

AVX Corporation

FEASIBILITY STUDY

Operable Unit 1 Myrtle Beach, South Carolina

April 2019

FEASIBILITY STUDY

Operable Unit 1
Myrtle Beach, South Carolina

Prepared for:

AVX Corporation

Prepared by:

Arcadis U.S., Inc.

6041 Wallace Road Extension

Suite 300

Wexford

Pennsylvania 15090

Tel 724 742 9180

Fax 724 742 9189

Our Ref.:

B0007393.0002

Date:

April 2019

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

Mark B. Hanish Project Manager

William B. Popham Senior Vice President

Willian & Forder

Thomas H. Darby II P.G.

Thomas H. Darby, II, P.G. License Number 2537 Senior Hydrogeologist

CONTENTS

Ac	ronyn	ns and	Abbreviations	V			
1	Introduction						
	1.1	1.1 Purpose					
	1.2	Repor	rt Organization	2			
2	Cur	rent Co	onditions	3			
	2.1	Backg	ground	3			
		2.1.1 Operable Unit 1 Description					
		2.1.2 Environmental History					
	2.2	Curre	nt Conceptual Site Model	6			
		2.2.1	Topography and Drainage	6			
		2.2.2	Hydrostratigraphic Framework	7			
		2.2.3	Groundwater Flow	8			
		2.2.4	Mass Distribution	8			
	2.		2.4.1 Source Area – Vadose Zone	9			
		2.2	2.4.2 Source Area – Saturated Zone	10			
		2.2	2.4.3 Dissolved-Phase Area (Downgradient)	11			
	2.3	Sumn	nary of Human Health Risk Assessment	11			
3	Basis for Remediation						
	3.1	Applicable or Relevant and Appropriate Requirements					
		3.1.1	Chemical-Specific Applicable or Relevant and Appropriate Requirements	14			
		3.1.2	Location-Specific Applicable or Relevant and Appropriate Requirements	14			
		3.1.3	Action-Specific Applicable or Relevant and Appropriate Requirements	15			
	3.2 Development of Re		lopment of Remedial Action Objectives	15			
		3.2.1	Soil (Source Area Vadose Zone)	15			
		3.2.2	Groundwater (Source Area Saturated Zone and Dissolved-Phase Area)	16			
	3.3	Gene	ral Response Actions	16			
		3.3.1	Source Area Vadose Zone	16			
		3.3.2	Source Area Saturated Zone	16			
		3.3.3	Dissolved-Phase Area (Downgradient)	17			

4	lder	ntification and Screening of Applicable Technologies1					
5	Development of Remedial Action Alternatives						
	5.1 Source Area Vadose Zone						
		5.1.1	Remedial Action Alternative Process Options/Technologies	19			
		5.1.2	Remedial Action Alternatives for Source Area Vadose Zone	19			
	5.2	Sourc	e Area Saturated Zone	20			
		5.2.1	Remedial Action Process Options/Technologies	20			
		5.2.2	Remedial Action Alternatives for Source Area Saturated Zone	20			
	5.3	Down	gradient Dissolved-Phase Area	21			
		5.3.1	Remedial Action Process Options/Technologies	21			
		5.3.2	Remedial Action Alternatives for Downgradient Dissolved-Phase Area	21			
6	Remedial Action Alternatives Screening Process						
	6.1	Additi	onal Screening of Remedial Action Alternatives	22			
	6.2	Reme	dial Alternative Descriptions	23			
		6.2.1	Alternative 1: No Further Action	24			
		6.2.2	Alternative 2: Excavation + Enhanced Reductive Dechlorination	24			
		6.2.3	Alternative 3: Excavation + Pumping and Treatment	24			
		6.2.4	Alternative 4: Excavation + Dynamic Groundwater Recirculation	25			
		6.2.5	Alternative 5: In-Situ Thermal Treatment + Enhanced Reductive Dechlorination	26			
		6.2.6	Alternative 6: In-Situ Thermal Treatment + Dynamic Groundwater Recirculation	27			
7	Deta	ailed Ev	valuation of Assembled Remedial Action Alternatives	29			
8	Comparative Analysis of Operable Unit 1-Assembled REMEDIAL Action Alternatives						
	8.1 Overall Protection of Human Health and the Environment						
	8.2	3.2 Compliance with Applicable or Relevant and Appropriate Requirements					
	8.3	3 Long-Term Effectiveness and Permanence					
	8.4	4 Reduction of Mobility, Toxicity, or Volume					
	8.5	3.5 Short-Term Effectiveness					
	8.6	3.6 Implementability					
	8.7	Cost		34			
	8.8	Comp	arative Analysis Summary	35			
a	Dof	oronco	.	27			

TABLES

Table 3-1	Chemical-Specific ARARs, Criteria, Advisories, and Guidance
Table 3-2	Location-Specific ARARs, Criteria, Advisories, and Guidance
Table 3-3	Action-Specific ARARs, Criteria, Advisories, and Guidance
Table 3-4	Remediation Goals Summary
Table 4-1	Initial Screening of Potentially Applicable Technologies and Process Options for the Source Area Vadose Zone
Table 4-2	Initial Screening of Potentially Applicable Technologies and Process Options for the Source Area Saturated Zone
Table 4-3	Initial Screening of Potentially Applicable Technologies and Process Options for Dissolved-Phase Area (Downgradient)
Table 5-1	Secondary Screening of Potentially Applicable Technologies and Process Options for the Source Area Vadose Zone
Table 5-2	Secondary Screening of Potentially Applicable Technologies and Process Options for the Source Area Saturated Zone
Table 5-3	Secondary Screening of Potentially Applicable Technologies and Process Options for the Dissolved-Phase Area (Downgradient)
Table 6-1	Screening of Remedial Alternative 1: No Further Action
Table 6-2	Screening of Remedial Alternative 2: Excavation + Enhanced Reductive Dechlorination
Table 6-3	Screening of Remedial Alternative 3: Excavation + Pumping and Treatment
Table 6-4	Screening of Remedial Alternative 4: Excavation + Dynamic Groundwater Recirculation
Table 6-5	Screening of Remedial Alternative 5: In-Situ Thermal Treatment + Enhanced Reductive Dechlorination
Table 6-6	Screening of Remedial Alternative 6: In-Situ Thermal Treatment + Dynamic Groundwater Recirculation
Table 7-1	Summary of Detailed and Comparative Analysis of Remedial Alternatives

FIGURES

Figure 1-1	Site Location
------------	---------------

Figure 1-2 AVX-Owned Properties

Figure 1-3 OU-1 Layout and Demolition History

Figure 2-1	Vadose Zone Source Areas
Figure 2-2	Saturated Zone Source Area and Downgradient Dissolved-Phase Area – Upper Terrace Deposits
Figure 2-3	Saturated Zone Source Area and Downgradient Dissolved-Phase Area – Lower Terrace Deposits
Figure 6-1	Remedial Component Options and Assembly of Options into Remedial Alternatives

APPENDICES

Appendix A Figure Set from November 2016 Feasibility Study Investigation Report

Appendix B Human Health Risk Assessment for Operable Unit 1

Appendix C Costing Details

ACRONYMS AND ABBREVIATIONS

1,1,1-TCA 1,1,1-trichloroethane

Arcadis U.S., Inc.

ARAR applicable or relevant and appropriate requirement

AST aboveground storage tank

AVX AVX Corporation

bgs below ground surface

CERCLA Comprehensive Environmental Response, Compensation and Liability Act

CFR Code of Federal Regulations

COPC constituents of potential concern

CPT cone penetrometer testing

CSM conceptual site model

CVOC chlorinated volatile organic compound

ELCR excess lifetime cancer risk

ERD enhanced reductive dichlorination

ERH electrical resistance heating

EVS Environmental Visualization Software

FS Feasibility Study

FS-OU1 Feasibility Study for Operable Unit 1

FSI Feasibility Study Investigation

FSIR Feasibility Study Investigation Report

FSWP Feasibility Study Work Plan

HHRA Human Health Risk Assessment

HI hazard index

HPT hydraulic profiling tool

HQ hazard quotient

MCL maximum contaminant level

mg/kg milligrams per kilogram

MNA monitored natural attenuation

NCP National Contingency Plan

NFA no further action

NPDES National Pollutant Discharge Elimination System

O&M operation and maintenance

OU-1 Operable Unit 1
OU-2 Operable Unit 2

PELCR potential excess lifetime cancer risk

PID photoionization detector

RAO remedial action objective

RSL Regional Screening Level

SCDHEC South Carolina Department of Health and Environmental Control

SEE steam enhanced extraction

site the portion of the AVX facility referred to as AVX MB1 and located on 17th Avenue

South in the City of Myrtle Beach, Horry County, South Carolina

SVE soil vapor extraction

TBC to be considered
TCE trichloroethene

USEPA United States Environmental Protection Agency

UST underground storage tank
VAP vertical aquifer profiling

VOC volatile organic compound

WCSS whole core soil sampling

1 INTRODUCTION

On behalf of AVX Corporation (AVX), Arcadis U.S., Inc. (Arcadis) has prepared this *Feasibility Study for Operable Unit 1* (FS-OU1) to document the evaluation of remedial alternatives for soil and groundwater within the footprint of the AVX facility (sometimes referred to as AVX MB1 or the "site"), located at 2200 AVX (formerly 801 17th Avenue South) located in Myrtle Beach, South Carolina (**Figures 1-1 and 1-2**). Following October 2010 discussions with representatives from the South Carolina Department of Health and Environmental Control (SCDHEC), the onsite and offsite areas were split into two operable units, including Operable Unit 1 (OU-1) for onsite media and Operable Unit 2 (OU-2) for offsite media. The onsite area specifically included the older portion of the operations and surrounding land, which has historically been referred to as the "site". OU-2 represents the offsite areas northeast of 17th Avenue South between OU-1 and Withers Swash. This split into two operable units was performed because:

- Anticipated changes in the OU-1 building use/configuration was expected to allow for evaluation and
 potential selection of other remedial alternatives that were not feasible in 2010. Demolition of buildings
 over the past 8 years has provided an opportunity evaluate additional remediation options.
- Evaluation, selection, and implementation of remedial alternatives for OU-2 were able to proceed
 without delay. Remediation of groundwater in OU-2 has proceeded with great success since, as
 documented in numerous progress reports submitted to the SCDHEC, with pilot testing being initiated in
 OU-2 in 2009 and remediation in OU-2 initiated in August 2012 in accordance with the June 2012
 Record of Decision.

The Feasibility Study (FS) for OU-1 was performed in accordance with the July 2015 *Feasibility Study Work Plan* (FSWP; Arcadis 2015b) approved by the SCDHEC on October 20, 2015, and designed to evaluate remedial technologies, that when implemented, will address the constituents of potential concern (COPCs) in soil and groundwater within OU-1. This FS-OU1 builds on information developed from completion of a Feasibility Study Investigation (FSI) following demolition of key buildings in 2014 and 2015 that made key areas of OU-1 accessible to critical investigations. The FSI data and results were provided in the *Feasibility Study Investigation Report – Operable Unit 1* (FSIR; Arcadis 2016b), submitted on December 1, 2016. All data collected during implementation of the FSI was used to update the existing conceptual site model (CSM), as presented in the FSIR. The updated CSM provides the key underpinning for evaluating remedial technologies included in this FS-OU1.

In addition to the above, a human health risk assessment (HHRA) was also performed to characterize potential risks to human health based on existing conditions and presumed future land-use conditions using reasonable assumptions, including that groundwater will not be used as a potable water supply, given that city water is available. The results of the HHRA calculated risks are below or within the conservative federal and state risk-based levels. Therefore, there is no expectation of harm to public health with respect to the COPCs present in soil, soil gas, surface water, groundwater, and irrigation water.

As a measure of onsite control, the existing onsite groundwater extraction and treatment system has continued to operate and provide proven capture for chlorinated volatile organic compounds (CVOCs) in groundwater beneath the area of OU-1, while remediation efforts were focused primarily on OU-2.

1.1 Purpose

This FS-OU1 evaluates remedial alternatives for the groundwater and soil within OU-1 that are appropriately protective of human health and the environment.

1.2 Report Organization

This FS-OU1 follows the *Guidance for Conducting RIs and FSs Under Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA)* (EPA/540/G-89/004, Office of Solid Waste and Emergency Response [OSWER] Directive 9355.3-01, October 1988).

Together with this introductory section, this FS-OU1 is organized as follows:

- Section 2 Current Conditions: Provides some historical perspective, current conditions, and provides a summary of the nature and extent of contamination and the baseline risk assessment.
- Section 3 Basis for Remediation: Includes descriptions of applicable or relevant and appropriate requirements (ARARs) and operable unit-specific remedial action objectives (RAOs).
- Section 4 Identification and Screening of Applicable Technologies: Identifies the potentially applicable technology types and process options for each impacted medium within OU-1.
- Section 5 Development of Remedial Action Alternatives: Provides an evaluation of the potential technologies for remediating groundwater and surface water within OU-1 that were retained from the initial screening.
- Section 6 Remedial Action Alternatives Screening Process: Describes the screening of the entire assembled alternatives on the basis of effectiveness, implementability, and cost.
- Section 7 Detailed Evaluation of Remedial Action Alternatives: Describes the detailed evaluation of
 the remedial action alternatives that passed the alternatives screening process described in Section
 6. The detailed evaluation includes evaluation of two threshold criteria and five primary balancing
 criteria.
- Section 8 Comparative Analysis of Operable Unit 1 Alternatives: This section compares each alternative against the others based on the two threshold criteria and five primary balancing criteria.
- Section 9 References: This section lists the sources of information cited in this FS-OU1.

2 CURRENT CONDITIONS

This section describes the current conditions, including relevant background and history, the current CSM that provides the setting upon which the FS is based, and a baseline risk assessment.

2.1 Background

2.1.1 Operable Unit 1 Description

As referenced above, the onsite and offsite portions of the AVX facility have been separated into two adjacent operable units, as shown on **Figures 1-1 and 1-2**. The operable units are defined as follows:

- OU-1 is the older manufacturing portion of the facility that contained several buildings, most which
 have been demolished (Figure 1-3), including the main manufacturing building (referred to as the
 MB-1 Building), which was approximately 300,000 square feet.
- OU-2 comprises an area of undeveloped, residential, and commercial properties located immediately
 northeast of OU-1 and extending to the stormwater control pond on Withers Swash. The largest
 single property in OU-2 is an undeveloped and partially wooded parcel located on 17th Avenue South
 owned by AVX. A portion of the AVX property is open space, formerly used as a parking lot. The
 remaining land in OU-2 comprises residential properties and a few undeveloped parcels.

The areas north and south of OU-1 are primarily residential or commercial properties, with a few undeveloped properties intermixed. A parcel immediately south of OU-1 belongs to the City of Myrtle Beach and contains an unused deep water supply well and large water storage tank. AVX owns additional property to the south and west, including a parcel referred to as AVX-2 or MB-2 (currently active manufacturing operations) and a vacant parcel formerly occupied by a Carmike Theater. OU-1 is bordered directly to the west by a golf course and directly to the east by primarily vacant land, most of which is part of OU-2 and much of that owned by AVX.

2.1.2 Environmental History

The Aerovox Corporation, predecessor to AVX, began operations at the site in 1953 on land formerly part of the Myrtle Beach Air Force Base. CVOCs were used at the facility up until 1993 in the manufacturing of ceramic capacitors. In 1981, AVX discovered that shallow groundwater beneath the site contained CVOCs, notably the solvents trichloroethene (TCE) and 1,1,1-trichloroethane (1,1,1-TCA).

Virgin and spent TCE had been stored in underground storage tanks (USTs) on the western side of the facility until 1983 (**Figure 1-2**). Removal of the USTs occurred in 1983 prior to construction of an addition to the main building that covered that area. After the USTs were removed, TCE was stored in aboveground storage tanks (ASTs) adjacent to the western side of the building (**Figure 1-2**). In 1986, AVX transitioned from using TCE to 1,1,1-TCA, continuing to use the former ASTs for storage of 1,1,1-TCA. Use of 1,1,1-TCA was discontinued in 1993.

In 1981, AVX began investigation and remediation of what later became designated as the OU-1 portion of the site (**Figures 1-1 and 1-2**). The following provides details for some of the activities:

- Installation and regular sampling of groundwater monitoring wells, from 1981 to present. This was initiated on the OU-1 portion of the site and expanded to the OU-2 portion of the site in 2007.
- Removal of USTs in 1983.
- In 1985, installed pumping wells to provide water for use as non-contact cooling water, and soon after, began operating these pumping wells to remediate groundwater.
- Discontinuation of TCE use in 1986.
- Installed nine pumping and production wells (identified with a prefix of PW or DPW) from 1985 through 1987 (Figure 1-2). Six pumping wells (PW-1S, PW-2S, PW-3S, PW-4S, PW-5S, and PW-6S) were screened in the Upper Terrace Deposits aquifer, one production well (DPW-1D) was screened in the Lower Terrace Deposits aquifer, and two pumping wells (DPW-2SD and DPW-3SD) were screened in the Upper and Lower Terrace Deposits aquifer.
- Completed soil sampling and analysis on the western side of the main building in 1984 and 1989.
- Completed an enhanced in-situ bioremediation pilot study in 1989 that focused on the western side of the main building.
- Found volatile organic compound- (VOC-) containing soils during excavation for the building expansion in 1992. Two abandoned pipes were found to contain a viscous liquid with elevated concentrations of TCE, 1,1,1-TCA, tetrachloroethene, methylene chloride, and toluene. Approximately 66 cubic yards of soils were removed from the excavation. Soil analyses indicated that TCE concentrations in the soil were between 500 milligrams per kilogram (mg/kg) and 10,000 mg/kg. These soils were removed from the site and transported to an offsite treatment, storage, and disposal facility for final disposal.
- Completed a soil-gas investigation in 1992.
- Discontinued 1,1,1-TCA use in 1993.
- AVX and the SCDHEC entered into an agreement [Consent Order (96-43-HW and 96-71-DWP)] in 1996.
- Installed a soil vapor extraction (SVE) well (SVE-1) in June 1997 as part of a pilot test to evaluate the
 feasibility of remediation by a dual-phase extraction system. Due to high groundwater levels in the
 area, high groundwater recovery rates, and limited vadose zone soils available for the system, a dualphase extraction system was not installed (Geraghty & Miller, Inc. 1997b). SVE well SVE-1 is
 presently used as a monitoring well.
- Sampled direct-push boring and temporary well groundwater throughout the site in 1997.
- Installed two induced draft air stripper systems in 1997 for the treatment of groundwater produced by pumping wells PW-1 and PW-7 (Area 1) and DPW-4 (Area 2). Both air stripping units were designed to achieve removal efficiencies for all constituents of 99% prior to discharge via gravity to the City of Myrtle Beach Water Treatment Facility, a publicly owned treatment works. This discharge was permitted under National Pollutant Discharge Elimination System (NPDES) Permit No. SC0039039 (Geraghty & Miller, Inc. 1997a).

- Performed an analysis in 1998 to assess the zone of capture for pumping well DPW-4. Conclusions
 of that analysis indicated that capture likely extended at least to 17th Avenue South and likely across
 17th Avenue South (to the northeast).
- Completed direct-push boring and temporary well groundwater sampling within the southern portion of the site in 1999.
- Directed discharge of treated groundwater from the DPW-4 system to a surface-water outfall in accordance with a NPDES permit issued in September 1999.
- Completed five phases of offsite investigation in 2007, including investigation of groundwater, surface water, and soil vapor.
- Performed ongoing evaluation and reporting of field investigations in late 2007 and developed plans for additional field investigations in 2008.
- Demolished the drum storage pad adjacent to the Reclaim Building in 2008. Following demolition, the soil was screened using a photoionization detector (PID) and sampled to evaluate soil quality beneath the former slab (Arcadis 2008a). No impacts were observed that warranted further actions.
- Met with the SCDHEC in September 2010 to have a pre-submission discussion regarding the draft FS for the entire AVX site (both onsite and offsite portions). During that meeting, it was discussed that there were tentative plans for demolition of additional onsite buildings. At that time, the SCDHEC and AVX agreed to split the FS into an offsite groundwater portion (OU-2) that would be finalized soon after that meeting, and delay preparation of the FS for the onsite portion of the site (OU-1) until after additional onsite buildings were demolished. This would allow access to investigate beneath the footprint of demolished buildings, which, in turn, would provide for improved information in the preparation of an FS for OU-1.
- Completed a data gap investigation within OU-1 and OU-2 that included using a membrane interface
 probe, cone penetrometer testing (CPT), soil borings, and groundwater sampling to evaluate the
 current conditions. Results from this investigation were summarized in the data *Feasibility Study Data Gap Investigation Report* (Arcadis 2010a). The OU-1 portion of this investigation only included areas
 outside the footprint of buildings still standing and operational.
- Demolished the PDG Building and removed the concrete slab in 2010. Following demolition, the soil
 was screened using a PID and sampled to evaluate soil quality beneath the former building (Arcadis
 2010b). No impacts were observed that warranted further actions.
- Demolished the eastern portion of the primary manufacturing building and removed the slab within OU-1 (commonly referred to as the MB-1 Building) in 2012 (Figure 1-3). Following demolition, the soil was screened using a PID and sampled to evaluate soil quality beneath the building (Arcadis 2012a). Based on this soil characterization work, two small areas containing VOCs were identified. As a result, these areas were removed and confirmation samples were collected (Arcadis 2012b).
- Brought pumping well DPW-5SD online in February 2013, as part of an expansion of the OU-1
 groundwater containment system. Similar to existing pumping well DPW-4SD, this well was screened
 across both the Upper and Lower Terrace Deposits and was designed to expand the area of
 hydraulic capture within OU-1. Currently, groundwater is being pumped from the Upper and Lower

Terrace Deposits at DPW-4SD and DPW-5SD. The operation of these wells is maintaining groundwater capture across OU-1, operating at a combined pumping rate of approximately 43 gallons per minute.

- Initiated demolition activities to remove four buildings in OU-1, including the corporate building, M&E,
 MIS, and the remainder of the MB-1 Building (Figure 1-3) in late 2014. Demolition activities continued through June 2015 and included removal of all aboveground structures and concrete pads.
- Following removal of the pads, completed post-demolition subslab sampling in accordance with the February 24, 2015 Post-Demolition Soil Sampling Work Plan (Arcadis 2015a), which was patterned after similar assessment activities performed in 2012 beneath previously demolished buildings. The more recent post-demolition sampling work was performed in May through July 2015 as reported in the August 8, 2015 Post-Demolition Soil Investigation Report and Vadose Zone Subsurface Soil Sampling Work Plan (Arcadis 2015c). Subsequent deeper vadose zone soil sampling, soil excavation and offsite disposal, and post-excavation sampling are reported in the April 6, 2016 Soil Removal Report Trimethylbenzene Area (Arcadis 2016a).
- Completed the FSI in 2016, as the fundamental supporting investigation for this FS-OU1. The FSIR
 was submitted to the SCDHEC on December 1, 2016 as approved by SCDHEC on April 21, 2017.
- Completed demolition activities in 2018 to remove the Reclaim and RMM Buildings (Figure 1-3).
 Demolition included removal of all aboveground structures and concrete pads. After the building slabs were removed, a round of subslab sampling was completed in August 2018 to characterize the newly exposed soil. Additional follow-up sampling was performed at the Reclaim Building in October 2018.
 The results are reported in the Post Demolition Soil Investigation Report Reclaim and RMM Buildings (Arcadis 2019)

2.2 Current Conceptual Site Model

The data collected as part of the FSI provided a robust dataset that was used to supplement the existing dataset available for OU-1. This data provided the basis for updating the CSM, which in turn, provides the fundamental basis for evaluating the remedial technologies that are included in this FS-OU1. Details on the CSM provided in the FSIR (Arcadis 2016b) are summarized in the following sections, with new data from the recent post-demolition characterization activities incorporated, where appropriate. In addition, figures from the FSIR are reproduced in **Appendix A** for reference.

2.2.1 Topography and Drainage

The OU-1 and OU-2 area is relatively flat, with a grade elevation of approximately 20 feet above mean sea level (**Figure 1-1**), with a gentle slope to the northeast. A small stream (Withers Swash) lies adjacent to the northern end of OU-1 (**Figure 1-2**). Withers Swash flows northeast, approximately parallel to the beach, passing through several flood control ponds before ultimately discharging to the ocean.

A golf course to the west includes several artificial ponds as water hazards. The nearest is immediately west of OU-1 in an upgradient direction. Construction and surface elevation of this pond is unknown.

2.2.2 Hydrostratigraphic Framework

Myrtle Beach is within the Atlantic Coastal Plain physiographic province. Bedrock is approximately 1,400 to 1,500 feet below sea level (Zack 1977). Most overlying thickness of unconsolidated sediments is Cretaceous age and older marine deposits, typically alternating beds of sand and clay. Thin beds of calcitecemented siltstone of fine-grained sandstone are common throughout the section, interbedded with the unconsolidated sediments. The two uppermost units relevant to OU-1 are:

- Terrace Deposits (0 to 45 feet below ground surface [bgs]) A Quaternary-aged sequence of marine terraces consisting of stratified sand, silt, and clay beds reflecting a beach and lagoon depositional environment.
- Peedee Formation (45 to 300 feet bgs) A Cretaceous-aged marginal marine unit formed generally
 of stratified sand and clay (similar to the terrace deposits but much older), with thin beds of calcitecemented siltstone or fine-grained sandstone.

The uppermost Peedee Formation has historically been encountered in borings in OU-1 and is described as a calcite-cemented siltstone. The depth to the top of the Peedee Formation varies from 40 to 45 feet from west to east in OU-1. This lithified zone is interpreted to strongly inhibit vertical flow of groundwater between the Peedee Formation and the terrace deposits. Therefore, site investigations in OU-1 have largely focused on the terrace deposits.

The sequence of sand, silt, and clay beds within the terrace deposits is complex. The cross-sections generated from the hydraulic profiling tool (HPT) results included within the Section 3 figures of the FSIR (reproduced in **Appendix A**) (Arcadis 2016b) and the Environmental Visualization Software (EVS) model included in the FSIR that illustrate the current understanding of the hydrostratigraphic framework. The surficial soil in OU-1 includes a mix of sand and silt that transition into a lower-permeability unit composed of clay at approximately 10 feet bgs. This unit is largely unsaturated and acts to confine the water present in the more permeable layers beneath the clay. The surficial unit is truncated on the cross-sections (see **Appendix A**) because no HPT data were collected in the vadose zone. As a result, the composition of the surficial unit was largely verified by soil borings.

Beneath the surficial clay unit, the soil grades from silt and sand at approximately 10 feet bgs, to a coarser, highly permeable sand. The thickness of the sand increases from west to east. The HPT data in the FSIR (Arcadis 2016b) indicates the presence of lower-permeability intervals (i.e., having a higher percentage of silt) throughout this section, but the higher-permeability sands are commonly present in the lower portion of the interval.

A clay unit is present across OU-1 beneath the shallow sand unit. The thickness of this unit is highly variable and varies from approximately 1 to 8 feet thick. While the clay unit appears to be present at all locations, the highly variable nature of this unit suggests it may not be providing a connection between the Upper and Lower Terrace Deposits.

The lithology below the clay is composed of an interbedded sequence of sands and clay that varies in all directions across OU-1. The sand units present beneath the clay are commonly lower in permeability compared to the shallower sands; however, localized zones have hydraulic conductivity values in the 100-foot per day range. These more permeable zones will act as groundwater transport pathways and ultimately control the mass flux through the system.

The terrace deposits have previously been divided into an upper and lower section for purposes of defining vertical resolution for the monitoring well network. The Upper Terrace Deposits have been defined as the shallow permeable zone to approximately 25 feet bgs. Based on the data collected as part of the FSI, this unit is found to be present across the investigated portions of OU-1. The base of the unit varies from approximately 23 to 30 feet bgs, which is consistent with historical observations. Contact between the Upper and Lower Terrace Deposits is marked by the presence of the clay unit. Historically, the Lower Terrace Deposits have been depicted as a more uniform sand unit beneath the clay, which changes in composition from the interbedded sand silt and clay historically observed in OU-1, to the more uniform sand present in OU-2. The data collected during the investigation has provided additional resolution on the composition and permeability of this unit in OU-1. These data have helped focus the FS evaluation of potential remedial technologies that are applicable in this unit. The Lower Terrace Deposits in OU-1 are highly variable in lithology across OU-1.

2.2.3 Groundwater Flow

Within OU-1, the water table is commonly encountered at an average depth of approximately 5 feet bgs. Potentiometric surfaces for the Upper Terrace Deposits (**Appendix A**, **Figure 5-1**) and Lower Terrace Deposits (**Appendix A**, **Figure 5-2**) indicate a predominantly easterly groundwater flow direction converging into the capture zone created by the groundwater extraction system that includes pumping wells DPW-4SD and DPW-5SD. This pair of pumping wells exerts a strong hydraulic influence on water levels in OU-1. In combination, these two pumping wells are interpreted to capture all groundwater flowing through VOC-containing areas of OU-1. Groundwater extraction has operated at the site since 1985; however, prior to that, the flow from OU-1 was to the east towards OU-2.

Groundwater flow in the terrace deposits is influenced by local-scale heterogeneity and anisotropy. The dominant flow paths are in the intervals of highest permeability (i.e., medium- to coarse-grained sand), which are interbedded throughout the stratigraphic section. Under ambient flow conditions, the alignment of the flow paths is parallel to the coast following the long axis of individual beds, but the current operation of pumping wells DPW-4SD and DPW-5SD has altered these flow paths as groundwater is captured within OU-1 and the western portion of OU-2. Interbedded fines are interpreted to inhibit vertical migration of VOCs to a varying degree depending on the continuity and percentage of fines in such beds. The upper contact of the Peedee Formation is the uppermost laterally continuous confining layer below the terrace deposits.

2.2.4 Mass Distribution

The identified constituents in soil and groundwater are primarily TCE and its breakdown products. The data collected historically provide a high-resolution picture of the mass present within OU-1. A summary of the identified sources present in the vadose zone and in groundwater and the dissolved-phase area are summarized below and depicted on **Figures 2-1 and 2-2**. For the purposes of this FS-OU1, Arcadis has defined the targeted areas, including sources and downgradient areas, as follows:

Source Area Vadose Zone – The vadose zone source areas are those areas containing distinctly elevated concentrations of VOCs in the upper 10 feet of soil (approximate depth to soil saturation).
 More specifically, these areas are defined as those that, if removed, would decrease the estimated site-wide human health excess lifetime cancer risk (ELCR) to 1x10-6 and total hazard quotient (HQ) to less

than 1 for a non-residential exposure scenario. These areas commonly align with areas of past operations where solvents were known to be handled, including in former storage tanks and along conveyance piping that connected those tanks with other areas along the western side of the former MB-1 Building and former Reclaim Building.

- Source Area Saturated Zone Source The saturated zone source area is defined as a broader area that underlies the identified vadose zone sources, defined above, but broadened to the north and south to cover the area most likely sourcing VOCs to the downgradient dissolved-phase area. This area also closely coincides with a broader area of vadose zone soil if considering soil cleanup to meet a site-wide average estimated ECLR of 1x10⁻⁶ and an HQ of 1 based on a residential exposure scenario.
- **Dissolved-Phase Area (Downgradient)** The dissolved-phase area is that which is defined by the approximate extent of dissolved VOCs that are at concentrations that exceed the maximum contaminant levels (MCLs) in OU-1.

Additional detail about these areas are discussed in the following sections.

2.2.4.1 Source Area – Vadose Zone

Over the past 10 years, AVX has continued to consolidate operations, which has, in turn, led to the termination of activities within and eventual demolition of several buildings within OU-1. After each building demolition phase within OU-1, subslab soil characterization was completed across the footprint of the respective demolition areas. The initial demolition of the eastern portion of the former MB-1 Building provided access to two areas, where post-demolition investigation activities identified elevated concentrations of TCE and other CVOCs in soil. These two areas containing elevated concentrations of VOCs in the vadose zone were excavated and disposed offsite following completion of characterization. A summary of the analytical results and excavation extents are provided in the *Soil Removal Report* – *Operable Unit 1* (Arcadis 2012b).

Investigations following demolition of the western portion of the former MB-1 Building identified additional areas containing relatively elevated concentrations of CVOCs along the western side of the western portion of the former MB-1 Building. In addition, relatively high concentrations of trimethylbenzene near to and apparently associated with relatively lower concentrations of CVOCs were also identified nearer to the eastern side of the western portion of the former MB-1 Building footprint. These areas of impacted soil near the western portion of the former MB-1 Building were further investigated, and the area containing trimethylbenzene was targeted for excavation-based remediation. Details regarding the soil remediation activities within the trimethylbenzene area are included in the *Soil Removal Report – Trimethylbenzene Area* (Arcadis 2016a). No immediate actions were proposed or taken to remediate the areas of CVOCs in soil because additional investigation of those areas was planned as part of the FSI.

The whole core soil sampling (WCSS) portion of the FSI improved Arcadis' understanding of the locations of vadose zone source areas as described in the FSIR (2016b). In addition, more recent post-demolition soil investigation in the area of the former Reclaim Building (2018) have identified and delineated another vadose zone source area. **Figure 2-1** shows the locations of the former and current sources of CVOCs in soil, including:

The two areas beneath the eastern portion of the former MB-1 Building that were remediated in 2012.

- The area of relatively low CVOC concentrations beneath the western portion of the former MB-1 Building near the former trimethylbenzene area
- East of the former TCE UST
- Near the former TCE AST
- Near the former Cold Storage Building
- Near the former southwestern building addition to the MB-1 Building
- Near the southwestern corner of the former MB-1 Building
- Near the northeastern corner of the former Reclaim Building

The HHRA (**Appendix B**, **Figure 5-3 and Table 1**) summarizes historical soil sampling conducted during several prior investigations (spanning 1989 to 2010). These data reflect soil conditions outside the footprint of the former MB-1 Building prior to demolition. Note that the displayed data include some samples collected below where saturated conditions are first encountered within a sandier and more permeable unit. These data indicate:

- Soil samples collected from locations outside the vicinity of the western area of the former MB-1 and
 associated buildings and the Reclaim Building most commonly show there are no detectable VOCs in
 the vadose zone, with obvious exceptions to this broad observation, which are discussed in further
 detail herein and in the HHRA (Appendix B). Moreover, no samples collected from the vadose zone
 outside these areas contained TCE at concentrations above the United States Environmental
 Protection Agency (USEPA) Industrial Soil Regional Screening Level (RSL).
- Samples containing the highest concentrations of TCE were commonly collected at the water table or deeper. These sample results (i.e., CPT-02 and CPT-08) confirm the presence of elevated VOC concentrations near the bottom of the vadose zone soil column and extending into shallow groundwater on the western side of the former MB-1 Building footprint.

2.2.4.2 Source Area – Saturated Zone

The distribution of VOCs in groundwater in OU-1 had historically been interpreted through the data collected from sampling groundwater from the monitoring wells. A summary of the VOC distribution in groundwater within OU-1 is provided below, and a summary of tabulated groundwater data is provided in the HHRA (**Appendix B, Table 2**).

Only a limited amount of groundwater data has been collected near the historical sources during FSIR vertical aquifer profile (VAP) sampling because WCSS was instead used as the predominant investigation method to define the extent of the potential sources. While the WCSS data collected represents the total mass present in the mobile and immobile fractions in the Upper Terrace Deposits, the concentrations with respect to lithology can be used to infer groundwater quality conditions. The elevated concentrations observed in the WCSS results in the higher-permeability units, which are more representative of the mobile mass of VOCs (**Appendix A, Figures 3-1 through 3-6**), as these VOCs migrate from the clay into the groundwater system. The observed concentrations of VOCs in the saturated soil matrix within the clay unit at the base of the Upper Terrace Deposits represents VOC mass stored in the system that will, if not remediated, continue to diffuse back into groundwater. Additional VAP samples collected along Transect

4 (**Appendix A, Figure 3-10**) show that the mass of VOCs in groundwater is present primarily in the Upper Terrace Deposits; however, the VAP sampling was limited along Transect 4 to reduce the potential interconnection between the Upper and Lower Terrace Deposits that could be caused by drilling. As a result, only select locations were evaluated with HPT and VAP after the WCSS had been completed. Based on all sources of information described above, the approximate location of the saturated source zone is depicted on **Figures 2-1 and 2-2**.

2.2.4.3 Dissolved-Phase Area (Downgradient)

The dissolved-phase area within OU-1 is well defined through sampling of existing groundwater monitoring wells and from the FSI VAP sampling along Transects 1, 2, and 3. Along the most downgradient transect, Transect 1 (**Appendix A, Figure 3-7**), the highest TCE concentrations are observed along the central portion of the transect, consistent with the identified source zones discussed in the previous section. The highest concentrations are found in the lower portion of the Upper Terrace Deposits in the intervals with higher-permeability. In the Lower Terrace Deposits, elevated concentrations are present, but are commonly one to two orders of magnitude lower than those observed in the Upper Terrace Deposits. Laterally, the extent of dissolved TCE is bounded by the extent of Transect 1 in the Upper Terrace Deposits. In the Lower Terrace Deposits, the lateral extent is defined to the south. To the north, elevated concentrations are still present at the northern edge of Transect 1; however, this extent was previously defined during the 2008 data gap investigation and does not represent an additional data gap (Arcadis 2010a). Additional lateral delineation is discussed in the description of subsequent transects.

Along Transect 2 (**Appendix A, Figure 3-8**), the dissolved VOCs in groundwater are present throughout the terrace deposits, but most of the mass observed has migrated deeper and is present in the Lower Terrace Deposits. The transect defines the lateral extent in both the Upper and Lower Terrace Deposits.

Along downgradient Transect 3 (Appendix A, Figure 3-9), the distribution of VOCs between the Upper and Lower Terrace Deposits are noticeably different compared with the VOC distribution in Transects 1 and 2. While elevated concentrations of VOCs and associated mass are still present in the Lower Terrace Deposits (HPT-23 and HTP-24), elevated concentrations are present in the Upper Terrace Deposits (HPT-21 to HPT-24). These concentrations in groundwater are likely derived from the previously excavated source zones removed following demolition of the eastern portion of MB-1, but within the capture zone of DPW-4SD. Near the northern end of Transect 3, the concentrations of TCE are below detection at most locations. This portion of the transect is downgradient of DPW-5SD, but within the capture zone. While TCE is not present, the total VOCs included in the EVS model of the FSIR (Arcadis 2016b) indicate elevated concentrations of daughter products along the transect. This distribution suggests that the enhanced reductive dechlorination (ERD) implementation in OU-2 is potentially influencing OU-1, as water treated by the ERD system is captured and pulled back to OU-1. Based on all sources of information described above, the approximate location of the dissolved-phase area is depicted on Figures 2-2 and 2-3.

2.3 Summary of Human Health Risk Assessment

An HHRA was performed to evaluate whether constituent concentrations in soil and groundwater and predicted concentrations in vapors pose a risk and/or hazard to human health that exceeds regulatory

thresholds based on existing conditions and hypothetical future redevelopment. The data were compared to USEPA RSLs and USEPA vapor intrusion screening levels to identify COPCs. The potential exposure scenarios quantitatively evaluated included the following (by medium):

- Surface and Combined Surface and Subsurface Soil: Exposure of current and hypothetical future site
 workers, hypothetical future construction workers, and hypothetical future residents.
- Groundwater: Exposure of hypothetical future construction workers.
- Vapors: Hypothetical exposure, within buildings, of current and hypothetical future site workers and hypothetical future residents.

Site-specific exposure assumptions were used in conjunction with agency-derived toxicity values to characterize ELCRs and non-cancer hazards. For cancer endpoints, the USEPA target risk range, which is protective of health, is 1×10⁻⁶ to 1×10⁻⁴. For non-cancer endpoints, the USEPA uses a benchmark of 1.

For each receptor, the risks and hazards from each of the exposure scenarios were calculated. The exposure scenarios and results are summarized below by potential receptor:

- Current and Hypothetical Future Site Worker: Site workers were assumed to contact surface and
 combined surface and subsurface soil and inhale COPCs migrating from the subsurface into
 buildings. Direct contact with either surface or combined surface and subsurface soil resulted in an
 ELCR calculated to be within the USEPA target risk range. The non-cancer hazard was above the
 USEPA benchmark of 1. The presence of TCE in soil was the main risk and hazard driver.
- Hypothetical Future Construction Worker: Hypothetical future construction workers were assumed to contact surface and combined surface and subsurface soil and/or inhale vapors migrating from groundwater during excavation activities. The groundwater at the site is first encountered at approximately 10 feet bgs. Direct contact with either surface or combined surface and subsurface soil resulted in an ELCR calculated to be within the USEPA target risk range, while the non-cancer hazard was above the USEPA benchmark of 1. Incidental inhalation of vapors from groundwater beneath a utility trench resulted in an ELCR below the USEPA target risk range, while the non-cancer hazard was above the regulatory benchmark. The presence of TCE in soil and groundwater was the main risk and hazard driver.
- Hypothetical Future Resident: A future resident could contact surface soil if the redevelopment project
 did not redistribute the soil. In this case, the risks and hazards were at the high end of the target risk
 range or above the non-cancer benchmark. If the soil is redistributed or a building is constructed and
 vapors migrate from the subsurface into a building, the risks and hazards were above the regulatory
 benchmarks. This was due to the presence of TCE in soil and TCE and vinyl chloride in groundwater.

Note that if redevelopment were to occur, protective measures could be undertaken to reduce the potential for exposure during construction activities or following redevelopment. To assist in the remedial activities at the site, health-based goals were calculated for each potential receptor for COPCs with an ELCR above 1×10-6 or an HQ above 1 in combined surface and subsurface soil and groundwater. These goals can be used to support remedial decision-making for the site.

A few additional assumptions have been made in preparing the HHRA, including:

Groundwater will not be used as a potable water supply.

- Leaching of residual concentrations of COPCs in soil, following vadose source remediation, are
 expected to be inconsequential in light of all the other aggressive remedial components that ultimately
 will be included in the final comprehensive remedy. These measures will include:
 - Significant volume of soil that will be remediated in those areas containing the highest concentrations of COPCs
 - Long-term flushing and natural attenuation of the relatively low residual concentration of VOCs within the soil column in and adjacent to the vadose zone source area.
 - Aggressive saturated zone source and downgradient dissolved-phase area remediation that will be performed, regardless of the remedial alternative selected. The comprehensive remedy will further promote COPC removal/destruction of residual COPCs that may migrate from the vadose zone source area to the saturated zone.
 - Long-term natural attenuation within a large area beneath and downgradient of the vadose zone source area. This natural attenuation is already being enhanced by relatively high carbon influx through the soil column and into groundwater due to all the seeding, sodding, mulching, and fertilizing of acres of land that was once covered by buildings. This has led to elevated organic carbon concentrations in the groundwater shortly after demolition and land restoration activities began starting with the demolition of the PDG Building in 2009.

Furthermore, groundwater performance monitoring will also be implemented as part of the final remedy to provide information regarding the need for any other source zone remedy enhancements.

3 BASIS FOR REMEDIATION

3.1 Applicable or Relevant and Appropriate Requirements

This section describes the ARARs and to be considered (TBC) guidance that may be applied to actions at OU-1. ARARs are defined as cleanup standards; standards of control; and other substantive environmental protection requirements, criteria, or limitations promulgated under federal or state law that specifically address a hazardous substance, pollutant, contaminant, removal action, location, or circumstance at a site. The ARARs are used to develop quantitative RAOs, determine the appropriate extent of site cleanup, and govern the implementation and operation of the selected remedial action. The TBC guidance is composed of non-promulgated advisories or guidance issued by federal or state governments that are not legally binding (USEPA 1988).

Because of their site-specific nature, identification of ARARs requires evaluation of federal, state, and local environmental and health regulations regarding COPCs, characteristics of a site, and proposed remedial alternatives. The USEPA provides guidance on three categories, or ARARs, specific to the COPCs, location, or action. ARARs are classified as follows:

- Chemical-specific requirements are usually health- or risk-based numerical values or methods that, when applied to site-specific conditions, result in the establishment of numerical values for the acceptable loading or concentration of a hazardous substance that may be found in, or discharged to, the environment.
- Location-specific requirements are restrictions placed on the concentrations of hazardous substance or the conduct of activities solely because they occur in specific locations.
- Action- (or remedy-) specific are usually technology- or activity-based and may include limitations on actions taken with respect to hazardous constituents.

ARARs apply to activities that include the geographical area of the COPCs to be remediated and all suitable areas in close proximity that are necessary for implementation of the remedial action. For offsite activities, no analysis of ARARs is required under CERCLA, but these activities are still subject to applicable laws.

Tables 3-1 through 3-3 identify potential ARARs and TBCs, including the regulatory citation and a brief description.

3.1.1 Chemical-Specific Applicable or Relevant and Appropriate Requirements

Chemical-specific ARARs have been organized by relevant media for OU-1. These include soil and groundwater. **Table 3-1** summarizes the chemical-specific ARARs for OU-1.

3.1.2 Location-Specific Applicable or Relevant and Appropriate Requirements

Location-specific ARARs are those that commonly restrict certain activities or limit concentrations of hazardous substances solely because of geographical or land use concerns. The primary location-

specific ARARs are related to the location of portions of OU-1 within a coastal zone, the 100-year floodplain, and areas that may be designated as wetlands. **Table 3-2** summarizes the location-specific ARARs for OU-1.

3.1.3 Action-Specific Applicable or Relevant and Appropriate Requirements

Action-specific ARARs are those that may place restrictions on the performance of remediation activities or the use of certain technologies. Action-specific ARARs for OU-1 would primarily be related to air emissions from remedial actions, waste disposal, and groundwater treatment or discharge. **Table 3-3** summarizes the action-specific ARARs for OU-1.

