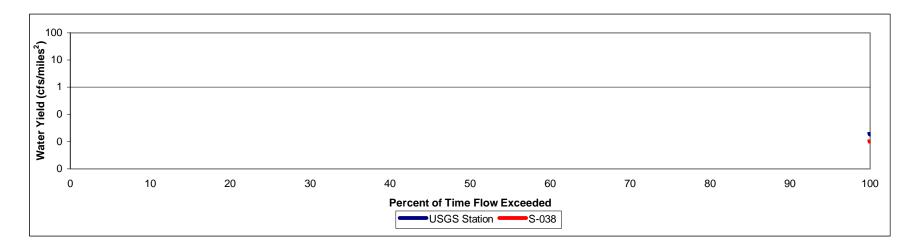
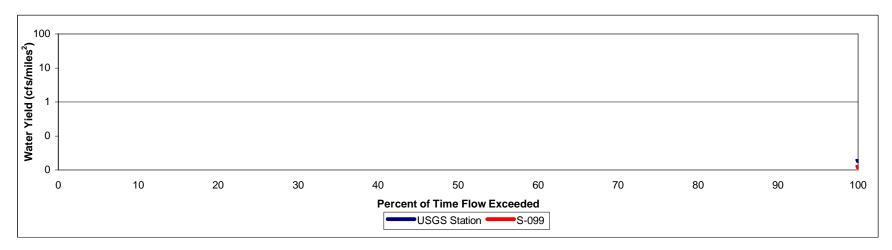
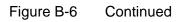
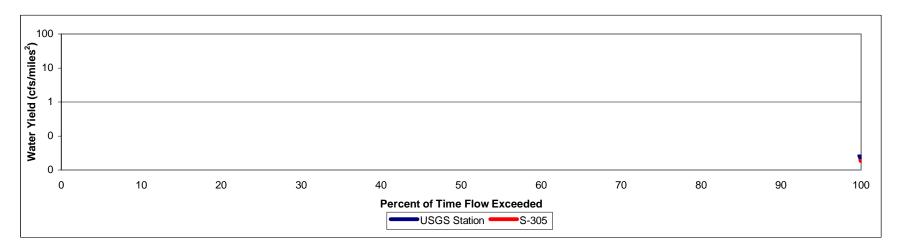
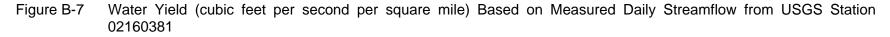
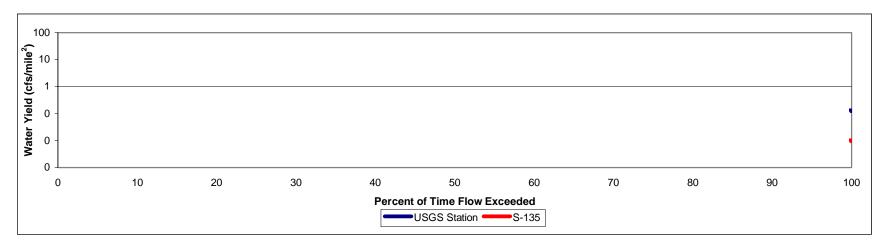
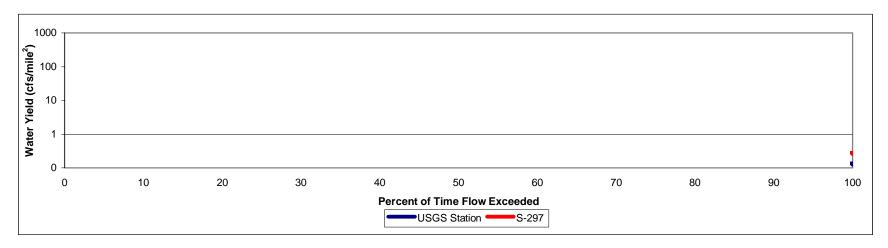