3.2 Development of Remedial Action Objectives

RAOs are site-specific cleanup objectives established for protecting human health and the environment. RAOs specify contaminants and media of concern, potential exposure pathways and receptors, and RSLs [40 Code of Federal Regulations (CFR) 300.430 (e)(2)(i)]. RAOs indicate a contaminant level and an exposure route, rather than a contaminant level alone, because protection of human and ecological receptors may be achieved by reducing or eliminating exposure pathways, as well as by reducing COPC concentrations (USEPA 1988). RAOs may be qualitative (e.g., to prevent exposure to contaminated groundwater) or quantitative (e.g., to specify the maximum contaminant concentration in groundwater).

CERCLA Section 121(d)(2)(A) requires that remedial actions meet any federal standards, requirements, criteria, or limitations that are determined to be legally applicable or relevant and appropriate. CERCLA Section 121(d)(2)(A)(ii) requires that state ARARs be met if they are more stringent than federal requirements. In addition, the National Contingency Plan (NCP), published in 40 CFR Part 300, requires that local ordinances, unpromulgated criteria, advisories, or guidance that do not meet the definition of ARARs but that may assist in the development of remedial objectives be listed as TBC. The key ARARs are presented in Section 3.1.

RAOs were developed based on a review of the characterization data, conclusions of the HHRA, applicable ARARs, and the FSWP (Arcadis 2015b) and are discussed in the following sections. Numerical remediation goals are a subset of the RAOs and provide the measurable goals that drive remedial actions for each medium.

For each COPC in soil and groundwater, the overall remediation goal was selected after a comparison of risk-based RSLs (based on the USEPA RSLs) and applicable ARARs. ARARs dictated the determination of the remediation goal, and in the absence of ARARs, the lowest of the risk-based RSLs was selected as the overall remediation goal. The resultant remediation goals for soil and groundwater are presented in **Table 3-4**.

3.2.1 Soil (Source Area Vadose Zone)

The identified source area for soil is presented on Figure 2-1. The soil RAOs for OU-1 include:

 Minimize, contain, and/or eliminate site-related COPCs from soils at OU-1 that may be leaching into the groundwater and creating a human health risk. • Minimize and/or eliminate the potential for human exposure to site-related COPCs via direct contact with soil containing COPCs.

Remediation goals for soil are presented in Table 3-4.

3.2.2 Groundwater (Source Area Saturated Zone and Dissolved-Phase Area)

Groundwater sampling data for OU-1 is presented in the HHRA (**Appendix B**). The risk assessment performed on potential residential exposure to volatile COPCs in groundwater migrating to indoor air via soil vapor resulted in a conclusion by Arcadis and the SCDHEC that there is no unacceptable human health risk via the indoor air pathway (Arcadis 2008b, 2009). Should future construction occur on OU-1, the potential for vapor migration and the need, if any, for mitigation will be considered on a case-by-case basis.

The identified source area for groundwater and the downgradient dissolved-phase area are presented on **Figures 2-1 and 2-2**. The RAOs for groundwater within OU-1 include the following:

- Prevent ingestion and dermal contact with groundwater containing COPCs above MCLs for drinking water, unless the SCDHEC Water Standards (drinking water standards) are more restrictive.
- Minimize, contain, and/or eliminate the potential for COPCs in groundwater to migrate offsite.

Remediation goals for groundwater are presented in Table 3-4.

3.3 General Response Actions

General response actions have been developed for each medium of interest to define the actions that may be taken, either individually or in combination, to achieve the RAOs.

3.3.1 Source Area Vadose Zone

The extent of COPC historical soil source areas is defined in Section 2.2.4.1 and shown on **Figure 2-1**. Potential general response actions for remediation of COPCs in the source area vadose zone include:

- No Action
- Institutional Controls
- Containment
- Removal
- Ex-Situ Treatment
- In-Situ Treatment

3.3.2 Source Area Saturated Zone

The source area saturated zone is defined in Section 2.2.4.2 and shown on **Figures 2-1 and 2-2**. Potential general response actions for remediation of COPCs in the source area saturated zone include:

No Action

- Institutional Controls
- Containment
- Ex-Situ Treatment
- In-Situ Treatment

3.3.3 Dissolved-Phase Area (Downgradient)

The extent of COPCs in groundwater at OU-1 follows a northeasterly groundwater flow direction (during non-pumping conditions) from OU-1 to the surface-water discharge point of Withers Swash. The dissolved-phase area within OU-1 is contained within the property with the extent shown on **Figures 2-2** and **2-3**. Potential general response actions for remediation of COPCs in groundwater within OU-1 include:

- No Action
- Institutional Controls
- Containment
- Ex-Situ Treatment
- In-Situ Treatment

4 IDENTIFICATION AND SCREENING OF APPLICABLE TECHNOLOGIES

This section identifies the potentially applicable technology types and process options for each impacted medium within OU-1. Potentially applicable technology types and process options were developed for soil and groundwater. These technologies and options were derived from professional experience with the COPCs, technologies identified in other Records of Decision, and the Federal Remediation Technologies Roundtable Remediation Technologies Screening Matrix (www.frtr.gov).

An initial screening of the technical implementability of each process option and technology type was performed to reduce the number of technologies potentially applicable to a manageable number before performing a more rigorous screening and evaluation process. Technical implementability refers to the ability of a remedial action or process to meet an RAO or RSL. The initial screening process also eliminates those technologies or process options that are not applicable based on the COPCs and site-specific characteristics. Consequently, remedial technology types and process options that cannot be effectively implemented were eliminated from further consideration.

The potential remedial technology types and process options are described in **Tables 4-1 to 4-3** for the source area vadose zone, source area saturated zone, and dissolved-phase area (downgradient), respectively. The potential remedial technology type is a general category of technologies, while the process options are specific methods within each remedial technology type. Technologies and process options that were eliminated from further consideration based on implementability are shaded within the tables for clarity.

5 DEVELOPMENT OF REMEDIAL ACTION ALTERNATIVES

This section evaluates the potential remedial technology types/process options retained from the initial screening process referenced above for remediating specific targeted zones, including the following:

- Source area vadose zone
- Source area saturated zone
- · Downgradient dissolved-phase area

These technologies are evaluated based on effectiveness, implementability, and cost. The remaining technologies are then assembled into remedial alternatives for specific target zones. Those target zone alternatives are then assembled into a set of comprehensive site-wide remedial alternatives for subsequent evaluation in later sections of this FS-OU1.

5.1 Source Area Vadose Zone

5.1.1 Remedial Action Alternative Process Options/Technologies

Table 5-1 summarizes and compares the source area vadose zone remedial action process options/technologies retained in Section 4 for secondary screening. Soil remedial action process options/technologies were compared based on relative effectiveness, implementability, and cost. Process options/technologies that were retained after this comparison were assembled into remedial alternatives that are discussed in Section 5.1.2.

5.1.2 Remedial Action Alternatives for Source Area Vadose Zone

Source area vadose zone remedial alternatives were developed based on those process options/technologies that were carried forward from Section 4. In assembling source area vadose zone alternatives, the general response actions and technologies chosen to represent the various process options for the source area vadose zone were combined to form alternatives for this zone within OU-1. The following source area vadose zone alternatives have been assembled and will be discussed further in Section 6.

Remedial Action Process Options/Technologies and Alternatives for Source Area Vadose Zone

	Alternatives		
Process Options/Technologies	No Action	Excavation	In-Situ Thermal Treatment
No Further Action (NFA)	X		
Deed Restrictions/Environmental Covenant		X	
Excavation with Offsite Disposal		X	
In-Situ Thermal Treatment		X	Х

5.2 Source Area Saturated Zone

5.2.1 Remedial Action Process Options/Technologies

Table 5-2 summarizes and compares the source area saturated zone remedial action process options/technologies retained in Section 4 for secondary screening. Groundwater remedial action process options/technologies were compared based on relative effectiveness, implementability, and cost. Process options/technologies that were retained after this comparison were assembled into remedial alternatives that are discussed in Section 5.2.2.

5.2.2 Remedial Action Alternatives for Source Area Saturated Zone

Source area saturated zone remedial alternatives were developed based on those remedial action process options/technologies that were carried forward from Section 4. In assembling source area saturated zone alternatives, the general response actions and the process options/technologies chosen to represent the various process options for the source area saturated zone were combined to form alternatives for this zone within OU-1. The following source area saturated zone alternatives have been assembled and will be discussed further in Section 6.

Remedial Action Process Options/Technologies and Alternatives for Source Area Saturated Zone

	Alternatives					
Process Options/Technologies	No Action	Pumping and Treatment	ERD	Dynamic Groundwater Recirculation	In-Situ Thermal Treatment	
NFA	Х					
Deed Notifications/Restrictions		X	Χ	X	X	
Monitored Natural Attenuation (MNA)		X	X	x	X	
In-Situ Heating					X	
Off-Gas Collection/Treatment					X	
Enhanced Anaerobic Bioremediation			X			
Groundwater Pumping-Based Flushing and Containment		x				
Air Stripping/Treatment		X		X		
Treated Groundwater Reinjection				X		

5.3 Downgradient Dissolved-Phase Area

5.3.1 Remedial Action Process Options/Technologies

Table 5-3 summarizes and compares the downgradient dissolved-phase area remedial action process options/technologies retained in Section 4 for secondary screening. Groundwater remedial action process options/technologies were compared based on relative effectiveness, implementability, and cost. Process options/technologies that were retained after this comparison were assembled into remedial alternatives that are discussed in Section 5.3.2.

5.3.2 Remedial Action Alternatives for Downgradient Dissolved-Phase Area

Downgradient dissolved-phase area remedial alternatives were developed based on those remedial action process options/technologies that were carried forward from Section 4. In assembling the downgradient dissolved-phase area alternatives, the remedial action process options/technologies for the downgradient dissolved-phase area were combined to form alternatives for this zone within OU-1. The following downgradient dissolved-phase area alternatives have been assembled and will be discussed further in Section 6.

Remedial Action Process Options/Technologies and Alternatives for Dissolved-Phase Area (Downgradient)

Process Options/Technologies	No Action	Pumping and Treatment	ERD	Dynamic Groundwater Recirculation
NFA	X			
Deed Notifications/Restrictions		X	Х	X
MNA		X	Х	X
Groundwater Pumping-Based Flushing and Containment		X		X
Air Stripping/Treatment		X		X
Treated Groundwater Reinjection				X
Enhanced Anaerobic Bioremediation			X	

6 REMEDIAL ACTION ALTERNATIVES SCREENING PROCESS

This section screens the remedial action alternatives that were assembled in Section 5. The entire assembled alternatives were screened based on effectiveness, implementability, and cost. The comparison between alternatives in this screening step is generally made between similar alternatives. Each alternative includes a description and incorporates information regarding the different remedial components, as appropriate. The screening criteria are defined as follows.

Effectiveness	Implementability	Cost
Overall protectiveness of human health and the environment	Technical feasibility	Equipment/construction
Compliance with remediation goals	Demonstrated performance	Operation and maintenance (O&M)
Reduction of toxicity, mobility, or volume of contaminants	Availability of equipment, space, and services	
Adverse short- and long-term effects caused by implementation	Administrative feasibility	

Alternative screening for soil and groundwater are included below.

6.1 Additional Screening of Remedial Action Alternatives

The remedial action process options/technologies specific to each of the three target zones have been assembled into a set of remedial alternatives designed to comprehensively remediate the site. A summary of the alternatives applicable to each target zone are listed below:

- Vadose Zone
 - Excavation
 - In-Situ Thermal Treatment
- Source Area Saturated Zone
 - In-Situ Thermal Treatment
 - o ERD
 - Pumping and Treatment
 - Dynamic Groundwater Recirculation
- Dissolved-Phase Area Downgradient
 - o ERD
 - o Pumping and Treatment

arcadis.com OU-1 Feasibility Study - revised o Dynamic Groundwater Recirculation

Figure 6-1 depicts the remedial action process options/technologies for each of the three targeted zones assembled into a matrix of all the possible theoretical site-wide comprehensive remedial alternative combinations. The matrix presented on **Figure 6-1** provides the rationale for focusing down the alternatives to the No Further Action Alternative, plus a set of five additional alternatives that are logical combinations applicable to site conditions.

The remedial alternatives that come out of the screening matrix depicted on Figure 6-1 are listed below:

- Alternative 1 No Further Action
- Alternative 2 Excavation + ERD
 - Vadose Zone Excavation
 - Saturated Zone Source ERD
 - Dissolved-Phase Area (Downgradient) ERD
- Alternative 3 Excavation + Pumping and Treatment
 - Vadose Zone Excavation
 - Saturated Zone Source Hydraulic Control
 - o Dissolved-Phase Area (Downgradient) Pumping and Treatment
- Alternative 4 Excavation + Dynamic Groundwater Recirculation
 - o Vadose Zone Excavation
 - Saturated Zone Source Dynamic Groundwater Recirculation
 - Dissolved-Phase Area (Downgradient) Dynamic Groundwater Recirculation
- Alternative 5 In-Situ Thermal Treatment + ERD
 - Vadose Zone In-Situ Thermal Treatment
 - Saturated Zone Source In-Situ Thermal Treatment
 - Dissolved-Phase Area (Downgradient) ERD
- Alternative 6 In-Situ Thermal Treatment + Dynamic Groundwater Recirculation
 - Vadose Zone In-Situ Thermal Treatment
 - Saturated Zone Source In-Situ Thermal Treatment
 - Dissolved-Phase Area (Downgradient) Dynamic Groundwater Recirculation

6.2 Remedial Alternative Descriptions

Each of these remedial alternatives are described in greater detail below.

6.2.1 Alternative 1: No Further Action

This alternative consists of no remedial activities beyond those that have already been conducted within OU-1. It is the minimum proposed remedial action.

Table 6-1 presents the evaluation of the effectiveness, implementability, and cost associated with the No Further Action Alternative. The evaluation concludes that the No Further Action Alternative would not be acceptable. However, this alternative is retained for detailed analysis as required by the NCP as a baseline for evaluating the remaining alternatives.

6.2.2 Alternative 2: Excavation + Enhanced Reductive Dechlorination

This alternative would include the following:

- Excavation of targeted vadose zone soils and offsite disposal at a permitted facility that would reduce the site-wide non-residential potential excess lifetime cancer risk (PELCR) to less than or equal to 1x10⁻⁶ and the hazard index (HI) to less than or equal to 1.
- Destruction of COPCs by ERD in the saturated source and in the downgradient dissolved-phase area, within the bounds of OU-1, to meet groundwater cleanup goals.

The soil excavation and disposal component of this alternative would provide protection to human health by preventing or controlling potential exposure to COPCs in vadose zone soil through removal of targeted soil containing elevated concentrations of COPCs and offsite disposal of that soil at a permitted facility. After removing the targeted vadose zone soil, the site-wide upper confidence level concentration would be reduced to less than 6.93 mg/kg, which in turn, would reduce the estimated risk to below the targeted levels outlined above. The ERD component of this alternative would destroy COPCs via enhanced anaerobic bioremediation, accelerating the groundwater remediation process, and preventing the potential future offsite migration of dissolved COPCs in groundwater at concentrations above their cleanup goals. Natural attenuation, by natural subsurface processes, would also reduce remaining COPC concentrations in groundwater after the active portion of the enhanced anaerobic bioremediation phase of this remedial alternative is complete. Monitoring would be performed to evaluate the performance of the remedy and to track the reduction in COPC concentrations within groundwater. Potential receptor exposure would be further limited through deed notifications/restrictions on soil and groundwater. including: 1) implementation of a material management plan to address remaining residual COPCs in soil and 2) implementation of groundwater use restrictions to prevent potential future site groundwater withdrawal, except for the purposes of the remedy.

Table 6-2 presents the evaluation of the effectiveness, implementability, and cost associated with the excavation for the source area vadose zone and ERD for the saturated source area and downgradient dissolved-phase area. The evaluation concludes that this alternative would be protective of receptors by limiting exposure and is, therefore, retained for detailed analysis.

6.2.3 Alternative 3: Excavation + Pumping and Treatment

This alternative would include the following:

- Excavation of targeted vadose zone soils and offsite disposal at a permitted facility that would reduce
 the site-wide non-residential PELCR to less than or equal to 1x10⁻⁶ and the HI to less than or equal to 1.
- Groundwater pumping-based hydraulic control, via pumping, that would provide both onsite
 containment and flushing of COPCs in the saturated source and the downgradient dissolved-phase
 area. Extracted groundwater would then be treated, removing recovered COPC mass, and discharged
 to a permitted outfall.

The soil excavation and disposal component of this alternative would provide protection to human health by preventing or controlling potential exposure to COPCs in vadose zone soil through removal of targeted soil containing elevated concentrations of COPCs and offsite disposal of that soil at a permitted facility. After removing the targeted vadose zone soil, the site-wide upper confidence level concentration would be reduced to less than 6.93 mg/kg, which in turn, would reduce the estimated risk to below the targeted levels outlined above. The pumping-based hydraulic control component of this remedial alternative would rely on a long-term containment and flushing strategy for the saturated source and downgradient dissolved-phase area. The COPC mass, dissolved in groundwater, would travel to the pumping wells where that water would be captured and treated, thereby removing this mass. Potential receptor exposure would be further limited through deed notifications/restrictions on soil and groundwater, including: 1) implementation of a material management plan to address remaining residual COPCs in soil and 2) implementation of groundwater use restrictions to prevent potential future site groundwater withdrawal, except for the purposes of the remedy.

Table 6-3 presents the evaluation of the effectiveness, implementability, and cost associated with excavation for the vadose zone source area and pumping and treatment for the saturated source and downgradient dissolved-phase area groundwater. This evaluation concludes that this alternative would be protective of receptors by limiting exposure and is, therefore, retained for detailed analysis.

6.2.4 Alternative 4: Excavation + Dynamic Groundwater Recirculation

This alternative would include the following:

- Excavation of targeted vadose zone soils and offsite disposal at a permitted facility that would reduce the site-wide non-residential PELCR to less than or equal to 1x10⁻⁶ and the HI to less than or equal to 1.
- Dynamic groundwater recirculation that would provide enhanced containment and flushing of COPCs in the saturated source and the downgradient dissolved-phase area by groundwater extraction and treatment with the treated water reinjected and strategic locations to enhance flushing.

The soil excavation and disposal component of this alternative would provide protection to human health by preventing or controlling potential exposure to COPCs in vadose zone soil through removal of targeted soil containing elevated concentrations of COPCs and offsite disposal of that soil at a permitted facility. After removing the targeted vadose zone soil, the site-wide upper confidence level concentration would be reduced to less than 6.93 mg/kg, which in turn, would reduce the estimated risk to below the targeted levels outlined above. The COPC concentrations in groundwater would be reduced through dynamically enhancing advective flushing through the impacted portions of the aquifer, focusing that flushing through both preferential and less preferential flow paths. This method would be designed to consider the complexity of flow in natural aquifer systems and would be better tailored to those complexities than more conventional purely groundwater extraction methods only. As with the pumping and treatment alternative,

the COPCs in captured groundwater would be removed to reduce the mass in the targeted areas. Also, after extraction and treatment, the groundwater would be strategically reinjected to increase the amount of flushing of COPCs, subsequently leading to a faster rate of removal of COPCs from the saturated source and downgradient dissolved-phase area. The injection and pumping would be dynamically modified during the lifespan of the remedy to optimize mass flushing and removal.

As with the other potential remedial alternatives, natural attenuation from natural subsurface processes would further reduce remaining COPC concentrations in groundwater after eventual shutdown of the dynamic groundwater recirculation system. Monitoring would also be performed to evaluate/document the performance of the systems. Also, similar to the other potential remedial alternatives, potential receptor exposure would be further limited through deed notifications/restrictions.

Table 6-4 presents the evaluation of the effectiveness, implementability, and cost associated with excavation for the vadose zone source area and dynamic groundwater recirculation of the saturated source area and the downgradient dissolved-phase area. This evaluation concludes that this alternative would be protective of receptors by limiting exposure and is, therefore, retained for detailed analysis.

6.2.5 Alternative 5: In-Situ Thermal Treatment + Enhanced Reductive Dechlorination

This alternative would include the following:

- Destruction of COPCs by in-situ thermal heating and capture of COPCs liberated from the vadose zone and saturated zone sources.
- Destruction of COPCs by ERD in the saturated source and in the downgradient dissolved-phase area within the bounds of OU-1.

The in-situ thermal portion of this remedy in the vadose zone of this alternative would provide protection to human health by reducing COPC concentrations via volatilization and capture. After removing the targeted vadose zone soil, implementing the in-situ thermal remedy, the site-wide upper confidence level concentration would be reduced to less than 6.93 mg/kg, which in turn, would reduce the estimated risk to below the targeted levels outlined above. The in-situ thermal approach at this site would employ a combination of electrical resistance heating (ERH) and steam enhanced extraction (SEE). The ERH component of the method would deliver an electrical current between metal rods installed in the ground. The heat generated as movement of the current meets resistance from soil would convert COPCs and water/groundwater into steam, vaporizing contaminants. The SEE component would rely on injecting steam underground by pumping it through wells drilled within the footprint of the vadose and saturated zone source areas. The steam would heat the area, evaporating the COPCs to increase their mobility so that they could be captured by a series of vapor and multiphase extraction wells. The ERD component of this alternative would destroy COPCs via enhanced anaerobic bioremediation, accelerating the groundwater remediation process, and preventing the potential future offsite migration of dissolved COPCs in groundwater at concentrations above their cleanup goals. Natural attenuation, by natural subsurface processes, would also reduce remaining COPC concentrations in groundwater after the active portion of the enhanced anaerobic bioremediation phase of this remedial alternative is complete. Monitoring would be performed to evaluate the performance of the remedy and to track the reduction in

COPC concentrations within groundwater. Also, similar to the other potential remedial alternatives, potential receptor exposure would be further limited through deed notifications/restrictions.

Table 6-5 presents the evaluation of the effectiveness, implementability, and cost associated with in-situ thermal treatment of the vadose and saturated zone sources and ERD of the downgradient dissolved-phase area. This evaluation concludes that this alternative would be protective of receptors by limiting exposure and is, therefore, retained for detailed analysis.

6.2.6 Alternative 6: In-Situ Thermal Treatment + Dynamic Groundwater Recirculation

This alternative would include the following:

- Mobilization of COPCs by in-situ thermal heating and capture by vapor and multiphase extraction of those COPCs that would be liberated from the vadose and saturated zone sources through volatilization.
- Dynamic groundwater recirculation that would provide enhanced containment and flushing of COPCs in the downgradient dissolved-phase area by groundwater extraction and treatment. The treated water would be reinjected to promote enhanced flushing of COPCs toward the extraction wells.

The in-situ thermal portion of this remedial alternative would provide protection to human health by reducing COPC concentrations in the vadose zone soil via volatilization and capture. After implementing the in-situ thermal remedy, the site-wide upper confidence level concentration in the vadose zone would be reduced to less than 6.93 mg/kg, which in turn, would reduce the estimated risk to below the targeted levels outlined above. The saturated zone in-situ thermal component of this remedy would also remove COPCs as a component of the remedial alternative designed to achieve the groundwater cleanup goals.

The in-situ thermal approach at this site would employ a combination of ERH and SEE. The ERH component of the method would deliver an electrical current between metal rods installed in the ground. The heat generated as movement of the current meets resistance from soil would convert COPCs and water/groundwater into steam, vaporizing contaminants. The SEE component would rely on injecting steam underground by pumping it through wells drilled within the footprint of the vadose and saturated zone source areas. The steam would heat the area, evaporating the COPCs to increase their mobility so that they could be captured by a series of vapor and multiphase extraction wells.

The COPC concentrations in groundwater would be reduced through dynamically enhancing advective flushing through the impacted portions of the aquifer focusing that flushing through both preferential and less preferential flow paths. This method would be designed to consider the complexity of flow in natural aquifer systems and would be better tailored to those complexities than more conventional purely groundwater extraction methods only. Similar to the other potential remedial alternatives, natural attenuation from natural subsurface processes would reduce remaining COPC concentrations in groundwater after eventual shutdown of the dynamic groundwater recirculation system. Monitoring would also be performed to evaluate/document the performance of the systems. Also, similar to the other potential remedial alternatives, potential receptor exposure would be further limited through deed notifications/restrictions.

Table 6-6 presents the evaluation of the effectiveness, implementability, and cost associated with in-situ thermal treatment of the vadose and saturated zone sources and dynamic groundwater recirculation of the downgradient dissolved-phase area. This evaluation concludes that this alternative would be protective of receptors by limiting exposure and is, therefore, retained for detailed analysis.

7 DETAILED EVALUATION OF ASSEMBLED REMEDIAL ACTION ALTERNATIVES

This section and **Table 7-1** present a detailed analysis of each remedial action alternative developed in Section 6 based on the standard criteria specified in the NCP (USEPA 1990). These analyses are intended to aid in selection of an alternative that satisfies the RAOs; complies with the ARARs; provides a permanent solution; and reduces toxicity, mobility, and/or volume of area-specific COPCs for groundwater and surface water.

In accordance with CERCLA Section 121, the NCP (USEPA 1990), and USEPA Remedial Investigation/FS guidance (USEPA 1988, 2000), each alternative will undergo a detailed analysis based on nine criteria that are commonly viewed as three groups of criteria: threshold, balancing, and modifying criteria. Criteria 1 and 2 are considered to be threshold criteria, Criteria 3 through 7 are considered primary balancing criteria, and Criteria 8 and 9 are considered modifying criteria. A description of the criteria groups is presented below, with further definition of each individual criteria presented thereafter:

- Threshold Criteria The selected remedial action alternative must be protective of human health and
 the environment and comply with ARARs. Therefore, the USEPA has designated overall protection of
 human health and the environment and compliance with ARARs as the two threshold criteria. Absent
 an appropriate case for a waiver of some ARARs, an alternative must meet both criteria to be eligible
 for selection as the remedial action alternative.
- Balancing Criteria The five primary balancing criteria are long-term effectiveness and permanence; reduction of toxicity, mobility, or volume through treatment; short-term effectiveness; implementability; and cost. This balancing provides a preliminary assessment of the maximum extent to which permanent solutions and treatment can be used practicably in a cost-effective manner. The alternative that is protective of human health and the environment, complies with ARARs, and affords the most favorable balancing criteria is identified as the preferred remedial action alternative.
- Modifying Criteria State and community acceptance are factored into a final evaluation that
 determines which remedial action alternatives are acceptable. State and community acceptance will
 be addressed after comments on the FS have been received.

Further detail regarding all the nine criteria, that are within the above three referenced groups of criteria, is presented below:

- 1. Overall Protection of Human Health and the Environment Addresses how the alternative protects human health and the environment. This assessment focuses on how an alternative achieves protection over time and indicates how each source of COPCs would be minimized; reduced; or controlled through treatment, engineering, or institutional controls. The evaluation of the degree of overall protection associated with each alternative is based largely on the exposure pathways and scenarios set forth in the risk assessment.
- 2. Compliance with ARARs Addresses whether the alternative complies with ARARs developed in Section 3.
- 3. Long-Term Effectiveness and Permanence Addresses the results of an alternative in terms of the residual risk remaining after the RAOs have been met. The primary focus of this evaluation is the

- extent and effectiveness of the controls that will be applied to manage the risk posed by the residual COPCs of the treatment process and/or untreated COPCs.
- 4. Reduction of Mobility, Toxicity, or Volume Addresses the statutory preference for selecting remedial actions that include treatment technologies that permanently and significantly reduce the mobility, toxicity, or volume of the COPCs. Factors of this criterion to be evaluated include the treatment process employed; the amount of COPCs destroyed or treated; the degree of reduction in toxicity, mobility, or volume expected; the degree to which the treatment will be irreversible; and the type and quantity of residual COPCs.
- 5. Short-Term Effectiveness Addresses potential human health and environmental risks of the alternative during the construction and implementation phase until remedial response objectives are met
- Implementability Addresses the technical and administrative feasibility of implementing an
 alternative and the availability of services and materials required during implementation.
 Implementability is further categorized into technical feasibility, administrative feasibility, and
 availability criteria.
- 7. Cost Addresses the capital and O&M costs and includes a present worth analysis of all costs. The capital costs consist of direct costs (construction) and indirect costs (non-construction and overhead). Direct capital costs include construction costs, equipment costs, land and development costs, relocation expenses, and disposal costs. Indirect capital costs include engineering expenses, legal fees and license or permit costs, startup costs, and contingency allowances.
 - O&M costs are post-construction costs necessary to confirm the continued effectiveness of a remedial action. These costs include operating labor costs, maintenance materials and labor costs, auxiliary materials and energy, treatment residue disposal costs, purchased services, administrative cost, insurance, taxes, licensing costs, maintenance reserve and contingency funds, rehabilitation costs, and costs of periodic site reviews, if required.

The cost estimates presented in this FS-OU1 were developed utilizing USEPA guidance, professional engineering judgment, and quotations from appropriate vendors. In accordance with USEPA guidance, the cost estimates in this FS-OU1 have been prepared to provide accuracy in the range of -30 to +50% (USEPA 2000). All capital and O&M cost estimates are expressed in 2019 dollars.

After development of the capital and O&M costs, a present-worth analysis of the overall remedial action costs associated with each alternative was completed. A present-worth analysis relates costs that occur over different time periods to present costs by discounting all future costs to the present value. This allows the cost of alternatives to be compared based on a single figure that represents the capital required in 2019 dollars to construct, operate, and maintain the alternative throughout its planned life. The present-worth calculations are based on a discount rate of 7%. Life-cycle costs are calculated for each alternative

8. State Acceptance – Addresses the technical and administrative issues and concerns of the state (or support agency) regarding the alternative. This input is limited to formal comments made by the state following the FS submittal.

FEASIBILTY STUDY FOR OPERABLE UNIT 1

9. *Community Acceptance* – Addresses public issues and concerns regarding the alternative. This input is limited to comments made during the public comment period following the FS submittal.

The selected remediation alternatives developed in Section 6 are summarized in **Table 7-1**. Detailed backup to the cost shown in **Table 7-1** are provided in **Appendix C**.

8 COMPARATIVE ANALYSIS OF OPERABLE UNIT 1-ASSEMBLED REMEDIAL ACTION ALTERNATIVES

The development of remedial action alternatives has followed the process below:

- Identification of RAOs and requirements for remediation (Section 3)
- Identification and screening of applicable technologies and formulation of remedial action alternatives for groundwater and surface water (Sections 4 through 6)
- Individual analysis of soil and groundwater remedial action alternatives (Section 7)

The formulation of the operable unit alternatives for this FS-OU1 is developed using a comparative analysis of the alternatives relative to one another. The identification of and selection of the preferred remedial action alternative are based on consideration of the major trade-offs among the alternatives in terms of the nine evaluation criteria within the three groups of criteria, including threshold, balancing, and modifying criteria.

A comparative analysis of the assembled remedial action alternatives based on the threshold and balancing evaluation criteria is presented herein. This comparative analysis includes an evaluation of the expected performance of each alternative relative to the other alternatives to identify their respective advantages and disadvantages.

The assembled remedial action alternatives are summarized again as follows:

- Alternative 1 No Further Action
- Alternative 2 Excavation, ERD, MNA, Institutional Controls, and Long-Term Monitoring
- Alternative 3 Excavation, Pumping and Treatment, Institutional Controls, and Long-Term Monitoring
- <u>Alternative 4</u> Excavation, Dynamic Groundwater Recirculation, MNA, Institutional Controls, and Long-Term Monitoring
- <u>Alternative 5</u> In-Situ Thermal Treatment, ERD, MNA, Institutional Controls, and Long-Term Monitoring
- <u>Alternative 6</u> In-Situ Thermal Treatment, Dynamic Groundwater Recirculation, MNA, Institutional Controls, and Long-Term Monitoring

The summary of remedial component options, targets of remediation, and remedial alternative combinations is provided on **Figure 6-1** and presented again in the following table.

Summary of Remedial Component Options, Targets of Remediation, and Remedial Alternative Combinations

Vadose Source Zone Component Options		Remedial Alternative Combinations					
Excavation (EXC)	Targets of Remediation	1	2	3	4	5	6
Insitu Thermal Vadose Zone (ISTVZ)	Source Vadose Zone	No Action	EXC	EXC	EXC	ISTVZ	ISTVZ
	Source Saturated Zone	No Action	ERD	P&T	DGR	ISTSZ	ISTSZ
Saturated Source Zone Component Options	Down Gradient Dissolved Phase Area	No Action	ERD	P&T	DGR	ERD	DGR
Insitu Thermal Saturated Zone (ISTSZ)							
Enhanced Reductive Dechlorination (ERD)							
Pumping and Treatment (P&T)							
Dynamic Groundwater Recirculation (DGR)							
Downgradient Dissolved Phase Area							
Component Options							
Enhanced Reductive Dechlorination (ERD)							
Pumping and Treatment (P&T)							
Dynamic Groundwater Recirculation (DGR)							

8.1 Overall Protection of Human Health and the Environment

The No Further Action Alternative (Alternative 1) is not protective of human health and the environment. Alternatives 2 through 6 are protective of human health and the environment through a combination mass removal or destruction of COPCs by both active remediation and natural attenuation, by further limiting potential exposure through administrative institutional controls (land/groundwater use restrictions) and by implementing a long-term monitoring program to measure the performance of the remedy components and the overall remedy.

8.2 Compliance with Applicable or Relevant and Appropriate Requirements

Alternative 1 does not comply with chemical-specific ARARs. Each of the alternatives would attain remediation goals in the long-term, although some (Alternatives 3 and 4) will take much longer (possibly 30 or more years for Alternative 3 and possibly up to 30 years for Alternative 4). Monitoring would be used to verify that natural attenuation continues to make progress toward reduction of COPCs remaining in groundwater, eventually toward achievement of RAOs.

8.3 Long-Term Effectiveness and Permanence

Although groundwater monitoring indicates that some destruction of COPCs has been occurring through natural processes under Alternative 1, No Further Action is deemed as not effective or permanent. Furthermore, potential exposure risks associated with COPCs in soil and groundwater would remain given that there would be no controls or long-term management plan. Alternatives 2 and 5 would be considered highly effective, with remedial components like excavation (vadose zone source), in-situ thermal (vadose and saturated zone sources), and ERD (saturated zone source and downgradient dissolved-phase area) being particularly effective and permanent. Alternatives 3, 4, and 6 are considered

moderately to moderately/highly effective given that they include dynamic groundwater recirculation or pumping and treatment as remedial components in the saturated zone source and downgradient dissolved-phase area, although the length of time to achieve this state with these components of the remedy is much longer and has some higher degree of uncertainty compared with ERD or in-situ thermal.

8.4 Reduction of Mobility, Toxicity, or Volume

Alternative 1 (No Further Action) would have a relatively small effect on limiting the mobility, toxicity, or volume of COPCs through natural attenuation processes that we know are ongoing currently. Alternatives 2 through 6 would all be moderately to highly effective in reducing mobility, toxicity, or volume of COPCs in soil and groundwater. The most highly effective of the alternatives in this regard are Alternatives 2, 5, and 6 through aggressive methods for the vadose zone source area (excavation or in-situ thermal), the saturated zone source area (in-situ thermal and ERD), and the downgradient dissolved-phase area (ERD and dynamic groundwater recirculation). Alternative 4 would be somewhat less effective given it counts on dynamic groundwater recirculation to address the saturated zone source area, and Alternative 3 would be even less effective because it counts on pumping and treatment throughout the saturated zone source and dissolved-phase areas.

8.5 Short-Term Effectiveness

All alternatives would have at least moderate short-term effectiveness in that excavation or installation of remedial component infrastructure could potentially increase the short-term risks due to potentially higher exposure to COPCs during the construction. The No Further Action Alternative (Alternative 1) would have the smallest potential for potential short-term exposure risks to human health or the environment because it includes no construction or operation activities that could potentially increase exposure to COPCs.

8.6 Implementability

Alternative 1 (No Further Action) has low to moderate implementability; however, this alternative is not expected to be administratively viable as there would be no controls on the migration of COPCs. The most highly effective alternatives are Alternatives 2, 3, and 4, which include components that have precedent of success of implementation at either OU-1 or OU-2, including excavation, ERD, and pumping and treatment. Dynamic groundwater recirculation is viewed as having moderately high implementability, similar to that for pumping and treatment given that dynamic groundwater recirculation is essentially a modified pumping and treatment remedial technique that adds an injection component. Because Alternatives 5 and 6 include in-situ thermal, these two alternatives would be considered slightly less implementable relative to the other alternatives that have precedent of implementation at OU-1 and OU-2. Furthermore, in-situ thermal requires the installation of a high complex and dense network of heating elements (steam and electrically conductive probes), extraction wells, and treatment that makes this alternative more difficult to successfully implement.

8.7 Cost

Based on net present value costs, Alternative 1 (No Further Action) has the lowest cost of implementation given that no construction, operation, or monitoring is required. Alternative 3 has the lowest cost given

that the pumping and treatment component of the alternative is already in place and operating (therefore, little or no capital costs for that part of the remedy), and the annual costs to operate that system are relatively low and spread out over time. Alternatives 2 and 4 have moderate costs, with Alternative 2 costs being incurred over a shorter period of time and Alternative 4 costs being spread out over a longer period of time, with the 20 years of active dynamic groundwater recirculation and 10 additional years of MNA. Alternatives 5 and 6 are by far the highest cost alternatives to implement being nearly triple the next most expensive alternative.

8.8 Comparative Analysis Summary

The comparative analysis scoring is presented in **Table 7-1**, with a summary of the scoring, costs, and durations presented below. A bar chart is also provided that shows a graphic of the remedial timeframes and costs for each of the six remedial alternatives.

Alternative 1	Alternative 2	Alternative 3
No Action	Excavation, ERD, MNA, Institutional Controls, Long-Term Monitoring	Excavation, Pumping and Treatment, Institutional Controls, Long-Term Monitoring
Total Present Value Costs: \$0	Total Net Present Value Costs: \$5,009,611	Total Net Present Value Costs: \$2,777,047
Rating = 13	Rating = 30	Rating = 28
Duration – Not Applicable	Duration – 5 Years, Active Remediation and 10 Years, MNA	Duration – 30 Years, Active Remediation and Performance Monitoring

Alternative 4	Alternative 5	Alternative 6
Excavation, Dynamic Groundwater Recirculation, MNA, Institutional Controls, Long-Term Monitoring	In-Situ Thermal Treatment, ERD, MNA, Institutional Controls, Long-Term Monitoring	In-Situ Thermal Treatment, Dynamic Groundwater Recirculation, MNA, Institutional Controls, Long-Term Monitoring
Total Net Present Value Costs: \$4,640,170	Total Net Present Value Costs: \$13,197,583	Total Net Present Value Costs: \$13,841,112
Rating = 28	Rating = 26	Rating = 25
Duration – 20 Years, Active Remediation and 10 Years, MNA	Duration – 5 Years, Active Remediation and 10 Years, MNA	Duration – 20 Years, Active Remediation and 10 Years, MNA

FEASIBILTY STUDY FOR OPERABLE UNIT 1

9 REFERENCES

- Arcadis. 2008a. *Feasibility Study Work Plan,* AVX Corporation Facility, Myrtle Beach, South Carolina, March.
- Arcadis. 2008b. *Addendum to Appendix B of the March 2008 Feasibility Study Work Plan*, AVX Corporation Facility, Myrtle Beach, South Carolina, October.
- Arcadis. 2009. *Addendum 2 to Appendix B of the March 2008 Feasibility Study Work Plan*, AVX Corporation Facility, Myrtle Beach, South Carolina, May.
- Arcadis. 2010a. *Feasibility Study Data Gap Investigation Report.* AVX Corporation Facility, Myrtle Beach, South Carolina. November.
- Arcadis. 2010b. *PDG Building Post-Demolition Subgrade Sampling Report.* AVX Corporation, Myrtle Beach, South Carolina. March.
- Arcadis. 2012a. *MB-1 Post-Demolition Soil Investigation and Soil Removal Work Plan*. AVX Corporation, Myrtle Beach, South Carolina. April.
- Arcadis. 2012b. Soil Removal Report Operable Unit 1. AVX Corporation, Myrtle Beach, South Carolina. July.
- Arcadis. 2015a. *Post-Demolition Soil Sampling Work Plan*. AVX Corporation, Myrtle Beach, South Carolina, February.
- Arcadis. 2015b. Feasibility Study Work Plan. AVX Corporation, Myrtle Beach, South Carolina, July.
- Arcadis. 2015c. Post-Demolition Soil Investigation Report and Vadose Zone Subsurface Soil Sampling Work Plan. AVX Corporation, Myrtle Beach, South Carolina, August.
- Arcadis. 2016a. *Soil Removal Report Trimethylbenzene Area*. AVX Corporation, Myrtle Beach, South Carolina, April.
- Arcadis. 2016b. Feasibility Study Investigation Report Operable Unit 1. AVX Corporation, Myrtle Beach, South Carolina, December.
- Arcadis. 2019. Post-Demolition Soil Investigation Report Reclaim and RMM Buildings. AVX Corporation, Myrtle Beach, South Carolina. January.
- Geraghty & Miller, Inc. 1997a. *Engineering Report: Groundwater Air Stripper Work Plan*, AVX Corporation Facility, Myrtle Beach, South Carolina. March
- Geraghty & Miller, Inc. 1997b. *Remedial Investigation and Pilot Testing Report.* AVX Corporation Facility, Myrtle Beach, South Carolina. September.
- USEPA. 1988. Guidance for Conducting Remedial Investigation and Feasibility Studies Under CERCLA. EPA/540/G-89/004. OSWER Directive 9355-3-01. October.
- USEPA. 1990. Code of Federal Regulations, Title 40, Part 300.430, National Oil and Hazardous Substances Pollution Contingency Plan, Federal Register. March.

FEASIBILTY STUDY FOR OPERABLE UNIT 1

USEPA. 2000. Supplemental Guidance to RAGS: Region 4 Bulletins, Human Health Risk Assessment Bulletins, USEPA Region 4, originally published November 1995, Website version last updated May 2000: http://www.epa.gov/region4/waste/ots/healtbul.htm

Zack, Allen, 1977. The Occurrence, Availability and Chemical Quality of Ground Water, Grand Strand Area and Surrounding parts of Horry and Georgetown Counties. South Carolina Water Resources Commission Report No. 8.

TABLES

Table 3-1 Chemical-Specific ARARs, Criteria, Advisories, and Guidance Feasibility Study AVX Corporation Myrtle Beach, South Carolina

Media/Authority	Requirements	Status	Requirement Synopsis	Anticipated Actions to Attain ARARs
Groundwater				
State Regulatory Requirements	South Carolina (SC) Water Quality Standards (SC Code Ann. Regs. 61-68), pursuant to the SC Pollution Control Act (SC Code of Laws Title 48, Chapter 1 et seq.)	Applicable	Establishes the state's official classified water uses for all waters of the state, establishes general rules and specific numeric and narrative criteria for protecting classified and existing water uses, and establishes procedures for classifying waters of the state. The water quality standards include uses of the waters, numeric and narrative criteria, and antidegradation rules.	Groundwater beneath the site (which is currently not used as drinking water source) is currently classified as GB (potential underground source of drinking water).
	South Carolina Safe Drinking Water Regulations (SC Code Ann. Regs. 61-58), pursuant to the SC Safe Drinking Water Act (SC Code of Laws Title 44, Chapter 58)	Relevant and Appropriate	State water quality standards with respect to drinking water. Provides maximum contaminant levels for constituents in public drinking water supplies. The SC Safe Drinking Water Act applies to all public water systems in the state.	Groundwater beneath the site (which is currently not used as drinking water) is currently classified as a potential underground source of drinking water even though public water is available and used as the local potable water source.
Federal Regulatory Requirements	Title XIV of Public Health Service Act - Safety of Public Water System (Safe Drinking Water Act)	Relevant and Appropriate	The Safe Drinking Water Act authorizes the USEPA to set MCLs and MCLGs and a process for developing them. The Safe Drinking Water Act applies to all public water systems in the US.	These requirements are relevant and appropriate if exposure studies performed for the site indicate a risk level higher than acceptable levels using MCLs or MCLGs. Groundwater is not currently used as a drinking water source because a public water supply is available.

Table 3-1 OU1 1/3

Table 3-1 Chemical-Specific ARARs, Criteria, Advisories, and Guidance Feasibility Study AVX Corporation Myrtle Beach, South Carolina

Media/Authority	Requirements	Status	Requirement Synopsis	Anticipated Actions to Attain ARARs
	USEPA Groundwater Protection Strategy	To be considered	The Groundwater Protection Strategy provides a common reference for preserving clean groundwater and protecting the public health against the effects of past contamination. Guidelines for consistency in groundwater protection programs focus on the highest beneficial use of a groundwater aquifer and defines three classes of groundwater.	Groundwater beneath the site (which is currently not used as drinking water) is classified as Class II (potential source of drinking water), which is protected at levels consistent with that for current sources of drinking water.
	USEPA Regional Screening Levels (RSLs) for Chemical Contaminants at Superfund Sites	To be Considered	Provide non-enforceable, generic, risk-based contaminant concentrations to be used for site "screening."	Provides screening levels for constituents in tap water. Even though groundwater is not used as a drinking water source in the area, groundwater is nonetheless considered as a potential source of drinking water; therefore, these screening levels will be considered.
Federal Criteria, Advisories, and Guidance	Use of Monitored Natural Attenuation at Superfund RCRA Corrective Action and UST Sites (OSWER Directive 9200.4-17P) (1999).	To be Considered	Provides guidance for proposing, evaluating, and approving MNA remedies	Decisions on use and efficacy of MNA will be consistent with guidance.
	USEPA Carcinogen Assessment Group Potency Factors	To be Considered	Carcinogenic effects present the most up-to- date information on cancer risk potency derived from the USEPA's cancer assessment group.	Carcinogen potency factors are used to compute the individual incremental cancer risk resulting from exposure to certain compounds.
	USEPA Human Health Assessment Cancer Slope Factors (CSFs)	To be Considered	CSFs are developed by USEPA for health effects assessments or evaluation by the Human Health Assessment Group.	The values present the most up-to-date cancer risk potency information. CSFs will be used to compute the individual cancer risk resulting from exposure to constituents of potential concern.
	USEPA Risk Reference Dose (RfDs)	To be Considered	RfDs are considered to be levels unlikely to cause significant adverse health effects associated with a threshold mechanism of action in human exposure for a lifetime.	USEPA RfDs are used to characterize risks due to noncarcinogens in various media. They are considered when developing target cleanup levels.

Table 3-1 OU1 2/3

Table 3-1 Chemical-Specific ARARs, Criteria, Advisories, and Guidance Feasibility Study AVX Corporation Myrtle Beach, South Carolina

Media/Authority	Requirements	Status	Requirement Synopsis	Anticipated Actions to Attain ARARs
Soil				
Federal Criteria,	USEPA RSLs for Chemical		Provide non-enforceable, generic, risk-based	Provide screening levels for constituents in
Advisories, and	Contaminants at Superfund	To be considered	contaminant concentrations to be used for site	soil based on potential exposure to the site
Guidance	Sites		"screening."	worker.

Notes:

ARAR = applicable or relevant and appropriate requirement

MCL = Maximum Contaminant Level

MNA = monitored natural attenuation

OSWER = Office of Solid Waste and Emergency Response

RCRA = Resource Conservation and Recovery Act

USEPA = United States Environmental Protection Agency

UST = underground storage tank

Table 3-1 OU1 3/3

Table 3-2
Location-Specific ARARs, Criteria, Advisories, and Guidance
Feasibility Study
AVX Corporation
Myrtle Beach, South Carolina

Site Feature/ Authority	Requirements	Status/System	Requirement Synopsis	Consideration in the RI/FS
Coastal Zones				
	South Carolina Coastal Zone Management Act (SC Code of Laws Title 48, Chapter 39).	Applicable	Provides for the protection and enhancement of the state's coastal resources.	All land and waters in Horry County are part of the "coastal zone" as defined in the law, and as such, are subject to its provision. Remedial measures will be designed to mitigate adverse impacts on the protected areas.
State Regulatory Requirements	SC Water Quality Standards (SC Code Ann. Regs. 61-68), pursuant to the SC Pollution Control Act (SC Code of Laws Title 48, Chapter 1 et seq.)	Applicable	Establishes the state's official classified water uses for all waters of the state, establishes general rules and specific numeric and narrative criteria for protecting classified and existing water uses, and establishes procedures for classifying waters of the state. The water quality standards include uses of the waters, numeric and narrative criteria, and antidegradation rules.	Withers Swash is classified as SFH - tidal saltwaters protected for shellfish harvesting. Suitable for primary and secondary contact recreation, crabbing, and fishing. Also suitable for the survival and propagation of a balanced indigenous aquatic community of marine fauna and flora. Surface water cannot be impacted to concentrations above levels that would be harmful to humans, fish, or wildlife of the most sensitive populations. Contaminant source areas are not likely to cause these exceedances in surface water quality.
Wetlands and Flo	odplains			
Local Regulatory Requirements	Horry County Code of Ordinances Chapter 9 Flood Damage Prevention and Control	Applicable	Regulations related to actions conducted at sites with the 100-year floodplain.	The site is located within a 100-year floodplain. Remedial measures will be designed to comply with local regulations.
State Regulatory Requirements	SC Department of Health and Environmental Control Coastal Division Regulations (SC Code Ann. Reg 30-1 et seq.)	Applicable	Regulations to ensure the preservation and wise utilization of coastal resources. Regulates activities that may adversely affect wetlands.	Remedial measures will be designed to mitigate adverse impacts on protected functions and achieve no net loss.

Table 3-2 OU1 1/3

Table 3-2
Location-Specific ARARs, Criteria, Advisories, and Guidance
Feasibility Study
AVX Corporation
Myrtle Beach, South Carolina

Site Feature/ Authority	Requirements	Status/System	Requirement Synopsis	Consideration in the RI/FS
Clean Water Act, S 404(b)(1) Guideline Specification of Dis Sites for Dredged o Material (40 CFR P	Clean Water Act, Section 404(b)(1) Guidelines for Specification of Disposal Sites for Dredged or Fill Material (40 CFR Part 230.231)	Applicable	Under this requirement, no activity that adversely affects a wetland shall be permitted if a practicable alternative with lesser effects is available. Controls discharges of dredged or fill material to protect aquatic ecosystems.	Remedial measures will be designed to mitigate adverse impacts on protected functions and achieve no net loss.
	Executive Order 11990; Statement of Procedures on Wetlands Protection (40 CFR Part 6, Appendix A)	Applicable	Action to avoid, whenever possible, the long- and short-term impacts on wetlands and to preserve and enhance wetlands. Plans for action in wetlands must be submitted for public review.	All practicable means will be used to minimize harm to the wetlands. Wetlands disturbed by remedial activities will be mitigated in accordance with requirements.
Federal Regulatory Requirements	Coastal Zone Management Act (CZMA) 16 U.S.C. 1451 et seq.	Applicable	To protect the Nations' coastal zone and is implemented through state-federal partnerships. Section 307(c) of CZMA prohibits the issuance of NPDES permits for activities affecting land or water use in coastal zones unless the permit applicant certifies that the proposed activity complies with the state coastal zone management program.	Remedial measures will be designed to mitigate adverse impacts on protected functions and achieve no net loss.
	Executive Order 11988, Statement of Procedures on Floodplain Management (40 CFR Part 6, Appendix A)	Annlicable	Action to avoid, whenever possible, the long- and short-term impacts associated with the occupancy and modifications of floodplains development wherever there is a practical alternative. Promotes the preservation and restoration of floodplains so that their natural and beneficial value can be realized.	Floodplains disturbed during remediation activities will be restored to their original or an improved condition and function.

Table 3-2 OU1 2/3

Table 3-2 Location-Specific ARARs, Criteria, Advisories, and Guidance Feasibility Study AVX Corporation Myrtle Beach, South Carolina

Site Feature/ Authority	Requirements	Status/System	Requirement Synopsis	Consideration in the RI/FS
Endangered Spec	cies			
State Regulatory Requirements	Nongame and Endangered Species Conservation Act (SC Code of Laws Title 50, Chapter 15)	Applicable	Requires actions to ensure the continued existence of endangered or threatened species.	No endangered species have been identified at the site, though several are listed for Horry County. Consultation with South Carolina Department of Natural Resources is recommended to ensure that remedial actions do not jeopardize the continued existence of endangered or threatened species.
Federal Regulatory Requirements	Endangered Species Act (50 CFR 402, 16 USC 1531 et seq., 50 CFR 200)	Applicable	Requires actions to ensure the continued existence of any endangered or threatened species. Also requires that their habitats will not be jeopardized by a site action.	No endangered species have been identified at the site, though several are listed for Horry County. Consultation with federal agencies is recommended to ensure that remedial actions do not jeopardize the continued existence of endangered or threatened species or adversely modify or destroy critical habitat.

Notes:

ARAR = applicable or relevant and appropriate requirement CFR = Code of Federal Regulations
NPDES = National Pollutant Discharge Elimination System
RI/FS = remedial investigation/feasibility study
SC = South Carolina
USC = United States Code

Table 3-2 OU1 3/3

Table 3-3
Action-Specific ARARs, Criteria, Advisories, and Guidance
Feasibility Study
AVX Corporation
Myrtle Beach, South Carolina

Media/Authority	Regulation	Status	Requirement	Action to be Taken to Attain ARARs
Air				<u> </u>
State Regulatory Requirements	South Carolina Air Pollution Control Regulations and Standards (SC Code Ann Reg 61-62)	To be Considered	Prohibits emissions of any contaminant that may become injurious to human, plant, or animal life.	Air emissions from remedial actions will meet the regulatory limits.
Federal Regulatory Requirements	National Emissions Standards for Hazardous Air Pollutants (40 CFR Part 61)	To be Considered	Establishes air emissions limits for hazardous air pollutants.	Air emissions will meet all applicable standards.
Federal Criteria, Advisories, and Guidance	USEPA Regional Screening Levels (RSLs) for Chemical Contaminants at Superfund Sites	To be Considered	Provide non-enforceable, generic, risk-based contaminant concentrations to be used for site "screening."	Provides screening levels for constituents in industrial and residential air. Screening levels will be considered for remedial actions involving treatment with air stripping.
Groundwater				
SC Water Standard: Reg 61-6 the SC Po Act (SC C	SC Water Quality Standards (SC Code Ann Reg 61-68), pursuant to the SC Pollution Control Act (SC Code of Laws Title 48, Chapter 1 et seq.)	Applicable	Establishes the state's official classified water uses for surface waters of the state, establishes general rules and specific numeric and narrative criteria for protecting classified and existing water uses, and establishes procedures for classifying waters of the state. The water quality standards include uses of the waters, numeric and narrative criteria, and antidegradation rules.	All alternatives will comply with regulations that apply to groundwater.
State Regulatory Requirements	Groundwater Use and Reporting Regulation (SC Code Ann Reg 61-113, et seq.), promulgated pursuant to the Groundwater Use and Reporting Act (SC Code Ann. Sections 49-5-10 et seq.)	To be Considered	Regulations to maintain, conserve, and protect the groundwater resources of the state.	Applicable if combined pumping volume of groundwater extraction wells is greater than 3 million gallons per month.
Federal Regulatory Requirements	RCRA Groundwater Protection (40 CFR 264)	Applicable	Regulations include groundwater protection standard requirements for groundwater monitoring, detection monitoring, and compliance monitoring and the corrective action program.	All alternatives will comply with the portions of the regulations that apply to installing groundwater monitoring wells and compliance monitoring.

Table 3-3 OU1 1/3

Table 3-3
Action-Specific ARARs, Criteria, Advisories, and Guidance
Feasibility Study
AVX Corporation
Myrtle Beach, South Carolina

Media/Authority	Regulation	Status	Requirement	Action to be Taken to Attain ARARs
Waste				
Federal Regulatory Requirements	RCRA-Hazardous Waste Identification (40 CFR, Part 261)	Applicable	Defines wastes that are subject to regulation as hazardous waste under 40 CFR Parts 262-264.	If remedial alternatives require excavation of waste, management approaches for listed and characteristic waste, if encountered, will be met.
Surface Water				
State Regulatory Requirements	South Carolina NPDES Permit Regulations (SC Code Ann Reg 61-9), pursuant to SC Pollution Control Act (SC Code of Law. Title 48. Chapter 1) R.61-119 Surface Water Withdrawal, Permitting, and Reporting Sec.49-4-10	Applicable Applicable	State-mandated water quality standards with respect to state-wide surface waters and pollutant effluent discharge standards. Establishes a system and rules for permitting and registering the withdrawal and use of surface water.	remedial activities will meet the substantive requirements of these rules. Applies to any person withdrawing surface waters at volumes in excess of 3 million
	et seq.		regionality and management and also or canado materi	gallons during any one month.
State Regulatory Requirements	SC Water Quality Standards (SC Code Ann Reg 61-68), pursuant to the SC Pollution Control Act (SC Code of Laws Title 48, Chapter 1 et seq.)	To be Considered	Establishes the state's official classified water uses for groundwaters of the state, establishes general rules and specific numeric and narrative criteria for protecting classified and existing water uses, and establishes procedures for classifying waters of the state. The water quality standards include uses of the waters, numeric and narrative criteria, and antidegradation rules.	Treated water discharged to surface water during remedial activities will meet the substantive requirements of these regulations.

Table 3-3 OU1 2/3

Table 3-3
Action-Specific ARARs, Criteria, Advisories, and Guidance
Feasibility Study
AVX Corporation
Myrtle Beach, South Carolina

Media/Authority	Regulation	Status	Requirement	Action to be Taken to Attain ARARs
	Federal NPDES Regulations (40 CFR Part 122)	To be Considered	Federal water quality standards/pollutant effluent discharge standards.	Treated water discharged to surface water during remedial activities will meet the substantive requirements of these regulations.
Federal Regulatory Requirements	CWA Ambient Water Quality Criteria (AWQC), 40 CFR Part 122, 125, 129, 133 and 136	To be Considered	Non-enforceable guidance used by states in conjunction with a designated use for a stream effluent to establish water quality standards. AWQC levels for protection of human health from consuming fish and aquatic organisms have been developed for several contaminants. The standards are relevant and appropriate if state standards are no more stringent.	Applicable to any point-source discharges of wastewaters to waters of the United States. At this site, it is applicable to discharge of treated waters from the groundwater treatment system to any surface water body. Treated water will be the requirements of the regulation.
General				
State Regulatory Requirements	SC Underground Injection Control Regulations (SC Code Ann Reg 61-87)	To be Considered	These regulations set forth the specific requirements for controlling underground injection in the state and include provisions for: the classification and regulation of injection wells; prohibiting unauthorized injection; protecting underground sources of drinking water from injection; classifying underground sources of drinking water; and requirements for abandonment, monitoring, and reporting for existing injection wells used to inject wastes or contaminants.	All underground injection actions will comply with the regulations.
State Regulatory Requirements	SC Well Standards (SC Code Ann Reg 61-71)	To be Considered	These regulations establish minimum standards for the construction, maintenance, and operation of the following wells: individual residential, irrigation, monitoring, and boreholes to ensure that underground sources of drinking water are not contaminated and public health is protected.	All wells will be constructed adhering to the standards listed in this regulation.
Federal Regulatory Requirements	Federal UIC Regulations (40 CFR Parts 144 -148)	To be Considered	These regulations set forth the federal requirements for controlling underground injections.	All underground injection actions will comply with the regulations.

Notes:

ARAR = applicable and relevant or appropriate requirement

CFR = Code of Federal Regulations

CWA = Clean Water Act

NPDES = National Pollutant Discharge Elimination System

RCRA = Resource Conservation and Recovery Act

SC = South Carolina

USEPA = United States Environmental Protection Agency

WQC = Water Quality Criteria

Table 3-3 OU1 3/3

Table 3-4 Remediation Goals Summary Feasibility Study AVX Corporation Myrtle Beach, South Carolina

Groundwater - USEPA MCLs or SCDHEC Drinking Water Standards, unless otherwise noted

Groundwater COPC	Risk-Based Remedial Goal ^d (μg/L)	MCL (μg/L)	Detected Above MCL in HHRA Groundwater Dataset? (Yes/No)
Benzene ^a	NA	5.0	No
1,1-Dichloroethane ^a	NA	5.0	Yes
1,1-Dichloroethene ^a	NA	7.0	Yes
cis-1,2-Dichloroethene ^a	NA	70	Yes
trans-1,2-Dichloroethenea	NA	100	Yes
Ethylbenzene ^a	NA	700	No
Trichloroethene ^b	NA	5.0	Yes
Vinyl chloride ^c	NA	2.0	Yes

Soil and Groundwater - Health-Based Goals for Non-Residential Use

	Soil HBG (mg/kg)				Minimum Grou	roundwater HBG (mg/L) Vap		Intrusion from Groundwater HBG (mg/L)	
Constituent		Site	Construction	FINAL*	Construction	FINAL		Site	FINAL*
	Resident	Worker	Worker	FINAL	Worker	FINAL	Resident	Worker	FINAL
Volatile Organic Compounds									
Trichloroethene	1.1E+00	6.9E+00	1.3E+01	1.3E+01	1.9E+01	1.9E+01	2.9E-01	2.0E+00	2.0E+00
Vinyl Chloride	_	_	_		-		2.6E-02	_	_

Notes:

- a For these COPCs, the constituent has an MCL but the calculated site-specific risk was less than or equal to 1 x 10 ELCR and less than or equal to an HI of 1.
- For trichloroethene, the most conservative site-related risk-based remedial goal for soil is based on a Site Worker exposure. Trichloroethene is present in groundwater and has a published groundwater MCL.
- c There is no calculated soil remediation goal for vinyl chloride because it does not contribute to more than 1% of the total risk to soil exposure and therefore was dropped from further consideration in soil. Vinyl chloride is present in groundwater and has a published groundwater MCL.
- d The site-specific risk-based remedial goals were established in the HHRA (Appendix B). Only trichloroethene and vinyl chloride contribute to more than 1% of the total risk. Each has one or more exposure scenarios with calculated ELCR of > 1x⁹ 0r > HI of > 1.
- * The "FINAL" soil and groundwater risk-risk based concentrations are based on non-residential future use. If residential use is ever considered in the future, the more stringent health based goal for a resident exposure will apply.

COPC = constituent of potential concern

ELCR = Excess Lifetime Cancer Risk

HBG = Health-Based Goal

HHRA = Human Health Risk Assessment

HI = hazard index

MCL = Maximum Contaminant Levels

mg/L = milligram per liter

mg/kg = milligram per kilogram

RSL = Risk Screening Level

SCDHEC = South Carolina Department of Health and Environmental Control

μg/L = microgram per liter

USEPA = United States Environmental Protection Agency

Table 3-4 AVX MB - OU-1 Remediation Goals

General Response Action	Technology Type	Process Option	Description	Retained? (Yes/No)	Initial Screening
No Further Action	None	None	Not Applicable	Yes	Used as a baseline for comparison to other process options.
Institutional Controls	Access Restrictions	Deed Notification/ Restrictions	Using legal actions to prevent excavation, control land use, and prohibit or restrict trenching in soil that contain constituents of potential concern (COPCs).	Yes	Potentially implementable. Access restrictions are usually used in conjunction with other technology types for remedial actions.
		Fencing	Fencing will minimize access to soils containing COPCs.	Yes	Potentially implementable. Access restrictions are usually used in conjunction with other technology types for remedial actions.
Containment	Capping	Impermeable Cap	An impermeable cap will prevent physical contact with the soils and prevent surface water infiltration and leaching.	Yes	Potentially implementable.
Removal	Excavation	Excavation	Physical removal of soil containing COPCs with treatment or off-site disposal	Yes	Potentially implementable.
	Physical Treatment	Soil Vapor Extraction	Extract COPCs from subsurface in vapor form.	No	Pilot testing conducted in 1997 (Geraghty & Miller, Inc. 1997) indicated that groundwater recovery rate was high and radius of influence was low.
		In-Situ Soil Flushing	Involves injecting a solvent mixture (e.g., water plus a miscible organic solvent, such as alcohol) into either vadose zone, saturated zone, or both to extract organic constituents. Flushing can be applied to soils to dissolve either the source of the organic constituents or the plume emanating from it. The cosolvent mixture is normally injected upgradient of the source area, and the solvent with dissolved COPCs is extracted downgradient and treated above ground.	No	Site conditions (shallow groundwater, stratified lithology) may be difficult to treat. Aboveground separation and treatment costs for recovered fluids can be costly and complicated.
In-Situ Treatment		In-Situ Thermal Treatment	Steam/hot air injection or electrical resistance/electromagnetic/fiber optic/radio frequency heating is used to increase the volatilization rate of semivolatiles and facilitate extraction.	Yes	Potentially implementable; pilot testing conducted in 1997 (Geraghty & Miller, Inc. 1997) indicated shallow groundwater, limited vacuum influence, and that the lithology is stratified.
		In-Situ Stabilization	Soils containing COPCs are mixed with a reactive media (i.e., zero valent iron) and stabilizing agents (i.e., Portland cement) to decrease concentrations of COPCs and reduce the hydraulic conductivity of the treatment zone.	No	Likely not viable based on field conditions and presence of permeable layer. Geotechnical stability following in-situ soil stabilization can be a concern depending on future land use.
	Chemical Treatment	Chemical Oxidation	Use of chemical oxidant (ozone, hydrogen peroxide, persulfate, and permanganate) to oxidize organic COPCs in situ.	No	For some oxidants, gas generation is possible, and management of that gas would be difficult due to the shallow depth to water. Oxidant-specific secondary water quality may be a concern.

Table 4-1
Initial Screening of Potentially Applicable Technologies and Process Options for the Source Area Vadose Zone
Feasibility Study
AVX Corporation

General Response Action	Technology Type	Process Option	Description	Retained? (Yes/No)	Initial Screening
	Physical Treatment of	Chemical Oxidation	Use of chemical oxidant (ozone, hydrogen peroxide, persulfate, and permanganate) to oxidize organic COPCs ex-situ.	Yes	Potentially implementable.
Ex-Situ Treatment	Excavated Soil	Soil Flushing	Use of a solvent mixture to extract the organic COPCs from excavated soil.	Yes	Potentially implementable.

Note:

Shading indicates that the process option was eliminated during the initial screening stage.

Reference:

Myrtle Beach, South Carolina

Geraghty & Miller, Inc. 1997. Remedial Investigation and Pilot Testing Report. AVX Corporation Facility, Myrtle Beach, South Carolina. September.

General Response Action	Technology Type	Process Option	Description	Retained? (Yes/No)	Initial Screening
No Further Action	None	None	Not Applicable	Yes	Used as a baseline for comparison to other process options.
Institutional Controls	Access Restrictions	Deed Notification/ Restrictions	Uses legal actions to prevent excavation, control land use, and prohibit or restrict use of groundwater.	Yes	Potentially implementable. Access restrictions are usually used in conjunction with other technology types for remedial actions.
	Hydraulic Control	Hydraulic Control Groundwater Extraction Typically requires ex-situ trea criteria.		Yes	Implementable. Although an effective hydraulic control system could be installed in the source area saturated zone, such a system would not necessarily effectively contain the downgradient dissolved phase area (DPA) on its own. Conversely, a downgradient DPA containment system is currently containing and would, in the future, contain both the downgradient DPA and the source area saturated zone. Therefore, some set of extraction wells, either as currently configured or with a modified configuration, could address the source area saturated zone.
Containment	Vertical Subsurface Barrier	Slurry Wall	Using a bentonite slurry to form an impermeable wall that prevents the migration of constituents of potential concern (COPCs) in groundwater.	No	
		Sheet Piling	Using steel sheet piles to form an impermeable wall that prevents the migration of COPCs in groundwater.		Site groundwater contains trichloroethene, making other (removal) technologies feasible. In addition, an impermeable barrier wall may create unpredictable effects on vertical groundwater flow and create undesirable vertical flow paths.
		Grout Curtain Injecting cement grout to create an impermeable wall that prevents the migration COPCs in groundwater.			
	Attenuation	Monitored Natural Attenuation	Natural subsurface processes are allowed to reduce concentrations of COPCs to acceptable levels.	Yes	Potentially implementable. Monitored natural attenuation is usually used in conjunction with other technology types for remedial actions.
In-Situ Treatment	Chemical/ Biological Enhanced Anaerobic Bioremediation		The injection of a substrate to stimulate native microorganisms and degrade COPCs.	Yes	Potentially implementable. In-situ bioremediation has been applied successfully at a variety of sites with similar characteristics. In addition, an in-situ bioremediation pilot test was completed with encouraging results.

General Response Action	Technology Type	Process Option	Description	Retained? (Yes/No)	Initial Screening
In-Situ Treatment	Chemical Treatment	Chemical Oxidation	Use of chemical oxidant (ozone, hydrogen peroxide, persulfate, and permanganate) to oxidize contaminants insitu.	No	Most effective in focused high concentration areas due to the short reaction kinetics. The existing reducing conditions will limit the effectiveness of this technology. Oxidant-specific secondary water quality may be a concern. In addition, hydrostratigraphic complexities make it exceedingly difficult to deliver chemical oxidants to all areas that should be targeted.
		Co-solvent Flooding	The addition of a surfactant, a cosolvent, or a surfactant-cosolvent mixture (typically alcohols, often methanol, ethanol, isopropanol, or tert-butanol) to mobilize and solubilize NAPL phases and effectively remove the NAPL via groundwater extraction.	No	Cosolvent flooding is most applicable in highly permeable and relatively homogenous sand or gravel aquifers.
	Physical/Chemical Treatment	Permeable Reactive Barrier (PRB)	Consists of a wall built below ground to intercept and treat groundwater containing COPCs. A PRB is built by excavating a narrow trench perpendicular to the path of the COPC plume in groundwater. The PRB is filled with a reactive material, such as zero valent iron, that can destroy or mitigate the transport of COPCs while allowing the passage of water.	No	Likely not implementable. The depth (40 to 45 feet below ground surface) and location where the PRB would need to be installed would be beyond what could be practicably and safely installed.
		Air Sparging/Soil Vapor Extraction	Injection of air below the groundwater table to physically strip volatile COPCs from groundwater. A low to moderate vacuum is applied to vadose zone extraction wells to capture volatilized COPCs for treatment. Depth of source COPCs and specific site geology must be considered. The resulting increase in oxygen concentration promotes aerobic biodegradation of aromatic hydrocarbons.	No	Pilot testing conducted in 1997 (Geraghty & Miller, Inc. 1997) indicated shallow groundwater, limited vacuum influence, and that the lithology is stratified. The parent VOC COPCs have limited aerobic biodegradation, and naturally occurring reductive dechlorination would be disrupted by the increase in oxygen concentrations.
In-Situ Treatment		Multi-phase Extraction	Uses vacuum pressure to physically remove separate phase COPCs and physically strip the volatile COPCs from the subsurface.	No	Pilot testing conducted in 1997 (Geraghty & Miller, Inc. 1997) indicated that groundwater recovery rate was high and radius of influence was low.
	Physical Treatment	In-Situ Thermal Treatment	Steam/hot air injection or electrical resistance/electromagnetic/fiber optic/radio frequency heating is used to increase the volatilization rate of semivolatiles and facilitate extraction.	Yes	Potentially implementable; pilot testing conducted in 1997 (Geraghty & Miller, Inc. 1997) indicated shallow groundwater, limited vacuum influence, and that the lithology is stratified.
		In Situ Stabilization	Soils containing COPCs are mixed with a reactive media (i.e., zero valent iron) and stabilizing agents (i.e., Portland cement) to decrease concentrations of COPCs and reduce the hydraulic conductivity of the treatment zone.	No	Likely not viable based on field conditions and presence of permeable layer. Geotechnical stability following in-situ soil stabilization can be a concern depending on future land use.
		Dynamic Groundwater Recirculation	Uses extraction and injection wells including aboveground treatment of extracted groundwater. Reinjection of treated groundwater can enhance the existing natural attenuation processes and significantly reduce the treatment timeframe.	Yes	Potentially implementable. Groundwater extraction wells are in use on site, and testing completed as part of the FSIR indicate that injections are feasible in Upper and Lower Terrace Deposits in Operable Unit 1.

Table 4-2
Initial Screening of Potentially Applicable Technologies and Process Options for the Source Area Saturated Zone
Feasibility Study
AVX Corporation

General Response Action	Technology Type	Process Option	Description	Retained? (Yes/No)	Initial Screening
	Physical Treatment of	Air Stripping	COPCs in extracted groundwater are removed with an air stripping treatment unit.	Vos	Implementable. Groundwater extraction wells are currently being used onsite. If Dynamic Groundwater Recirculation (In-Situ Treatment) or Groundwater Extraction (Containment) are part of the final remedy, ex-situ treatment of groundwater will still be necessary, and air stripping is already successfully being used with the existing hydraulic control system.
Ex-Situ Treatment	extracted groundwater	Granular-Activated Carbon Adsorption	COPCs in extracted groundwater are treated by pumping through a series of vessels containing activated carbon, to which the dissolved COPCs adsorb. Periodic replacement or regeneration of the carbon is required.	Yes	Implementable. Groundwater extraction wells are currently being used on site. If Dynamic Groundwater Recirculation (In-Situ Treatment) or Groundwater Extraction (Containment) are part of the final remedy, ex-situ treatment of groundwater will still be necessary. Use of granular activated carbon is one proven method for groundwater treatment, although air stripping has been historically deemed as the more applicable technology.

Notes:

Shading indicates that the process option was eliminated during the initial screening stage.

DPA = dissolved-phase area

Myrtle Beach, South Carolina

FSIR = Feasibility Study Investigation Report

NAPL = non-aqueous phase liquid

VOC = volatile organic compound

Reference:

Geraghty & Miller, Inc. 1997. Remedial Investigation and Pilot Testing Report. AVX Corporation Facility, Myrtle Beach, South Carolina. September.

General Response Action	Technology Type	Process Option	Description	Retained? (Yes/No)	Initial Screening
No Further Action	None	None	Not Applicable	Yes	Used as a baseline for comparison to other process options.
Institutional Controls	Access Restrictions	Deed Notification/ Restrictions	Uses legal actions to prevent groundwater use, control land use, and prohibit potable use of groundwater.	Yes	Implementable. Access restrictions are usually used in conjunction with other technology types for remedial actions.
	Hydraulic Control	Groundwater Extraction	Use extraction wells to pump large volumes of water. Typically requires ex-situ treatment to meet discharge criteria.	Yes	Implementable and currently being used onsite. Due to the extent of constituents of potential concern (COPCs) in groundwater, groundwater extraction will potentially be used in conjunction with other technology types for remedial actions.
Containment		Slurry Wall	Using a bentonite slurry to form an impermeable wall that prevents the migration of COPCs in groundwater.		
	Vertical Subsurface Barrier	Sheet Piling	Using steel sheet piles to form an impermeable wall that prevents the migration of COPCs in groundwater.	No	Site groundwater contains trichloroethene, making other (removal) technologies feasible. In addition, an impermeable barrier wall may create unpredictable effects on vertical groundwater flow and create undesirable vertical flow paths.
		Grout Curtain	Injecting cement grout to create an impermeable wall that prevents the migration COPCs in groundwater.		
	Attenuation	Monitored Natural Attenuation	Natural subsurface processes are allowed to reduce concentrations of COPCs to acceptable levels.	Yes	Implementable. Monitored natural attenuation is usually used in conjunction with other technology types for remedial actions.
	Chemical/ Biological Treatment	Enhanced Anaerobic Bioremediation	The injection of a substrate to stimulate native microorganisms and degrade COPCs.	Yes	Implementable. In-situ bioremediation has been applied successfully at a variety of sites with similar characteristics including in adjacent Operable Unit 2. In addition, an injection pilot test was completed with encouraging results.
In-Situ Treatment	Chemical Treatment	Chemical Oxidation	Use of chemical oxidant (ozone, hydrogen peroxide, persulfate, and permanganate) to oxidize contaminants insitu.	No	Most effective in focused high concentration areas due to the short reaction kinetics. The extent of COPCs and the existing reducing conditions will limit the effectiveness of this technology. For some oxidants, gas generation is possible, and management of that gas could be difficult due to the shallow depth to water. Oxidant-specific secondary water quality may be a concern.
		Cosolvent Flooding	The addition of a surfactant, a cosolvent, or a surfactant-cosolvent mixture (typically alcohols, often methanol, ethanol, isopropanol, or tert-butanol) to mobilize and solubilize NAPL phases and effectively remove the NAPL via groundwater extraction.	No	Cosolvent flooding is most applicable in highly permeable and relatively homogenous sand or gravel aquifers.

Table 4-3
Initial Screening of Potentially Applicable Technologies and Process Options for Dissolved-Phase Area (Downgradient)
Feasibility Study
AVX Corporation
Myrtle Beach, South Carolina

General Response Action	Technology Type	Process Option	Description	Retained? (Yes/No)	Initial Screening
	Physical/Chemical Treatment	Permeable Reactive Barrier (PRB)	Consists of a wall built below ground to intercept and treat groundwater containing COPCs. A PRB is built by excavating a narrow trench perpendicular to the path of the COPC plume in groundwater. The PRB is filled with a reactive material, such as zero valent iron, that can destroy or mitigate the transport of COPCs while allowing the passage of water.	No	Likely not implementable. The depth (40 to 45 feet below ground surface) and location where the PRB would need to be installed would be beyond what could be practicably and safely installed.
In-Situ Treatment		Air Sparging/Soil Vapor Extraction	Injection of air below the groundwater table to physically strip volatile COPCs from groundwater. A low to moderate vacuum is applied to vadose zone extraction wells to capture volatilized COPCs for treatment. Depth of source COPCs and specific site geology must be considered. The resulting increase in oxygen concentration promotes aerobic biodegradation of aromatic hydrocarbons.	No	Pilot testing conducted in 1997 (Geraghty & Miller, Inc. 1997) indicated shallow groundwater, limited vacuum influence, and that the lithology is stratified. The parent VOC COPCs have limited aerobic biodegradation, and naturally occurring reductive dechlorination would be disrupted by the increase in oxygen concentrations.
	Physical Treatment	Multi-Phase Extraction	Uses vacuum pressure to physically remove separate phase COPCs and physically strip the volatile COPCs from the subsurface.	No	Pilot testing conducted in 1997 (Geraghty & Miller, Inc. 1997) indicated that groundwater recovery rate was high, and radius of influence was low.
		Dynamic Groundwater Recirculation	Uses extraction and injection wells, including aboveground treatment of extracted groundwater. Reinjection of treated groundwater can enhance the existing natural attenuation processes and significantly reduce the treatment timeframe.	Yes	Potentially implementable. Groundwater extraction wells are in use on site, and testing completed as part of the FSIR indicates that injections are feasible in Upper and Lower Terrace Deposits in Operable Unit 1.
	Physical Treatment of	Air Stripping	COPCs in extracted groundwater are removed with an air stripping treatment unit.	Yes	Potentially implementable.
Ex-Situ Treatment	extracted groundwater	Granular-Activated Carbon Adsorption	COPCs in extracted groundwater are treated by pumping it through a series of vessels containing activated carbon, to which the dissolved COPCs adsorb. Periodic replacement or regeneration of the carbon is required.	Yes	Potentially implementable.

Notes:

Shading indicates that the process option was eliminated during the initial screening stage.

NAPL = non-aqueous phase liquid

VOC = volatile organic compound

Reference:

Geraghty & Miller, Inc. 1997. Remedial Investigation and Pilot Testing Report. AVX Corporation Facility, Myrtle Beach, South Carolina. September.

General Response Action	Remedial Technology	Remedial Technology Process Option	Effectiveness	Implementability	Cost	Comments
No Further Action	None	None	NA	High	NA	Retain. Required by NCP and USEPA guidance as a baseline for comparison to other process options.
Institutional Controls	Access Restrictions	Deed Notification/ Restrictions	Low to moderate. Effective for protection of potential onsite receptors by reducing potential for exposure, but does not reduce COPC concentrations or prevent leaching.	High	Low	Retain. Typically useful in combination with other technologies
institutional controls	Access Resulctions	Fencing	Low to moderate. Effective for protection of potential onsite receptors by reducing potential for exposure, but does not reduce COPC concentrations or prevent leaching.	High	Low to moderate, will require long-term maintenance if not combined with another remedial technology	Retain. Typically useful in combination with other technologies
Containment	Capping	Impermeable Cap	Low to moderate. An impermeable cap will prevent physical contact with the soils and reduce surface-water infiltration and leaching, but does not reduce COPC concentrations.	High	Moderate, will require long-term maintenance	Due to shallow depth to groundwater, capping will provided limited effectiveness in reducing the potential migration of CVOCs in soil or groundwater.
	Excavation	Excavation with Offsite Disposal	High. Would provide immediate protection of potential onsite receptors by removing the potential for exposure and would also reduce COPC mass.	Highly implementable, conventional technology	Moderate to high depending on the volume to be excavated. Would have no operations and maintenance costs.	Retain
Removal		Excavation with Ex-Situ Chemical Oxidation	High. Would provide immediate protection of potential onsite receptors by removing the potential for exposure and would also reduce COPC mass.	Implementable, conventional technology. Would require bench testing to confirm correct application rates.	High depending on the volume to be excavated. Would have no operations and maintenance costs.	Not Retained. Does not provide advantages over offsite disposal due to higher costs, bench testing, application, and confirmation that disposal requirements are met.
		Excavation with Ex-Situ Soil Flushing	High. Would provide immediate protection of potential onsite receptors by removing the potential for exposure and would also reduce COPC mass.	Implementable, conventional technology. Would require bench testing to confirm correct application rates.	High depending on the volume to be excavated. Would have no operations and maintenance costs.	Not Retained. Does not provide advantages over offsite disposal due to higher costs, bench testing, application, and confirmation that disposal requirements are met.

Table 5-1
Secondary Screening of Potentially Applicable Technologies and Process Options for the Source Area Vadose Zone
Feasibility Study
AVX Corporation
Myrtle Beach, South Carolina

General Respon Action	se Remedial Technology	Remedial Technology Process Option	Effectiveness	Implementability	Cost	Comments
In-Situ Treatment	Physical Treatment	In-Situ Thermal Treatment	High. Would provide protection of potential onsite receptors in a short timeframe by reducing COPC mass.	Implementable, conventional technology.	After treatment is	Retain. This technology could address both the source area vadose zone and the source area saturated zone simultaneously.

Notes:

Shading indicates that the process option was eliminated during the screening stage.

COPC = constituent of potential concern

CVOC = chlorinated volatile organic compound

NA = not applicable

NCP = National Contingency Plan

USEPA = United States Environmental Protection Agency

Table 5-2
Secondary Screening of Potentially Applicable Technologies and Process Options for the Source Area Saturated Zone
Feasibility Study
AVX Corporation
Myrtle Beach, South Carolina

General Response Action	Technology Type	Process Option	Effectiveness	Implementability	Cost	Comments
No Further Action	None	None	NA	High	NA	Retain. Required by NCP and USEPA guidance as a baseline for comparison to other process options.
Institutional Controls	Access Restrictions	Deed Notification/ Restrictions	Moderate to high. Effective for protection of potential onsite receptors by reducing potential for exposure, but does not reduce COPC concentrations or prevent offsite migration of those COPCs.	High	Low	Retain.
Containment	Hydraulic Control	Groundwater Extraction	Moderate. Extraction and treatment system currently in place and effectively maintaining capture of dissolved COPCs, although it is far less effective for quick mass removal/destruction in the source area because it counts on rate limiting desorption from finer grained materials and transport to pumping wells for removal and treatment	High. Extraction wells and treatment system currently in place and operating.	Low to Moderate. Costs associated with O&M of 40 to 60 gpm system. Pumping rates may be reduced in conjunction with implementation of other remedial technologies	Retained. The downgradient DPA containment system would also capture/contain COCs from saturated source area although removal will be rate limited by desorption from fine grained materials and transport to pumping wells where COCs would be captured and treated. Additional wells could and possibly would be installed to improve overall performance of the system, although rate limiting desorption will still be the primary control the time necessary to meet corrective action objectives.
	Attenuation	Monitored Natural Attenuation	Limited for source areas. Effective in identifying changing conditions.	High	Low. Installation of additional wells for attenuation monitoring may be needed.	Retain. Limited efficacy for source areas, but at a minimum, will serve as a polishing technology in combination with other technologies.
In-Situ Treatment	Chemical/Biological Treatment	Enhanced Anaerobic Bioremediation	Moderate to high.	High. Conventional technology and already effective in remediation with Operable Unit 2.	Moderate to High.	Retain.
	Chemical	Chemical Oxidation	Moderate. Highly dependent on the ability to deliver chemical oxidants to targeted mass in a complex hydrostratigraphic setting.	High. Conventional technology.	High due to existing reducing conditions.	Not Retained. Likely less effective and higher cost compared to other in-situ technologies due to existing reducing conditions at the site and difficulty with delivering oxidants to targeted mass.

Table 5-2
Secondary Screening of Potentially Applicable Technologies and Process Options for the Source Area Saturated Zone
Feasibility Study
AVX Corporation
Myrtle Beach, South Carolina

General Response Action	Technology Type	Process Option	Effectiveness	Implementability	Cost	Comments
	Physical	In-Situ Thermal Treatment	High. Would meet remedial goals in a short timeframe by reducing COPC mass.	Implementable. Conventional technology.	High depending on the area and depths to be remediated. After treatment is complete, would have no further operations and maintenance costs.	Retain. This technology could address both the source area vadose zone and the source area saturated zone simultaneously.
		Dynamic Groundwater Recirculation	Moderate to high.	High. Conventional technology	Moderate. Would require installation of extraction and injection wells, potential for reuse of existing treatment system.	Retain
Ex-Situ Treatment	Physical Treatment of extracted groundwater	Air Stripping	High. Extraction and treatment system currently in place in conjunction with groundwater extraction system and effectively treating water containing COPCs.	, , ,	Low to Moderate. Costs associated with O&M of the air stripper and treatment system.	Retain. Current system is operating effectively.
		Granular Activated Carbon Adsorption	Moderate. Treatment efficiency is lower relative to air stripping at current rates. Air stripping treatment alternative currently in place.	Moderate. Additional infrastructure needed.	Moderate to High. Additional infrastructure costs compared to air stripping. O&M costs higher for carbon at current extraction rates and COPC loading.	Not Retained. Currently effective operation of air stripping system. Higher installation and O&M costs associated with implementing carbon treatment at current extraction rates and VOC concentrations.

Notes:

Shading indicates that the process option was eliminated during the screening stage.

COPC = constituent of potential concern

DPA = dissolved phase area

gpm = gallons per minute

NA = not applicable

NCP = National Contingency Plan

O&M = operation and maintenance

USEPA = United States Environmental Protection Agency

VOC = volatile organic compound

Table 5-3
Secondary Screening of Potentially Applicable Technologies and Process Options for Dissolved-Phase Area (Downgradient)
Feasibility Study
AVX Corporation

Myrtle Beach, South Carolina

General Response Action	Technology Type	Process Option	Effectiveness	Implementability	Cost	Comments
No Further Action	None	None	Not Effective	High	No costs	Retain. Required by NCP and USEPA guidance as a baseline for comparison to other process options.
Institutional Controls	Access Restrictions	Deed Notification/ Restrictions	Moderate to high. Effective for protection of potential onsite receptors by reducing potential for exposure, but does not reduce COPCs or prevent offsite migration of those COPCs.	High	Low	Retain.
Containment	Hydraulic Control	Groundwater Extraction	High. Extraction and treatment system currently in place and effectively maintaining capture of dissolved COPCs, although possibly not efficient given our updated understanding of the distribution of COPCs in the source area saturated zone based on the FSIR.	place and operating, although		Retain. Capture analysis concluded that current extraction system is effective, although not necessarily efficient given FSIR that better delineates the mass of COPCs in the source area saturated zone.
In-Situ Treatment	Attenuation	Monitored Natural Attenuation	Moderate. Effective at identifying changing conditions.	High	Low to Moderate. Installation of additional wells may be needed.	Retain. Typically useful in combination with other technologies.
	Chemical/Biological Treatment	Enhanced Anaerobic Bioremediation	Moderate to high.	High. Conventional technology	Moderate to High.	Retain
	Physical Treatment	Dynamic Groundwater Recirculation	Moderate to high.	High. Conventional technology	Moderate. Would require installation of extraction and injection wells, potential for reuse of existing treatment system.	Retain

Table 5-3
Secondary Screening of Potentially Applicable Technologies and Process Options for Dissolved-Phase Area (Downgradient)
Feasibility Study
AVX Corporation

General Response Action	Technology Type	Process Option	Effectiveness	Implementability	Cost	Comments
		Air Stripping	High. Extraction and treatment system currently in place in conjunction with groundwater extraction system and effectively treating water containing COPCs.	High. Currently operating.	Low to Moderate. Costs associated with O&M of the air stripper and treatment system.	Retain. Current system is operating effectively.
Ex-Situ Treatment	Physical Treatment of extracted groundwater	Granular-Activated Carbon Adsorption	Moderate. Treatment efficiency is lower relative to air stripping at current rates. Air stripping treatment alternative currently in place.	Moderate. Additional infrastructure needed.	Moderate to High. Additional infrastructure costs compared to air stripping. O&M costs higher for carbon at current extraction rates and COPC loading.	Not Retained. Currently effective operation of air stripping system that has already been deemed more appropriate that using granular activated carbon. Higher installation and O&M costs associated with implementing carbon treatment COPC/VOC concentrations.

Notes

Shading indicates that the process option was eliminated during the screening stage.

COPC = constituent of potential concern

FSIR = Feasibility Study Investigation Report

gpm = gallons per minute

NCP = National Contingency Plan

Myrtle Beach, South Carolina

O&M = operation and maintenance

USEPA = United States Environmental Protection Agency

VOC = volatile organic compound

Table 6-1 Screening of Remedial Alternative 1: No Further Action Feasibility Study AVX Corporation Myrtle Beach, South Carolina

Synopsis: Under this alternative, no further action would be taken to address constituents of potential concern (COPCs) in the vadose or saturated zone source areas or the downgradient groundwater dissolved phase area.

Effectiveness	Implementability	Cost			
Advantages					
Natural attenuation processes would continue to reduce concentrations of COPCs in soil.	Easily implemented.	No capital or operation and maintenance (O&M) costs would be required.			
Disadvantages					
Little to no measurable relative reduction in COPC mobility, toxicity, or volume in the short term. COPCs in the vadose zone would continue to leach to the saturated zone and then migrate with groundwater.	Because this alternative does not meet the Remedial Action Objectives (RAOs) for soil or groundwater, future remedial action would likely be required.	May defer and increase eventual future capital and O&M expenditures if future remediation is required.			
Limits future land use.					
It is not further protective of human receptors.					
No monitoring would be performed to evaluate changes in risks or determine when remedial goals are met.					

Conclusion: Alternative 1 - No Further Action Alternative would not achieve the Remedial Action Objectives for soil or groundwater. *Nonetheless, this alternative is retained* as a baseline for comparison to the remaining alternatives as is required by the National Contingency Plan.