Figure B-5 Load Duration Curve with All Measured Data and Power Trend Line Generated from Violating Fecal Coliform Bacteria Measured at S-305



Figure B-6 Water Yield (cubic feet per second per square mile) Based on Measured Daily Streamflow from USGS Station 02167450














## APPENDIX C Public Notification

PUBLIC NOTICE

U.S. Environmental Protection Agency, Region 4 Water Management Division 61 Forsyth Street, S.W. Atlanta, GA 30303-8960

#### NOTICE OF AVAILABILITY TOTAL MAXIMUM DAILY LOADS (TMDLS) FOR WATERS AND POLLUTANTS IN THE STATE OF SOUTH CAROLINA

Section 303(d)(1)(C) of the Clean Water Act (CWA), 33 U.S.C. §1313(d)(1)(C), and the U.S. Environmental Protection Agency's implementing regulation, 40 CFR §130.7(c)(1), require the establishment of Total Maximum Daily Loads (TMDLs) for waters identified by states as not meeting water quality standards under authority of §303(d)(1)(A) of the CWA. These TMDLs are to be established at levels necessary to implement applicable water quality standards with seasonal variations and a margin of safety, accounting for lack of knowledge concerning the relationship between pollutant loading and water quality.

The waterbody impairments on South Carolina's 303(d) list that will be addressed by the TMDLs are listed below. These impaired waterbodies are located in the Saluda Basin in Laurens and Newberry Counties.

| Waterbody Name                                                    | Station ID | §303(d) List Pollutants |  |
|-------------------------------------------------------------------|------------|-------------------------|--|
| Little River at US 76 Business<br>Route, in Laurens above the STP | S-034      | Fecal Coliform Bacteria |  |
| Little River at SC 560                                            | S-038      | Fecal Coliform Bacteria |  |
| Little River at S-36-22 8.8 mi NW of Silverstreet, SC             | S-099      | Fecal Coliform Bacteria |  |
| Little River at SC Rt 126                                         | S-297      | Fecal Coliform Bacteria |  |
| Little River at SC 34                                             | S-305      | Fecal Coliform Bacteria |  |
| North Creek at Jct w/ US 76 2.8 mi<br>W of Clinton, SC            | S-135      | Fecal Coliform Bacteria |  |

Persons wishing to comment on the proposed TMDLs or to offer new data or information regarding the proposed TMDLs are invited to submit the same in writing no later than

August 16, 2004 to the U.S. Environmental Protection Agency, Region 4, Water Management Division, 61 Forsyth Street, S.W., Atlanta, Georgia 30303-8960, ATTENTION: Ms. Sibyl Cole, Standards, Monitoring, and TMDL Branch.

A copy of the proposed TMDLs can be obtained through the Internet or by contacting Ms. Cole at (404) 562-9437 or via electronic mail at <u>cole.sibyl@epa.gov</u>. The URL address for the proposed TMDLs is:

http://www.epa.gov/region4/water/tmdl/tennessee/index.htm#sc.

The proposed TMDLs and supporting documents, including technical information, data, and analyses, may be reviewed at 61 Forsyth Street, S.W., Atlanta, Georgia, between the hours of 8 AM and 4:30 PM, Monday through Friday. Persons wishing to review this information should contact Ms. Cole to schedule a time for that review.

http://www.epa.gov/region

/s/

James D. Giattina, Director Water Management Division Region 4 U.S. Environmental Protection Agency

Date

### NO COMMENT RECEIVED

## APPENDIX D MOVE.1

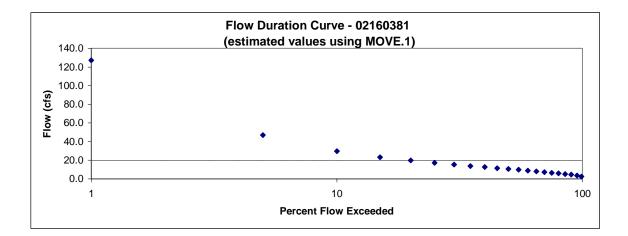
### **Constructing Flow Curves Using MOVE.1**