AVX MB OU1 Section 6 Tables

Table 6-2 Screening of Remedial Alternative 2: Excavation + Enhanced Reductive Dechlorination Feasibility Study AVX Corporation Myrtle Beach, South Carolina

Synopsis: Under this alternative, excavation and off-site disposal of source area vadose zone soils would be performed to reduce constituent of potential concern (COPC) concentrations, minimizing potential for future direct contact exposure to COPCs, minimizing leaching of COPCs to groundwater, and meeting Remedial Action Objectives (RAOs) for soil. In addition, in-situ enhanced reductive dechlorination (ERD) via anaerobic bioremediation would be used to remediate the COPCs in the groundwater source and downgradient dissolved phase areas to reduce the overall time to achieve RAOs for groundwater. For the ERD alternative, injection wells would be installed in transects across the source area saturated zone and the downgradient dissolved phase area into which an electron donor (such as molasses or emulsified vegetable oil) would be injected to create an anaerobic reactive zone. Monitored natural attenuation (MNA) would be implemented following completion of the active phase of the enhanced anaerobic biroremediation to remediate residual low-level concentrations of COPCs. Deed notifications/restrictive covenants would further reduce the potential for receptor exposure to residual COPCs in soil and groundwater.

Effectiveness	Implementability	Cost			
Advantages					
Excavation and off-site disposal of vadose zone soil containing elevated concentrations of COPCs would aggressively reduce COPC mass and toxicity in soil over a short timeframe and thereby reduce the potential for COPCs in soil to leach to groundwater. It would decrease the overall timeframe to achieve remedial goals.	Excavation and off-site disposal is a conventional easily implementable technology that has been used at many sites. Historically, excavation has been successfully implemented at two other locations within Operable Unit 1.	Predictable and relatively low annual maintenance and monitoring costs for the performance monitoring and MNA component of the remedy.			
Excavation of soil containing COPCs would represent permanent protection.	ERD is also a commonly and easily implementable technology that has been successfully implemented to remediate groundwater in Operable Unit 2.	Some components of the Operable Unit 2 ERD system could be used on the Operable Unit 1 site.			
With time, natural attenuation processes would reduce any remaining residual COPC concentrations over time in the vadose zone that lie outside the targeted excavation area.		Relatively lower costs for excavation and off-site disposal of soil versus in situ thermal treatment (IST).			
ERD has been highly effective at achieving RAOs in groundwater over much of the Operable Unit 2 area, and similar effectiveness is anticipated in Operable Unit 1 based on simlar hydrogeologic and geochemical conditions.					
Would reduce the potential for future receptor access by greatly reducing COPC mass in soil and and groundwater and by futher restricting potential future exposure to residual COPCs by potentially implementing deed notifications/restrictive covenants.					
This remedy would take substantially less overall time to achieve RAOs versus the No Action Alternative. This method would have the shortest time to achieve RAOs in the vadose zone source area.					
Disadvantages					
Will eliminate most but not all of the COPCs in vadose zone soil; therefore, future minimal leaching of COPCs from the vadose zone to groundwater is possible.	Although this alternative should sucessfully meet groundwater RAOs in a relatively short remediation timeframe, ERD infrastructure could inhibit near-term redevelopment unless substantially reconfigured.	Moderate to high costs for excavation and off-site disposal depending on the volume of soil to be excavated and concentration of COPCs in the soil.			
Although very successful in remediating groundwater in Operable Unit 2, as with Operable Unit 2, some areas of fine-grained materials may be slower to achieve the groundwater RAOs.		Some recalcitrant areas that are slower in responding to the remedy could require some longer periods (and additional costs) for monitoring until meeting groundwater RAOs.			

Conclusion: This alternative would achieve the RAO of minimizing the potential for human exposure to site-related COPCs via contact with soil and would also achieve the RAO of minimizing, containing, or eliminating site-related COPCs from most soils at OU-1 that may be leaching to groundwater. Furthermore, the ERD portion of this remedial alternative has a proven track record in Operable Unit 2 of achieving RAOs for groundwater quickly in most locations. *Therefore, this alternative is retained for detailed analysis.*

AVX MB OU1 Section 6 Tables 1/1

Table 6-3 Screening of Remedial Alternative 3: Excavation + Pumping and Treatment Feasibility Study AVX Corporation Myrtle Beach, South Carolina

Synopsis: Under this alternative, excavation and off-site disposal of source area vadose zone soils would be performed to reduce constituent of potential concern (COPC) concentrations, minimizing potential for future direct contact exposure to COPCs, minimizing leaching of COPCs to groundwater, and meeting Remedial Action Objectives (RAOs) for soil. Furthermore, groundwater pumping and treatment would be used to hydraulically control the dissolved phase COPCs and would remove the mass of COPCs captured by the pumping wells. Extracted groundwater would be treated with an air stripper and discharged pursuant to a National Pollutant Discharge Elimination System permit. Monitored natural attenuation (MNA) would also be implemented in parallel and subsequent to the other active remedial components to remove residual COPC mass. Deed notifications/restrictive covenants would reduce the potential for future receptor exposure to COPCs in soil and groundwater.

Effectiveness	Implementability	Cost
Advantages		
Excavation and off-site disposal of vadose zone soil containing elevated concentrations of COPCs would aggressively reduce COPC mass and toxicity in soil over a short timeframe and thereby reduce the potential for COPCs in soil to leach to groundwater. It would decrease the overall timeframe to achieve remedial goals.	Excavation and off-site disposal is a conventional easily implementable technology that has been implemented at many sites and has been successfully implemented historically at two other locations within Operable Unit 1.	Predictable and low annual maintenance and monitoring costs for the pumping and treatment component of the remedy.
Excavation of soil containing COPCs would represent permanent protection and would achieve RAOs in the shortest time in the vadose zone.	Pumping and treatment is also hgihly implementable, as it has been a remedial method used at the site for many years.	The existing pumping and treatment system infrastructure could be used to continue the groundwater portion of this remedy, thereby reducing costs.
Over time, natural attenuation processes would reduce any remaining residual COPC concentrations in the vadose zone that lie outside the targeted excavation area.	The pumping and treatment component would implemented as currently configured.	Relatively lower costs for excavation and off-site disposal of soil versus in situ thermal treatment (IST).
Would reduce the potential for future potential receptor exposure by reducing COPC mass in soil and by implementing deed notifications/restrictive covenants.		
Pumping and treatment is extremely effective at control of migration of COPCs in groundwater and has been operating successfully this way at the site for many years. This remedy would take less overall time to achieve RAOs versus the No Action Alternative.		
Disadvantages		
Will eliminate most but not all of the COPCs in vadose zone soil; therefore, future minimal leaching of COPCs from the vadose zone to groundwater is possible.	This alternative would take the longest to achieve RAOs.	Groundwater pumping and treatment timeframes could exceed the estimated 30 years to achieve RAOs, as the rate of cleanup is difficult to estimate. The uncertainty in timeframes to reach RAOs also has an impact on total cost certainty.
Although pumping and treatment is extremely effective at controlling migration of COPCs in groundwater, it is slow at achieving RAOs because the rate of cleanup is based on the rate of diffusion of COPCs from fine-grained into solution and is further limited by the rate of solute transport to the point of capture by the pumping wells. It is difficult to predict the time it will take to achieve groundwater RAOs.	The estimate timeframe to reach RAOs is set at 30 years for the purposes of this FS, but it is conceivable that the actual timeframe could be substantially longer.	Longer-term costs to maintain deed notifications/restrictive covenants than for other remedial alternatives.

Conclusion: This alternative would achieve the soil RAO of minimizing the potential for human exposure to site-related COPCs via contact with soil and would also achieve the soil RAO of minimizing, containing, or eliminating site-related COPCs from most soils at OU-1 that may be leaching to groundwater. This alternative would also be expected to achieve groundwater RAOs after a long period of operation and maintenance of the pumping and treatment system in parallel with and as complimented by MNA. *Therefore, this alternative is retained for detailed analysis*.

Table 6-4 Screening of Remedial Alternative 4: Excavation + Dynamic Groundwater Recirculation Feasibility Study AVX Corporation

Myrtle Beach, South Carolina

Synopsis: Under this alternative, excavation and off-site disposal of source area vadose zone soils would be performed to reduce constituent of potential concern (COPC) concentrations, minimizing potential for future direct contact exposure to COPCs, minimizing leaching of COPCs to groundwater, and meeting Remedial Action Objectives (RAOs) for soil. Furthermore, dynamic groundwater recirculation (DGR), which uses a combination of groundwater pumping and treatment (P&T) and directed groundwater reinjection, would be used to hydraulically control the dissolved phase COPCs and would remove the mass of COPCs captured by the pumping wells. Dynamic reinjection of treated groundwater would also improve flushing of COPCs from aquifer materials. Monitored natural attenuation (MNA) would also be used as a parallel and polishing step of the remedy to remove residual COPC mass. Deed notifications/restrictive covenants would reduce the potential for future receptor exposure to COPCs in soil and groundwater.

Effectiveness	Implementability	Cost
Advantages		
Excavation and off-site disposal of vadose zone soil containing elevated concentrations of COPCs would aggressively reduce COPC mass and toxicity in soil over a short timeframe and thereby reduce the potential for COPCs in soil to leach to groundwater. It would decrease the overall timeframe to achieve remedial goals.	Excavation and off-site disposal is a conventional easily implementable technology that has been implemented at many sites and has been successfully implemented historically at two other locations within Operable Unit 1.	Moderate costs for excavation and off-site disposal of soil.
Excavation of soil containing COPCs would represent permanent protection.	The pumping and treatment component would be implemented largely as currently configured, although with the addition of another pumping wells as well as injection wells. The existing treatment system would be used to treat groundwater.	Predictable and relatively low annual maintenance and monitoring costs for the DGR component of the remedy.
With time, natural attenuation processes would reduce any remaining residual COPC concentrations over time in the vadose zone that lie outside the targeted excavation area.		The existing pumping and treatment system infrastructure would be used as part of the DGR remedy thereby reducing costs.
Would reduce the potential for future receptor access by reducing COPC mass in soil and by implementing deed notifications/restrictive covenants.		Relatively lower costs for excavation and off-site disposal of soil versus in situ thermal treatment (IST).
The pumping portion of the DGR system would employ the existing pumping system, which has been extremely effective at controlling migration of COPCs in groundwater and has been operating successfully this way at the site for many years.		
This remedy would take less overall time to achieve RAOs versus the No Action Alternative and the excavation + P&T alternative. This method would have the shortest time to achieve RAOs in the vadose zone source area.		
Disadvantages		
Will eliminate most but not all of the COPCs in vadose zone soil; therefore, future minimal leaching of COPCs from the vadose zone to groundwater is possible.	This alternative would take longer than any other alternatives to reach RAOs except for excavation + P&T.	DGR timeframes could exceed the estimated 20 years to achieve RAOs, as the rate of cleanup is difficult to estimate. The uncertainty in timeframes to reach RAOs also has an impact on total cost certainty.
Although DGR is extremely effective at controlling migration of COPCs in groundwater and is better than P&T for source flushing and removal, the method will still be relatively slow at achieving RAOs because the rate of cleanup is based on the rate of diffusion of COPCs from fine grained into solution and is further limited by the rate of solute transport to the point of capture by the pumping wells. It is difficult to predict the time it will take to achieve groundwater RAOs.	The estimate timeframe to reach RAOs is set at 30 years (20 years of active remediation plus 10 years of MNA) for the purposes of this Feasibility Study, but it is conceivable that the actual timeframe could be longer.	Longer-term costs to maintain deed notifications/restrictive covenants than for other remedial alternatives except for excavation + P&T.
	DGR infrastructure in the downgradient dissolved phase area would likely have to be reconfigured substantially to allow for redevelopment in the central area of the site.	

Conclusion: This alternative would achieve the RAO of minimizing the potential for human exposure to site-related COPCs via contact with soil and would also achieve the RAO of minimizing, containing, or eliminating site-related COPCs from most soils at OU-1 that may be leaching to groundwater. This alternative would also be expected to achieve groundwater RAOs after a long period of operation and maintenance of the DGR system in parallel with and as complimented by MNA with timeframes to meet these RAOs less than that for excavation + P&T. *Therefore, this alternative is retained for detailed analysis.*

Table 6-5
Screening of Remedial Alternative 5: In-Situ Thermal Treatment + Enhanced Reductive Dechlorination
Feasibility Study
AVX Corporation
Myrtle Beach, South Carolina

Synopsis: Under this alternative, in-situ thermal (IST) remediation would be conducted to remediate the constituents of potential concern (COPCs) in soil and to reduce the overall time needed to achieve Remedial Action Objectives (RAOs). The in-situ thermal approach at this site would employ a combination of electrical resistance heating (ERH) and steam enhanced extraction (SEE). The ERH component of the method would deliver an electrical current between metal rods installed in the ground. The heat generated as movement of the current meets resistance from soil would convert COPCs and water/groundwater into steam, vaporizing COPCs. The SEE component would rely on injecting steam underground by pumping it through wells drilled within the footprint of the vadose and saturated zone source areas. The steam would heat the area, evaporating the COPCs to increase their mobility so that they could be captured by a series of vapor and multiphase extraction wells. In addition, in-situ enhanced reductive dechlorination (ERD) via anaerobic bioremediation would be used to remediate the COPCs in the downgradient dissolved phase areas to reduce the overall time to achieve RAOs. For the ERD alternative, injection wells would be installed in transects across the downgradient dissolved phase area into which an electron donor (such as molasses or emulsified vegetable oil) would be injected to create an anaerobic reactive zone. Monitored natural attenuation (MNA) would be implemented following completion of the active phase of the enhanced anaerobic biroremediation to remediate residual low-level concentrations of COPCs. Deed notifications/restrictive covenants would further reduce the potential for receptor exposure to residual COPCs in soil and groundwater.

Effectiveness	Implementability	Cost
Advantages		
IST is expected to be highly effective at removing COPCs in both the vadose and saturated zone source areas including from clay-rich strata.	Access will be restricted in the source area for only a short time, as duration of the thermal method is only approximately 6 months.	Low long-term operation and maintenance (O&M) costs for the source areas.
Over time, natural attenuation processes would reduce any remaining residual COPC concentrations in the vadose zone that lie outside the targeted IST area.		Some components of the Operable Unit 2 ERD system could be used on the Operable Unit 1 site.
ERD has been highly effective at achieving RAOs in groundwater over much of the Operable Unit 2 area.		
This remedy would take the least overall time to achieve RAOs compared to all the other retained alternatives. This method would also have the shortest time to achieve RAOs in the saturated zone source area.		
Disadvantages		
Will eliminate most but not all of the COPCs in vadose zone soil; therefore, future minimal leaching of COPCs from the vadose zone to groundwater is possible.	As the in-situ thermal treatment remedy is the most complex of the retained alternatives, it is also the most difficult to implement.	IST + ERD capital and total costs are by far the highest of all three remedial alternatives.
Although very successful at remediating groundwater in Operable Unit 2, like in Operable Unit 2, some areas of fine grained materials may be slower to achieve the groundwater RAOs.	Although this alternative should sucessfully meet groundwater RAOs in a relatively short remediation timeframe, ERD infrastructure in the downgradient dissolved phase area could inhibit near-term redevelopment unless it is substantially reconfigured.	IST capital costs and O&M costs will increase if volatilized vapors cannot be captured effectively.

Conclusion: This alternative would achieve the RAO of minimizing the potential for human exposure to site-related COPCs via contact with soil and would also achieve the RAO of minimizing, containing, or eliminating site-related COPCs from most soils at Operable Unit 1 that may be leaching to groundwater. This alternative would also be expected to achieve groundwater RAOs in the shortest period of all the remedial alternatives. **Therefore, this alternative is retained for detailed analysis.**

Table 6-6
Screening of Remedial Alternative 6: In-Situ Thermal Treatment + Dynamic Groundwater Recirculation
Feasibility Study
AVX Corporation
Myrtle Beach, South Carolina

Synopsis: Under this alternative, in-situ thermal remediation would be conducted to remediate the constituents of potential concern (COPCs) in soil and to reduce the overall time needed to achieve Remedial Action Objectives (RAOs). The in-situ thermal approach at this site would employ a combination of electrical resistance heating (ERH) and steam enhanced extraction (SEE). The ERH component of the method would deliver an electrical current between metal rods installed in the ground. The heat generated as movement of the current meets resistance from soil would convert COPCs and water/groundwater into steam, vaporizing contaminants. The SEE component would rely on injecting steam underground by pumping it through wells drilled within the footprint of the vadose and saturated zone source areas. The steam would heat the area, evaporating the COPCs to increase their mobility so that they could be captured by a series of vapor and multiphase extraction wells. Furthermore, dynamic groundwater recirculation (DGR), which uses a combination of groundwater pumping and treatment (P&T) and directed groundwater reinjection, would be used to hydraulically control the dissolved phase COPCs and would remove the mass of COPCs captured by the pumping wells. Dynamic reinjection of treated groundwater would also be employed to improve flushing of COPCs from aquifer materials. Monitored natural attenuation (MNA) would also be used as a parallel and polishing step of the remedy to remove residual COPC mass. Deed notifications/restrictive covenants would reduce the potential for future receptor exposure to COPCs in soil and groundwater.

Effectiveness	Implementability	Cost
Advantages		
Natural attenuation processes would reduce COPC concentrations over time to achieve remedial goals.	Access will be restricted in the source area for only a short time, as duration of the thermal method is only approximately 6 months.	Predictable and relatively low annual maintenance and monitoring costs for the DGR component of the remedy.
Groundwater monitoring would determine when remedial goals are met.	The P&T component would be implemented largely as currently configured, although with the addition of another pumping well as well as injection wells. The existing treatment system would be used to treat groundwater.	The existing P&T system infrastructure would be used as part of the DGR remedy, thereby reducing costs.
Would reduce the potential for receptor exposure to COPCs in groundwater through deed notifications/restrictive covenants.		
This remedy would take less overall time to achieve RAOs than the No Action or the excavation + P&T alternatives. This method would have the shortest time to achieve RAOs in the saturated zone source area.		
Disadvantages		
Will eliminate most but not all of the COPCs in vadose zone soil; therefore, future minimal leaching of COPCs from the vadose zone to groundwater is possible.	The estimate timeframe to reach RAOs in the downgradient dissolved phase area is set at 30 years (20 years of active remediation plus 10 years of MNA) for the purposes of this FS, but it is conceivable that the actual timeframe could be longer.	IST + DGR capital costs and total costs are extremely high.
Although DGR is extremely effective at controlling migration of COPCs in groundwater and is better than P&T for source flushing and removal, the method will still be relatively slow at achieving RAOs because the rate of cleanup is based on the rate of diffusion of COPCs from fine grained into solution and is further limited by the rate of solute transport to the point of capture by the pumping wells. It is difficult to predict the time it will take to achieve groundwater RAOs.	DGR infrastructure in the downgradient dissolved phase area would likely have to be reconfigured substantially to allow for redevelopment in the central area of the site.	IST capital costs and O&M costs will increase if volatilized vapors cannot be captured effectively.
		Longer-term costs to maintain deed notifications/restrictive covenants than for other remedial alternatives except for excavation + P&T or excavation + DGR.

Conclusion: This alternative would achieve the RAO of minimizing the potential for human exposure to site-related COPCs via contact with soil and would also achieve the RAO of minimizing, containing, or eliminating site-related COPCs from most soils at OU-1 that may be leaching to groundwater. This alternative would also be expected to achieve groundwater RAOs after a long period of operation and maintenance of the DGR system, in parallel with and as complimented by MNA, with timeframes to meet these RAO greater than that for IST + ERD. Therefore, this alternative is retained for detailed analysis.

		Alternative 1			Alternative 2		Alternative 3			
Ev	aluation Criteria	Rating	No Further Action	Rating	Excavation, Enhanced Reductive Dechlorination, Monitored Natural Attenuation, Institutional Controls, Long Term Monitoring	tion, Institutional Controls, Long				
reshold Crite	eria									
1)	Overall protection of human health and the environment	health and the environment health and the environment bound of RAOs and groundwater RAOs may be met by natural processes after a very long and indeterminant time, but specific monitoring to document the achievement of RAOs would not be performed. Compliance with ARARs Does not comply with ARARs.		5	Protective of human health and the environment. The remedy is expected to meet RAOs through aggressively addressing both the vadose zone and saturated zone source masses and downgradient dissolved-phase area with remedies (excavation and ERD) that have been successfully applied to other areas of OU-1 and OU-2. Furthermore, removal of vadose zone source mass will be documented, and performance monitoring will be undertaken to document the removal/destruction of the COPCs in the saturated zone and downgradient dissolved-phase area. Natural processes will also be expected to address residual concentrations after the active part of the remedy has run its course. ICs will also restrict exposure to residual COPCs in soil and groundwater. Soil and groundwater RAOs would be met.	5	Protective of human health and the environment. The remedy is expected to quickly meet soil RAOs by removing and documenting vadose zone source mass via excavation, which has precedent elsewhere within OU-1. P&T is also effective a controlling migration of COPCs and minimizing risk of exposure to human and ecological receptors, although this groundwater remedy will have to be operated/maintained for a estimated 30 years with significant uncertainty associated with that duration estimate. Compliance/performance monitoring will be performed to document the removal of the COPCs in the saturated zone source and downgradient dissolved-phase area. Natural processes will also be expected to address residual concentrations after the active part of the remedy has run its course. ICs will limit exposure to residual COPCs in so and groundwater. Soil and groundwater RAOs would be met.			
2)		0	Does not comply with ARARs.	5	Complies with ARARs.	5	Complies with ARARs.			
lancing Crite	ria									
3)	Long-term effectiveness and permanence	0	Not effective or permanent. Groundwater monitoring indicates that some destruction of COPCs through natural processes has been occurring. Potential exposure risks associated with COPCs in soil and groundwater would remain with no controls or long-term management plan.	5	Highly effective and permanent for removal of COPCs from soil and groundwater and eliminating human health risks. Remediation goals for groundwater expected to be met following active ERD for 5 years and 10 additional years of MNA. ICs may be lifted after drinking water standards are met.	3	Moderately effective and permanent for removing COPCs in vadose zone soil. Expected to eventually permanently remove COPCs from groundwater, thereby eliminating any potential fo human exposure. Until then, ICs will be in place to minimize potential human exposure.			
4)	Reduction of mobility, toxicity, or volume	1	Natural attenuation processes would have little effect on limiting the mobility, toxicity, or volume of COPCs in the soil, which in turn, would lead to continued leaching to groundwater. Natural attenuation is known to have had some positive effect on degrading some COPCs in groundwater, but the rate of that attenuation is exceedingly slow.	5	Permanently removes COPC mass from soil via excavation. Reduces mobility, toxicity, and volume of COPCs in groundwater where these COPCs will be destroyed in-situ.	3	Quickly reduces mass of COPCs in soil via excavation and offsite disposal. P&T system immediately reduces mobility of COPCs, although has little effect on constituent toxicity. The mass of COPCs in groundwater will slowly be reduced with time.			
5)	Short-term effectiveness	5	No activities would be implemented that would present potential short-term exposure risks to human health or the environment.	3	Construction and treatment activities (soil excavation and installation of additional monitoring and injection wells followed by periodic injection activities, vapor monitoring, and mitigation) will create potential short-term exposure risks to workers, adjacent populations, or the environment that would be managed through monitoring and engineering controls if controls are deemed necessary.	3	Soil removal during excavation and groundwater treatment activities could create limited potential short-term exposure risks to workers, adjacent populations, or the environment. These risks would be managed through monitoring, engineering controls, and worker training or some combination thereof.			
6)	Implementability	2	Technically feasible because no technical components are necessary. However, this alternative is not expected to be administratively viable, as there would be no controls on the migration of COPCs.	4	Technically and administratively feasible. Remediation activities performed entirely within bounds of owner's property (except for transportation and disposal of excavated soil). A successful precedent for both excavation (within OU-1) and ERD (within OU-2) have been established.	4	Technically and administratively feasible. There is precedent for both technologies being implementable with excavation being successfully implemented during past onsite surgical so removal activities and the P&T system being successfully operated for decades to control dissolved-phase COPCs within the OU-1 site boundaries.			
7)	Cost	5	Capital Costs: \$0 Total O&M Costs:\$0 Total Present Value Costs: \$0 No Remedy - Not Applicable	3	Capital Costs: \$2,618,961 Total Operating Costs (not discounted): \$2,618,560 Total Net Present Value Costs: \$5,009,611 5 Yrs. Active Remediation and 10 Yrs. MNA	5	Capital Costs: \$1,483,299 Total Operating Costs (not discounted): \$2,894,400 Total Net Present Value Costs: \$2,777,047 30 Yrs. of Active Remediation and Performance Monitoring			

Table 7-1 1/5

			Alternative 4		Alternative 5		Alternative 6			
Eva	Evaluation Criteria Rating Excavation, Dynamic Groundwater Recirculation, Monitored Natural Attenuation, Institutional Controls, Long-Term Monitoring		Rating	In-Situ Thermal Treatment, Enhanced Reductive Dechlorination, Monitored Natural Attenuation, Institutional Controls, Long-Term Monitoring	Rating	In-Situ Thermal Treatment, Dynamic Groundwater Recirculation, Monitored Natural Attenuation, Institutional Controls, Long-Term Monitoring				
hreshold Crite	ria									
1)	Overall protection of human health and the environment. The remedy is expected to quickly meet soil RAOs by removing and documenting vadose zone source mass via excavation, which has precedent elsewhere within OU-1. DGR will also be effective at controlling migration of COPCs and minimizing risk of exposure to human and ecological receptors, and will do so faster than P&T alone. Compliance/performance monitoring will be performed to document the removal of the COPCs in the saturated zone source and downgradient dissolved-phase area. Natural processes will also be expected to address residual concentrations after the active part of the remedy has run its course. ICs will restrict exposure to residual COPCs in soil and groundwater. Soil and groundwater RAOs would be met. Compliance with ARARS 5 Complies with ARARS. Moderately/highly effective and permanent for removing COPCs		5	Protective of human health and the environment. The remedy is expected to quickly meet soil RAOs by heating, mobilizing, and capturing COPCs from the vadose and saturated source zones. The remedy is also expected to meet groundwater RAOs through aggressively addressing the saturated zone source masses and downgradient dissolved-phase area with ERD, which has been successfully applied to groundwater in OU-2. Compliance/performance monitoring will be performed to document the removal of the COPCs in the saturated zone source and downgradient dissolved-phase area. Natural processes will also be expected to address residual concentrations after the active part of the remedy has run its course. ICs will restrict exposure to residual COPCs in soil and groundwater. Soil and groundwater RAOs would be met.	5	Protective of human health and the environment. The rem is expected to quickly meet soil RAOs by heating, mobilizi and capturing COPCs from the vadose and saturated sou zones. DGR will also be effective at controlling migration of COPCs and minimizing risk of exposure to human and ecological receptors, and will do so faster than P&T alone Compliance/performance monitoring will be performed to document the removal of the COPCs in the saturated zon source and downgradient dissolved-phase area. Natural processes will also be expected to address residual concentrations after the active part of the remedy has run course. ICs will restrict exposure to residual COPCs in soil groundwater. Soil and groundwater RAOs would be met.				
2)	Compliance with ARARs	5	Complies with ARARs.	5	Complies with ARARs.	5	Complies with ARARs.			
alancing Crite	ria		Madagash Miliah I. affash				Madagashaldigable			
3)	Long-term effectiveness and permanence	4	Moderately/highly effective and permanent for removing COPCs in vadose zone soil. Anticipated to be somewhat more effective than P&T of groundwater due to improved flushing through saturated areas. Expected to eventually permanently remove COPCs from groundwater, thereby eliminating any potential for human exposure. Until then, ICs will be in place to minimize potential human exposure.	5	Highly effective and permanent for removing COPCs in vadose zone soil. Remediation goals for groundwater expected to be met following active ERD for 5 years and 10 additional years of MNA. ICs may be lifted after drinking water standards are met.	4	Moderately/highly effective and permanent for removing COPCs in vadose zone soil. Anticipated to be somewhat more effective than P&T of groundwater due to improved flushing through saturated areas. Expected to eventually permanently remove COPCs from groundwater, thereby eliminating any potential for human exposure. Until then, ICs will be in place to minimize potential human exposure. Relatively quickly reduces mass of COPCs in soil via thermal			
4)	Reduction of mobility, toxicity, or volume	4	Quickly reduces mass of COPCs in soil via excavation and offsite disposal. Pumping portion of DGR system immediately reduces mobility of COPCs, although has little effect on constituent toxicity. The mass of COPCs in groundwater will be reduced with time, with improved mass removal (compared with pumping and treatment) via directed and dynamic flushing with clean/treated water.	5	Relatively quickly reduces mass of COPCs in soil via thermal treatment and capture of volatilized COPCs. Reduces mobility, toxicity, and volume of COPCs in groundwater where these COPCs will be destroyed in-situ.	5	Relatively quickly reduces mass of COPCs in soil via thermal treatment and capture of volatilized COPCs. Pumping portion of DGR system immediately reduces mobility of COPCs, although has little effect on constituent toxicity. The mass of COPCs in groundwater will be reduced with time, with improved mass removal (compared with pumping and treatment) via directed and dynamic flushing with clean/treated water.			
5)	Short-term effectiveness	3	Soil removal during excavation, pumping/injection well installation, and groundwater treatment activities could create limited potential short-term exposure risks to workers, adjacent populations, or the environment. These risks would be managed through monitoring, engineering controls, and worker training or some combination thereof.	3	Construction and treatment activities (installation of electrodes, steam injection wells, vapor and multiphase extraction wells, ERD injection wells, as well as periodic vapor monitoring, liquid treatment, and discharge monitoring activities) could create limited short-term exposure risks and impacts to workers, adjacent populations, or the environment that would be managed through engineering controls, vapor monitoring, and worker training. Additional electric and thermal working hazards would also be managed through engineering controls and worker training.	3	Construction and treatment activities (installation of electrodes steam injection wells, vapor and multiphase extraction wells, DGR pumping/injection well installation, as well as periodic vapor monitoring, liquid treatment, and discharge monitoring activities) could create limited short-term exposure risks and impacts to workers, adjacent populations, or the environment that would be managed through engineering controls, vapor monitoring, and worker training. Additional electric and thermal working hazards would also be managed through engineering controls and worker training.			
6)	Implementability	4	Technically and administratively feasible. There is precedent for excavation being successfully implemented during past onsite surgical soil removal activities. Furthermore, the proposed DGR system is in many ways similar to the currently operating and successful P&T system in that it will make use of the existing pumping wells and treatment system, but will add extraction and reinjection wells to improve flushing and reduce remediation time.	3	Technically and administratively feasible with proven success of in-situ thermal treatment at other sites and proven success of ERD in OU-2. Requires installation of many electrodes, steam injection wells, and vapor and multiphase extraction wells and TOC injection wells. Capture of volatilized vapors may be challenging given limited thickness of the vadose zone.	3	Technically and administratively feasible with proven success of in-situ thermal treatment at other sites. Furthermore, the proposed DGR system is in many ways similar to the currently operating and successful P&T system in that it will make use o the existing pumping wells and treatment system but will add extraction and reinjection wells to improve flushing and reduce remediation time.			
7)	Cost	3	Capital Costs: \$2,796,065 Total Operating Costs (not discounted): \$3,272,000 Total Net Present Value Costs: \$4,640,170 20 Yrs. Active Remediation and 10 Yrs. MNA	0	Capital Costs: \$11,423,491 Total Operating Costs (not discounted): \$1,918,060 Total Net Present Value Costs: \$13,197,583 5 Yrs. Active Remediation and 10 Yrs. MNA	0	Capital Costs: \$11,997,007 Total Operating Costs (not discounted): \$3,272,000 Total Net Present Value Costs: \$13,841,112 20 Yrs. Active Remediation and 10 Yrs. MNA			
creening Total	 e	28		26		25				

Table 7-1 2/3

Table 7-1

Summary of Detailed and Comparative Analysis of Remedial Alternatives

Feasibility Study

AVX Corporation

Myrtle Beach, South Carolina

Notes:

All costs are estimated to an accuracy of +50% to -30% (USEPA 2000). Cost estimates were prepared in 2019 and are expressed in 2019 dollars.

ARAR = applicable or relevant and appropriate requirement

COPC = constituent of potential concern

DGR = dynamic groundwater recirculation

ERD = enhanced reductive dechlorination

IC = Institutional Control

MNA = monitored natural attenuation

O&M = operation and maintenance

OU-1 = Operable Unit 1

OU-2 = Operable Unit 2

P&T = pumping and treatment

RAO = remedial action objective

TOC = total organic carbon

USEPA = United States Environmental Protection Agency

Yrs. = years

Ratings Categories for Threshold and Balancing Criteria (Excluding Costs):

- (0) None
- (1) Low
- (2) Low to moderate
- (3) Moderate
- (4) Moderate to high
- (5) High

Ratings Categories for Cost

- (5) None
- (4) Low
- (3) Low to moderate
- (2) Moderate
- (1) Moderate to high
- (0) High

Reference:

USEPA. 2000. A Guide to Developing and Documenting Cost Estimates During the Feasibility Study. EPA 540-R-00-002, OSWER 9355.0-75. July 2000.

Table 7-1 3/3

FIGURES

300'

2-2

300'

2-3

LYR: ON=*;OFF=REF, (FRZ) 32-3-DISSOLVED PHASE-LOV

Vadose Source Zone Component Options

Excavation (EXC)

Insitu Thermal Vadose Zone (ISTVZ)

Saturated Source Zone Component Options
Insitu Thermal Saturated Zone (ISTSZ)

Enhanced Reductive Dechlorination (ERD)
Pumping and Treatment (P&T)

Dynamic Groundwater Recirculation (DGR)

Downgradient GW Component Options Enhanced Reductive Dechlorination (ERD)

Dynamic Groundwater Recirculation (DGR)

Pumping and Treatment (P&T)

	Remedial Alternative Combinations															
Targets of Remediation	1	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 EXC EXC EXC EXC EXC EXC EXC EXC STVZ STVZ STVZ STVZ STVZ STVZ STVZ STVZ														16
Source Vadose Zone (SVZ)	EXC	EXC	EXC	EXC	EXC	EXC	EXC	EXC	ISTVZ							
Source Saturated Zone (SSZ)	ISTSZ	ISTSZ	ISTSZ	ERD	ERD	ERD	P&T	DGR	ISTSZ	ISTSZ	ISTSZ	ERD	ERD	ERD	P&T	DGR
Down Gradient Groundwater (DGGW)	ERD	ERD P&T DGR ERD P&T DGR P&T DGR ERD P&T DGR ERD P&T DGR P&T D											DGR			
	Х	X											Х			
OK	Combination of components into a comprehensive alternative that is carried through the FS															
X	Combinati	Combination of components into a comprehensive alternative that is not carried through the FS														

Rationale for Elimination of Alternative Combinations

- Remedial Alternative Combinations 1 through 3 do not represent a logical combination of component options as IST is best suited only when applied to both the both the vadose and saturated zone source areas.

 Remedial Alternative Combination 5 and 6 do not represent a logical combination of components because ERD is not compatible with closely located P&T or DGR because
 - of the increased potential for water treatment system fouling due to the high organic carbon loading that will eventually enter the groundwater pumping wells and air stripper. Nonetheless, an ERD remedy may count on the current P&T system for a time to increase hydraulic gradients which will help to widen the ERD reactive zone during the early stages of implementation of ERD. The P&T system would eventually be taken offline when ERD wells, more closely located to the pumping wells, are installed and placed on line.
- For Remedial Alternative Combination 10, applying the most aggressive option of IST in the source area vadose and saturated zones is considered mismatched if combined with the least aggressive option of P&T for the downgradient dissolved phase area. Would only be logical to apply a more aggressive option in the downgradient dissolved phase area (like ERD or DGR) if committing the very high funding for IST in the source area.
- Remedial Alternative Combinations 12 through 16 do not represent a logical assembly of components because IST is best suited for application only when used in both vadose and saturated zones.

AVX Corporation Myrtle Beach Facility Myrtle Beach, South Carolina

REMEDIAL COMPONENT OPTIONS AND ASSEMBLY OF OPTIONS INTO REMEDIAL ALTERNATIVES

ARCADIS Design & Consultant for natural and built assets

Figure

6-1

Figure 6-1 - Remedial Options - rev

APPENDIX A Figure Set from 2016 Feasibility Study Investigation Report

AVX CORPORATION MYRTLE BEACH FACILITY MYRTLE BEACH, SOUTH CAROLINA FEASIBILITY STUDY INVESTIGATION REPORT

SITE LOCATION MAP

FIGURE 1-1

- $\ensuremath{\mathsf{O}}$ Monitoring well screened in the upper terrace deposits
- MONITORING WELL SCREENED IN THE LOWER TERRACE DEPOSITS
- MONITORING WELL SCREENED IN THE PEEDEE FORMATION
- MONITORING WELL SCREENED IN THE UPPER & LOWER TERRACE DEPOSITS
- FORMER PUMPING WELL SCREENED IN THE UPPER TERRACE DEPOSITS
- PRODUCTION WELL SCREENED IN THE UPPER & LOWER TERRACE DEPOSITS
- + INJECTION WELL SCREENED IN THE LOWER TERRACE DEPOSITS
- CARMIKE WELL LOCATION SCREENED IN THE UPPER TERRACE DEPOSITS
- ▲ FORMER SOIL VAPOR EXTRACTION WELL SCREENED IN THE UPPER TERRACE DEPOSITS

- 1. AERIAL PHOTOGRAPH OBTAINED FROM GOOGLE EARTH PRO.
- 2. THE RELATIONSHIPS BETWEEN INVESTIGATION LOCATIONS AND OTHER FEATURES LIKE ROADS, BUILDINGS AND WATER FEATURES ARE APPROXIMATE.

600' GRAPHIC SCALE

AVX CORPORATION
MYRTLE BEACH FACILITY
MYRTLE BEACH, SOUTH CAROLINA
FEASIBILITY STUDY INVESTIGATION REPORT

AVX-OWNED PROPERTIES

2-1

LEGEND

TCE

- <0.005
- 0.005 1.0
- 1.0 10
- 0 10 100
- 0 100 1.000
- 1,000 5,000
- >5,000

Note: The colors at each location represent the range of the highest detected concentrations.

Vertical distribution is not accounted for at these locations.

Figure 3-2 Trichloroethene in Soil

Myrtle Beach Facility AVX Corporation Myrtle Beach, South Carolina

Source: USGS 7.5-minute Series Topographic Quadrangle, NAME (DATE).

Figure 3-10 Cross-Section D-D'

AVX Myrtle Beach Myrtle Beach, South Carolina

Note

- TCE results represent the VAP sampling intervals.
 Colors associated with each box are based on the observed concentration.
- Estimated hydraulic conductivities were generated from HPT results. Colors associated with the estimated hydraulic conductivity are distributed across the entire section and based off the profile generated at each location.
- V.E. = Vertical Exaggeration

Source: USGS 7.5-minute Series Topographic Quadrangle, NAME (DATE).

LYR: ON=*;OFF PAGESETUP:

PM/TM: M.HANISH TR: R. MATOR PM ACADVER: 19.1S (LMS TECH)

A.SCHILLING, R. BASSETT, P. LISTER, R. BASSETT LD: A.SCHILLING 00002/DWG/FS\07393C02.DWG LAYOUT: 5-3 SAVED: 6/24/2015 2:41

A LOCATION OF HISTORICAL SOIL BORING

LOCATION OF WASTE PAD AREA SOIL BORING

LOCATION OF PRE-DEMOLITION SOIL BORING

X LOCATION OF CPT BORING

- AERIAL PHOTOGRAPH OBTAINED FROM THE SOUTH CAROLINA DEPARTMENT OF NATURAL RESOURCES WEBSITE (2007).
- 2. LOCATION OF ROADS ARE APPROXIMATE.
- 3. THE FORMER CORPORATE RESEARCH BUILDING HAS BEEN DEMOLISHED.
- 4. DATA PRESENTED IN MILLIGRAM PER KILOGRAM (mg/kg).
- 5. BOLD VALUES INDICATE COMPOUND DETECTED ABOVE ANALYTICAL METHOD DETECTION LIMIT.
- 6. J INDICATES AN ESTIMATED VALUE.
- 7. U COMPOUND WAS ANALYZED FOR BUT NOT DETECTED. ASSOCIATED VALUE IS THE COMPOUND QUANTITATION LIMIT.
- 8. cis-1,2-DCE cis-1,2-DICHLOROETHENE
- 9. TCE TRICHLOROETHENE
- 10. VC VINYL CHLORIDE
- 11. ft.- FEET BELOW GROUND SURFACE
- 12. ND COMPOUND WAS ANALYZED FOR BUT NOT DETECTED. HISTORICAL QUANTITATION LIMIT IS UNKNOWN.
- 13. DATA ORIGINALLY PRESENTED AS FIGURE 4-10 IN THE FEASIBILITY STUDY DATA GAP INVESTIGATION REPORT NOVEMBER 2010.

AVX CORPORATION MYRTLE BEACH FACILITY
MYRTLE BEACH, SOUTH CAROLINA FEASIBILITY STUDY INVESTIGATION REPORT

SOIL ANALYTICAL DATA

5-3

APPENDIX B Human Health Risk Assessment for Operable Unit 1

AVX Corporation

HUMAN HEALTH RISK ASSESSMENT

Operable Unit 1

Myrtle Beach, South Carolina

April 2019

Skyranie Bottenboger

Stephanie B. Offenberger Staff Scientist

Shawn L. Sager, PhD Principal Scientist

Brian Magee, PhD Technical Director

Mark B. Hanish Project Manager

HUMAN HEALTH RISK ASSESSMENT

Operable Unit 1

Myrtle Beach, South Carolina

Prepared for:

AVX Corporation

Prepared by:

Arcadis U.S., Inc.

6041 Wallace Road Extension

Suite 300

Wexford

Pennsylvania 15090

Tel 724 742 9180

Fax 724 742 9189

Our Ref.:

B0007393.0002

Date:

April 2019

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

CONTENTS

Acı	onyn	ns and Ab	obreviations	v		
1	Intro	duction		1		
2	Site Characterization					
	2.1	Site Des	scription	2		
	2.2	Site Histo	tory	2		
	2.3	Topogra	aphy and Drainage	3		
	2.4	Geology	/	3		
	2.5	Hydroge	eology	3		
3	Constituent Characterization					
	3.1 Data Evaluation					
		3.1.1 S	Sample Age	4		
		3.1.2 S	Sample Depth	5		
	3.2	Identifica	ation of Screening Levels	5		
	3.3	Selection	n of Constituents of Potential Concern	5		
		3.3.1 S	Surface Soil	5		
		3.3.2 C	Combined Surface and Subsurface Soil	6		
		3.3.3 G	Groundwater Constituents of Potential Concern	6		
		3.3.3.	.1 All Groundwater Data	7		
		3.3.3.	.2 Shallow Groundwater Data	7		
		3.3.3.	.3 Groundwater Data for Vapor Intrusion	8		
4	Exposure Assessment 9					
	4.1	4.1 Risk Assessment Conceptual Site Model				
	4.2	.2 Potential Receptors				
	4.3	Exposure	re Point Concentrations	11		
		4.3.1 C	Current and Hypothetical Future Site Worker	12		
		4.3.2 H	Hypothetical Future Construction Worker	12		
		4.3.3 H	Hypothetical Future Resident	12		
	4.4	4 Exposure Assumptions				
	4.5	5 Fate and Transport				

		4.5	.1.1	Volatilization Factor for Groundwater	14
		4.5	.1.2	Volatilization Factor for Soil	14
		4.5.2	Vapo	r Intrusion into Buildings	14
5	Tox	icity As	sessm	ent	16
	5.1	Non-C	arcino	ogenic Effects	16
	5.2	Carcin	ogeni	c Effects	17
	5.3	Derma	al Toxi	city Values and Dermal Absorption	18
6	Risk	c Chara	cteriza	ation	19
	6.1	Hazar	d Quo	tient for Non-Cancer Hazard	19
	6.2	Exces	s Lifet	ime Cancer Risk	19
	6.3	Currer	nt and	Future Site Worker Exposure Scenario Risks and Hazards	20
	6.4	Hypot	hetica	Future Construction Worker Exposure Scenario Risks and Hazards	20
	6.5	Hypot	hetica	Resident Exposure Scenario Risks and Hazards	21
	6.6	Summ	ary of	Risks and Hazards	21
	6.7	Health	ı-Base	d Goal Development	22
	6.8	Uncer	tainty	Analysis	23
		6.8.1	Data	Evaluation	23
		6.8.2	Toxic	ity Assessment	23
		6.8.3	Ехро	sure Assessment	24
7	Sun	nmary a	ind Co	nclusions	25
8	Refe	erences	·		27
T	AB	LES			
Tal	ble 1		Sumi	mary of Soil Sample Analytical Results	
Tal	ble 2		Sumi	mary of Groundwater Sample Analytical Results	
Tal	ble 3		Sumi	mary of Groundwater Sample Analytical Results from 2013-2018	
Tal	ble 4		Surfa	ce Soil Sample Analytical Results (0-2 Feet)	
Tal	ble 5		Com	bined Surface and Subsurface Soil Sample Analytical Results (0-10 Feet)	
Tal	ble 6		Sumi 15 Fe	mary of Groundwater Sample Analytical Results to a Depth of Less than or leet	∃qual to

Table 7	Summary of Groundwater Sample Analytical Results to a Depth of Less than or Equal to 25 Feet
Table 8	Selection of Constituents of Potential Concern for Surface Soil (0-2 Feet)
Table 9	Selection of Constituents of Potential Concern for Combined Surface and Subsurface Soil (0-10 Feet)
Table 10	Selection of Constituents of Potential Concern for All Groundwater
Table 11	Selection of Constituents of Potential Concern for Groundwater to a Depth of Less than or Equal to 15 Feet
Table 12	Selection of Constituents of Potential Concern for Groundwater to a Depth of Less than or Equal to 25 Feet
Table 13	Summary of Constituents of Potential Concern and Exposure Point Concentrations
Table 14	Receptor Exposure Parameters
Table 15	Risk and Hazard Equations for Site Worker Exposure to Soil
Table 16	Risk and Hazard Equations for Construction Worker Exposure to Soil
Table 17	Risk and Hazard Equations for Construction Worker Exposure to Groundwater
Table 18	Risk and Hazard Equations for Exposure to Soil for a Hypothetical Future Resident
Table 19	Water Volatilization Factors
Table 20	Soil Volatilization Factors
Table 21	Non-Carcinogenic Toxicity Values for Oral and Dermal Exposure
Table 22	Non-Carcinogenic Toxicity Values for Inhalation Exposure
Table 23	Carcinogenic Toxicity Values for Oral and Dermal Exposure
Table 24	Carcinogenic Toxicity Values for Inhalation Exposure
Table 25	Dermal Absorption Parameters
Table 26	Risk and Hazard Calculations for a Current and Hypothetical Future Site Worker for Exposure to Surface Soil (0-2 Feet)
Table 27	Risk and Hazard Calculations for a Hypothetical Site Worker for Exposure to Combined Surface and Subsurface Soil (0-10 Feet)
Table 28	Table of Inputs and Outputs for Multiple Chemicals; Site Worker Exposure to Vapors from Groundwater Less than 25 Feet
Table 29	Risk and Hazard Calculations for a Hypothetical Future Construction Worker for Exposure to Surface Soil (0-2 Feet)
Table 30	Risk and Hazard Calculations for a Hypothetical Future Construction Worker for Exposure to Combined Surface and Subsurface Soil (0-10 Feet)

Table 31	Risk and Hazard Calculations for a Hypothetical Future Construction Worker for Exposure to Groundwater (Less than 15 ft bgs) in a Trench
Table 32	Risk and Hazard Calculations for a Hypothetical Future Resident for Exposure to Surface Soil (0-2 Feet)
Table 33	Risk and Hazard Calculations for a Hypothetical Future Resident for Exposure to Combined Surface and Subsurface Soil (0-15 Feet)
Table 34	Table of Inputs and Outputs for Multiple Chemicals; Resident Exposure to Vapors from Groundwater Less than 25 Feet
Table 35	Summary of Calculated Human Health Risks and Hazards
Table 36	Health-Based Concentration Goal Calculations for Exposure to Soil of a Resident
Table 37	Health-Based Concentration Goal Calculations for Exposure to Soil of a Site Worker
Table 38	Health-Based Concentration Goal Calculations for Exposure to Soil of a Construction Worker
Table 39	Health-Based Concentration Goal Calculations for Exposure to Groundwater of a Construction Worker
Table 40	Health-Based Concentration Goal Calculations for Exposure to Vapor Migration from Groundwater of a Resident
Table 41	Health-Based Concentration Goal Calculations for Exposure to Vapor Migration from Groundwater of a Site Worker
Table 42	Summary of Calculated Health-Based Goals

FIGURES

Figure 1-1	Site Location
Figure 2-1	AVX-Owned Properties
Figure 2-2	OU-1 Layout and Demolition History
Figure 3-1	Locations of Surface Soil Samples Used in the HHRA
Figure 3-2	Locations of Subsurface Soil Samples Used in the HHRA
Figure 3-3	Locations of Groundwater Samples Used in the HHRA
Figure 4-1	Risk Assessment Conceptual Site Model

APPENDICES

Appendix A Vapor Intrusion Screening Levels

Appendix B ProUCL Output

ACRONYMS AND ABBREVIATIONS

1,1,1-TCA 1,1,1-trichloroethane

ADAF age-dependent adjustment factor

Arcadis U.S., Inc.

AST aboveground storage tank

ATSDR Agency for Toxic Substances and Disease Registry

AVX AVX Corporation

bgs below ground surface

BMDL benchmark dose modeling

CalEPA California Department of Environmental Protection Agency

cis-1,2-DCE cis-1,2-dichloroethene

COPC constituent of potential concern

CSF cancer slope factor

CVOC chlorinated volatile organic compound

ELCR excess lifetime cancer risk

EPC exposure point concentration

FSIR Feasibility Study Investigation Report

FSWP Feasibility Study Work Plan

HBG health-based goal

HHRA Human Health Risk Assessment

HI hazard index

HPT hydraulic profiling tool

HQ hazard quotient

IRIS Integrated Risk Information System

MCL maximum contaminant level

MOA mode of action

NOAEL no observed adverse effect level

OU-1 Operable Unit 1
OU2 Operable Unit 2
PCE tetrachloroethene

QA/QC quality assurance and quality control

RACSM risk assessment conceptual site model

RfC reference concentration

RfD reference dose

RME reasonable maximum exposure

RSL Regional Screening Level

SCDHEC South Carolina Department of Health and Environmental Control

site former AVX Corporation facility located at 2200 AVX Drive in Myrtle Beach, South

Carolina

SSL soil screening level

TCE trichloroethene

UCL upper confidence limit

USEPA United States Environmental Protection Agency

UST underground storage tank

VC vinyl chloride

VF volatilization factor

VISL vapor intrusion screening level

VOC volatile organic compound

1 INTRODUCTION

Arcadis U.S., Inc. (Arcadis) prepared this Human Health Risk Assessment (HHRA) for Operable Unit 1 (OU-1) for the former AVX Corporation (AVX) facility located at 2200 AVX Drive in Myrtle Beach, South Carolina (site; **Figure 1-1**). This HHRA was prepared following the approach outlined in the *Feasibility Study Work Plan* (FSWP; Arcadis 2015), submitted to the South Carolina Department of Health and Environmental Control (SCDHEC) and approved by the SCDHEC on October 20, 2015.

The FSWP (Arcadis 2015) provided the framework for this HHRA. OU-1 represents the onsite portion of the AVX facility but includes only the older portion of the operations (sometimes referred to as AVX MB1). The HHRA for the offsite operable unit (Operable Unit 2 [OU-2]) was submitted in November 2010, revised in February 2011 based on SCDHEC comments, and approved by the SCDHEC on May 13, 2011. Similar to the OU-2 HHRA, which is a companion document to the OU-2 Feasibility Study, this HHRA for OU-1 is a companion document to the *Feasibility Study for Operable Unit 1*.

The purpose of this HHRA is to evaluate potential risks to human health associated with constituents detected in the sampled media. The risk assessment is performed in a manner like that performed for OU-2 but modified as necessary to match current or anticipated future conditions specific to OU-1. Included in this HHRA is an evaluation of potential risks that can be used to identify and evaluate potential remedial options and risk management strategies for the OU-1 area.

Together with this introductory section, this HHRA provides a brief description of the data used and is organized as follows:

- Section 2 Site Characterization: Provides a description of OU-1 and OU-1 features and provides a brief history for context.
- Section 3 Constituent Characterization: Identifies and summarizes the occurrence of constituents in groundwater, surface water, and soil gas and identifies constituents of potential concern (COPCs) for the HHRA.
- Section 4 Exposure Assessment: Identifies the potential human exposure scenarios relevant to this HHRA.
- Section 5 Toxicity Assessment: Identifies toxicity values used to estimate excess lifetime cancer risk (ELCR) and non-cancer hazard for the COPCs.
- Section 6 Risk Characterization: Presents the estimated human health risks associated with the identified COPCs and the relevant human exposure scenarios.
- Section 7 Summary and Conclusions: Summarizes the results of this HHRA.
- Section 8 References: Lists the sources of information cited in this HHRA.

2 SITE CHARACTERIZATION

This section describes OU-1, outlines the site history, and provides information regarding the environmental setting and previous environmental investigations.

2.1 Site Description

The former manufacturing portion of the site is located within approximately 20 acres within the City of Myrtle Beach, in Horry County, South Carolina (**Figure 1-1**). This portion of the AVX property is also referred to as OU-1, which represents the onsite portion of the site (**Figure 2-1**). The site is located within an area referred to as the Grand Strand, a roughly 60-mile strip of Atlantic Ocean beaches and beachfront communities in North and South Carolina, bounded by the Atlantic Ocean and the Intracoastal Waterway. The center of the site is approximately 3,300 feet northwest of the ocean and 2.3 miles southeast of the Intracoastal Waterway. The surrounding land use is as follows:

- The areas north, south, and east of the site are primarily residential or tourist-related commercial properties with a few undeveloped properties intermixed, primarily to the east. A parcel immediately south of the facility belongs to the City of Myrtle Beach and contains an unused deep water supply well and large water storage tank. A vacant parcel farther south, on South Kings Highway, was formerly the location a movie theater, but is now owned by AVX.
- The site is bordered to the west by a golf course owned by the City of Myrtle Beach, an approximately 69-acre parcel owned by AVX but not included as part of OU-1 (sometimes referred to as MB-2).

The OU-1 area includes what was historically the primary manufacturing area of the site. The area contained several buildings, including the main manufacturing building referred to as MB-1, which was approximately 300,000 square feet (**Figure 2-2**). Several building demolition events have transpired over the last decade, starting with the demolition of the PDG Building in 2009, with the latest demolition including the Metals Reclaim and RMM Buildings completed in 2018. The history of demolition is depicted on **Figure 2-2**.

2.2 Site History

The Aerovox Corporation, predecessor to AVX, began its Myrtle Beach operations in 1953 on land that was formerly part of the Myrtle Beach Air Force Base. AVX used chlorinated volatile organic compounds (CVOCs) at the site until 1993 in the manufacturing of ceramic capacitors. In 1981, AVX discovered that shallow groundwater beneath the OU-1 area contained CVOCs, notably the solvents trichloroethene (TCE) and 1,1,1-trichloroethane (1,1,1-TCA).

Virgin and spent TCE had been stored in underground storage tanks (USTs) on the western side of the OU-1 site until 1983 (**Figure 2-2**), when they were removed in 1983 prior to construction of an addition to the main building that covered that area. After the USTs were removed, TCE was stored in aboveground storage tanks (ASTs) adjacent to the western side of the manufacturing building (**Figure 2-2**). In 1986, AVX transitioned from using TCE to 1,1,1-TCA, continuing to use the former TCE ASTs for storage of 1,1,1-TCA. Use of 1,1,1-TCA was discontinued in 1993. Currently, OU-1 has limited activity as most of the operations have been terminated and buildings demolished.

2.3 Topography and Drainage

The OU-1 area is relatively flat, with a grade elevation of approximately 20 feet above mean sea level (**Figure 1-1**), with a gentle slope to the northeast. A small stream (Withers Swash) is located adjacent to the northern end of OU-1 (**Figure 2-1**). Withers Swash flows northeast approximately parallel to the beach, passing through multiple flood control ponds before ultimately discharging to the Atlantic Ocean. A golf course to the west includes several artificial ponds as water hazards. The nearest pond is immediately west of OU-1 in an upgradient direction. Construction details and surface elevation of this pond are not known.

2.4 Geology

Myrtle Beach is within the Atlantic Coastal Plain physiographic province. Bedrock is approximately 1,400 to 1,500 feet below sea level (Zack 1977). The majority of the overlying thickness of consolidated sediments is Cretaceous age and older marine margin deposits, typically alternating beds of sand and clay. Thin beds of calcite-cemented siltstone or fine-grained sandstone are common throughout the section, interbedded with unconsolidated sediments. The two uppermost relevant units are:

- Terrace Deposits (0 to 45 feet below ground surface [bgs]) A Quaternary-aged sequence of marine terraces consisting of stratified sand, silt, and clay beds reflecting a beach and lagoon depositional environment.
- Peedee Formation (45 to 300 feet bgs) A Cretaceous-aged marginal marine unit formed predominantly of stratified sand and clay (similar to the terrace deposits but much older), with thin beds of calcite-cemented siltstone or fine-grained sandstone.

The uppermost portion of the Peedee Formation was encountered in investigation borings within OU-1 and is described as a calcite-cemented siltstone. This lithified zone strongly inhibits vertical flow of groundwater between the Peedee Formation and the overlying Upper and Lower Terrace Deposits. Therefore, the investigations have largely focused on the Upper and Lower Terrace Deposits. Additional detail regarding site geology is presented in the *Feasibility Study Investigation Report* (FSIR; Arcadis 2016).

2.5 Hydrogeology

Shallow groundwater is first encountered at various depths dependent, in part, on the stratigraphy encountered at any specific location, time of year, and precipitation prior to the time of assessment. Natural groundwater gradients are to the northeast within the Upper and Lower Terrace Deposits, although locally influenced by groundwater pumping at the two onsite pumping wells DPW-4SD and DPW-5SD (**Figure 2-1**). Additional detail regarding hydrogeology of the site is presented in the FSIR (Arcadis 2016).

3 CONSTITUENT CHARACTERIZATION

This section discusses the groundwater and soil data collected during the site investigations within OU-1, the methodology used to evaluate the data, and the selection of COPCs. Detailed information describing the distribution of constituents observed in environmental media is also discussed in this section.

3.1 Data Evaluation

Groundwater and soil samples have been collected in OU-1, as discussed in the FSWP (Arcadis 2015) and FSIR (Arcadis 2016).

An onsite mobile laboratory was used to analyze some of the samples by direct sampling ion trap mass spectrometry (United States Environmental Protection Agency [USEPA] Method 8265), while other samples were shipped to and analyzed by a fixed laboratory by USEPA Method 8260. While TCE data were available from the mobile laboratory, because other volatile organic compounds (VOCs) were reported as pairs or groups of compounds using the mobile laboratory USEPA Method 8265, the analytical results from the mobile laboratory analysis were not included in the dataset for this HHRA. Constituent-specific data are required for the risk assessment because one cannot evaluate potential exposure to groups of constituents.

The fixed laboratory data available for each medium were evaluated in accordance with USEPA guidance for risk assessments (USEPA 1989, 1992, 2002a). The data evaluation guidelines are summarized as follows:

- Constituents that were not detected in a medium were not included in the data evaluation for that medium.
- Analytical results reported as detected or estimated values were considered to be present at the reported values. Analytical results that are "U" qualified were non-detects.

3.1.1 Sample Age

Soil samples were collected between September 2008 and October 2018. The soil data collected at the site are presented in **Table 1**. These data were separated by depth as described below before use in the risk assessment.

Groundwater samples were collected between December 1990 and April 2018, as presented in **Table 2**. The groundwater data collected between 2013 and 2018 were selected for use in this HHRA because they represent current site conditions from the four relatively recent sampling events for most wells across the site. Spatially, most of the groundwater monitoring wells are in the central area of the site in the area of former manufacturing activities. The highest concentrations of VOCs were observed in samples from the central portion of the site. Therefore, data from 2013 through 2018 for the central area wells were included in the risk assessment dataset. All groundwater data collected from 2013 through 2018 were used to generate data subsets by depth, as described below, and are included in **Table 3**.

3.1.2 Sample Depth

Soil datasets were developed based on different potential exposures. Surface soil samples were identified as those samples collected from 0 to 2 feet bgs, as presented in **Table 4**. These samples represent site conditions assuming that the ground surface remains undisturbed. The surface soil data were also combined with subsurface soil data to a depth of 10 feet bgs. These soil samples represent conditions where construction or some sort of excavation activities may occur. The combined surface and subsurface soil data collected from 0 to 10 feet bgs are presented in **Table 5**.

Site groundwater data are available from sampling several groundwater monitoring wells with differing screened intervals. In addition, groundwater data from laboratory-analyzed groundwater samples collected from hydraulic profiling tool (HPT) locations, during the FSIR, were also included in the dataset. Groundwater data from 2013 through 2018 are summarized in **Table 3**. These data were also divided into samples collected to a maximum depth of 15 feet bgs to correspond with potential exposures to groundwater in an excavation trench, as presented in **Table 6**, and samples collected to a maximum depth of 25 feet bgs to correspond with potential exposures to vapor migration from groundwater into potential future buildings (see **Table 7**).

3.2 Identification of Screening Levels

For direct contact with soil and groundwater exposure pathways, health-based screening levels were identified from the USEPA Regional Screening Level (RSL) tables. RSLs based on a target cancer risk of 1×10⁻⁶ and a target hazard quotient (HQ) of 0.1 were used to account for potentially additive effects. RSLs were obtained from the USEPA RSL tables dated November 2018.

Exposure to vapors could occur in outdoor air, as well as indoor air, due to vapor migration from the subsurface. However, exposure to vapors in indoor air is typically higher than exposure to vapors in outdoor air because vapors tend to concentrate indoors. It is likely that vapors migrating from the subsurface into outdoor air would result in lower concentrations due to mixing with the ambient air. Therefore, groundwater data were compared with the USEPA Vapor Intrusion Screening Levels (VISLs) based on a target cancer risk of 1×10⁻⁶ and a target HQ of 0.1 to account for potentially additive effects. The output from the VISL Calculator (USEPA 2018b) is presented in **Appendix A**.

3.3 Selection of Constituents of Potential Concern

The maximum detected constituent concentration in each medium was compared with the appropriate screening level. Constituents detected at concentrations below the screening levels were not identified as COPCs, and therefore, were not evaluated further in this HHRA. Those constituents present at concentrations greater than their risk-based screening levels were retained for further analysis. The following sections present the COPC selection results for each medium and each dataset. The data used in the risk assessment are presented in **Tables 1 through 7**.

3.3.1 Surface Soil

Soil samples collected from 0 to 2 feet bgs during sampling events in 2008 through 2018 were included in the risk assessment dataset. As shown in **Table 8**, 256 samples were collected in this depth range.

Acetone was the most frequently detected constituent followed by methylene chloride and TCE. Most of the detected constituents were found in 10% or fewer samples.

The maximum detected concentration of each constituent was compared to the residential soil RSL (USEPA 2018a). As shown in **Table 8**, cis-1,2-dichloroethene (cis-1,2-DCE), tetrachloroethene (PCE), TCE, and vinyl chloride (VC) were detected in surface soil above their residential soil RSLs. As a point of comparison, industrial soil RSLs were also presented in **Table 8**, and cis-1,2-DCE and TCE were present at concentrations above their industrial soil RSLs. Therefore, cis-1,2-DCE, PCE, TCE, and VC were selected as COPCs for surface soil.

3.3.2 Combined Surface and Subsurface Soil

Surface and subsurface soil data to a depth of 10 feet bgs were combined to allow evaluation of potential future exposures to soil should the site be redeveloped. Soil removal activities have occurred at the site, and those samples collected from areas where soil has since been removed were not included in the dataset. Soil samples collected below 10 feet bgs (the approximate depth where water is commonly encountered) were also not included in the dataset because constituent concentrations in saturated soil may be more representative of groundwater conditions. **Table 9** summarizes the combined surface and subsurface soil data. Soil samples from 2008 through 2018 were collected at 383 sampling locations as seen on **Figures 3-1 and 3-2**. Acetone, TCE, and cis-1,2-DCE were detected most frequently. COPCs for combined surface and subsurface soil were identified by comparing the maximum constituent concentrations to the USEPA residential soil RSLs based on a target risk of 1×10-6 and an HQ of 0.1 (USEPA 2018a). COPCs for direct contact with soil are 1,1-dichloroethane; 1,1-dichloroethene; cis-1,2-DCE; ethylbenzene; PCE; 1,1,1-TCA; TCE; and VC. As a point of comparison, the maximum soil concentrations were also compared to the USEPA industrial soil RSLs. 1,1-Dichloroethene; cis-1,2-DCE; TCE; and VC were the only constituents with maximum detected concentrations above the USEPA industrial soil RSLs.

Constituents in soil may migrate to groundwater. Therefore, soil leaching to groundwater COPCs were identified by comparing the maximum detected soil concentrations to groundwater protection of soil screening levels (SSLs), assuming a dilution attenuation factor of 1 due to the shallow depth to groundwater in many locations. As shown in **Table 9**, 29 constituents exceeded their leaching to groundwater SSLs.

3.3.3 Groundwater Constituents of Potential Concern

The available groundwater data were reviewed to evaluate sampling dates and constituent concentrations. Typically, more recent groundwater data provide a more accurate picture of current conditions than older data. Groundwater from monitoring wells in the central area of the site have been routinely sampled, while groundwater from several wells on the perimeter of the site were not routinely sampled because of historically high frequencies of non-detected results. Use of the central area groundwater data provides a conservative evaluation of potential exposures because the concentrations tend to be greater in these areas. **Figure 2-1** shows the location of the site monitoring wells, although **Figure 3-3** shows the location where groundwater samples were collected (HHRA dataset inclusive of samples collected from 0 to 25 feet bgs between the years 2013 and 2018).

Constituent concentrations observed in groundwater were compared to tap water RSLs, assuming potable use of groundwater under a conservative future residential exposure scenario. Currently, groundwater is not used nor is it expected to be used as a potable water supply near the site because drinking water is supplied throughout the area by the municipal water district. The comparison of groundwater data to tap water RSLs (USEPA 2018a) can be used to determine if there is a need to potentially restrict the use of groundwater as a potable water supply in the future. Constituent concentrations in groundwater were also compared to the residential and industrial VISLs (USEPA 2018b). In each case, the tap water RSLs or the VISLs were based on a target risk of 1×10⁻⁶ and an HQ of 0.1.

3.3.3.1 All Groundwater Data

Table 10 presents a summary of the site groundwater data. Monitoring wells are screened at various depths, although there is only a semi-confining layer between these screened intervals of certain wells. Therefore, **Table 10** presents a summary of the groundwater data from all the depth intervals collected from 2013 to 2018, representing 142 samples. cis-1,2-DCE was the most frequently detected constituent, followed by VC and TCE. These data indicate that natural degradation of TCE to its daughter breakdown products is occurring.

The groundwater COPCs, based on the potential conservative potable use of the groundwater are benzene; 1,1-dichloroethane; 1,1-dichloroethene; cis-1,2-DCE; trans-1,2-dichloroethene; ethylbenzene; hexachlorobutadiene; naphthalene; TCE; 1,2,4-trimethylbenzene; VC; iron; and manganese.

The vapor intrusion COPCs are:

- Residential: Benzene; 1,1-dichloroethane; 1,1-dichloroethene; hexachlorobutadiene; naphthalene; TCE; 1,2,4-trimethylbenzene; and VC
- Industrial: 1,1-Dichloroethane; 1,1-dichloroethene; naphthalene; TCE; and VC

3.3.3.2 Shallow Groundwater Data

Shallow groundwater could be contacted by workers excavating soils during construction activities. As discussed above, the uppermost groundwater is commonly first encountered at a depth of 10 feet bgs. However, the groundwater data collected from 2013 to 2018 were segregated to reflect potential exposure of construction workers excavating to a depth of 15 feet bgs. Although it is unlikely that most construction activities (like installation of underground utilities) would be deeper than 10 feet bgs, and therefore, would not encounter groundwater, data for groundwater samples collected from depths of up to 15 feet bgs were selected for use in this HHRA because there were limited samples collected between the 0 to 10-foot bgs range (three samples total). The selection of groundwater data from between 0 and 15 feet bgs expanded the depth of potential exposure and increased the dataset size (33 samples total) as a conservative evaluation of vapor inhalation risks from groundwater immediately below a utility trench. **Table 11** summarizes these data. A total of 33 samples were collected from monitoring wells or temporary vertical aquifer profiling sampling points (i.e., HPTs). The COPCs for shallow groundwater were identified by comparing the maximum constituent concentrations to the USEPA tap water RSLs (USEPA 2018a), residential VISLs, and industrial VISLs (USEPA 2018b). The COPCs for the shallow groundwater are listed below:

- Potable Use of Groundwater. Benzene; 1,1-dichloroethane; 1,1-dichloroethene; cis-1,2-DCE; ethylbenzene; naphthalene; TCE; 1,2,4-trimethylbenzene; VC; and total iron
- Residential Vapor Intrusion: Benzene; 1,1-dichloroethane; 1,1-dichloroethene; naphthalene; TCE; 1,2,4-trimethylbenzene; and VC
- Industrial Vapor Intrusion: 1,1-Dichloroethane; 1,1-dichloroethene; naphthalene; TCE; and VC

3.3.3.3 Groundwater Data for Vapor Intrusion

It is unlikely that groundwater present at depths greater than 15 feet bgs could be contacted by any receptors. However, it is possible that the VOCs could migrate from the deeper groundwater into a building and site workers and residents could be exposed to these constituents. Based on the site stratigraphy observed in the central portion of OU-1, volatile constituents found in groundwater at a depth of less than 25 feet are the most likely to potentially migrate into buildings that could be built onsite. Furthermore, samples collected from this depth represent groundwater concentrations that are closest to the foundation of any potential future onsite buildings. Therefore, groundwater data collected from a depth of less than or equal to 25 feet were compared to tap water RSLs (USEPA 2018a) and the residential and industrial VISLs (USEPA 2018b) to identify COPCs, as detailed in **Table 12**. This dataset was used to evaluate vapor intrusion into buildings.

The COPCs for groundwater less than 25 feet bgs are listed below:

- Potable Use of Groundwater. Benzene, 1,1-dichloroethane; 1,1-dichloroethene; cis-1,2-DCE; trans-1,2-dichloroethene; ethylbenzene; naphthalene; TCE; 1,2,4-trimethylbenzene; VC; and total iron
- Residential Vapor Intrusion: Benzene, 1,1-dichloroethane; 1,1-dichloroethene; naphthalene; TCE; 1,2,4-trimethylbenzene and VC
- Industrial Vapor Intrusion: 1,1-Dichloroethane; 1,1-dichloroethene; naphthalene; TCE; and VC

4 EXPOSURE ASSESSMENT

The purpose of the exposure assessment is to evaluate the ways receptors might be exposed to COPCs at locations within OU-1. Exposure can occur only when the potential exists for a receptor to contact COPCs, or when there is a mechanism for COPCs to be transported to a receptor. Without exposure there is no risk; therefore, the exposure assessment is a critical component of this HHRA. The exposure assessment includes characterization of the physical environment, identification of exposure pathways (including migration pathways, exposure points, and exposure routes), and identification of potentially exposed individuals and populations.

An exposure pathway is defined by the following four elements:

- 1. A source and mechanism of constituent release to the environment.
- 2. An environmental transport medium for the released constituent.
- 3. A point of potential contact by the receptor with the medium containing the constituent (the exposure point).
- 4. A route of exposure to the receptor at the exposure point (i.e., ingestion, inhalation, or dermal contact).

The purpose of the exposure assessment is to identify and evaluate the ways a population may be exposed to COPCs. This involves estimating concentrations along potential pathways between sources and receptors. This is accomplished using site-specific data and, when necessary, mathematical modeling. The following sections present the risk assessment conceptual site model (RACSM) detailing the potential receptors and exposure pathways, methods used to calculate exposure point concentrations (EPCs), and methods used to estimate intake.

4.1 Risk Assessment Conceptual Site Model

The RACSM provides the framework of the HHRA. It characterizes the primary and secondary potential sources and release mechanisms and identifies the media of interest (exposure points), potential receptors, and their potential exposure routes. Exposure points are places or "points" where exposure could potentially occur, and exposure routes are the means by which constituents of interest may be taken up by the receptor (ingestion, inhalation, and dermal contact). The RACSM for the site is provided on **Figure 4-1** and discussed below.

Human exposure within OU-1 is expected to be minimal under current conditions because most of the operations have been terminated and nearly all of the buildings in which those operations were performed have been demolished. However, OU-1 could be used for either residential or commercial uses in the future. Therefore, there is the potential for future exposure of commercial site workers and construction workers, as well as hypothetical future residents of the site.

There are no current exposures to groundwater at the site because groundwater is not currently used as a potable water source within the site boundaries or nearby; however, exposure to groundwater could occur during excavation activities. Exposure to soil and groundwater through direct contact (incidental ingestion and dermal contact), as well as inhalation of vapors in air and constituents adhered to dust, were considered. Finally, because volatile constituents were detected at the site and vapors can migrate

from the subsurface into indoor air, exposure through the vapor intrusion pathway was also evaluated. The vapor intrusion pathway was assessed using groundwater data in a weight of evidence approach consistent with USEPA guidance (USEPA 2015). Groundwater data collected from a depth of less than or equal to 25 feet were used to evaluate the vapor intrusion pathway. Samples collected from this depth interval represent groundwater concentrations that are closest to the foundations of onsite buildings.

4.2 Potential Receptors

This section identifies the potential receptors that are currently present or could be present at OU-1 in the future and could be exposed to COPCs in groundwater and soil. Groundwater is not used as a potable water supply as there is a well-established public water supply system that uses surface water from the Great Pee Dee Watershed and intakes at Bull Creek and the Intracoastal Waterway. Therefore, exposure to groundwater in OU-1 was evaluated assuming that a drinking water exposure pathway will not occur. Exposure to surface soil could occur under current conditions, although it is unlikely because most of the site is vacant, particularly in the former source areas.

If the site were redeveloped, it is possible that a construction worker could contact soil, groundwater, or vapors emanating from the groundwater, depending on the specific project. Construction of a building would involve a large excavation with a high air exchange rate that would dissipate any vapors that might be present from volatilized groundwater. On the other hand, a smaller excavation, like a utility trench, would cause less dissipation of vapors and would present higher estimated risks. To be health protective, the risk assessment evaluated a utility trench. The utility trench was assumed to involve the excavation of soil to a depth of 5 feet bgs, because utilities need not be buried at a greater depth in South Carolina. The approximate average depth to the first encountered groundwater within OU-1 is 10 feet bgs. Therefore, it was assumed that a construction worker in a utility trench could contact soil and inhale vapors from the groundwater beneath the utility trench. In addition, during construction activities, the soil could be redistributed, and future site workers or residents could contact soil currently present at the ground surface or at depth. These individuals are assumed to contact soil through incidental ingestion, dermal contact, and inhalation of volatiles or soil-derived dust.

VOCs were found in groundwater. It is possible that vapors could migrate from the subsurface into a future building on the property. Therefore, the vapor intrusion exposure pathway was evaluated in the risk assessment.

To summarize, three potential current or future receptors have been identified, and the potential exposure pathways are summarized below by receptor:

- Current and Hypothetical Future Site Workers This receptor is assumed to work indoors and outdoors:
 - Exposure to surface soil (0 to 2 feet bgs) via incidental ingestion, dermal contact, and inhalation of vapors or dust
 - Exposure to combined surface and subsurface soil (0 to 10 feet bgs) for the hypothetical future site worker via incidental indestion, dermal contact, and inhalation of vapors or particulates (dust)

- No likely exposure to groundwater via ingestion, dermal contact, or inhalation of volatiles
 (assumes deed restrictions in addition to the knowledge that shallow groundwater is not used
 locally as a potable water supply)
- Exposure to volatile constituents in groundwater (0 to 25 feet bgs) migrating into an existing or hypothetical future building through the migration of vapors into a building (i.e., vapor intrusion exposure pathway)
- Hypothetical Future Construction Workers This receptor is assumed to work at the site in the future, should construction activities occur:
 - Exposure to surface soil (0 to 2 feet bgs) via incidental ingestion, dermal contact, and inhalation of vapors and/or particulates (dust)
 - Exposure to combined surface and subsurface soil (0 to 10 feet bgs) via incidental ingestion, dermal contact, and inhalation of vapors and/or particulates (dust)
 - Exposure to groundwater (0 to 15 feet bgs) via inhalation of volatiles during excavation activities
- Hypothetical Future Adult and Child Residents
 - Exposure to surface soil (0 to 2 feet bgs) via incidental ingestion, dermal contact, and inhalation of vapors and/or particulates (dust)
 - Exposure to combined surface and subsurface soil (0 to 10 feet bgs) via incidental ingestion, dermal contact, and inhalation of vapors and/or particulates (dust) assuming the soil is redistributed, and subsurface soil is brought to the ground surface during construction activities
 - No likely exposure to groundwater via ingestion, dermal contact, or inhalation of volatiles (assumes deed restrictions will be in place that prohibit using groundwater as a potable water source)
 - Exposure to volatile constituents in groundwater (0 to 25 feet bgs) migrating into a hypothetical future building through the migration of vapors into a building (i.e., vapor intrusion exposure pathway); it is expected, however, that deed restrictions will also be placed on the property that require vapor barriers for any new construction

4.3 Exposure Point Concentrations

The EPC is the representative concentration of a constituent in an environmental medium that is potentially contacted by the receptor (USEPA 1989). The EPC is defined as "the arithmetic average of the concentration that is contacted over the exposure period" (USEPA 1989).

A statistical approach was used to identify the most appropriate representative concentrations for the COPCs. Consistent with USEPA methodology, both the mean and 95% upper confidence limit (UCL) concentrations were calculated using ProUCL, the statistical software available from the USEPA (version 5.1.002; USEPA 2016a). Non-detected values were treated following the ProUCL software technical guide (USEPA 2016b). When duplicate samples were collected, the maximum concentration detected in the parent sample or duplicate sample was used. If both samples were non-detected values, the lowest reporting limit was used in the derivation of the UCL. The UCL concentrations were selected using the

output from the ProUCL software, unless a greater than 95% UCL was recommended, in which case, the 95% UCL was selected. The ProUCL outputs are included in **Appendix B**.

The 95% UCL is a statistical value calculated to estimate the mean concentration with 95% confidence that the true arithmetic mean concentration for the set of environmental data assessed will be less than the UCL. The high level of confidence (e.g., 95%) is used to compensate for the uncertainty involved in representing the conditions within OU-1 with a finite number of samples. In accordance with USEPA guidance (USEPA 2016b), if the 95% UCL is greater than the maximum detected concentration, the maximum detected concentration was identified as the EPC. **Table 13** presents the EPCs used in this HHRA. Due to the limited number of detections for some constituents in some of the media (less than four) or too few samples (e.g., one to four), the maximum concentration was used to evaluate risk for several of the exposure pathways.

4.3.1 Current and Hypothetical Future Site Worker

If the property were developed for commercial or industrial purposes, a hypothetical industrial or commercial worker within OU-1 could be exposed to COPCs in soil or migrating into a building. The exposure assumptions for this potential receptor are included in **Table 14**. The equations used to evaluate potential site worker exposure to soil are presented in **Table 15**. These exposure assumptions are standard USEPA default assumptions that are intended to represent a reasonable maximum exposure (RME) designed to overestimate potential future risk.

4.3.2 Hypothetical Future Construction Worker

Construction workers may hypothetically be present at locations within OU-1 in the future to work on new construction or excavation projects; therefore, this exposure scenario was evaluated based on a hypothetical construction project. The invasive excavation work of the construction project was assumed to take 100 days over a period of 1 year to complete. Due to the shallow nature of the groundwater, the construction worker was assumed to contact soil and inhale vapors migrating from groundwater during a construction project, although exposure to COPCs is unlikely because of the greater depths to COPCs in groundwater. The OU-1 shallow groundwater EPCs were used to evaluate these exposure scenarios. The exposure assumptions for this potential receptor are included in **Table 14**. The equations used to evaluate potential construction worker exposure to soil are presented in **Table 16**, and the equations to evaluate potential construction worker exposure to groundwater are presented in **Table 17**.

4.3.3 Hypothetical Future Resident

The area surrounding the AVX property contains both residential and non-residential properties. There are no current plans to redevelop the site, but it could be redeveloped for residential purposes. Residential exposure in OU-1 can occur through contact with soil and through the inhalation of vapors potentially containing COPCs migrating from the subsurface into a home.

Groundwater in the Myrtle Beach area is not used as a potable water supply, as potable water is supplied from surface-water sources (the Great Pee Dee Watershed with surface-water intakes in Bull Creek and the Intracoastal Waterway) Therefore, drinking water exposures were not evaluated in this HHRA. However, VOCs present in groundwater could volatilize and migrate into homes. The exposure

assumptions for these potential receptors are included in **Table 14**, and the equations to evaluate potential residential exposures to soil are presented in **Table 18**.

4.4 Exposure Assumptions

The potential human receptors include potential future commercial/industrial workers, construction workers, and adult and child residents. Under current conditions, the potential for exposure to COPCs in environmental media within the OU-1 is limited because manufacturing activities at the site have been reduced over time. Groundwater is not used as a potable water supply, and therefore, contact with groundwater is expected to be limited now and in the future because:

- Leaching of residual concentrations of COPCs in soil is expected to be inconsequential especially in light of the other aggressive historical and current remedial actions that have been implemented both on OU-1 and OU-2.
- Long-term flushing and natural attenuation of the relatively low residual concentration of VOCs are expected within the soil column in and adjacent to the vadose zone source area.
- Long-term natural attenuation is currently observed and is expected to continue within a large area beneath and downgradient of the vadose zone source area. This natural attenuation is already being enhanced by relatively high carbon influx through the soil column and into groundwater due to all the seeding, sodding, mulching, and fertilizing of acres of land that was once covered by buildings. This has led to elevated organic carbon concentrations in the groundwater shortly after demolition, and land restoration activities began, starting with the demolition of the PDG Building in 2009.

Arcadis recognizes that because the site may be redeveloped, greater potential future exposures may occur. Such increased potential future exposures will be addressed only if and when they happen.

A current worker onsite could contact surface soils, and a future worker could contact soil that has been redistributed from the subsurface and/or inhale vapors migrating from the subsurface into a building. A construction worker may contact soil and/or inhale vapors migrating from groundwater during excavation projects. Should the site be redeveloped for residential purposes, adult and child residents could contact soil or inhale volatile COPCs migrating from the subsurface and into a building. Details regarding each potential exposure scenario are provided in the following sections.

This HHRA is based on evaluation of RME scenarios and assumptions. The USEPA (1992, 1989) defines the concept of RME (using the term High End Exposure scenario) as a potential estimate of the individual exposure for those persons at the upper end of an exposure distribution. In this HHRA, the RME evaluation has been constructed with reasonable maximum input values that are consistent with the risk evaluation envisioned by the USEPA. RME assumptions were estimated for each potential exposure pathway using standard default assumptions (USEPA 2004, 2011a, 2014, 2018c) and site-specific information. Values for the receptor-specific exposure parameters are summarized in **Table 14** and are discussed in the following subsections. The EPCs that are discussed above are presented in **Table 13**.

A conservative assumption underlying all the risk calculations is that the constituent concentrations remain constant over the entire period of exposure. The effects of attenuation processes that reduce the concentrations over time are not considered. This assumption leads to an overestimation of risk.

4.5 Fate and Transport

The environmental fate and transport of the COPCs are dependent on their physical and chemical properties, the environmental transformation processes affecting them, and the media through which they are migrating. Physical and chemical parameters for COPCs were consistent with recommended values by the USEPA (2018a, 2018b). Those parameters that were used in the calculations are presented in the corresponding tables as discussed below.

4.5.1 Vapor Migration into Ambient Air

Constituents present in soil and groundwater could migrate into ambient air. Volatilization factors for groundwater were derived assuming volatilization could occur from groundwater beneath a utility trench. The equations used for groundwater are included in **Table 17**. Migration from soil into ambient air was estimated assuming non-invasive activities using the equations in **Table 15** for a site worker and **Table 18** for a resident and invasive activities using the equations in **Table 16** for a construction worker.

4.5.1.1 Volatilization Factor for Groundwater

Emissions via volatilization from water (i.e., groundwater beneath a utility trench) were estimated following Virginia Department of Environmental Quality (2018) guidance, given that there is not comparable guidance available from the SCDHEC or USEPA. The volatilization factor (VF) equation can be found in **Table 17**. The VF was calculated assuming that there was a mass transfer from the groundwater to the air in the trench. The mass transfer of the constituent is assumed to be driven by molecular diffusion. The results of the calculations are presented in **Table 19**.

4.5.1.2 Volatilization Factor for Soil

To evaluate emission of volatiles from soil, constituent-specific VFs were calculated using the USEPA (2002b) guidance. The VF equation can be broken into two separate models, including a model to estimate the emissions, and a model to estimate the dispersion (reduced to the term Q/C) that simulates the dispersion of volatile constituents in ambient air. USEPA default parameters were used to estimate the VF, using the equations in **Table 15** for hypothetical future residents and current and future site workers and **Table 16** for construction workers. Input parameters and the resulting VFs are presented in **Table 20**.

4.5.2 Vapor Intrusion into Buildings

The evaluation of the vapor intrusion exposure pathway was accomplished using the USEPA vapor intrusion model, which was developed based on the equations derived by Johnson and Ettinger (USEPA 2017). The USEPA model was used to evaluate potential migration of COPCs in groundwater. The specific assumptions used for the OU-1 area are:

- Depth below first encountered groundwater was assumed to be 10 feet, or 304.8 centimeters. The shallowest groundwater samples are found at approximately 10 feet bgs.
- An average subsurface soil temperature of 19.4 degrees Celsius was determined using the USEPA User's Guide for Evaluating Subsurface Vapor Intrusion into Buildings (USEPA 2017).

•	A soil type of silty clay was selected based on the most common unsaturated zone soil type identified during site investigations.

5 TOXICITY ASSESSMENT

The toxicity assessment describes the relationship between the administered and/or the absorbed dose of a constituent and the magnitude or likelihood of adverse health effects (USEPA 1989). For constituents that are known or suspected to cause cancer, the toxicity assessment defines the relationship between the dose of the constituent or agent and the probability of induction of carcinogenic effects in humans or animal species of interest. For systemic toxicants, or constituents that give rise to toxic endpoints other than cancer and gene mutations (called non-carcinogenic effects), the toxicity assessment process determines a threshold value below which adverse non-carcinogenic effects are not expected in the general population, including sensitive subgroups.

This section discusses the two general categories of toxic effects (non-carcinogenic and carcinogenic) and constituent-specific toxicity values used to calculate potential risks for these two types of toxic effects. Toxicity values for potential non-carcinogenic and carcinogenic effects are identified from available databases. For this HHRA, toxicity values were obtained from the RSL website (USEPA 2018a), which used the following sources, in the priority in which they were consulted below, consistent with the USEPA (2003) guidance:

- 1. USEPA's Integrated Risk Information System (IRIS) (USEPA 2019a)
- 2. USEPA's Provisional Peer Reviewed Toxicity Values (USEPA 2019b)
- 3. Agency for Toxic Substances and Disease Registry (ATSDR) minimal risk levels (ATSDR 2018)
- 4. California Environmental Protection Agency (CalEPA)/Office of Environmental Health Hazard Assessment's toxicity values (CalEPA 2018)
- 5. USEPA's Health Effects Assessment Summary Tables (USEPA 2011b)

5.1 Non-Carcinogenic Effects

For non-carcinogenic effects, protective mechanisms must be overcome before an effect is manifested. Therefore, a finite dose (threshold), below which adverse effects will not occur, exists for non-carcinogens. Depending on the dose, a single compound might elicit several adverse effects in the exposure route, the duration of exposure, and the susceptibility of the individual. Constituents may exhibit their toxic effects at the point of application or contact (local effect) or at other sites (systemic effects) after they have been absorbed into and distributed throughout the body. Most constituents can produce more than one type of toxic effect, depending on the dose and the susceptibility of the exposed individual or receptor. The potential for non-carcinogenic effects is estimated by comparing a calculated exposure dose with a reference dose (RfD) for each individual constituent. The RfD represents a lifetime, daily exposure level that is designed to be protective of human health, even for sensitive individuals and subpopulations. The reference concentration (RfC) is a comparable level that represents an air concentration designed to be protective of human health for daily lifetime exposures, including sensitive individuals and subpopulations.

For a given constituent, the dose or concentration that elicits no adverse effects when evaluating the most sensitive response in the most sensitive species studied is referred to as the no observed adverse effect level (NOAEL). In some cases, benchmark dose modeling (BMDL) is performed and the lower confidence limit on the benchmark dose is defined instead of the NOAEL. The NOAEL or the BMDL is used to

establish non-cancer toxicity values (called RfDs or RfCs). The RfD represents a daily exposure level that is not expected to cause adverse non-carcinogenic health effects. Chronic RfDs are used to assess long-term exposures ranging from 7 years to a lifetime. Subchronic RfDs are typically used to evaluate the potential for adverse health effects associated with exposure to constituents over a shorter time period up to 7 years and were used in the construction worker exposure scenarios. However, in accordance with the USEPA Region 4 guidance (USEPA 2018c), chronic toxicity values were used to evaluate the potential for adverse health effects for children despite the fact the childhood exposures are subchronic in nature, adding an additional margin of safety to the risk assessment.

For the OU-1 COPCs, **Table 21** presents the RfDs used to assess oral and dermal exposures, and **Table 22** presents the RfCs used to evaluate inhalation exposures. These tables also present the target sites associated with the non-carcinogenic toxicity values for each constituent varying with the exposure route. USEPA confidence values and uncertainty factors associated with the RfDs also are listed (USEPA 2018a). The uncertainty factor represents areas of uncertainty inherent in the extrapolation from the available data. The confidence levels (low, medium, high) assess the degree of confidence in the extrapolation of available data. These levels account for data deficiencies or uncertainties, such as individual sensitivity and variability, interspecies variability (if animal data are used), database deficiency, and the extrapolation between exposure doses/durations.

5.2 Carcinogenic Effects

Cancer induction in humans and animals by chemicals proceeds through a complex series of reactions and processes. Carcinogenic constituents may produce tumors at the point of application or contact, or they may produce tumors in other tissues after they have been distributed throughout the body. Some constituents are associated only with one or two tumor types, while others may cause tumors at many different sites.

Constituents are classified as known, probable, or possible human carcinogens based on a USEPA weight-of-evidence scheme in which they are systematically evaluated for their ability to cause cancer in humans or laboratory animals. The USEPA classification scheme (USEPA 1989) contains five classes based on the weight of available evidence. These classifications were updated in the USEPA's (2005a) cancer guidelines, and the classification is now presented as a narrative. Classifications are updated in the USEPA IRIS files as constituents are reviewed. However, the older classifications are often retained for reference. These are presented in **Tables 23** and **24**, as detailed below.

For the OU-1 COPCs, **Table 23** presents the carcinogenic toxicity values for oral and dermal exposures, and **Table 24** presents the carcinogenic toxicity values for inhalation exposures to the COPCs in the OU-1 area. The carcinogenic toxicity value used in the calculation of potential cancer risks is the cancer slope factor (CSF), which is derived from the conservative assumption that any dose level has a possibility of causing cancer. The inhalation unit risk factor for inhalation exposure is used in the indoor air models as the toxicity value. The cumulative dose, regardless of the particular exposure period, determines the risk; therefore, separate CSFs are not derived separately for subchronic and chronic exposure periods.