The concept of record extension is to transfer the characteristics of distribution shape, serial correlation, and seasonality from the base station to the short-record station with adjustments of location and scale appropriate to the short-record station. MOVE.1 is a statistical technique developed by the USGS (Hirsch, 1982) for extending discharge records at partial or discontinued gages using continuous records at a base station having a common period of record as the partial station. Record extension is based on the following equation:

 $Y(i) = m(y_1) + (S(y_1)/S(x_1))(x(i) - m(x_1))$  Equation 1

Where: Y = discharge at partial record station on particular date

 $m(y_1) =$  mean value at partial record station  $S(y_1) =$  standard deviation of discharge record at partial station  $S(x_1) =$  standard deviation of discharge record at continuous station X(i) = discharge at continuous gage on a particular date  $m(x_1) =$  mean value at continuous record station


Application of the MOVE.1 technique is explained below; however, for more information on the derivation of the equations used in the analysis, please refer to Hirsch (1982).

The record extension procedure can be easily performed in a spreadsheet, such as Excel, having the "analysis toolpak" feature loaded as an add-in program. In Excel, the "descriptive statistic" feature in the "analysis toolpak" is used to compute the complex statistical parameters described in Equation 1. The first step in utilizing MOVE.1 is to compute the logarithms of the discharges at each gage during the concurrent time period. By selecting the "descriptive statistic" feature from the data analysis menu (in Excel, this is located under the "tools" menu bar), and highlighting the cells containing the logarithms of the discharges at both the partial and continuous record stations, the summary statistics used in Equation 1 can be calculated. Flows at other time periods at the partial record station can be estimated by using Equation 1, the summary statistics from the analysis toolpak, and flow at the continuous record station.

A partial flow record is available for Durbin Creek above Fountain Inn, SC at USGS station 02160381. MOVE.1 was used to establish the missing period of record between 1990 and 1994, 1999 and 2001 for the purpose of developing loads for water quality samples. The partial station was matched with a USGS station with complete records. The USGS station 02160700 on the Enoree River at Whitmire was used to extend the record at USGS station 02160381. The concurrent time period for each pair was used in the MOVE.1 analysis. Statistical parameters derived from the MOVE.1 analysis are shown in Table D-1. The resulting flow duration curve is presented in Figure D-1.

# Table D-1Statistical Parameters Derived from the MOVE.1 Analysis Comparing<br/>USGS 02160700 and USGS 02160381

| log 02160700                 |                        | log 02160381       |             |
|------------------------------|------------------------|--------------------|-------------|
| Mean                         | 2.629557732            | Mean               | 1.089851515 |
| Standard Error               | 0.007203046            | Standard Error     | 0.007492697 |
| Median                       | 2.597695186            | Median             | 1.079181246 |
| Mode                         | 2.519827994            | Mode               | 1.041392685 |
| Standard Deviation           | 0.315045783            | Standard Deviation | 0.3277145   |
| Sample Variance              | 0.099253845            | Sample Variance    | 0.107396793 |
| Kurtosis                     | 2.03035589             | Kurtosis           | 3.07531938  |
| Skewness                     | 0.933766112            | Skewness           | 0.945977257 |
| Range                        | 2.447540838            | Range              | 2.647817482 |
| Minimum                      | 1.908485019            | Minimum            | 0.255272505 |
| Maximum                      | 4.356025857            | Maximum            | 2.903089987 |
| Sum                          | 5030.343942            | Sum                | 2084.885948 |
| Count                        | 1913                   | Count              | 1913        |
| Standard Deviation Y / Stand | ard Deviation X = 1.04 |                    |             |



# Figure D-1 Flow Duration Curve for the Durbin Creek above Fountain Inn, SC USGS 02160381 (Estimated Using MOVE.1)