For constituents that cause cancer by a mutagenic mode of action (MOA), the USEPA requires that one considers lifestage differences in both exposure and dose response when assessing potential ELCR resulting from early-life exposures (USEPA 2005b). It is postulated that exposure to constituents with a

mutagenic MOA early in life may cause irreversible changes in deoxyribonucleic acid that would have a greater effect than exposure to the same constituent later in life. The USEPA supplemental guidance (USEPA 2005b) recommends that, when carcinogens have a mutagenic MOA and appropriate constituent-specific data are not available regarding susceptibility from early-life exposures, it is appropriate to apply a default safety factor called an age-dependent adjustment factor (ADAF) to risk calculations when evaluating potential ELCR associated with exposure of children 0 to 16 years old. In this HHRA, COPCs classified by the USEPA as potentially mutagenic were assessed using ADAFs to account for carcinogenic potency during dose estimation as presented above and recommended by the USEPA (2005b).

For this HHRA, TCE and VC are the two COPCs that are classified by the USEPA as mutagenic. Potential risks for these two constituents are evaluated differently for children. Therefore, the equations used in the evaluation are included in **Table 18**.

5.3 Dermal Toxicity Values and Dermal Absorption

Whenever possible, route-specific toxicity values have been used; however, the USEPA has not yet developed toxicity values for dermal exposures. For this reason, the oral toxicity values (RfD_o and CSF_o) and the oral absorption efficiency were used to derive adjusted toxicity values (RfD_a and CSF_a) (adjusted to the absorbed dose) for use in assessing dermal exposure (USEPA 1989):

RfDa = RfDo x Oral Absorption Efficiency

CSF_a = CSF_o / Oral Absorption Efficiency

The adjusted toxicity values presented in **Table 21** (RfD_as) and **Table 23** (CSF_as) represent the theoretical toxicity of the orally absorbed dose of the constituent. An oral absorption efficiency factor (or relative absorption factor) describes the ratio of the absorbed fraction of a constituent from a particular exposure medium to the fraction absorbed from the dosing vehicle used in the toxicity study for that constituent. Oral absorption efficiency values are used in the derivations of the risk-based groundwater constituent concentrations to account for differences in the proportion of absorbed constituent in the groundwater compared to the proportion absorbed in the toxicity studies forming the bases of the toxicity reference values. Oral absorption efficiencies are constituent-specific because they depend on unique physical-chemical properties of each constituent. As a conservative measure, the oral absorption efficiencies were assumed to be equal to 1 (i.e., 100% absorption) for all COPCs via the inhalation pathways. Uncertainty is associated with the adjusted toxicity values and with the dermal risks derived using these values, due to the uncertainty in the oral toxicity values combined with the uncertainty in the oral absorption efficiency default and constituent-specific values. However, the calculated dermal risks are expected to be very conservative and, therefore, will overestimate human health risks.

The USEPA (2004) recommends a non-steady-state approach to estimate the dermally absorbed dose from water (groundwater, irrigation water, or surface water) for organic COPCs. The non-steady-state approach evaluates the absorption of COPCs from water through the skin as a function of the constituent-specific permeability coefficient (Kp), and the duration of exposure. Permeability parameters for COPCs are provided in **Table 25**.

Table 25 also presents the dermal absorption parameters for the COPCs to evaluate soil exposures.

6 RISK CHARACTERIZATION

Potential risks to human health are evaluated quantitatively by combining calculated exposure levels and toxicity data. A distinction is made between non-carcinogenic and carcinogenic endpoints, and two general criteria are used to describe the HQ for non-carcinogenic effects and ELCR for COPCs evaluated as human carcinogens.

6.1 Hazard Quotient for Non-Cancer Hazard

Exposure doses are averaged over the expected exposure period to evaluate non-carcinogenic effects. The HQ is the ratio of the estimated exposure dose and the RfD. Therefore, an HQ greater than 1 indicates that the estimated exposure level for that constituent exceeds the RfD or RfC. This ratio does not provide the probability of an adverse effect. Although an HQ less than 1 indicates that health effects should not occur, an HQ that exceeds 1 does not imply that health effects will occur, but that health effects are possible.

The sum of the HQs is the hazard index (HI). A limitation with the HI approach is that the assumption of dose additivity is applied to compounds that may induce different effects by different mechanisms of action. Consequently, the summing of HIs for a number of compounds that do not induce the same type of effects or that do not act by the same mechanism, will likely overestimate the potential for toxic effects. Consistent with USEPA risk assessment guidelines for chemical mixtures, in the event that the total HI for an exposure scenario exceeds 1, then the HQs may be segregated by target organ/critical effect (USEPA 1989). Therefore, if the calculated HI exceeds 1 as a consequence of summing several HQs for constituents not expected to induce the same type of effects or that do not act by the same mechanism, the HI may be recalculated by effect and mechanism of action to derive separate HIs for each target-organ/critical-effect group (USEPA 1989). However, if an elevated HI is driven by only one constituent, then target organ/critical effect HIs will not be calculated.

6.2 Excess Lifetime Cancer Risk

The ELCR is an estimate of the potential increased risk of cancer that results from lifetime exposure, at specified average daily dosages, to COPCs detected in environmental media at the site. Estimated doses or intakes for each constituent are averaged over the hypothesized lifetime of 70 years. It is assumed that a large dose received over a short period is equivalent to a smaller dose received over a longer period, as long as the total lifetime doses are equal. The ELCR is calculated as the product of the exposure dose and the CSF or unit risk factor. The results of the risk characterization indicate the potential increased risk, above that applying to the general population, which may result from the exposure scenarios described in Section 4. The risk estimate is an upper-bound estimate; therefore, the true risk is far less than that predicted by the model. The USEPA considers ELCRs within and below the range of 10-6 to 10-4 as cancer risks that require no remedial action.

6.3 Current and Future Site Worker Exposure Scenario Risks and Hazards

The potential for a current site worker to contact surface soil was evaluated using the equations in **Table 15** combined with the toxicity values identified in Section 5. The ELCR for potential exposure to surface soil was calculated to be 2×10⁻⁵ and the HI was calculated to be 6, as shown in **Table 26**. Inhalation of TCE migrating from the surface soil into ambient air is the main contributor to the risk and hazard results. None of the other COPCs contribute more than 1% to the total calculated risk or hazard. The ELCR is within the USEPA target risk range, but the HI exceeds the benchmark of 1.

If the site were redeveloped, the surface and subsurface soil could become redistributed and a future worker could contact surface and subsurface soil. As shown in **Table 27**, the ELCR and HI were calculated to be 3×10^{-5} and 9, respectively. Inhalation of TCE migrating from the subsurface soil is driving the risks and hazards. TCE is the primary contributor to both the calculated ELCR and HI, while none of the other COPCs contribute more than 1% to the total calculated risk or hazard. The ELCR is within the USEPA target risk range, but the HI exceeds the benchmark of 1.

Finally, a site worker could be exposed to vapors from indoor air resulting from vapor intrusion from groundwater. The vapor intrusion exposure scenario was evaluated using the groundwater data collected from a depth of less than 25 feet bgs. **Table 28** presents the input parameters, constituent-specific information, and the results of the risk calculations for the vapor intrusion model. The ELCR is 1×10⁻⁵, which is within the USEPA target risk range. The calculated HI is 1, which is equal to the HI benchmark of 1. Again, TCE is the risk driver.

6.4 Hypothetical Future Construction Worker Exposure Scenario Risks and Hazards

Construction workers at the site could potentially contact surface soil, combined surface and subsurface soil, and/or groundwater and inhale vapors migrating from groundwater. The depth to first encountered groundwater within OU-1 varies seasonally, but on average it is assumed to be approximately 10 feet bgs. It was assumed that a construction worker could contact soil through incidental ingestion, dermal contact, and inhalation exposures, and it was assumed that a construction worker could inhale vapors from groundwater beneath a utility trench. The exposure assumptions used to evaluate hypothetical future construction worker exposure to soil and groundwater are presented in **Table 14**. The equations used in the risk characterization calculations are presented in **Table 16** for soil and **Table 17** for groundwater. The ELCR and non-cancer HI for construction workers exposed to surface soil are presented in **Table 29**. The ELCR was calculated to be 1×10-6, which is slightly above the lower end of the USEPA target risk range of 10-6 to 10-4. The calculated HI of 10 is above the HI target of 1. Inhalation of TCE migrating from the surface soil is driving the risks and hazards.

Construction workers could excavate to depths of 10 feet bgs and through the vadose zone, and into shallow groundwater. Although it is unlikely that construction activities would occur below the depth of first encountered groundwater (10 feet bgs), exposure to combined surface and subsurface soil (0 to 10 feet bgs) was evaluated, while exposure to shallow groundwater was evaluated using shallow groundwater data from 0 to 15 feet bgs, because there were limited groundwater samples collected between the 0 to

10-foot bgs range. Assuming redistribution of the soil during construction, the risk calculations for combined surface and subsurface soil resulted in an ELCR of 2×10⁻⁶ and an HI of 16, as shown in **Table 30**. TCE is the risk driver. The equations in **Table 17** were used to evaluate potential construction worker exposure to groundwater. It was assumed that an individual could be exposed through incidental inhalation of vapors from shallow groundwater. The results, as shown in **Table 31**, were below the USEPA target risk range of 10⁻⁶ to 10⁻⁴ with a calculated ELCR of 2×10⁻⁷, while the results were at the regulatory benchmark with an HI of 1. The HI is driven by TCE.

6.5 Hypothetical Resident Exposure Scenario Risks and Hazards

If the site were redeveloped for residential purposes, hypothetical future residents of the site could contact COPCs in soil or groundwater (via vapor intrusion). The exposure assumptions used to evaluate residential exposure are presented in **Table 14**. The equations used to evaluate residential exposure to soil are presented in **Table 18**. The potential for vapors to migrate from the subsurface into a building were evaluated as well. Exposure of an adult and child resident was evaluated looking at age-averaged exposures. As shown in **Table 18**, exposure to TCE and VC, both classified by USEPA as mutagenic compounds, are evaluated differently than the other COPCs.

The ELCR for residential exposure to surface soil was calculated to be 1×10-4, and the HI was calculated to be 27, as shown in **Table 32**. The ELCR is at the high end of the USEPA target risk range, and the HI is above the benchmark of 1. TCE is the primary contributor to both the calculated ELCR and HI, while none of the other COPCs contribute more than 1% to the total calculated risk or hazard. Following redevelopment of the site, the soil could be re-distributed and hypothetical future residents could contact soil from 0 to 10 feet bgs. The results of the risk and hazard calculations, assuming redistribution of the soil during construction, are presented in **Table 33**. The calculated ELCR is 2×10-4, which is above the USEPA target risk range. The calculated HI is 43, which is above the benchmark of 1. TCE is the risk driver for these calculations. The other COPCs each contribute less than 1% of the total risks and hazards.

The vapor intrusion exposure scenario was evaluated using the groundwater data collected from a depth of less than 25 feet bgs. The data entry, chemical properties, and the results of the risk calculations for the vapor intrusion model are presented in **Table 34**. The calculated ELCR is 1×10⁻⁴, which is at the high end of the USEPA target risk range. The calculated HI is 17, which is greater than the HI benchmark of 1. TCE is the primary risk driver, followed by VC.

6.6 Summary of Risks and Hazards

The calculated ELCRs and HIs for each receptor are summarized in **Table 35**. In addition, the ELCRs and HIs were summed for an overall receptor ELCR and HI for exposure to either surface soil and groundwater or combined surface and subsurface soil and groundwater.

Under the current exposure scenario, the overall ELCR is within the USEPA risk range of 1×10⁻⁶ to 1×10⁻⁴ for current site workers exposed to COPCs in surface soil and vapor migration from groundwater (3×10⁻⁵), while the overall HI was above the benchmark of 1 (7). If the site were redeveloped, and the surface and subsurface soil become redistributed, the overall ELCR is within the USEPA risk range of 1×10⁻⁶ to 1×10⁻⁴

for hypothetical future site workers exposed to COPCs in combined surface and subsurface soil and vapor migration from groundwater (4×10⁻⁵), while the overall HI was above the benchmark of 1 (10).

Should construction activities occur at the site, the overall ELCR is within the USEPA risk range of 1×10⁻⁶ to 1×10⁻⁴ for hypothetical future construction workers exposed to COPCs in surface soil and vapor migration from shallow groundwater (1×10⁻⁶), while the overall HI for exposure to combined surface and subsurface soil and vapor migration from shallow groundwater was above the benchmark of 1 (11). If the site were redeveloped, and the surface and subsurface soil become redistributed, the overall ELCR is within the USEPA risk range of 1×10⁻⁶ to 1×10⁻⁴ for hypothetical future construction workers exposed to COPCs in combined surface and subsurface soil and vapor migration from shallow groundwater (2×10⁻⁶), while the overall HI was above the benchmark of 1 (17).

If the site were redeveloped for residential purposes, the overall ELCR is above the USEPA risk range of 1×10⁻⁶ to 1×10⁻⁴ for hypothetical future residents exposed to COPCs in surface soil and vapor migration from groundwater (2×10⁻⁴), while the overall HI is above the benchmark of 1 (44). If surface and subsurface soils were to become redistributed, the overall ELCR is above the USEPA risk range of 1×10⁻⁶ to 1×10⁻⁴ for hypothetical future residents exposed to COPCs in combined surface and subsurface soil and vapor migration from groundwater (3×10⁻⁴), while the overall HI is above the benchmark of 1 (60).

For both surface soil and combined surface and subsurface soil for all three receptors, TCE was the only COPC with an ELCR above 1×10⁻⁶ and/or an HQ above 1, while the total risks and hazards for all other constituents was below the USEPA risk range and hazard benchmark. For construction workers exposed to vapors migrating from shallow groundwater, TCE was the main risk and hazard driver. For vapor intrusion from groundwater, TCE and VC had ELCRs above 1×10⁻⁶ and/or HQs above 1 for residents, while only TCE had an ELCR above 1×10⁻⁶ for site workers.

6.7 Health-Based Goal Development

The presence of TCE in soil and groundwater resulted in calculated risks and hazards greater than the USEPA target risk range of 1×10⁻⁶ to 1×10⁻⁴ and the non-cancer HI of 1. Health-based goals (HBGs) are concentrations that are protective of human health and correspond to acceptable risk levels. HBGs were calculated following USEPA Region 4 guidance (USEPA 2018c). Two sets of HBGs were calculated for soil and groundwater COPCs whose ELCRs were above 1×10⁻⁶ or whose HQs were above 1, as indicated in Section 6.6. HBGs for soil were calculated following a ratio approach using the equations presented in **Tables 36** through **38**. The final HBGs for each COPC and receptor were identified as the minimum of the HBGs based on either cancer or non-cancer effects. HBGs for soil based on exposure of residents, site workers, and construction workers are presented in **Tables 36** through **38**, respectively. HBGs for groundwater based on exposure of construction workers are presented in **Table 39**. HBGs for groundwater vapor intrusion based on exposure for residents and site workers are presented in **Tables 40** and **41**, respectively.

A summary of the minimum calculated HBGs for each medium and receptor is provided in **Table 42**. For construction workers exposed to groundwater, the calculated HBG, which is based on inhalation exposures, was also compared to the maximum contaminant level (MCL), if available, assuming that the MCL would be the benchmark to which the calculated HBGs would be compared. If the MCL was higher than the calculated HBG, the final HBG was identified as the MCL, as was the case for TCE.

6.8 Uncertainty Analysis

The risk estimates presented here are conservative estimates of potential risks associated with exposures to constituents detected in the site subsurface. Uncertainty is inherent in the risk assessment process, and a discussion of these uncertainties is presented in this section. Each of the three basic building blocks for risk assessment (data evaluation, exposure assessment, and toxicity assessment) contributes uncertainties. Each of the uncertainties is accounted for by using conservative assumptions wherever specific data are unavailable.

6.8.1 Data Evaluation

The data evaluation step can lead to uncertainty in the risk estimates as discussed below. This risk assessment assumes that the available monitoring data adequately describe the occurrence of constituents in media at the site. Environmental sampling itself introduces uncertainty. This source of uncertainty can be reduced through a well-designed sampling plan, use of appropriate sampling techniques, and implementation of laboratory data validation and quality assurance and quality control (QA/QC). The risk assessment assumes the site is appropriately characterized by the sampling plans used. Further, the data used in this HHRA meet QA/QC requirements and are appropriate for use in a risk assessment.

Uncertainty is inherent in the selection of COPCs for the risk assessment. Eliminating constituents in the COPC screening process can lead to lower estimates of potential health effects than inclusion of all analytes. However, the screening concentrations used for the human health screening were USEPA recommended screening levels. Because of the conservative way in which screening was performed, the possibility of overlooking a significant constituent is minimal.

6.8.2 Toxicity Assessment

The toxicity values and other toxicological information used in this HHRA are associated with significant uncertainty. Many toxicity values are developed using results of studies in which laboratory animals are exposed to massively high doses of particular constituents over an entire lifetime. As such, these studies do not represent realistic examples of environmental exposures. In addition, humans are different than laboratory animals. Many, if not most, animals used for laboratory studies are genetically designed to be more sensitive than humans to specific compounds. In addition, the effects shown by the animals in the high-dose studies are often very different than effects reported by humans in parallel epidemiological studies. This is because a particular compound may have a different mechanism of action in laboratory animals than it does in humans. Even epidemiological studies, which are generally preferable to animal toxicity studies, are characterized by several uncertainties, such as co-exposures to other chemicals and unknown (and uncontrolled) doses.

Toxicity values are not available for dermal exposure. The USEPA-recommended approach to derivation of dermal toxicity values based on available oral toxicity values and oral absorption efficiencies contributes considerable uncertainty to the risk assessment

6.8.3 Exposure Assessment

The exposure assessment contributes uncertainty to the risk assessment as well. The exposure scenarios with the greatest estimated risks were hypothetical future scenarios with lower likelihood of occurring. Although uncertainty is inherent in the exposure assessment, the exposure scenarios, the EPCs, and the receptor exposure assumptions were chosen to err on the side of conservatism leading to an overestimation of potential risk.

7 SUMMARY AND CONCLUSIONS

An HHRA was performed to evaluate whether constituent concentrations in soil and groundwater and predicted concentrations in vapors pose a risk and/or hazard to human health that exceeds regulatory thresholds based on existing conditions and hypothetical future redevelopment. The data were compared to USEPA RSLs and USEPA VISLs to identify COPCs. The potential exposure scenarios quantitatively evaluated included the following (by medium):

- Surface and Combined Surface and Subsurface Soil: Exposure of current and hypothetical future site workers, hypothetical future construction workers, and hypothetical future residents.
- Groundwater. Exposure of hypothetical future construction workers.
- *Vapors*: Hypothetical exposure, within buildings, of current and hypothetical future site workers, and hypothetical future residents.

Site-specific exposure assumptions were used in conjunction with Agency-derived toxicity values to characterize ELCRs and non-cancer hazards. For cancer endpoints, the USEPA target risk range, which is protective of health, is 1×10⁻⁶ to 1×10⁻⁴. For non-cancer endpoints, the USEPA uses a benchmark of 1.

Table 35 summarizes the results of the risk and hazard calculations. For each receptor, the risks and hazards from each of the exposure scenarios were calculated. The exposure scenarios and results are summarized below by potential receptor:

- Current and Hypothetical Future Site Worker. Site workers were assumed to contact surface and
 combined surface and subsurface soil and inhale COPCs migrating from the subsurface into
 buildings. Direct contact with either surface or combined surface and subsurface soil resulted in an
 ELCR calculated to be within the USEPA target risk range. The non-cancer hazard was above the
 USEPA benchmark of 1. The presence of TCE in soil was the main risk and hazard driver.
- Hypothetical Future Construction Worker. Hypothetical future construction workers were assumed to contact surface and combined surface and subsurface soil and/or inhale vapors migrating from groundwater during excavation activities. Groundwater at the site is first encountered at approximately 10 feet bgs. Direct contact with either surface or combined surface and subsurface soil resulted in an ELCR calculated to be within the USEPA target risk range, while the non-cancer hazard was above the USEPA benchmark of 1. Incidental inhalation of vapors from groundwater beneath a utility trench resulted in an ELCR below the USEPA target risk range, while the non-cancer hazard was above the regulatory benchmark. The presence of TCE in soil and groundwater was the main risk and hazard driver.
- Hypothetical Future Resident: A future resident could contact surface soil if the redevelopment project
 did not redistribute the soil. In this case, the risks and hazards were at the high end of the target risk
 range or above the non-cancer benchmark. If the soil is redistributed or a building is constructed and
 vapors migrate from the subsurface into a building, the risks and hazards were above the regulatory
 benchmarks. This was due to the presence of TCE in soil and TCE and VC in groundwater.

The assumption in preparing this HHRA, is that the groundwater will not be used as a potable water supply. In addition, if redevelopment were to occur, protective measures could be undertaken to reduce the potential for exposure during construction activities or following redevelopment. To assist in the

remedial activities at the site, HBGs were calculated for each potential receptor for COPCs with an ELCR above 1×10⁻⁶ or an HQ above 1 in combined surface and subsurface soil and groundwater. These goals can be used to support remedial decision making for the site.

8 REFERENCES

- Arcadis. 2015. Feasibility Study Work Plan. AVX Corporation Facility, Myrtle Beach, South Carolina. July.
- Arcadis. 2016. Feasibility Study Investigation Report Operable Unit 1. Myrtle Beach, South Carolina. December.
- ATSDR. 2018. Risk Levels for Hazardous Substances. Available at: http://www.atsdr.cdc.gov/mrls/index.html. March.
- CalEPA. 2018. Office of Environmental Health Hazard Assessment (OEHHA). Online Toxicity Criteria Database. Available at: http://www.oehha.ca.gov/tcdb/index.asp. California Environmental Protection Agency.
- USEPA. 1989. Risk Assessment Guidance for Superfund, Human Health Evaluation Manual, Volume 1, Part A. Interim Final. Office of Emergency and Remedial Response, Washington, DC. EPA/540/1-89/002. December.
- USEPA. 1992. Guidelines for Exposure Assessment. 600Z-92/001. Risk Assessment Forum, Washington, DC. May.
- USEPA. 2002a. Calculating Upper Confidence Limits for Exposure Point Concentrations at Hazardous Waste Sites. Office of Emergency and Remedial Response, Washington, DC. OSWER 9285.6-10. December.
- USEPA. 2002b. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. Solid Waste and Emergency Response, Washington, DC. OSWER 9355.4-24. December.
- USEPA. 2003. Human Health Toxicity Values in Superfund Risk Assessments. Memo from Michael B. Cook. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. Office of Solid Waste and Emergency Response Directive (OSWER). Directive 9285.7-53. December. Available at: http://www.epa.gov/oswer/riskassessment/pdf/hhmemo.pdf.
- USEPA. 2004. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment), Final. Office of Superfund Remediation and Technology Innovation, Washington, DC. OSWER 9285.7-02EP. EPA/540/R/99/005. PB99-963312. July.
- USEPA. 2005a. Guidelines for Carcinogen Risk Assessment. EPA/630/P-03/001F. March.
- USEPA. 2005b. Supplemental Guidance for Assessing Susceptibility from Early-Life Exposure to Carcinogens. EPA/630/R-03/003F. March.
- USEPA. 2011a. Exposure Factors Handbook: 2011 Edition. EPA/600/R-090/052F. Office of Research and Development, Washington, DC. September.
- USEPA. 2011b. Health Effects Assessment Summary Tables. Office of Research and Development and Office of Emergency and Remedial Response, Washington, DC. Current as of December 2011. Available at: https://epa-heast.ornl.gov/

- USEPA. 2014. Human Health Evaluation Manual, Supplemental Guidance, Update of Standard Default Exposure Factors. February issued April. OSWER-Directive-9200-1-120. Available at: https://www.epa.gov/risk/update-standard-default-exposure-factors.
- USEPA. 2015. OSWER Technical Guide for Assessing and Mitigating the Vapor Intrusion Pathway from Subsurface Vapor Sources to Indoor Air. OSWER Publication 9200.2-154. June.
- USEPA. 2016a. Statistical Software ProUCL 5.1.002 for Environmental Applications for Data Sets with and without Nondetect Observations. May. Available at: https://www.epa.gov/land-research/proucl-software
- USEPA. 2016b. ProUCL Version 5.1.00. Technical Guide. Statistical Software for Environmental Applications for Data Sets with and without Nondetect Observations. EPA/600/R-07/041. May. Available at: https://www.epa.gov/land-research/proucl-software.
- USEPA. 2017. USEPA Spreadsheet for Modeling Subsurface Vapor Intrusion. September. Available at: https://www.epa.gov/vaporintrusion/epa-spreadsheet-modeling-subsurface-vapor-intrusion.
- USEPA. 2018a. Regional Screening Level Table. November. Available at: https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables.
- USEPA. 2018b. Vapor Intrusion Screening Levels (VISLs). June. Available at: https://www.epa.gov/vaporintrusion/vapor-intrusion-screening-level-calculator.
- USEPA. 2018c. Region 4 Human Health Risk Assessment Supplemental Guidance. Scientific Support Section, Superfund Division, Region 4. March. Available at: https://www.epa.gov/risk/region-4-human-health-risk-assessment-supplemental-guidance.
- USEPA. 2019a. Integrated Risk Information System (IRIS). Office of Research and Development, National Center of Environmental Assessment (NCEA). Available at: http://www.epa.gov/iris.
- USEPA. 2019b. Provisional Peer Reviewed Toxicity Values (PPRTV). Available at: http://hhpprtv.ornl.gov/
- Virginia Department of Environmental Quality. 2018. Virginia Unified Risk Assessment Model User's Guide. October. Available at:

 http://www.deq.virginia.gov/Programs/LandProtectionRevitalization/RemediationProgram/RiskAssessment.aspx
- Zack, Allen. 1977. The Occurrence, Availability and Chemical Quality of Ground Water, Grand Strand Area and Surrounding parts of Horry and Georgetown Counties. South Carolina Water Resources Commission Report No. 8.

TABLES

Location Identification:	Corp-01	Corp-02	Corp-03	Corp-04	Corp-05	Corp-06	CPT-02	CPT-02	CPT-08	CPT-08	MB1-01	MB1-02	MB1-03	MB1-04	MB1-05	MB1-06	MB1-07	MB1-08	MB1-09
Sample Depth (Feet):	•	•	·		·		8 - 10	20 - 22	6 - 8	22 - 24									
Date Collected:	05/06/15	05/06/15	05/06/15	05/06/15	05/06/15	05/06/15	10/03/08	10/03/08	10/03/08	10/03/08	07/14/15	07/14/15	07/14/15	07/14/15	07/14/15	07/14/15	07/14/15	07/14/15	07/14/15
Volatile Organic Compounds (μg/kg)	00.00.10	00.00.10	00/00/10	1 00,00,10	00/00/10	00/00/10	10/00/00	10/00/00	10,00,00	10,00,00	101111110	01.1.1.10	101111110	• • • • • • • • • • • • • • • • • • •	01711710	101711110		101711110	0
1,1,1,2-Tetrachloroethane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	6,140 U	4,960 U	8.74 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U
1,1-Dichloropropene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	6,140 U	4.960 U	8.74 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U
1.2.3-Trichlorobenzene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	6.140 U	4.960 U	8.74 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	
1,2,3-Trichloropropane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	6,140 U	4,960 U	8.74 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U
1,2,4-Trimethylbenzene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	6,140 U	4,960 U	8.74 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	
1.2-Dibromoethane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	6,140 U	4.960 U	8.74 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	
1,3,5-Trimethylbenzene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	6,140 U	4,960 U	8.74 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U
1,3-Dichloropropane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	6,140 U	4,960 U	8.74 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U
2,2-Dichloropropane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	6,140 U	4,960 U	8.74 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	
2-Butanone	1.88 J	14.2 J	21.0 U	23.3 U	4.54 J	23.8 U	207,000 U	153,000 U	124,000 U	43.7 U	2.55 J	1.82 J	2.64 J	3.14 J	24.1 U	24.3 U	23.7 U	23.3 U	
2-Chlorotoluene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	6,140 U	4,960 U	8.74 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U
2-Hexanone	11.0 U	10.8 U	10.5 U	11.7 U	10.3 U	11.9 U	41,400 U	30,700 U	24,800 U	21.8 U	12.0 U	11.6 U	11.2 U	12.6 U	12.1 U	12.2 U	11.9 U	11.6 U	11.3 U
4-Chlorotoluene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	6,140 U	4,960 U	8.74 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U
4-Methyl-2-pentanone	11.0 U	10.8 U	10.5 U	11.7 U	10.3 U	11.9 U	41,400 U	30,700 U	24,800 U	21.8 U	12.0 U	11.6 U	11.2 U	12.6 U	12.1 U	12.2 U	11.9 U	11.6 U	
Acetone	15.0 J	60.0	7.30 J	5.67 J	44.7	6.90 J	207,000 U	153,000 U	124,000 U	52.4 J	18.9 J	14.4 J	17.9 J	17.9 J	8.97 J	6.66 J	6.45 J	10.8 J	9.43 J
Benzene	4.41 U	4.34 U	4.21 U	2.35 J	4.12 U	2.31 J	8,280 U	6,140 U	4,960 U	8.74 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U
Bromobenzene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	6,140 U	4,960 U	8.74 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U
Bromochloromethane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	6,140 U	4,960 U	8.74 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U
Bromoform	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	6,140 U	4,960 U	8.74 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U
Bromomethane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	6,140 U	4,960 U	8.74 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U
Carbon Disulfide	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	6,140 U	4,960 U	11.2	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U
Cyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibromomethane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	6,140 U	4,960 U	8.74 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U
Diisopropyl ether (DIPE)	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	6,140 U	4,960 U	8.74 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U
Ethyl Alcohol	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethylbenzene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	6,140 U	4,960 U	8.74 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U
Hexachlorobutadiene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	6,140 U	4,960 U	8.74 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U
lodomethane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	6,140 U	4,960 U	8.74 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U
Isopropylbenzene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	6,140 U	4,960 U	8.74 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U
m-,p-Xylene	8.83 U	8.67 U	8.41 U	9.34 U	8.24 U	9.51 U	16,600 U	12,300 U	9,920 U	17.5 U	9.58 U	9.28 U	8.98 U	10.0 U	9.65 U	9.73 U	9.49 U	9.30 U	9.03 U
Methyl Acetate	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methyl tert-butyl ether	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	6,140 U	4,960 U	8.74 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U
Methylcyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	6,140 U	4,960 U	8.74 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U
n-Butylbenzene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	6,140 U	4,960 U	8.74 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	
n-Propylbenzene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	6,140 U	4,960 U	8.74 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U
o-Xylene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	6,140 U	4,960 U	8.74 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	
p-Isopropyltoluene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	6,140 U	4,960 U	8.74 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	
sec-Butylbenzene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	6,140 U	4,960 U	8.74 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U

Location Identification:	Corp-01	Corp-02	Corp-03	Corp-04	Corp-05	Corp-06	CPT-02	CPT-02	CPT-08	CPT-08	MB1-01	MB1-02	MB1-03	MB1-04	MB1-05	MB1-06	MB1-07	MB1-08	MB1-09
Sample Depth (Feet):							8 - 10	20 - 22	6 - 8	22 - 24									
• • • •	05/06/15	05/06/15	05/06/15	05/06/15	05/06/15	05/06/15	10/03/08	10/03/08	10/03/08	10/03/08	07/14/15	07/14/15	07/14/15	07/14/15	07/14/15	07/14/15	07/14/15	07/14/15	07/14/15
Styrene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	6,140 U	4,960 U	8.74 U	1.42 J	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U
tert-Butylbenzene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	6,140 U	4,960 U	8.74 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U
Toluene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	6,140 U	4,960 U	8.74 U	4.79 U	4.64 U	0.925 J	5.02 U	0.974 J	1.27 J	4.75 U	4.65 U	0.966 J
trans-1,4-Dichloro-2-butene	22.1 U	21.7 U	21.0 U	23.3 U	20.6 U	23.8 U	41,400 U	30,700 U	24,800 U	43.7 U	23.9 U	23.2 U	22.4 U	25.1 U	24.1 U	24.3 U	23.7 U	23.3 U	22.6 U
Xylenes (total)	8.83 U	8.67 U	8.41 U	9.34 U	8.24 U	9.51 U	NA	NA	NA	NA	9.58 U	9.28 U	8.98 U	10.0 U	9.65 U	9.73 U	9.49 U	9.30 U	9.03 U
1,1,1-Trichloroethane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	6,140 U	4,960 U	8.74 U	15.0	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	1.67 J	32.2	12.9
1,1,2,2-Tetrachloroethane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	6,140 U	4,960 U	8.74 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U
1,1,2-trichloro-1,2,2-trifluoroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
1,1,2-Trichloroethane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	6,140 U	4,960 U	8.74 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U
1,1-Dichloroethane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	6,140 U	4,960 U	8.74 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.72	4.51 U
1,1-Dichloroethene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	6,140 U	4,960 U	8.74 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U
1,2,4-Trichlorobenzene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	6,140 U	4,960 U	8.74 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U
1,2-Dibromo-3-chloropropane	26.5 U	26.0 U	25.2 U	28.0 U	24.7 U	28.5 U	41,400 U	30,700 U	24,800 U	43.7 U	28.7 U	27.8 U	26.9 U	30.1 U	28.9 U	29.2 U	28.5 U	27.9 U	27.1 U
1,2-Dichlorobenzene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	6,140 U	4,960 U	8.74 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U
1,2-Dichloroethane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	6,140 U	4,960 U	8.74 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U
1,2-Dichloropropane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	6,140 U	4,960 U	8.74 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U
1,3-Dichlorobenzene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	6,140 U	4,960 U	8.74 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U
1,4-Dichlorobenzene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	6,140 U	4,960 U	8.74 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U
Bromodichloromethane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	6,140 U	4,960 U	8.74 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U
Carbon Tetrachloride	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	6,140 U	4,960 U	8.74 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U
Chlorobenzene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	6,140 U	4,960 U	8.74 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U
Volatile Organic Compounds (μg/kg)																			
Chloroethane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	6,140 U	4,960 U	8.74 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U
Chloroform	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	6,140 U	4,960 U	8.74 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U
Chloromethane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	6,140 U	4,960 U	8.74 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U
cis-1,3-Dichloropropene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	6,140 U	4,960 U	8.74 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U
Dibromochloromethane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	6,140 U	4,960 U	8.74 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U
Dichlorodifluoromethane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	41,400 U	30,700 U	24,800 U	8.74 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U
Methylene Chloride	17.7 U	17.3 U	16.8 U	18.7 U	16.5 U	19.0 U	41,400 U	30,700 U	24,800 U	34.9 U	19.2 U	18.6 U	18.0 U	20.1 U	19.3 U	19.5 U	19.0 U	18.6 U	18.1 U
trans-1,3-Dichloropropene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	6,140 U	4,960 U	8.74 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U
Trichlorofluoromethane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	6,140 U	4,960 U	8.74 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U
cis-1,2-Dichloroethene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	59,400	8,470	46,100	8.74 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	1.99 J	4.51 U
Tetrachloroethene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	6,140 U	4,960 U	8.74 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	1.52 J	1.18 J
trans-1,2-Dichloroethene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	6,140 U	4,960 U	8.74 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U
Trichloroethene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	219,000	111,000	217,000	8.74 U	4.17 J	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	8.11	1.26 J
Vinyl Chloride	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4,390 J	6,140 U	4,960 U	8.74 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U
Total Chlorinated VOCs	ND	ND	ND	ND	ND	ND	283,000 J	119,000	263,000	ND	19.2 J	ND	ND	ND	ND	ND	1.67 J	48.5 J	15.3 J
Total Petroleum Hydrocarbons (µg/kg)								,	===,										
Ethylene Glycol Monobutyl Ether	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
		1471	1471	1171			1 17 1	1471	1.07.	1471			, .	14/1	14/1			147 (

Location Identification:	MB1-10	MB1-11	MB1-12	MB1-13	MB1-14	MB1-15	MB1-16	MB1-17	MB1-18	MB1-19	MB1-20	MB1-21	MB1-22	MB1-22A	MB1-23	MB1-24	MB1-25	MB1-26	MB1-27	MB1-28	MB1-29	MB1-30	MB1-31
Sample Depth (Feet):																							
Date Collected:	07/14/15	07/14/15	07/14/15	07/14/15	07/14/15	07/14/15	07/14/15	07/14/15	07/14/15	07/15/15	07/15/15	07/15/15	07/15/15	07/16/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15
Volatile Organic Compounds (μg/kg)	01/14/10	101/14/10	101/14/10	10111-4110	01/14/10	0171-4710	01/14/10	01/14/10	01/14/10	01710/10	01/10/10	01710710	01710/10	01/10/10	01710/10	01710710	101/10/10	01710710	107710710	01/10/10	07710710	01710/10	07710710
1,1,1,2-Tetrachloroethane	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1.080 U	62.4 U	/ Q2 II	4.94 U	5.68 U
1,1-Dichloropropene	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,000 U	62.4 U	4.92 U	4.94 U	5.68 U
1.2.3-Trichlorobenzene	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U
1,2,3-Trichloropropane	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U
1,2,4-Trimethylbenzene	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1.080 U	170	4.92 U	4.94 U	5.68 U
1.2-Dibromoethane	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1.080 U	62.4 U	4.92 U	4.94 U	5.68 U
1,3,5-Trimethylbenzene	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1.080 U	41.2 J	0.974 J	4.94 U	5.68 U
1,3-Dichloropropane	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U
2,2-Dichloropropane	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U
2-Butanone	26.0 U	24.3 U	24.7 U	23.4 U	23.7 U	26.5 U	25.3 U	21.8 U	3.71 J	21.8 U	22.6 U	27.0 U	28.7 U	1,250 U	22.9 U	4.52 J	26.9 U	26.3 U	26,900 U	73.0 J	24.6 U	24.7 U	22.9 J
2-Chlorotoluene	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U
2-Hexanone	13.0 U	12.1 U	12.4 U	11.7 U	11.9 U	13.3 U	12.6 U	10.9 U	12.6 U	10.9 U	11.3 U	13.5 U	14.3 U	250 U	11.5 U	13.0 U	13.4 U	13.1 U	5,380 U	312 U	12.3 U	12.3 U	14.2 U
4-Chlorotoluene	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U
4-Methyl-2-pentanone	13.0 U	12.1 U	12.4 U	11.7 U	11.9 U	13.3 U	12.6 U	10.9 U	12.6 U	10.9 U	11.3 U	13.5 U	14.3 U	250 U	11.5 U	13.0 U	13.4 U	13.1 U	5,380 U	312 U	12.3 U	12.3 U	5.13 J
Acetone	51.9 U	11.2 J	10.6 J	15.7 J	18.1 J	17.8 J	15.0 J	13.7 J	35.2 J	14.4 J	20.2 J	17.2 J	15.7 J	1,250 U	9.01 J	40.7 J	30.9 J	14.0 J	26,900 U	1,560 U	11.1 J	23.2 J	119
Benzene	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	1.26 J	1.34 J	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U
Bromobenzene	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U
Bromochloromethane	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U
Bromoform	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U
Bromomethane	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U
Carbon Disulfide	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U
Cyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibromomethane	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U
Diisopropyl ether (DIPE)	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U
Ethyl Alcohol	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethylbenzene	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	48.7 J	4.92 U	4.94 U	5.68 U
Hexachlorobutadiene	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U
lodomethane	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U
Isopropylbenzene	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	23.7 J	4.92 U	4.94 U	5.68 U
m-,p-Xylene	10.4 U	9.71 U	9.90 U	9.38 U	9.48 U	10.6 U	10.1 U	8.71 U	10.1 U	8.74 U	9.06 U	10.8 U	11.5 U	100 U	9.18 U	10.4 U	10.7 U	10.5 U	2,150 U	287	9.84 U	9.87 U	1.75 J
Methyl Acetate	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methyl tert-butyl ether	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U
Methylcyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	187	4.92 U	4.94 U	5.68 U
n-Butylbenzene	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U
n-Propylbenzene	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	31.2 J	4.92 U	4.94 U	5.68 U
o-Xylene	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	137	4.92 U		0.978 J
p-Isopropyltoluene	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U	1.35 J	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	118	4.92 U	4.94 U	5.68 U
sec-Butylbenzene	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	33.7 J	4.92 U	4.94 U	5.68 U

Location Identification:	MB1-10	MB1-11	MB1-12	MB1-13	MB1-14	MB1-15	MB1-16	MB1-17	MB1-18	MB1-19	MB1-20	MB1-21	MB1-22	MB1-22A	MB1-23	MB1-24	MB1-25	MB1-26	MB1-27	MB1-28	MB1-29	MB1-30	MB1-31
Sample Depth (Feet):																							
Date Collected:	07/14/15	07/14/15	07/14/15	07/14/15	07/14/15	07/14/15	07/14/15	07/14/15	07/14/15	07/15/15	07/15/15	07/15/15	07/15/15	07/16/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15
Styrene	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U
tert-Butylbenzene	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U
Toluene	1.17 J	1.20 J	1.19 J	1.15 J	4.74 U	5.30 U	5.06 U	4.36 U	1.23 J	1.18 J	1.23 J	1.40 J	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	497	4.92 U	1.05 J	3.19 J
trans-1,4-Dichloro-2-butene	26.0 U	24.3 U	24.7 U	23.4 U	23.7 U	26.5 U	25.3 U	21.8 U	25.2 U	21.8 U	22.6 U	27.0 U	28.7 U	250 U	22.9 U	26.1 U	26.9 U	26.3 U	5,380 U	312 U	24.6 U	24.7 U	28.4 U
Xylenes (total)	10.4 U	9.71 U	9.90 U	9.38 U	9.48 U	10.6 U	10.1 U	8.71 U	10.1 U	8.74 U	9.06 U	10.8 U	11.5 U	100 U	9.18 U	10.4 U	10.7 U	10.5 U	2,150 U	424	9.84 U	9.87 U	2.73 J
1,1,1-Trichloroethane	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	1.36 J	4.36 U	1.08 J	4.37 U	4.53 U	5.39 U	11.6	31.5 J	2.32 J	5.22 U	5.37 U	5.25 U	1,080 U	691	16.6	28.0	5.68 U
1,1,2,2-Tetrachloroethane	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U
1,1,2-trichloro-1,2,2-trifluoroethane	NA																						
1,1,2-Trichloroethane	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U
1,1-Dichloroethane	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	7.61	18.0 J	1.94 J	5.22 U	5.37 U	5.25 U	1,080 U	12.5 J	7.78	18.5	5.68 U
1,1-Dichloroethene	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U
1,2,4-Trichlorobenzene	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U
1,2-Dibromo-3-chloropropane	31.1 U	29.1 U	29.7 U	28.1 U	28.4 U	31.8 U	30.3 U	26.1 U	30.2 U	26.2 U	27.2 U	32.3 U	34.4 U	250 U	27.5 U	31.3 U	32.2 U	31.5 U	5,380 U	312 U	29.5 U	29.6 U	34.1 U
1,2-Dichlorobenzene	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U
1,2-Dichloroethane	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U
1,2-Dichloropropane	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U
1,3-Dichlorobenzene	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U
1,4-Dichlorobenzene	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	1.02 J
Bromodichloromethane	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U
Carbon Tetrachloride	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	2.33 J	4.94 U	5.68 U
Chlorobenzene	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U
Volatile Organic Compounds (μg/kg)																							
Chloroethane	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U
Chloroform	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U
Chloromethane	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U
cis-1,3-Dichloropropene	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U
Dibromochloromethane	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U
Dichlorodifluoromethane	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	250 U	4.59 U	5.22 U	5.37 U	5.25 U	5,380 U	312 U	4.92 U	4.94 U	5.68 U
Methylene Chloride	20.8 U	19.4 U	19.8 U	18.8 U	19.0 U	21.2 U	20.2 U	17.4 U	20.1 U	17.5 U	18.1 U	21.6 U	23.0 U	250 U	18.4 U	20.9 U	21.5 U	21.0 U	5,380 U	312 U	19.7 U	19.7 U	22.7 U
trans-1,3-Dichloropropene	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U
Trichlorofluoromethane	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U
cis-1,2-Dichloroethene	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U	4.36 U	5.04 U	27.1	4.53 U	5.39 U	5.74 U	18.0 J	4.59 U	5.22 U	5.37 U	5.25 U	7,210	9.98 J	3.75 J	7.23	1.84 J
Tetrachloroethene	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U	4.36 U		4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U
trans-1,2-Dichloroethene	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U	4.36 U		4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,230	62.4 U	4.92 U	4.94 U	5.68 U
Trichloroethene	5.19 U	4.86 U	1.04 J	4.69 U	4.74 U	3.43 J	14.9	1.14 J	4.97 J	43.9	1.38 J	5.39 U	21.8	235	13.7	5.22 U	1.21 J	2.51 J	30,100	150	41.4	34.5	6.33
Vinyl Chloride	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U
Total Chlorinated VOCs	ND	ND	1.04 J	ND	ND	3.43 J	16.3 J	1.14 J	6.05 J	71.0	1.38 J	ND	41.0	303 J	18.0 J	ND	1.21 J	2.51 J	38,500	863 J	71.9 J	88.2	9.19 J
Total Petroleum Hydrocarbons (µg/kg)																							الأروا
Ethylene Glycol Monobutyl Ether	NA																						
Euryrene Grycor Monobutyr Ether	INA																						

Location Identification:	MB1-32	MB1-33	MB1-34	MB1-35	MB1-36	MB1-37A	MB1-37B	MB1-37C	MB1-37D	MB1-37E	MB1-38	MB1-38A	MB1-39	MB1-40	MB1-41	MB1-42	MB1-43	MB1-44	MB1-45	MB1-46	MB1-47	MB1-48
Sample Depth (Feet):																						
Date Collected:	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/16/15	07/15/15	07/16/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15
Volatile Organic Compounds (μg/kg)				•																		•
1.1.1.2-Tetrachloroethane	4.53 U	4.84 U	1.160 U	4.38 U	49.3 U	57.2 U	989 U	47.5 U	50.2 U	77.700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U
1,1-Dichloropropene	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U
1,2,3-Trichlorobenzene	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U
1,2,3-Trichloropropane	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U
1,2,4-Trimethylbenzene	4.53 U	4.84 U	1,160 U	4.38 U	210	57.2 U	989 U	329	318	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U
1,2-Dibromoethane	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U
1,3,5-Trimethylbenzene	4.53 U	4.84 U	1,160 U	4.38 U	1,100	57.2 U	989 U	170	145	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U
1,3-Dichloropropane	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U
2,2-Dichloropropane	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U
2-Butanone	22.7 U	24.2 U	28,900 U	21.7 J	38.0 J	1,430 U	24,700 U	1,190 U	37.1 J	1,940,000 U	1,160 U	4,730 U	2,850 U	22.5 U	23.0 U	22.5 U	21.8 U	23.4 U	25.0 U	7.74 J	23.5 U	6.23 J
2-Chlorotoluene	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U
2-Hexanone	11.3 U	12.1 U	5,790 U	11.0 U	247 U	286 U	4,940 U	238 U	251 U	389,000 U	231 U	946 U	570 U	11.2 U	11.5 U	11.2 U	10.9 U	11.7 U	12.5 U	11.2 U	11.8 U	10.6 U
4-Chlorotoluene	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U
4-Methyl-2-pentanone	2.25 J	12.1 U	5,790 U	11.0 U	247 U	286 U	4,940 U	238 U	251 U	389,000 U	231 U	946 U	570 U	11.2 U	11.5 U	11.2 U	10.9 U	11.7 U	12.5 U	11.2 U	11.8 U	10.6 U
Acetone	7.76 J	6.33 J	28,900 U	87.3	1,230 U	1,430 U	24,700 U	1,190 U	54.7 J	1,940,000 U	1,160 U	4,730 U	2,850 U	10.8 J	14.6 J	8.05 J	15.7 J	9.76 J	12.1 J	49.2	23.6 J	32.0 J
Benzene	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U
Bromobenzene	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U
Bromochloromethane	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U
Bromoform	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U
Bromomethane	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U
Carbon Disulfide	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	2.27 J
Cyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA									
Dibromomethane	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U
Diisopropyl ether (DIPE)	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U
Ethyl Alcohol	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA									
Ethylbenzene	4.53 U	4.84 U	1,160 U	1.56 J	6.90 J	57.2 U	989 U	10.9 J	33.1 J	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	0.767 J
Hexachlorobutadiene	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U
lodomethane	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U
Isopropylbenzene	4.53 U	4.84 U	1,160 U	4.38 U	401	57.2 U	989 U	9.51 J	12.0 J	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U
m-,p-Xylene	9.07 U	9.69 U	2,320 U	3.64 J	11.8 J	114 U	1,980 U	23.8 J	37.6 J	155,000 U	92.5 U	378 U	228 U	9.00 U	9.21 U	8.99 U	8.71 U	9.35 U	10.0 U	8.93 U	9.41 U	8.52 U
Methyl Acetate	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA									
Methyl tert-butyl ether	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U
Methylcyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA									
Naphthalene	4.53 U	4.84 U	1,160 U	4.38 U	68.0	57.2 U	989 U	17.1 J	80.8	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U
n-Butylbenzene	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U
n-Propylbenzene	4.53 U	4.84 U	1,160 U		165	57.2 U	989 U	47.1 J	64.2	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U
o-Xylene	4.53 U	4.84 U	1,160 U	1.66 J	15.3 J	57.2 U	989 U	18.1 J	25.1 J	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U
p-Isopropyltoluene	4.53 U	4.84 U	1,370	2.28 J	106	57.2 U	989 U	43.3 J	161	71,500 J	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U
sec-Butylbenzene	4.53 U	4.84 U	1,160 U	4.38 U	105	57.2 U	989 U	47.5 U	29.1 J	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U

Location Identification:	MB1-32	MB1-33	MB1-34	MB1-35	MB1-36	MB1-37A	MB1-37B	MB1-37C	MB1-37D	MB1-37E	MB1-38	MB1-38A	MB1-39	MB1-40	MB1-41	MB1-42	MB1-43	MB1-44	MB1-45	MB1-46	MB1-47	MB1-48
Sample Depth (Feet):																						1
Date Collected:	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/16/15	07/15/15	07/16/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15
Styrene	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U
tert-Butylbenzene	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U
Toluene	5.66	11.4	8,280	36.1	49.3 U	57.2 U	989 U	16.6 J	132	77,700 U	46.3 U	189 U	114 U	0.828 J	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	1.01 J
trans-1,4-Dichloro-2-butene	22.7 U	24.2 U	5,790 U	21.9 U	247 U	286 U	4,940 U	238 U	251 U	389,000 U	231 U	946 U	570 U	22.5 U	23.0 U	22.5 U	21.8 U	23.4 U	25.0 U	22.3 U	23.5 U	21.3 U
Xylenes (total)	9.07 U	9.69 U	2,320 U	5.30 J	27.1 J	114 U	1,980 U	41.8 J	62.7 J	155,000 U	92.5 U	378 U	228 U	9.00 U	9.21 U	8.99 U	8.71 U	9.35 U	10.0 U	8.93 U	9.41 U	8.52 U
1,1,1-Trichloroethane	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	191	41,600	526	152	159,000	219	1,710	156	3.39 J	4.61 U	4.49 U	4.36 U	59.7	21.8	4.47 U	4.70 U	4.26 U
1,1,2,2-Tetrachloroethane	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U
1,1,2-trichloro-1,2,2-trifluoroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA									
1,1,2-Trichloroethane	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U
1,1-Dichloroethane	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U	47.5 U	130	77,700 U	35.2 J	410	22.8 J	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.81	4.47 U	4.70 U	4.26 U
1,1-Dichloroethene	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	134 J	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	1.15 J	4.47 U	4.70 U	4.26 U
1,2,4-Trichlorobenzene	4.53 U	4.84 U	1,160 U		49.3 U	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U
1,2-Dibromo-3-chloropropane	27.2 U	29.1 U	5,790 U	26.3 U	247 U	286 U	4,940 U	238 U	251 U	389,000 U	231 U	946 U	570 U	27.0 U	27.6 U	27.0 U	26.1 U	28.1 U	30.0 U	26.8 U	28.2 U	25.6 U
1,2-Dichlorobenzene	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U
1,2-Dichloroethane	4.53 U	4.84 U	1,160 U		49.3 U	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U
1,2-Dichloropropane	4.53 U	4.84 U	1.160 U		49.3 U	57.2 U	989 U	47.5 U	50.2 U	77.700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U
1,3-Dichlorobenzene	4.53 U	4.84 U	1,160 U		49.3 U	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U
1.4-Dichlorobenzene	4.53 U	4.84 U	1.160 U	4.38 U	49.3 U	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U
Bromodichloromethane	4.53 U	4.84 U	1,160 U		49.3 U	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U
Carbon Tetrachloride	4.53 U	4.84 U	1,160 U		49.3 U	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	8.41	5.00 U	4.47 U	4.70 U	4.26 U
Chlorobenzene	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U
Volatile Organic Compounds (µg/kg)																						
Chloroethane	4.53 U	4.84 U	1,160 U	13.4	49.3 U	57.2 U	989 U	47.5 U	52.2	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U
Chloroform	4.53 U	4.84 U	1.160 U	4.38 U	49.3 U	57.2 U	989 U	47.5 U	50.2 U	77.700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U
Chloromethane	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U
cis-1,3-Dichloropropene	4.53 U	4.84 U	1.160 U	4.38 U	49.3 U	57.2 U	989 U	47.5 U	50.2 U	77.700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U
Dibromochloromethane	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U
Dichlorodifluoromethane	4.53 U	4.84 U	5,790 U	4.38 U	247 U	286 U	4,940 U	238 U	251 U	389,000 U	231 U	946 U	570 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U
Methylene Chloride	18.1 U	19.4 U	5.790 U	17.5 U	247 U	286 U	4.940 U	238 U	251 U	389.000 U	231 U	946 U	570 U	18.0 U	18.4 U	18.0 U	17.4 U	18.7 U	20.0 U	17.9 U	18.8 U	0.869 J
trans-1,3-Dichloropropene	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U
Trichlorofluoromethane	4.53 U	4.84 U	1.160 U		49.3 U	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U
cis-1.2-Dichloroethene	4.53 U	4.84 U	1.160 U	2.66 J	178	57.2 U	326 J	16.6 J	58.7	252,000	124	594	216	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	8.02	4.47 U	1.03 J	4.26 U
Tetrachloroethene	4.53 U	4.84 U	1,160 U		49.3 U	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U
trans-1,2-Dichloroethene	4.53 U	4.84 U	1,160 U		49.3 U	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U
Trichloroethene	3.84 J	3.30 J	1,160 U	1.70 J	35.5 J	449	16,400	418	178	557,000	201	518	823	16.6	4.61 U	4.49 U	4.36 U	19.8	21.5	4.47 U	7.32	1.71 J
Vinyl Chloride	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U	47.5 U	12.5 J	10,100 J	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U
Total Chlorinated VOCs	3.84 J	3.30 J	ND	17.8 J	214 J	640	58,300 J	961 J	583 J	978,000 J	579 J	3,370 J	1.220 J	20.0 J	ND	ND	ND	87.9	58.3 J	ND	8.35 J	2.58 J
Total Petroleum Hydrocarbons (µg/kg)										2.2,000		-,	.,								2.300	
Ethylene Glycol Monobutyl Ether	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA									
Early 13/13 Styder Meriodaty Earlor	1471	1471	1 47 1	14/1	1471	1471	1471	1471	1471	14/1	1471	1471	1471	1 47 1	1471	1471	147 (1 17/1	1471	1 17 1	1471	

Location Identification:	MB1-49	MB1-50	MB1-51	MB1-52	MB1-53	MB1-54	MB1-55	MB1-56	MB1-57	MB1-58	MB1-59	MB1-60	MR1-61	MB1-62	MB1-63	MB1-64	MB1-65A	MB1-65B	MB1-PE-01	MB1-PE-04	MB1-PE-07	MB1-PE-10
Sample Depth (Feet):	D1 40			111111111111111111111111111111111111111		111111111111111111111111111111111111111				11151 00						mb i o4	IIID I COA			511204		
	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/16/15	07/16/15	04/05/12	04/05/12	04/05/12	04/05/12
Volatile Organic Compounds (μg/kg)	01/13/13	07/13/13	01/13/13	01/13/13	01/13/13	01/13/13	01/13/13	01/13/13	01/13/13	01/13/13	01/13/13	07/13/13	01/13/13	07/13/13	01/13/13	01/13/13	01/10/13	07/10/13	04/03/12	04/03/12	04/03/12	04/03/12
1.1.1.2-Tetrachloroethane	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	/ 35 II	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	194 U	43.5 U	46.8 U	43.0 U
1,1-Dichloropropene	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	194 U	43.5 U	46.8 U	43.0 U
1.2.3-Trichlorobenzene	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U		4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	194 U	43.5 U	46.8 U	43.0 U
1,2,3-Trichloropropane	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	194 U	43.5 U	46.8 U	43.0 U
1,2,4-Trimethylbenzene	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	42.3 J	45.4 U	4.26 U	77.1 J	4.44 U	4.37 U	101 U	109 U	194 U	43.5 U	46.8 U	43.0 U
1.2-Dibromoethane	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	194 U	43.5 U	46.8 U	43.0 U
1.3.5-Trimethylbenzene	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	194 U	43.5 U	46.8 U	43.0 U
1,3-Dichloropropane	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	194 U	43.5 U	46.8 U	43.0 U
2.2-Dichloropropane	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	194 U	43.5 U	46.8 U	43.0 U
2-Butanone	25.1 U	22.7 U	26.2 U	23.5 U	1.410 U	23.8 U	21.5 U	21.8 U	2.98 J	21.4 U	49.2 J	1.130 U	21.3 U	2.380 U	22.2 U	21.9 U	2.510 U	2,720 U	4,850 U	1,090 U	1.170 U	1,070 U
2-Chlorotoluene	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	194 U	43.5 U	46.8 U	43.0 U
2-Hexanone	12.6 U	11.3 U	13.1 U	11.7 U	282 U	11.9 U	10.8 U	10.9 U	12.2 U	10.7 U	265 U	227 U	10.6 U	476 U	11.1 U	10.9 U	503 U	544 U	969 U	217 U	234 U	215 U
4-Chlorotoluene	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	194 U	43.5 U	46.8 U	43.0 U
4-Methyl-2-pentanone	12.6 U	11.3 U	13.1 U	11.7 U	282 U	11.9 U	10.8 U	10.9 U	12.2 U	10.7 U	265 U	227 U	10.6 U	476 U	11.1 U	10.9 U	503 U	544 U	969 U	217 U	234 U	215 U
Acetone	7.83 J	9.88 J	12.8 J	14.8 J	1,410 U	15.6 J	9.71 J	14.5 J	19.6 J	11.4 J	1,320 U	1,130 U	9.71 J	148 J	14.3 J	8.75 J	2,510 U	2,720 U	4,850 U	1,090 U	1,170 U	1,070 U
Benzene	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	12.2 J	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	194 U	43.5 U	46.8 U	43.0 U
Bromobenzene	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	194 U	43.5 U	46.8 U	43.0 U
Bromochloromethane	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	194 U	43.5 U	46.8 U	43.0 U
Bromoform	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	194 U	43.5 U	46.8 U	43.0 U
Bromomethane	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	194 U	43.5 U	46.8 U	43.0 U
Carbon Disulfide	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	1.65 J	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	194 U	43.5 U	46.8 U	43.0 U
Cyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibromomethane	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	194 U	43.5 U	46.8 U	43.0 U
Diisopropyl ether (DIPE)	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	194 U	43.5 U	46.8 U	43.0 U
Ethyl Alcohol	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethylbenzene	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	95.3	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	194 U	43.5 U	46.8 U	43.0 U
Hexachlorobutadiene	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	194 U	43.5 U	46.8 U	43.0 U
Iodomethane	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	194 U	43.5 U	46.8 U	43.0 U
Isopropylbenzene	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	194 U	43.5 U	46.8 U	43.0 U
m-,p-Xylene	10.0 U	9.08 U	10.5 U	9.39 U	113 U	9.52 U	8.62 U	8.70 U	9.75 U	8.56 U	106 U	90.7 U	8.52 U	190 U	8.89 U	8.74 U	201 U	218 U	388 U	86.9 U	93.6 U	85.9 U
Methyl Acetate	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methyl tert-butyl ether	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	194 U	43.5 U	46.8 U	43.0 U
Methylcyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	194 U	43.5 U	46.8 U	43.0 U
n-Butylbenzene	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	194 U	43.5 U	46.8 U	43.0 U
n-Propylbenzene	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	9.00 J	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	194 U	43.5 U	46.8 U	43.0 U
o-Xylene	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	194 U	43.5 U	46.8 U	43.0 U
p-Isopropyltoluene	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	88.9	45.4 U	4.26 U	89.5 J	4.44 U	4.37 U	101 U	109 U	194 U	43.5 U	46.8 U	43.0 U
sec-Butylbenzene	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	194 U	43.5 U	46.8 U	43.0 U

Location Identification:	MB1-49	MB1-50	MB1-51	MB1-52	MB1-53	MB1-54	MB1-55	MB1-56	MB1-57	MB1-58	MB1-59	MB1-60	MB1-61	MB1-62	MB1-63	MB1-64	MB1-65A	MB1-65B	MB1-PE-01	MB1-PE-04	MB1-PE-07	MB1-PE-10
Sample Depth (Feet):																						/
Date Collected:	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/16/15	07/16/15	04/05/12	04/05/12	04/05/12	04/05/12
Styrene	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	194 U	43.5 U	46.8 U	43.0 U
tert-Butylbenzene	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	194 U	43.5 U	46.8 U	43.0 U
Toluene	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	175	45.4 U	4.26 U	13.3 J	1.08 J	4.37 U	101 U	109 U	194 U	43.5 U	46.8 U	43.0 U
trans-1,4-Dichloro-2-butene	25.1 U	22.7 U	26.2 U	23.5 U	282 U	23.8 U	21.5 U	21.8 U	24.4 U	21.4 U	265 U	227 U	21.3 U	476 U	22.2 U	21.9 U	503 U	544 U	969 U	217 U	234 U	215 U
Xylenes (total)	10.0 U	9.08 U	10.5 U	9.39 U	113 U	9.52 U	8.62 U	8.70 U	9.75 U	8.56 U	106 U	90.7 U	8.52 U	190 U	8.89 U	8.74 U	201 U	218 U	NA	NA	NA	NA
1,1,1-Trichloroethane	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	0.940 J	4.87 U	4.28 U	52.9 U	9.07 J	4.26 U	95.2 U	4.44 U	4.37 U	1,120	558	194 U	43.5 U	46.8 U	43.0 U
1,1,2,2-Tetrachloroethane	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	194 U	43.5 U	46.8 U	43.0 U
1,1,2-trichloro-1,2,2-trifluoroethane	NA	NA	NA	NA																		
1,1,2-Trichloroethane	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	194 U	43.5 U	46.8 U	43.0 U
1,1-Dichloroethane	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	875	609	69.8 J	12.2 J	46.8 U	43.0 U
1,1-Dichloroethene	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	99.5 J	109 U	194 U	43.5 U	46.8 U	43.0 U
1,2,4-Trichlorobenzene	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	194 U	43.5 U	46.8 U	43.0 U
1,2-Dibromo-3-chloropropane	30.1 U	27.2 U	31.4 U	28.2 U	282 U	28.6 U	25.9 U	26.1 U	29.2 U	25.7 U	265 U	227 U	25.6 U	476 U	26.7 U	26.2 U	503 U	544 U	969 U	217 U	234 U	215 U
1,2-Dichlorobenzene	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	194 U	43.5 U	46.8 U	43.0 U
1,2-Dichloroethane	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	194 U	43.5 U	46.8 U	43.0 U
1,2-Dichloropropane	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	194 U	43.5 U	46.8 U	43.0 U
1,3-Dichlorobenzene	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	194 U	43.5 U	46.8 U	43.0 U
1,4-Dichlorobenzene	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	194 U	43.5 U	46.8 U	43.0 U
Bromodichloromethane	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	194 U	43.5 U	46.8 U	43.0 U
Carbon Tetrachloride	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	194 U	43.5 U	46.8 U	43.0 U
Chlorobenzene	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	194 U	43.5 U	46.8 U	43.0 U
Volatile Organic Compounds (µg/kg)																						
Chloroethane	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	194 U	43.5 U	46.8 U	43.0 U
Chloroform	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	194 U	43.5 U	46.8 U	43.0 U
Chloromethane	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	194 U	43.5 U	46.8 U	43.0 U
cis-1,3-Dichloropropene	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	194 U	43.5 U	46.8 U	43.0 U
Dibromochloromethane	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	194 U	43.5 U	46.8 U	43.0 U
Dichlorodifluoromethane	5.02 U	4.54 U	5.23 U	4.69 U	282 U	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	265 U	227 U	4.26 U	476 U	4.44 U	4.37 U	503 U	544 U	969 U	217 U	234 U	215 U
Methylene Chloride	1.11 J	18.2 U	1.08 J	0.929 J	282 U	19.0 U	17.2 U		19.5 U	17.1 U	265 U	227 U	17.0 U	476 U	17.8 U	17.5 U	503 U	544 U	969 U	217 U	234 U	215 U
trans-1,3-Dichloropropene	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U		4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	194 U	43.5 U	46.8 U	43.0 U
Trichlorofluoromethane	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	1.16 J	4.87 U	4.28 U	52.9 U	33.6 J	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	194 U	43.5 U	46.8 U	43.0 U
cis-1.2-Dichloroethene	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U		4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	3.02 J	95.2 U	4.44 U	4.37 U	438	278	5,160	1,050	254	1,290
Tetrachloroethene	5.02 U	4.54 U	5.23 U	1.99 J	56.3 U	4.76 U	4.31 U	1.04 J	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	18.1 J	4.44 U	4.37 U	101 U	109 U	194 U	43.5 U	46.8 U	43.0 U
trans-1.2-Dichloroethene	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	54.3 J	43.5 U	46.8 U	11.6 J
Trichloroethene	8.79	9.85	5.23 U	4.69 U	157	4.16 J	4.31 U	6.53	4.10 J	2.82 J	52.9 U	45.4 U	10.9	1.010	4.44 U	4.37 U	385	145	2,280	537	46.8 U	7.73 J
Vinyl Chloride	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	65.9 J	39.5 J	23.4 J	21.5 J
Total Chlorinated VOCs	9.90 J	9.85	1.08 J	2.92 J	157	4.16 J	ND	9.67 J	4.10 J	2.82 J	ND	42.7 J	13.9 J	1.030 J	ND	ND	2,920 J	1,590	NA	NA	NA	NA NA
Total Petroleum Hydrocarbons (µg/kg)	3.00 3	0.00	1.00 0	2.02 0	107	1.100	110	3.07 3	1.100	2.02 0	110	12.7 0	10.00	1,000 0	140	110	2,020 0	1,000	147	1471	147 (147
Ethylene Glycol Monobutyl Ether	NA	NA	NA	NA																		
Laryione Orycor Monobutyi Ether	INA	14/7	14/7	14/7	14/7	INA	INA	1 4/7	INA	14/7	14/7	1 1/7	INA	14/7	1 1/7	INA	14/7	13/7	IVA	INA	14/7	INA

Location Identification:	MB1-PE-13	MB1-PE-14	MB1-PE-16	MB1-PE-19	MB1-PE-22	MB1-PE-25	MB1-PE-28	MB1-PE-31	MB1-PE-32	MB1-PE-B-01	MB1-PE-B-02	MB1-PE-B-03	MB1-PE-B-04	MB1-PE-B-05	ME-01	ME-02
Sample Depth (Feet):																
Date Collected:	04/05/12	04/05/12	04/05/12	04/05/12	04/05/12	04/05/12	04/05/12	04/19/12	04/19/12	04/18/12	04/18/12	04/18/12	04/19/12	04/19/12	05/06/15	05/06/15
Volatile Organic Compounds (μg/kg)																
1,1,1,2-Tetrachloroethane	843 U	95.0 U	214 U	361 U	372 U	91.6 U	437 U	1,410 U	1,700 U	989 U	1,760 U	46.2 U	433 U	9,100 U	4.26 U	4.57 U
1,1-Dichloropropene	843 U	95.0 U	214 U	361 U	372 U	91.6 U	437 U	1,410 U	1,700 U	989 U	1,760 U	46.2 U	433 U	9,100 U	4.26 U	4.57 U
1,2,3-Trichlorobenzene	843 U	95.0 U	214 U	361 U	372 U	91.6 U	437 U	1,410 U	1,700 U	989 U	1,760 U	46.2 U	433 U	9,100 U	4.26 U	4.57 U
1,2,3-Trichloropropane	843 U	95.0 U	214 U	361 U	372 U	91.6 U	437 U	1,410 U	1,700 U	989 U	1,760 U	46.2 U	433 U	9,100 U	4.26 U	4.57 U
1,2,4-Trimethylbenzene	843 U	95.0 U	214 U	361 U	372 U	91.6 U	437 U	1,410 U	1,700 U	989 U	1,760 U	46.2 U	433 U	9,100 U	4.26 U	4.57 U
1,2-Dibromoethane	843 U	95.0 U	214 U	361 U	372 U	91.6 U	437 U	1,410 U	1,700 U	989 U	1,760 U	46.2 U	433 U	9,100 U	4.26 U	4.57 U
1,3,5-Trimethylbenzene	843 U	95.0 U	214 U	361 U	372 U	91.6 U	437 U	1,410 U	1,700 U	989 U	1,760 U	46.2 U	433 U	9,100 U	4.26 U	4.57 U
1,3-Dichloropropane	843 U	95.0 U	214 U	361 U	372 U	91.6 U	437 U	1,410 U	1,700 U	989 U	1,760 U	46.2 U	433 U	9,100 U	4.26 U	4.57 U
2,2-Dichloropropane	843 U	95.0 U	214 U	361 U	372 U	91.6 U	437 U	1,410 U	1,700 U	989 U	1,760 U	46.2 U	433 U	9,100 U	4.26 U	4.57 U
2-Butanone	21,100 U	2,380 U	5,350 U	9,020 U	9,300 U	2,290 U	10,900 U	35,400 U	42,500 U	24,700 U	44,000 U	1,150 U	10,800 U	227,000 U	5.46 J	22.9 U
2-Chlorotoluene	843 U	95.0 U	214 U	361 U	372 U	91.6 U	437 U	1,410 U	1,700 U	989 U	1,760 U	46.2 U	433 U	9,100 U	4.26 U	4.57 U
2-Hexanone	4,220 U	475 U	1,070 U	1,800 U	1,860 U	458 U	2,180 U	7,070 U	8,490 U	4,940 U	8,790 U	231 U	2,160 U	45,500 U	10.7 U	11.4 U
4-Chlorotoluene	843 U	95.0 U	214 U	361 U	372 U	91.6 U	437 U	1,410 U	1,700 U	989 U	1,760 U	46.2 U	433 U	9,100 U	4.26 U	4.57 U
4-Methyl-2-pentanone	4,220 U	475 U	1,070 U	1,800 U	1,860 U	458 U	2,180 U	7,070 U	8,490 U	4,940 U	8,790 U	231 U	2,160 U	45,500 U	10.7 U	11.4 U
Acetone	21,100 U	2,380 U	5,350 U	9,020 U	9,300 U	2,290 U	10,900 U	35,400 U	42,500 U	24,700 U	44,000 U	1,150 U	10,800 U	227,000 U	48.3	7.03 J
Benzene	843 U	95.0 U	214 U	361 U	372 U	91.6 U	437 U	1,410 U	1,700 U	989 U	1,760 U	46.2 U	433 U	9,100 U	4.26 U	4.57 U
Bromobenzene	843 U	95.0 U	214 U	361 U	372 U	91.6 U	437 U	1,410 U	1,700 U	989 U	1,760 U	46.2 U	433 U	9,100 U	4.26 U	4.57 U
Bromochloromethane	843 U	95.0 U	214 U	361 U	372 U	91.6 U	437 U	1,410 U	1,700 U	989 U	1,760 U	46.2 U	433 U	9,100 U	4.26 U	4.57 U
Bromoform	843 U	95.0 U	214 U	361 U	372 U	91.6 U	437 U	1,410 U	1,700 U	989 U	1,760 U	46.2 U	433 U	9,100 U	4.26 U	4.57 U
Bromomethane	843 U	95.0 U	214 U	361 U	372 U	91.6 U	437 U	1,410 U	1,700 U	989 U	1,760 U	46.2 U	433 U	9,100 U	4.26 U	4.57 U
Carbon Disulfide	843 U	95.0 U	214 U	361 U	372 U	91.6 U	437 U	1,410 U	1,700 U	989 U	1,760 U	46.2 U	433 U	9,100 U	4.26 U	4.57 U
Cyclohexane	NA	NA	NA	NA	NA	NA	NA									
Dibromomethane	843 U	95.0 U	214 U	361 U	372 U	91.6 U	437 U	1,410 U	1,700 U	989 U	1,760 U	46.2 U	433 U	9,100 U	4.26 U	4.57 U
Diisopropyl ether (DIPE)	843 U	95.0 U	214 U	361 U	372 U	91.6 U	437 U	1,410 U	1,700 U	989 U	1,760 U	46.2 U	433 U	9,100 U	4.26 U	4.57 U
Ethyl Alcohol	NA	NA	NA	NA	NA	NA	NA									
Ethylbenzene	843 U	95.0 U	214 U	361 U	372 U	91.6 U	437 U	1,410 U	1,700 U	989 U	1,760 U	46.2 U	433 U	9,100 U	4.26 U	4.57 U
Hexachlorobutadiene	843 U	95.0 U	214 U	361 U	372 U	91.6 U	437 U	1,410 U	1,700 U	989 U	1,760 U	46.2 U	433 U	9,100 U	4.26 U	4.57 U
lodomethane	843 U	95.0 U	214 U	361 U	372 U	91.6 U	437 U	1,410 U	1,700 U	989 U	1,760 U	46.2 U	433 U	9,100 U	4.26 U	4.57 U
Isopropylbenzene	843 U	95.0 U	214 U	361 U	372 U	91.6 U	437 U	1,410 U	1,700 U	989 U	1,760 U	46.2 U	433 U	9,100 U	4.26 U	4.57 U
m-,p-Xylene	1,690 U	190 U	428 U	721 U	744 U	183 U	874 U	2,830 U	3,400 U	1,980 U	3,520 U	92.3 U	866 U	18,200 U	8.52 U	9.15 U
Methyl Acetate	NA	NA	NA	NA	NA	NA	NA									
Methyl tert-butyl ether	843 U	95.0 U	214 U	361 U	372 U	91.6 U	437 U	1,410 U	1,700 U	989 U	1,760 U	46.2 U	433 U	9,100 U	4.26 U	4.57 U
Methylcyclohexane	NA	NA	NA	NA	NA	NA	NA									
Naphthalene	843 U	95.0 U	214 U	361 U	372 U	91.6 U	437 U	1,410 U	1,700 U	989 U	1,760 U	46.2 U	433 U	9,100 U	4.26 U	4.57 U
n-Butylbenzene	843 U	95.0 U	214 U	361 U	372 U	91.6 U	437 U	1,410 U	1,700 U	989 U	1,760 U	46.2 U	433 U	9,100 U	4.26 U	4.57 U
n-Propylbenzene	843 U	95.0 U	214 U	361 U	372 U	91.6 U	437 U	1,410 U	1,700 U	989 U	1,760 U	46.2 U	433 U	9,100 U	4.26 U	4.57 U
o-Xylene	843 U	95.0 U	214 U	361 U	372 U	91.6 U	437 U	1,410 U	1,700 U	989 U	1,760 U	46.2 U	433 U	9,100 U	4.26 U	4.57 U
p-lsopropyltoluene	843 U	95.0 U	45.0 J	361 U	33.5 J	11.0 J	437 U	1,410 U	1,700 U	989 U	1,760 U	46.2 U	433 U	9,100 U	4.26 U	4.57 U
sec-Butylbenzene	843 U	95.0 U	214 U	361 U	372 U	91.6 U	437 U	1,410 U	1,700 U	989 U	1,760 U	46.2 U	433 U	9,100 U	4.26 U	4.57 U

Location Identification:	MB1-PE-13	MB1-PE-14	MB1-PE-16	MB1-PE-19	MB1-PE-22	MB1-PE-25	MB1-PE-28	MB1-PE-31	MB1-PE-32	MB1-PE-B-01	MB1-PE-B-02	MB1-PE-B-03	MB1-PE-B-04	MB1-PE-B-05	ME-01	ME-02
Sample Depth (Feet):																
Date Collected:	04/05/12	04/05/12	04/05/12	04/05/12	04/05/12	04/05/12	04/05/12	04/19/12	04/19/12	04/18/12	04/18/12	04/18/12	04/19/12	04/19/12	05/06/15	05/06/15
Styrene	843 U	95.0 U	214 U	361 U	372 U	91.6 U	437 U	1,410 U	1,700 U	989 U	1,760 U	46.2 U	433 U	9,100 U	4.26 U	4.57 U
tert-Butylbenzene	843 U	95.0 U	214 U	361 U	372 U	91.6 U	437 U	1,410 U	1,700 U	989 U	1,760 U	46.2 U	433 U	9,100 U	4.26 U	4.57 U
Toluene	843 U	95.0 U	214 U	361 U	372 U	91.6 U	437 U	1,410 U	1,700 U	989 U	1,760 U	46.2 U	433 U	9,100 U	4.26 U	4.57 U
trans-1,4-Dichloro-2-butene	4,220 U	475 U	1,070 U	1,800 U	1,860 U	458 U	2,180 U	7,070 U	8,490 U	4,940 U	8,790 U	231 U	2,160 U	45,500 U	21.3 U	22.9 U
Xylenes (total)	NA	NA	NA	NA	NA	8.52 U	9.15 U									
1,1,1-Trichloroethane	843 U	95.0 U	32.1 J	79.4 J	372 U	91.6 U	437 U	1,410 U	1,700 U	890 J	1,760 U	46.2 U	433 U	9,100 U	4.26 U	4.57 U
1,1,2,2-Tetrachloroethane	843 U	95.0 U	214 U	361 U	372 U	91.6 U	437 U	1,410 U	1,700 U	989 U	1,760 U	46.2 U	433 U	9,100 U	4.26 U	4.57 U
1,1,2-trichloro-1,2,2-trifluoroethane	NA	NA	NA	NA	NA	NA	NA									
1,1,2-Trichloroethane	843 U	95.0 U	214 U	361 U	372 U	91.6 U	437 U	1,410 U	1,700 U	989 U	1,760 U	46.2 U	433 U	9,100 U	4.26 U	4.57 U
1,1-Dichloroethane	843 U	95.0 U	550	570	372	398	437 U	1,410 U	1,700 U	1,140	1,760 U	46.2 U	433 U	9,100 U	4.26 U	4.57 U
1,1-Dichloroethene	843 U	95.0 U	143 J	902	335 J	140	437 U	1,410 U	1,700 U	3,450	1,760 U	46.2 U	433 U	9,100 U	4.26 U	4.57 U
1,2,4-Trichlorobenzene	843 U	95.0 U	214 U	361 U	372 U	91.6 U	437 U	1,410 U	1,700 U	989 U	1,760 U	46.2 U	433 U	9,100 U	4.26 U	4.57 U
1,2-Dibromo-3-chloropropane	4,220 U	475 U	1,070 U	1,800 U	1,860 U	458 U	2,180 U	7,070 U	8,490 U	4,940 U	8,790 U	231 U	2,160 U	45,500 U	25.6 U	27.4 U
1,2-Dichlorobenzene	843 U	95.0 U	214 U	361 U	372 U	91.6 U	437 U	1,410 U	1,700 U	989 U	1,760 U	46.2 U	433 U	9,100 U	4.26 U	4.57 U
1,2-Dichloroethane	843 U	95.0 U	214 U	361 U	372 U	91.6 U	437 U	1,410 U	1,700 U	989 U	1,760 U	46.2 U	433 U	9,100 U	4.26 U	4.57 U
1,2-Dichloropropane	843 U	95.0 U	214 U	361 U	372 U	91.6 U	437 U	1,410 U	1,700 U	989 U	1,760 U	46.2 U	433 U	9,100 U	4.26 U	4.57 U
1,3-Dichlorobenzene	843 U	95.0 U	214 U	361 U	372 U	91.6 U	437 U	1,410 U	1,700 U	989 U	1,760 U	46.2 U	433 U	9,100 U	4.26 U	4.57 U
1,4-Dichlorobenzene	843 U	95.0 U	214 U	361 U	372 U	91.6 U	437 U	1,410 U	1,700 U	989 U	1,760 U	46.2 U	433 U	9,100 U	4.26 U	4.57 U
Bromodichloromethane	843 U	95.0 U	214 U	361 U	372 U	91.6 U	437 U	1,410 U	1,700 U	989 U	1,760 U	46.2 U	433 U	9,100 U	4.26 U	4.57 U
Carbon Tetrachloride	843 U	95.0 U	214 U	361 U	372 U	91.6 U	437 U	1,410 U	1,700 U	989 U	1,760 U	46.2 U	433 U	9,100 U	4.26 U	4.57 U
Chlorobenzene	843 U	95.0 U	214 U	361 U	372 U	91.6 U	437 U	1,410 U	1,700 U	989 U	1,760 U	46.2 U	433 U	9,100 U	4.26 U	4.57 U
Volatile Organic Compounds (μg/kg)																
Chloroethane	843 U	95.0 U	214 U	361 U	372 U	91.6 U	437 U	1,410 U	1,700 U	989 U	1,760 U	46.2 U	433 U	9,100 U	4.26 U	4.57 U
Chloroform	843 U	95.0 U	214 U	361 U	372 U	91.6 U	437 U	1,410 U	1,700 U	989 U	1,760 U	46.2 U	433 U	9,100 U	4.26 U	4.57 U
Chloromethane	843 U	95.0 U	214 U	361 U	372 U	91.6 U	437 U	1,410 U	1,700 U	989 U	1,760 U	46.2 U	433 U	9,100 U	4.26 U	4.57 U
cis-1,3-Dichloropropene	843 U	95.0 U	214 U	361 U	372 U	91.6 U	437 U	1,410 U	1,700 U	989 U	1,760 U	46.2 U	433 U	9,100 U	4.26 U	4.57 U
Dibromochloromethane	843 U	95.0 U	214 U	361 U	372 U	91.6 U	437 U	1,410 U	1,700 U	989 U	1,760 U	46.2 U	433 U	9,100 U	4.26 U	4.57 U
Dichlorodifluoromethane	4,220 U	475 U	1,070 U	1,800 U	1,860 U	458 U	2,180 U	7,070 U	8,490 U	4,940 U	8,790 U	231 U	2,160 U	45,500 U	4.26 U	4.57 U
Methylene Chloride	4,220 U	475 U	1,070 U	1,800 U	1,860 U	458 U	2,180 U	7,070 U	8,490 U	4,940 U	8,790 U	231 U	2,160 U	45,500 U	17.0 U	18.3 U
trans-1,3-Dichloropropene	843 U	95.0 U	214 U	361 U	372 U	91.6 U	437 U	1,410 U	1,700 U	989 U	1,760 U	46.2 U	433 U	9,100 U	4.26 U	4.57 U
Trichlorofluoromethane	843 U	95.0 U	214 U	361 U	372 U	91.6 U	437 U	1,410 U	1,700 U	989 U	1,760 U	46.2 U	433 U	9,100 U	4.26 U	4.57 U
cis-1,2-Dichloroethene	5,850	2,450	7,840	13,100	14,200	5,150	6,330	30,400	18,800	26,500	7,300	663	3,360	4,910 J	4.26 U	4.57 U
Tetrachloroethene	843 U	95.0 U	214 U	361 U	372 U	91.6 U	437 U	1,410 U	1,700 U	989 U	1,760 U	46.2 U	433 U	9,100 U	4.26 U	4.57 U
trans-1,2-Dichloroethene	843 U	95.0 U	103 J	361 U	372 U	37.6 J	437 U	1,410 U	1,700 U	989 U	1,760 U	46.2 U	433 U	9,100 U	4.26 U	4.57 U
Trichloroethene	23,400	1,160	47.1 J	3,500	316 J	2,590	20,100	21,300	23,700	23,900	25,300	96.0	9,520	140,000	4.26 U	4.57 U
Vinyl Chloride	843 U	92.2 J	146 J	361 U	372 U	122	74.3 J	1,410 U	662 J	989 U	1,760 U	24.9 J	433 U	9,100 U	4.26 U	4.57 U
Total Chlorinated VOCs	NA	NA	NA	NA	NA	ND	ND									
Total Petroleum Hydrocarbons (µg/kg)																
Ethylene Glycol Monobutyl Ether	NA	NA	NA	NA	NA	NA	NA									
Euryrene Grycor Monobutyr Ether	INA	INA	INA	INA	INA	INA	INA									

Location Identification:	ME-03	ME-04	ME-05	ME-06	ME-07	ME-08	ME-09	ME-10	MIS-01	MIS-02	MIS-03	MIS-04	MIS-05	MIS-06	MIS-07	MIS-08	MIS-09	MIS-10	MIS-11	MIS-12	MIS-13	MIS-14	MIS-15	MIS-16
Sample Depth (Feet):																								
Date Collected:	05/06/15	05/06/15	05/06/15	05/06/15	05/06/15	05/06/15	05/06/15	05/06/15	05/04/15	05/04/15	05/04/15	05/04/15	05/04/15	05/04/15	05/05/15	05/05/15	05/05/15	05/05/15	05/05/15	05/05/15	05/05/15	05/05/15	05/05/15	05/05/15
Volatile Organic Compounds (μg/kg)																								
1,1,1,2-Tetrachloroethane	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
1,1-Dichloropropene	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
1,2,3-Trichlorobenzene	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
1,2,3-Trichloropropane	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
1,2,4-Trimethylbenzene	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
1,2-Dibromoethane	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
1,3,5-Trimethylbenzene	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
1,3-Dichloropropane	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
2,2-Dichloropropane	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
2-Butanone	21.7 U	21.7 U	22.2 U	22.2 U	21.9 U	22.5 U	21.7 U	1.37 J	20.9 U	21.7 U	22.1 U	21.3 U	21.5 U	21.2 U	2.44 J	3.99 J	20.7 U	22.4 U	21.1 U	2.09 J	2.24 J	21.3 U	22.1 U	
2-Chlorotoluene	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
2-Hexanone	10.9 U	10.8 U	11.1 U	11.1 U	10.9 U	11.2 U	10.9 U	10.8 U	10.5 U	10.8 U	11.1 U	10.6 U	10.8 U	10.6 U	11.2 U	11.4 U	10.3 U	11.2 U	10.6 U	10.8 U	10.3 U	10.7 U	11.1 U	11.0 U
4-Chlorotoluene	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
4-Methyl-2-pentanone	10.9 U	10.8 U	11.1 U	11.1 U	10.9 U	11.2 U	10.9 U	10.8 U	10.5 U	10.8 U	11.1 U	10.6 U	10.8 U	10.6 U	11.2 U	11.4 U	10.3 U	11.2 U	10.6 U	10.8 U	10.3 U	10.7 U	11.1 U	11.0 U
Acetone	5.52 J	4.15 J	7.83 J	4.96 J	3.93 J	4.80 J	8.77 J	12.4 J	3.17 J	4.18 J	5.87 J	3.88 J	4.05 J	6.45 J	11.2 J	29.5 J	5.34 J	4.22 J	4.92 J	19.2 J	19.3 J	4.78 J	7.04 J	4.56 J
Benzene	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
Bromobenzene	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
Bromochloromethane	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
Bromoform	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
Bromomethane	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
Carbon Disulfide	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
Cyclohexane	NA																							
Dibromomethane	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
Diisopropyl ether (DIPE)	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
Ethyl Alcohol	NA																							
Ethylbenzene	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	1.02 J	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
Hexachlorobutadiene	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
Iodomethane	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
Isopropylbenzene	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
m-,p-Xylene	8.69 U	8.67 U	8.87 U	8.90 U	8.74 U	8.98 U	8.69 U	8.67 U	8.37 U	8.66 U	8.85 U	8.52 U	8.61 U	8.48 U	8.93 U	9.15 U	8.26 U	8.96 U	8.44 U	8.66 U	8.26 U	8.54 U	8.85 U	8.82 U
Methyl Acetate	NA																							
Methyl tert-butyl ether	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
Methylcyclohexane	NA																							
Naphthalene	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
n-Butylbenzene	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
n-Propylbenzene	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
o-Xylene	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
p-Isopropyltoluene	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
sec-Butylbenzene	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U

Location Identification:	ME-03	ME-04	ME-05	ME-06	ME-07	ME-08	ME-09	ME-10	MIS-01	MIS-02	MIS-03	MIS-04	MIS-05	MIS-06	MIS-07	MIS-08	MIS-09	MIS-10	MIS-11	MIS-12	MIS-13	MIS-14	MIS-15	MIS-16
Sample Depth (Feet):																								
Date Collected:	05/06/15		05/06/15	05/06/15		05/06/15	05/06/15	05/06/15	05/04/15	05/04/15	05/04/15	05/04/15			05/05/15		05/05/15	05/05/15	05/05/15	05/05/15	05/05/15	05/05/15	05/05/15	
Styrene	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
tert-Butylbenzene	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	
Toluene	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	1.09 J	4.58 U	4.13 U		4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	
trans-1,4-Dichloro-2-butene	21.7 U	21.7 U	22.2 U	22.2 U	21.9 U	22.5 U	21.7 U	21.7 U	20.9 U	21.7 U	22.1 U	21.3 U	21.5 U	21.2 U	22.3 U	22.9 U	20.7 U	22.4 U	21.1 U	21.7 U	20.6 U	21.3 U	22.1 U	22.1 U
Xylenes (total)	8.69 U	8.67 U	8.87 U	8.90 U	8.74 U	8.98 U	8.69 U	8.67 U	8.37 U	8.66 U	8.85 U	8.52 U	8.61 U	8.48 U	8.93 U	9.15 U	8.26 U	8.96 U	8.44 U	8.66 U	8.26 U	8.54 U	8.85 U	8.82 U
1,1,1-Trichloroethane	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
1,1,2,2-Tetrachloroethane	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
1,1,2-trichloro-1,2,2-trifluoroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,2-Trichloroethane	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
1,1-Dichloroethane	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
1,1-Dichloroethene	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
1,2,4-Trichlorobenzene	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
1,2-Dibromo-3-chloropropane	26.1 U	26.0 U	26.6 U	26.7 U	26.2 U	26.9 U	26.1 U	26.0 U	25.1 U	26.0 U	26.5 U	25.6 U	25.8 U	25.4 U	26.8 U	27.5 U	24.8 U	26.9 U	25.3 U	26.0 U	24.8 U	25.6 U	26.5 U	26.5 U
1,2-Dichlorobenzene	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
1,2-Dichloroethane	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
1,2-Dichloropropane	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
1,3-Dichlorobenzene	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
1,4-Dichlorobenzene	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
Bromodichloromethane	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
Carbon Tetrachloride	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
Chlorobenzene	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
Volatile Organic Compounds (μg/kg)																								
Chloroethane	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
Chloroform	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
Chloromethane	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
cis-1,3-Dichloropropene	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
Dibromochloromethane	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
Dichlorodifluoromethane	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	9.52	4.58 U	1.00 J	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	1.88 J
Methylene Chloride	17.4 U	17.3 U	17.7 U	17.8 U	17.5 U	18.0 U	17.4 U	17.3 U	16.7 U	17.3 U	17.7 U	17.0 U	17.2 U	17.0 U	17.9 U	18.3 U	16.5 U	17.9 U	16.9 U	17.3 U	16.5 U	17.1 U	17.7 U	17.6 U
trans-1,3-Dichloropropene	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
Trichlorofluoromethane	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	1.45 J	4.58 U	4.13 U		4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
cis-1.2-Dichloroethene	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
Tetrachloroethene	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
trans-1.2-Dichloroethene	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
Trichloroethene	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	
Vinyl Chloride	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U		4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	_
Total Chlorinated VOCs	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	11.0 J	ND	1.00 J	ND	ND	ND	ND	ND	ND	1.88 J
Total Petroleum Hydrocarbons (µg/kg)	140	110	110	110	140	145	110	110	145	140	110	110	110	110	11.00	110	1.000	110	110	110	110	110	140	1.000
Ethylene Glycol Monobutyl Ether	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Euryleine Olycol Mollobatyl Ethel	INA	INA	INA	INA	11/7	INA	INA	INA	INA	INA	INA	INA	I N/A	INA	INA	МА	INA	INA						

Location Identification:	MIS-17	MIS-18	RC-3	RC-5	RC-14	RC-19	RC-73	RC-78	RC-84	RC-98	RC-109	RC-112	RC-112	RC-144	RC-149	RC-152	RC-152	RC-152	RC-152
Sample Depth (Feet):																			
Date Collected:	05/05/15	05/05/15	08/20/18	08/20/18	08/20/18	08/20/18	08/20/18	08/20/18	08/21/18	08/20/18	08/21/18	08/16/18	10/26/18	08/21/18	08/20/18	08/16/18	10/25/18	10/25/18	10/25/18
Volatile Organic Compounds (μg/kg)																			
1.1.1.2-Tetrachloroethane	4.48 U	4.18 U	NA																
1,1-Dichloropropene	4.48 U	4.18 U	NA																
1.2.3-Trichlorobenzene	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U
1,2,3-Trichloropropane	4.48 U	4.18 U	NA																
1,2,4-Trimethylbenzene	4.48 U	4.18 U	NA																
1,2-Dibromoethane	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U
1,3,5-Trimethylbenzene	4.48 U	4.18 U	NA																
1,3-Dichloropropane	4.48 U	4.18 U	NA																
2,2-Dichloropropane	4.48 U	4.18 U	NA																
2-Butanone	22.4 U	20.9 U	22.0 U	22.0 U	22.0 U	23.0 U	22.0 U	22.0 U	1,300 U	24.0 U	22.0 U	21.0 U	NA	21.0 U	25.0 U	5,100 U	2,000 U	21,000 U	4,600 U
2-Chlorotoluene	4.48 U	4.18 U	NA																
2-Hexanone	11.2 U	10.4 U	22.0 U	22.0 U	22.0 U	23.0 U	22.0 U	22.0 U	1,300 U	24.0 U	22.0 U	21.0 U	NA	21.0 U	25.0 U	5,100 U	2,000 U	21,000 U	4,600 U
4-Chlorotoluene	4.48 U	4.18 U	NA																
4-Methyl-2-pentanone	11.2 U	10.4 U	22.0 U	22.0 U	22.0 U	23.0 U	22.0 U	22.0 U	1,300 U	24.0 U	22.0 U	21.0 U	NA	21.0 U	25.0 U	5,100 U	2,000 U	21,000 U	4,600 U
Acetone	12.3 J	6.53 J	22.0 U	25.0	22.0 U	23.0 U	26.0	22.0 U	1,300 U	28.0	22.0 U	110	NA	21.0 U	25.0 U	5,100 U	2,000 U	21,000 U	4,600 U
Benzene	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U
Bromobenzene	4.48 U	4.18 U	NA																
Bromochloromethane	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U
Bromoform	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U
Bromomethane	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U
Carbon Disulfide	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U
Cyclohexane	NA	NA	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U
Dibromomethane	4.48 U	4.18 U	NA																
Diisopropyl ether (DIPE)	4.48 U	4.18 U	NA																
Ethyl Alcohol	NA																		
Ethylbenzene	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	320	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U
Hexachlorobutadiene	4.48 U	4.18 U	NA																
lodomethane	4.48 U	4.18 U	NA																
Isopropylbenzene	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U
m-,p-Xylene	8.95 U	8.35 U	NA																
Methyl Acetate	NA	NA	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U
Methyl tert-butyl ether	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U
Methylcyclohexane	NA	NA	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U
Naphthalene	4.48 U	4.18 U	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
n-Butylbenzene	4.48 U	4.18 U	NA	NA	NA NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA
n-Propylbenzene	4.48 U	4.18 U	NA	NA	NA NA	NA													
o-Xylene	4.48 U	4.18 U	NA	NA	NA NA	NA	NA NA	NA NA	NA	NA	NA	NA							
p-Isopropyltoluene	4.48 U	4.18 U	NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA NA	NA	NA NA	NA	NA
sec-Butylbenzene	4.48 U	4.18 U	NA																

Location Identification:	MIS-17	MIS-18	RC-3	RC-5	RC-14	RC-19	RC-73	RC-78	RC-84	RC-98	RC-109	RC-112	RC-112	RC-144	RC-149	RC-152	RC-152	RC-152	RC-152
Sample Depth (Feet):	05/05/45	05/05/45	00/00/40	00/00/40	00/00/40	08/20/18	00/00/40	00/00/40	08/21/18	00/00/40	08/21/18	08/16/18	10/26/18	08/21/18	08/20/18	08/16/18	10/25/18	10/25/18	10/25/18
Date Collected: Styrene	4.48 U	05/05/15 4.18 U	08/20/18 4.40 U	08/20/18 4.40 U	08/20/18 4.40 U	4.70 U	08/20/18 4.50 U	08/20/18 4.50 U	250 U	08/20/18 4.80 U	4.30 U	4.20 U	10/26/18 NA	4.20 U	5.00 U	1.000 U	410 U	4.200 U	920 U
tert-Butvlbenzene	4.48 U	4.18 U	NA	NA	4.40 U	4.70 U	4.30 U	4.30 U	NA	4.80 U	4.30 U	4.20 U	NA NA	4.20 U	NA	NA	NA	4,200 0 NA	NA NA
Toluene	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U	9.70	NA NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U
trans-1,4-Dichloro-2-butene	22.4 U	20.9 U	NA	NA	NA	4.70 G	NA	4.30 U	NA	4.00 U	4.30 U	NA	NA NA	4.20 U	NA	NA	NA	4,200 0 NA	NA
Xylenes (total)	8.95 U	8.35 U	8.70 U	8.90 U	8.90 U	9.30 U	9.00 U	9.00 U	3,200	9.50 U	8.70 U	27.0	NA NA	8.40 U	10.0 U	2,000 U	820 U	8,400 U	1,800 U
1,1,1-Trichloroethane	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	2,000
1.1.2.2-Tetrachloroethane	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U
1,1,2-trichloro-1,2,2-trifluoroethane	NA	NA	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U
1.1.2-Trichloroethane	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U
1,1-Dichloroethane	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA.	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U
1.1-Dichloroethene	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA NA	4.20 U	5.00 U	1,200	610	4,200	1,200
1,2,4-Trichlorobenzene	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U
1,2-Dibromo-3-chloropropane	26.9 U	25.1 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U
1.2-Dichlorobenzene	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U
1.2-Dichloroethane	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U
1.2-Dichloropropane	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U
1.3-Dichlorobenzene	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U
1,4-Dichlorobenzene	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U
Bromodichloromethane	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U
Carbon Tetrachloride	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U
Chlorobenzene	4.48 U		4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U
Volatile Organic Compounds (μg/kg)	7.70 0	4.100	4.40 0	7.70 0	4.40 0	4.700	4.50 0	4.50 0	200 0	4.00 0	4.00 0	4.20 0	IVA	4.20 0	3.00 0	1,000 0	4100	4,200 0	320 0
Chloroethane	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U
Chloroform	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U
Chloromethane	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U
cis-1,3-Dichloropropene	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U
Dibromochloromethane	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U
Dichlorodifluoromethane	19.0	7.64	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U
Methylene Chloride	17.9 U	16.7 U	13.0 U	13.0 U	13.0 U	14.0 U	13.0 U	13.0 U	760 U	14.0 U	13.0 U	12.0 U	NA NA	13.0 U	15.0 U	3,100 U	1,200 U	13,000 U	2,800 U
trans-1,3-Dichloropropene	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U
Trichlorofluoromethane	4.48 U	4.18 U	4.40 U	4.40 U	11.0	5.80	4.50 U	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U
cis-1,2-Dichloroethene	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA NA	4.20 U	5.00 U	20,000	15,000	96,000	19,000
Tetrachloroethene	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	22,000	2,200	16,000	920 U
trans-1,2-Dichloroethene	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U
Trichloroethene	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA NA	4.20 U	5.00 U	51,000	4,800	18,000	920 U
Vinyl Chloride	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U
Total Chlorinated VOCs	19.0	7.64	NA	NA	NA	4.70 O	4.30 U	4.30 U	NA	4.00 U	4.30 G	4.20 U	NA NA	4.20 U	NA	NA	NA	4,200 U	NA NA
Total Petroleum Hydrocarbons (µg/kg)	13.0	7.04	11/7	11/7	INC	11/7	INC	INC	11/7	INC	INC	INA	INC	1 1/7	11/7	IVA	14/7	11/7	INA
Ethylene Glycol Monobutyl Ether	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	5.600 U	NA	NA	NA	NA	NA	NA
Eurylette Grycol Monobutyl Ethel	INA	INA	INA	INA	INA	IVA	INA	INA	INA	INA	INA	INA	3,000 0	INA	INA	IVA	INA	11/7	INA

Location Identification:	RC-154	RC-161	RC-166	RC-166	RC-166	RC-166	RC-166	RC-168	RC-174	RC-186	RC-191	RC-213	RC-215	RC-220	RC-222	RC-223
Sample Depth (Feet):																
Date Collected:	08/20/18	08/16/18	08/16/18	10/26/18	10/26/18	10/26/18	10/26/18	10/25/18	08/16/18	08/16/18	08/16/18	08/21/18	08/21/18	08/21/18	10/25/18	10/25/1
olatile Organic Compounds (μg/kg)																
,1,1,2-Tetrachloroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
,1-Dichloropropene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
,2,3-Trichlorobenzene	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 L
,2,3-Trichloropropane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
,2,4-Trimethylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
,2-Dibromoethane	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U
,3,5-Trimethylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
,3-Dichloropropane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,2-Dichloropropane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Butanone	21.0 U	22.0 U	610,000 U	660,000 U	440,000 U	25,000 U	15,000 U	1,000 U	1,100 U	20.0 U	21.0 U	24.0 U	24.0 U	33.0 U	23.0 U	21.0 U
-Chlorotoluene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
-Hexanone	21.0 U	22.0 U	610,000 U	660,000 U	440,000 U	25,000 U	15,000 U	1,000 U	1,100 U	20.0 U	21.0 U	24.0 U	24.0 U	33.0 U	23.0 U	21.0 U
I-Chlorotoluene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
-Methyl-2-pentanone	21.0 U	22.0 U	610,000 U	660,000 U	440,000 U	25,000 U	15,000 U	1,000 U	1,100 U	20.0 U	21.0 U	24.0 U	24.0 U	33.0 U	23.0 U	21.0 U
Acetone	21.0 U	38.0	610,000 U	660,000 U	440,000 U	25,000 U	15,000 U	1,000 U	1,100 U	52.0	29.0	28.0	27.0	33.0 U	32.0	40.0
Benzene	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U
Bromobenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Bromochloromethane	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U
Bromoform	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U
Bromomethane	4.20 U*	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U*	4.20 U
Carbon Disulfide	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U
Cyclohexane	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U
Dibromomethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Diisopropyl ether (DIPE)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethyl Alcohol	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethylbenzene	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U
	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
odomethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
sopropylbenzene	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U
n-,p-Xylene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methyl Acetate	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U	520	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U
Methyl tert-butyl ether	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U
Methylcyclohexane	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 L
laphthalene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
i-Butylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
-Propylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
-Xylene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
o-Isopropyltoluene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ec-Butvlbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Location Identification:	RC-154	RC-161	RC-166	RC-166	RC-166	RC-166	RC-166	RC-168	RC-174	RC-186	RC-191	RC-213	RC-215	RC-220	RC-222	RC-223
Sample Depth (Feet):																
Date Collected:	08/20/18	08/16/18	08/16/18	10/26/18	10/26/18	10/26/18	10/26/18	10/25/18	08/16/18	08/16/18	08/16/18	08/21/18	08/21/18	08/21/18	10/25/18	10/25/18
Styrene	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U
tert-Butylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Toluene	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U
trans-1,4-Dichloro-2-butene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Xylenes (total)	8.30 U	8.90 U	250,000 U	270,000 U	180,000 U	9,800 U	6,000 U	420 U	430 U	8.10 U	8.20 U	9.70 U	9.50 U	13.0 U	9.20 U	8.40 U
1,1,1-Trichloroethane	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	6,100	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U
1,1,2,2-Tetrachloroethane	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U
1,1,2-trichloro-1,2,2-trifluoroethane	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U
1,1,2-Trichloroethane	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U
1,1-Dichloroethane	12.0	5.10	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210	210 U	4.00 U	19.0	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U
1,1-Dichloroethene	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	1,600	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U
1,2,4-Trichlorobenzene	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U
1,2-Dibromo-3-chloropropane	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U
1,2-Dichlorobenzene	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U
1,2-Dichloroethane	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U
1,2-Dichloropropane	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U
1,3-Dichlorobenzene	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U
1,4-Dichlorobenzene	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U
Bromodichloromethane	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U
Carbon Tetrachloride	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U
Chlorobenzene	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U
Volatile Organic Compounds (μg/kg)																
Chloroethane	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U
Chloroform	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U
Chloromethane	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U
cis-1,3-Dichloropropene	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U
Dibromochloromethane	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U
Dichlorodifluoromethane	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U
Methylene Chloride	12.0 U	13.0 U	370,000 U	400,000 U	260,000 U	15,000 U	9,000 U	630 U	640 U	12.0 U	12.0 U	15.0 U	14.0 U	20.0 U	14.0 U	13.0 U
trans-1,3-Dichloropropene	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U
Trichlorofluoromethane	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U
cis-1,2-Dichloroethene	10.0	4.40 U	250,000	130,000 U	220,000	85,000	160,000	1,700	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U
Tetrachloroethene	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U
trans-1,2-Dichloroethene	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U
Trichloroethene	4.20 U	4.40 U	6,000,000	2,900,000	3,200,000	180,000	3,000 U	1,200	440	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U
Vinyl Chloride	6.30	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U
Total Chlorinated VOCs	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Petroleum Hydrocarbons (µg/kg)																
Ethylene Glycol Monobutyl Ether	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Location Identification:	RC-225	RC-227	RC-229	RC-231	RC-232	RC-233	RC-234	RMM-35	RMM-40	RMM-44	RMM-48	RMM-106	RMM-134	RMM-138	RMM-143	RMM-147
Sample Depth (Feet):																
Date Collected:	10/25/18	10/25/18	10/25/18	10/26/18	10/26/18	10/26/18	10/26/18	08/21/18	08/21/18	08/21/18	08/21/18	08/21/18	08/22/18	08/22/18	08/22/18	08/22/18
Volatile Organic Compounds (μg/kg)																
1,1,1,2-Tetrachloroethane	NA															
1,1-Dichloropropene	NA	NA NA	NA	NA												
1,2,3-Trichlorobenzene	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U*
1,2,3-Trichloropropane	NA															
1,2,4-Trimethylbenzene	NA															
1,2-Dibromoethane	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
1,3,5-Trimethylbenzene	NA															
1,3-Dichloropropane	NA															
2,2-Dichloropropane	NA															
2-Butanone	38.0 U	21.0 U	19.0 U	NA	NA	NA	NA	2,300 U	22.0 U	21.0 U	24.0 U	22.0 U	21.0 U	24.0 U	24.0 U	24.0 U
2-Chlorotoluene	NA															
2-Hexanone	38.0 U	21.0 U	19.0 U	NA	NA	NA	NA	2,300 U	22.0 U	21.0 U	24.0 U	22.0 U	21.0 U	24.0 U	24.0 U	24.0 U*
4-Chlorotoluene	NA															
4-Methyl-2-pentanone	38.0 U	21.0 U	19.0 U	NA	NA	NA	NA	2,300 U	22.0 U	21.0 U	24.0 U	22.0 U	21.0 U	24.0 U	24.0 U	24.0 U
Acetone	38.0 U	29.0	19.0 U	NA	NA	NA	NA	2,300 U	28.0	24.0	66.0	27.0	57.0	50.0	69.0	160
Benzene	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	8.60	46.0
Bromobenzene	NA															
Bromochloromethane	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
Bromoform	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U*
Bromomethane	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
Carbon Disulfide	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
Cyclohexane	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
Dibromomethane	NA															
Diisopropyl ether (DIPE)	NA															
Ethyl Alcohol	NA															
Ethylbenzene	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
Hexachlorobutadiene	NA															
lodomethane	NA															
Isopropylbenzene	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
m-,p-Xylene	NA															
Methyl Acetate	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	610	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
Methyl tert-butyl ether	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
Methylcyclohexane	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	6.00
Naphthalene	NA															
n-Butylbenzene	NA															
n-Propylbenzene	NA															
o-Xylene	NA															
p-Isopropyltoluene	NA															
sec-Butylbenzene	NA															

Location Identification:	RC-225	RC-227	RC-229	RC-231	RC-232	RC-233	RC-234	RMM-35	RMM-40	RMM-44	RMM-48	RMM-106	RMM-134	RMM-138	RMM-143	RMM-147
Sample Depth (Feet):																
Date Collected:	10/25/18	10/25/18	10/25/18	10/26/18	10/26/18	10/26/18	10/26/18	08/21/18	08/21/18	08/21/18	08/21/18	08/21/18	08/22/18	08/22/18	08/22/18	08/22/18
Styrene	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
tert-Butylbenzene	NA															
Toluene	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
trans-1,4-Dichloro-2-butene	NA															
Xylenes (total)	15.0 U	8.40 U	7.50 U	NA	NA	NA	NA	910 U	9.00 U	8.50 U	9.80 U	8.90 U	8.20 U	9.70 U	9.80 U	12.0
1,1,1-Trichloroethane	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
1,1,2,2-Tetrachloroethane	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U*
1,1,2-trichloro-1,2,2-trifluoroethane	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
1,1,2-Trichloroethane	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
1,1-Dichloroethane	7.50 U	13.0	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
1,1-Dichloroethene	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
1,2,4-Trichlorobenzene	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U*
1,2-Dibromo-3-chloropropane	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U*
1,2-Dichlorobenzene	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U*
1,2-Dichloroethane	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
1,2-Dichloropropane	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
1,3-Dichlorobenzene	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U*
1,4-Dichlorobenzene	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U*
Bromodichloromethane	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
Carbon Tetrachloride	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
Chlorobenzene	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
Volatile Organic Compounds (μg/kg)																
Chloroethane	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
Chloroform	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
Chloromethane	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
cis-1,3-Dichloropropene	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
Dibromochloromethane	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
Dichlorodifluoromethane	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
Methylene Chloride	23.0 U	13.0 U	11.0 U	NA	NA	NA	NA	1,400 U	13.0 U	13.0 U	15.0 U	13.0 U	12.0 U	15.0 U	15.0 U	14.0 U
trans-1,3-Dichloropropene	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
Trichlorofluoromethane	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	7.70	4.10 U	4.90 U	4.90 U	4.80 U
cis-1,2-Dichloroethene	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
Tetrachloroethene	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
trans-1,2-Dichloroethene	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
Trichloroethene	19.0	4.20 U	3.80 U	NA	NA	NA	NA NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
Vinyl Chloride	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
Total Chlorinated VOCs	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA NA	NA	NA	NA
Total Petroleum Hydrocarbons (µg/kg)			. 1/ 1	. 47 (1 4/ 1		. 4/ 1	. 1/ 1			14/1	. 47 1	14/1	14/1	14/1	14/1
Ethylene Glycol Monobutyl Ether	NA	NA	NA	5,900 U	5,400 U	5,600 U	5,600 U	NA								
Early Silve Orycon Monobutyl Ethol	14/1	14/1	14/1	5,550 5	5, 155 5	0,000 0	0,000 0	1 4/ 1	14/1	1 47 1	14/1	14/1	1 1/1	14/1	14/1	14/1

Location Identification:	RMM-152	RMM-204	RMM-230	RMM-240	RMM-243	RMM-248	RMM-263	RMM-279	RMM-298	RMM-310	RMM-314	RMM-318	RMM-333	RMM-355	RMM-359
Sample Depth (Feet):															
Date Collected:	08/22/18	08/23/18	08/22/18	08/23/18	08/23/18	08/23/18	08/23/18	08/23/18	08/22/18	08/23/18	08/23/18	08/23/18	08/23/18	08/23/18	08/23/18
Volatile Organic Compounds (μg/kg)															
1,1,1,2-Tetrachloroethane	NA														
1,1-Dichloropropene	NA														
1,2,3-Trichlorobenzene	5.50 U	4.50 U	4.60 U*	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U	4.40 U
1,2,3-Trichloropropane	NA														
1,2,4-Trimethylbenzene	NA														
1,2-Dibromoethane	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U	4.40 U
1,3,5-Trimethylbenzene	NA														
1,3-Dichloropropane	NA														
2,2-Dichloropropane	NA														
2-Butanone	27.0 U	22.0 U	23.0 U	21.0 U	23.0 U	23.0 U	25.0 U	1,200 U	30.0 U	23.0 U	19.0 U	21.0 U	23.0 U	23.0 U	22.0 U
2-Chlorotoluene	NA														
2-Hexanone	27.0 U	22.0 U	23.0 U*	21.0 U	23.0 U	23.0 U	25.0 U	1,200 U	30.0 U	23.0 U	19.0 U	21.0 U	23.0 U	23.0 U	22.0 U
4-Chlorotoluene	NA														
4-Methyl-2-pentanone	27.0 U	22.0 U	23.0 U	21.0 U	23.0 U	23.0 U	25.0 U	2,900	30.0 U	23.0 U	19.0 U	21.0 U	23.0 U	23.0 U	22.0 U
Acetone	69.0	22.0 U	51.0	30.0	23.0 U	23.0 U	25.0 U	1,200 U	30.0 U	23.0 U	19.0 U	93.0	23.0 U	23.0 U	45.0
Benzene	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U	4.40 U
Bromobenzene	NA														
Bromochloromethane	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U	4.40 U
Bromoform	5.50 U	4.50 U	4.60 U*	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U	4.40 U
Bromomethane	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U	4.40 U
Carbon Disulfide	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U	4.40 U
Cyclohexane	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U	4.40 U
Dibromomethane	NA														
Diisopropyl ether (DIPE)	NA														
Ethyl Alcohol	NA														
Ethylbenzene	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U	4.40 U
Hexachlorobutadiene	NA														
lodomethane	NA														
Isopropylbenzene	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U	4.40 U
m-,p-Xylene	NA														
Methyl Acetate	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U	4.40 U
Methyl tert-butyl ether	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U	4.40 U
Methylcyclohexane	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U	4.40 U
Naphthalene	NA														
n-Butylbenzene	NA														
n-Propylbenzene	NA														
o-Xylene	NA														
p-Isopropyltoluene	NA														
sec-Butylbenzene	NA														

Location Identification:	RMM-152	RMM-204	RMM-230	RMM-240	RMM-243	RMM-248	RMM-263	RMM-279	RMM-298	RMM-310	RMM-314	RMM-318	RMM-333	RMM-355	RMM-359
Sample Depth (Feet):															
Date Collected:	08/22/18	08/23/18	08/22/18	08/23/18	08/23/18	08/23/18	08/23/18	08/23/18	08/22/18	08/23/18	08/23/18	08/23/18	08/23/18	08/23/18	08/23/18
Styrene	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U	4.40 U
tert-Butylbenzene	NA														
Toluene	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U	4.40 U
trans-1,4-Dichloro-2-butene	NA														
Xylenes (total)	11.0 U	9.00 U	9.20 U	8.30 U	9.00 U	9.20 U	9.80 U	970	12.0 U	9.00 U	7.80 U	8.40 U	9.20 U	9.10 U	8.80 U
1,1,1-Trichloroethane	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U	4.40 U
1,1,2,2-Tetrachloroethane	5.50 U	4.50 U	4.60 U*	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U	4.40 U
1,1,2-trichloro-1,2,2-trifluoroethane	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U	4.40 U
1,1,2-Trichloroethane	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U	4.40 U
1,1-Dichloroethane	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U	4.40 U
1,1-Dichloroethene	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U	4.40 U
1,2,4-Trichlorobenzene	5.50 U	4.50 U	4.60 U*	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U	4.40 U
1,2-Dibromo-3-chloropropane	5.50 U	4.50 U	4.60 U*	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U	4.40 U
1,2-Dichlorobenzene	5.50 U	4.50 U	4.60 U*	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U	4.40 U
1,2-Dichloroethane	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U	4.40 U
1,2-Dichloropropane	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U	4.40 U
1,3-Dichlorobenzene	5.50 U	4.50 U	4.60 U*	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U	4.40 U
1,4-Dichlorobenzene	5.50 U	4.50 U	4.60 U*	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U	4.40 U
Bromodichloromethane	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U	4.40 U
Carbon Tetrachloride	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U	4.40 U
Chlorobenzene	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U	4.40 U
Volatile Organic Compounds (μg/kg)															
Chloroethane	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U	4.40 U
Chloroform	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U	4.40 U
Chloromethane	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U	4.40 U
cis-1,3-Dichloropropene	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U	4.40 U
Dibromochloromethane	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U	4.40 U
Dichlorodifluoromethane	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U	4.40 U
Methylene Chloride	16.0 U	13.0 U	14.0 U	12.0 U	14.0 U	14.0 U	15.0 U	740 U	18.0 U	14.0 U	12.0 U	13.0 U	14.0 U	14.0 U	13.0 U
trans-1,3-Dichloropropene	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U	4.40 U
Trichlorofluoromethane	5.50 U	4.50 U	4.60 U	4.30	4.50 U	4.60 U	4.90 U	2,400	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U	4.40 U
cis-1,2-Dichloroethene	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U	4.40 U
Tetrachloroethene	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U	4.40 U
trans-1,2-Dichloroethene	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U	4.40 U
Trichloroethene	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U	4.40 U
Vinyl Chloride	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U	4.40 U
Total Chlorinated VOCs	NA	NA NA	NA	NA	NA	NA	NA	NA							
Total Petroleum Hydrocarbons (µg/kg)		,													
Ethylene Glycol Monobutyl Ether	NA														
End Office Monobacy End			1 4/ 1	1 17 3	// \	14/1	. 47 1			. 47 1	. 47 1	. 47 1	. 17 3		1 1/ 1

Location Identification:	RMM-363	RMM-374	RMM-379	RMM-396	SB-100	SB-100	SB-101	SB-102	SB-102	SB-103	SB-103	SB-104	SB-104	SB-105	SB-105	SB-106
Sample Depth (Feet):					5	7	4.5	4	6	4	7	4	6	4	6	4
Date Collected:	08/23/18	08/22/18	08/22/18	08/22/18	08/31/15	08/31/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15
Volatile Organic Compounds (μg/kg)																
1,1,1,2-Tetrachloroethane	NA	NA	NA	NA	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
1,1-Dichloropropene	NA	NA	NA	NA	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
1,2,3-Trichlorobenzene	4.40 U	4.50 U*	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
1,2,3-Trichloropropane	NA	NA	NA	NA	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
1,2,4-Trimethylbenzene	NA	NA	NA	NA	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	15.3 J
1,2-Dibromoethane	4.40 U	4.50 U	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
1,3,5-Trimethylbenzene	NA	NA	NA	NA	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
1,3-Dichloropropane	NA	NA	NA	NA	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
2,2-Dichloropropane	NA	NA	NA	NA	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
2-Butanone	22.0 U	22.0 U	24.0 U	21.0 U	23.6 U	24.9 U	1,070 U	968 U	1,060 U	1,210 U	1,330 U	11,100 U	1,070 U	5,360 U	22.8 U	1,270 U
2-Chlorotoluene	NA	NA	NA	NA	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
2-Hexanone	22.0 U	22.0 U*	24.0 U	21.0 U	11.8 U	12.5 U	215 U	194 U	212 U	241 U	266 U	2,220 U	215 U	1,070 U	11.4 U	255 U
4-Chlorotoluene	NA	NA	NA	NA	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
4-Methyl-2-pentanone	22.0 U	22.0 U	24.0 U	21.0 U	11.8 U	12.5 U	215 U	194 U	212 U	241 U	266 U	2,220 U	215 U	1,070 U	11.4 U	255 U
Acetone	49.0	42.0	130	21.0 U	47.1 U	49.9 U	1,070 U	968 U	1,060 U	1,210 U	1,330 U	11,100 U	1,070 U	5,360 U	45.6 U	1,270 U
Benzene	4.40 U	4.50 U	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	38.2 J
Bromobenzene	NA	NA	NA	NA	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
Bromochloromethane	4.40 U	4.50 U	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
Bromoform	4.40 U	4.50 U*	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
Bromomethane	4.40 U	4.50 U	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
Carbon Disulfide	4.40 U	4.50 U	5.50	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
Cyclohexane	4.40 U	4.50 U	4.70 U	4.10 U	NA											
Dibromomethane	NA	NA	NA	NA	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
Diisopropyl ether (DIPE)	NA	NA	NA	NA	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
Ethyl Alcohol	NA															
Ethylbenzene	4.40 U	4.50 U	23.0	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
Hexachlorobutadiene	NA	NA	NA	NA	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
lodomethane	NA	NA	NA	NA	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
Isopropylbenzene	4.40 U	4.50 U	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	11.2 J
m-,p-Xylene	NA	NA	NA	NA	9.42 U	9.98 U	85.9 U	77.5 U	84.9 U	96.5 U	107 U	889 U	85.8 U	429 U	9.13 U	102 U
Methyl Acetate	4.40 U	4.50 U	4.70 U	4.10 U	NA											
Methyl tert-butyl ether	4.40 U	4.50 U	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
Methylcyclohexane	4.40 U	4.50 U	4.70 U	4.10 U	NA											
Naphthalene	NA	NA	NA	NA	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
n-Butylbenzene	NA	NA	NA	NA	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
n-Propylbenzene	NA	NA	NA	NA	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
o-Xylene	NA	NA	NA	NA	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
p-Isopropyltoluene	NA	NA	NA	NA	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
sec-Butylbenzene	NA	NA	NA	NA	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U

Location Identification:	RMM-363	RMM-374	RMM-379	RMM-396	SB-100	SB-100	SB-101	SB-102	SB-102	SB-103	SB-103	SB-104	SB-104	SB-105	SB-105	SB-106
Sample Depth (Feet):					5	7	4.5	4	6	4	7	4	6	4	6	4
Date Collected:	08/23/18	08/22/18	08/22/18	08/22/18	08/31/15	08/31/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15
Styrene	4.40 U	4.50 U	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
tert-Butylbenzene	NA	NA	NA	NA	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
Toluene	4.40 U	4.50 U	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	21.4 J
trans-1,4-Dichloro-2-butene	NA	NA	NA	NA	23.6 U	24.9 U	215 U	194 U	212 U	241 U	266 U	2,220 U	215 U	1,070 U	22.8 U	255 U
Xylenes (total)	8.80 U	9.00 U	9.40 U	8.20 U	9.42 U	9.98 U	85.9 U	77.5 U	84.9 U	96.5 U	107 U	889 U	85.8 U	429 U	9.13 U	102 U
1,1,1-Trichloroethane	4.40 U	4.50 U	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
1,1,2,2-Tetrachloroethane	4.40 U	4.50 U*	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
1,1,2-trichloro-1,2,2-trifluoroethane	4.40 U	4.50 U	4.70 U	4.10 U	NA											
1,1,2-Trichloroethane	4.40 U	4.50 U	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
1,1-Dichloroethane	4.40 U	4.50 U	13.0	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
1,1-Dichloroethene	4.40 U	4.50 U	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
1,2,4-Trichlorobenzene	4.40 U	4.50 U*	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
1,2-Dibromo-3-chloropropane	4.40 U	4.50 U*	4.70 U	4.10 U	28.3 U	29.9 U	215 U	194 U	212 U	241 U	266 U	2,220 U	215 U	1,070 U	27.4 U	255 U
1,2-Dichlorobenzene	4.40 U	4.50 U*	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
1,2-Dichloroethane	4.40 U	4.50 U	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
1,2-Dichloropropane	4.40 U	4.50 U	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
1,3-Dichlorobenzene	4.40 U	4.50 U*	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
1,4-Dichlorobenzene	4.40 U	4.50 U*	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
Bromodichloromethane	4.40 U	4.50 U	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
Carbon Tetrachloride	4.40 U	4.50 U	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
Chlorobenzene	4.40 U	4.50 U	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
Volatile Organic Compounds (μg/kg)																
Chloroethane	4.40 U	6.50	35.0	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
Chloroform	4.40 U	4.50 U	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
Chloromethane	4.40 U	4.50 U	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
cis-1,3-Dichloropropene	4.40 U	4.50 U	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
Dibromochloromethane	4.40 U	4.50 U	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
Dichlorodifluoromethane	4.40 U	4.50 U	4.70 U	4.10 U	4.71 U	4.99 U	215 U	194 U	212 U	241 U	266 U	2,220 U	215 U	1,070 U	4.56 U	255 U
Methylene Chloride	13.0 U	13.0 U	14.0 U	12.0 U	18.8 U	20.0 U	215 U	194 U	212 U	241 U	266 U	2,220 U	215 U	1,070 U	18.3 U	14.3 J
trans-1,3-Dichloropropene	4.40 U	4.50 U	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
Trichlorofluoromethane	4.40 U	4.50 U	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
cis-1,2-Dichloroethene	4.40 U	4.50 U	4.70 U	4.10 U	1.23 J	9.11	44.7	29.0 J	56.9	112	73.5	1,180	42.5 J	603	32.5	967
Tetrachloroethene	4.40 U	4.50 U	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	9.65 J	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
trans-1,2-Dichloroethene	4.40 U	4.50 U	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	83.6 J	4.56 U	73.3
Trichloroethene	4.40 U	4.50 U	4.70 U	12.0	27.1	57.8	266	238	394	844	428	8,050	278	3,920	24.8	1,230
Vinyl Chloride	4.40 U	4.50 U	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	9.08	108
Total Chlorinated VOCs	NA	NA	NA	NA	28.3 J	66.9	311	267 J	451	966 J	502	9,230	321 J	4,610 J	66.4	2,390 J
Total Petroleum Hydrocarbons (µg/kg)																
Ethylene Glycol Monobutyl Ether	NA															

Location Identification:	SB-106	SB-107	SB-107	SB-108	SB-108	SB-109	SB-109	SB-110	SB-110	SB-111	SB-111	SB-112	SB-112	SB-113	SB-113	SB-114	SB-114
Sample Depth (Feet):	6	4	6	4	6	2	5	2	5	4	6	4	6	4	6	3	5
Date Collected:	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15
Volatile Organic Compounds (μg/kg)																	
1,1,1,2-Tetrachloroethane	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	220,000 U	24,500 U	4,880 U	190 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	548 U [464 U]	222 U	51.1 U	4.53 U
1,1-Dichloropropene	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	220,000 U	24,500 U	4,880 U	190 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	548 U [464 U]	222 U	51.1 U	4.53 U
1,2,3-Trichlorobenzene	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	220,000 U	24,500 U	4,880 U	190 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	548 U [464 U]	222 U	51.1 U	4.53 U
1,2,3-Trichloropropane	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	220,000 U	24,500 U	4,880 U	190 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	548 U [464 U]	222 U	51.1 U	4.53 U
1,2,4-Trimethylbenzene	4.59 U	0.569 J	9.13	379	61.2 J	6,600,000	86,400	123,000	4,230	1,380	5.98	4.86 U	2.12 J [6.11 U]	10,400 [11,800]	7,160	1,140	15.3
1,2-Dibromoethane	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	220,000 U	24,500 U	4,880 U	190 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	548 U [464 U]	222 U	51.1 U	4.53 U
1,3,5-Trimethylbenzene	4.59 U	0.984 J	4.34 U	469	943	2,340,000	31,800	36,700	1,230	498	4.26 J	4.86 U	0.935 J [6.11 U]	3,490 [4,280]	3,810	313	10.3
1,3-Dichloropropane	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	220,000 U	24,500 U	4,880 U	190 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	548 U [464 U]	222 U	51.1 U	4.53 U
2,2-Dichloropropane	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	220,000 U	24,500 U	4,880 U	190 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	548 U [464 U]	222 U	51.1 U	4.53 U
2-Butanone	23.0 U	19.2 U	21.7 U	2,310 U	1,560 U	5,490,000 U	612,000 U	122,000 U	4,740 U	3,190 U	24.1 U	24.3 U	29.6 U [30.5 U]	13,700 U [11,600 U]	5,550 U	1,280 U	22.7 U
2-Chlorotoluene	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	220,000 U		4,880 U	190 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	548 U [464 U]	222 U	51.1 U	4.53 U
2-Hexanone	11.5 U	9.61 U	10.9 U	463 U	312 U	1,100,000 U	,	24,400 U	948 U	638 U	12.0 U	12.2 U	14.8 U [15.3 U]	2,740 U [2,320 U]	1,110 U	255 U	11.3 U
4-Chlorotoluene	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	220,000 U	24,500 U	4,880 U	190 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]		222 U	51.1 U	4.53 U
4-Methyl-2-pentanone	11.5 U	9.61 U	10.9 U	463 U	312 U		122,000 U	24,400 U	948 U	638 U	12.0 U	12.2 U	14.8 U [15.3 U]		1,110 U	255 U	11.3 U
Acetone	45.9 U	10.2 J	10.1 J	2,310 U	1,560 U	5,490,000 U		122,000 U	4,740 U	3,190 U	13.7 J	17.6 J	13.4 J [13.1 J]		5,550 U	1,280 U	16.8 J
Benzene	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	220,000 U	24,500 U	4,880 U	190 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	548 U [464 U]	222 U	51.1 U	4.53 U
Bromobenzene	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	220,000 U		4,880 U	190 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]		222 U	51.1 U	4.53 U
Bromochloromethane	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	220,000 U	24,500 U	4,880 U	190 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]		222 U	51.1 U	4.53 U
Bromoform	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	220,000 U	24,500 U	4,880 U	190 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]		222 U	51.1 U	4.53 U
Bromomethane	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	220,000 U	24,500 U	4,880 U	190 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]		222 U	51.1 U	4.53 U
Carbon Disulfide	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	220,000 U	24,500 U	4,880 U	190 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	548 U [464 U]	222 U	51.1 U	4.53 U
Cyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibromomethane	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	220,000 U	24,500 U	4,880 U	190 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	548 U [464 U]	222 U	51.1 U	4.53 U
Diisopropyl ether (DIPE)	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	220,000 U	24,500 U	4,880 U	190 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	548 U [464 U]	222 U	51.1 U	4.53 U
Ethyl Alcohol	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethylbenzene	4.59 U	3.84 U	4.34 U	92.6 U	13.1 J	220,000 U	24,500 U	4,880 U	190 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	548 U [464 U]	222 U	51.1 U	4.53 U
Hexachlorobutadiene	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	220,000 U	24,500 U	4,880 U	190 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]		222 U	51.1 U	4.53 U
Iodomethane	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	220,000 U	24,500 U	4,880 U	190 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]		222 U	51.1 U	4.53 U
Isopropylbenzene	4.59 U	3.84 U	4.34 U	119	259	374,000	6,360 J	6,440	300	347	2.69 J	4.86 U	5.92 U [6.11 U]		530	67.9	4.52 J
m-,p-Xylene	9.18 U	7.69 U	8.69 U	185 U	125 U	439,000 U	49,000 U	9,760 U	47.4 J	255 U	9.63 U	9.72 U	11.8 U [12.2 U]		444 U	102 U	9.07 U
Methyl Acetate	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methyl tert-butyl ether	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	220,000 U	24,500 U	4,880 U	190 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]		222 U	51.1 U	4.53 U
Methylcyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	220,000 U	24,500 U	4,880 U	190 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]		77.6 J	17.4 J	0.780 J
n-Butylbenzene	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	220,000 U	24,500 U	4,880 U	190 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]		113 J	51.1 U	4.53 U
n-Propylbenzene	4.59 U	3.84 U	4.34 U	408	639	1,470,000	22,800 J	35,600	1,420	795	1.51 J	4.86 U	5.92 U [6.11 U]		1,950	152	7.48
o-Xylene	4.59 U	3.84 U	4.34 U	92.6 U	20.0 J	154,000 J	24,500 U	2,590 J	148 J	154	1.59 J	4.86 U	5.92 U [6.11 U]		222 U	17.4 J	4.53 U
p-Isopropyltoluene	4.59 U	3.84 U	4.34 U	19.4 J	62.5 U	125,000 J	24,500 U	1,610 J	167 J	44.7 J	0.732 J	4.86 U	5.92 U [6.11 U]		202 J	32.2 J	0.707 J
sec-Butylbenzene	4.59 U	1.65 J	4.34 U	92.6 U	62.5 U	220,000 U	24,500 U	4,880 U	190 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	548 U [464 U]	222 U	61.3	0.916 J

Location Identification:	SB-106	SB-107	SB-107	SB-108	SB-108	SB-109	SB-109	SB-110	SB-110	SB-111	SB-111	SB-112	SB-112	SB-113	SB-113	SB-114	SB-114
Sample Depth (Feet):	6	4	6	4	6	2	5	2	5	4	6	4	6	4	6	3	5
Date Collected:	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15
Styrene	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	220,000 U	24,500 U	4,880 U	190 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	548 U [464 U]	222 U	51.1 U	4.53 U
tert-Butylbenzene	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	220,000 U	24,500 U	4,880 U	190 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	548 U [464 U]	222 U	51.1 U	4.53 U
Toluene	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	220,000 U	24,500 U	4,880 U	190 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	548 U [464 U]	222 U	51.1 U	1.11 J
trans-1,4-Dichloro-2-butene	23.0 U	19.2 U	21.7 U	463 U	312 U	1,100,000 U	122,000 U	24,400 U	948 U	638 U	24.1 U	24.3 U	29.6 U [30.5 U]	2,740 U [2,320 U]	1,110 U	255 U	22.7 U
Xylenes (total)	9.18 U	7.69 U	8.69 U	185 U	20.0 J	154,000 J	49,000 U	2,590 J	195 J	154 J	9.63 U	9.72 U	11.8 U [12.2 U]	313 J [858 J]	444 U	17.4 J	9.07 U
1,1,1-Trichloroethane	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	220,000 U	24,500 U	4,880 U	190 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]		222 U	51.1 U	4.53 U
1,1,2,2-Tetrachloroethane	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	220,000 U	24,500 U	4,880 U	190 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	548 U [464 U]	222 U	51.1 U	4.53 U
1,1,2-trichloro-1,2,2-trifluoroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,2-Trichloroethane	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	220,000 U	24,500 U	4,880 U	190 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	548 U [464 U]	222 U	51.1 U	4.53 U
1,1-Dichloroethane	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	220,000 U	24,500 U	4,880 U	190 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	548 U [464 U]	222 U	51.1 U	4.53 U
1,1-Dichloroethene	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	220,000 U	24,500 U	4,880 U	190 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	548 U [464 U]	222 U	51.1 U	4.53 U
1,2,4-Trichlorobenzene	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	220,000 U	24,500 U	4,880 U	190 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	548 U [464 U]	222 U	51.1 U	4.53 U
1,2-Dibromo-3-chloropropane	27.5 U	23.1 U	26.1 U	463 U	312 U	1,100,000 U	122,000 U	24,400 U	948 U	638 U	28.9 U	29.2 U	35.5 U [36.7 U]	2,740 U [2,320 U]	1,110 U	255 U	27.2 U
1,2-Dichlorobenzene	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	220,000 U	24,500 U	4,880 U	190 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	548 U [464 U]	222 U	51.1 U	4.53 U
1,2-Dichloroethane	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	220,000 U	24,500 U	4,880 U	190 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	548 U [464 U]	222 U	51.1 U	4.53 U
1,2-Dichloropropane	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	220,000 U	24,500 U	4,880 U	190 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	548 U [464 U]	222 U	51.1 U	4.53 U
1,3-Dichlorobenzene	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	220,000 U	24,500 U	4,880 U	190 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	548 U [464 U]	222 U	51.1 U	4.53 U
1,4-Dichlorobenzene	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	220,000 U	24,500 U	4,880 U	190 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	548 U [464 U]	222 U	51.1 U	4.53 U
Bromodichloromethane	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	220,000 U	24,500 U	4,880 U	190 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	548 U [464 U]	222 U	51.1 U	4.53 U
Carbon Tetrachloride	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	220,000 U	24,500 U	4,880 U	190 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	548 U [464 U]	222 U	51.1 U	4.53 U
Chlorobenzene	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	220,000 U	24,500 U	4,880 U	190 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	548 U [464 U]	222 U	51.1 U	4.53 U
Volatile Organic Compounds (μg/kg)																	
Chloroethane	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	220,000 U	24,500 U	4,880 U	190 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	548 U [464 U]	222 U	51.1 U	4.53 U
Chloroform	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	220,000 U	24,500 U	4,880 U	190 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	548 U [464 U]	222 U	51.1 U	4.53 U
Chloromethane	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	220,000 U	24,500 U	4,880 U	190 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	548 U [464 U]	222 U	51.1 U	4.53 U
cis-1,3-Dichloropropene	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	220,000 U	24,500 U	4,880 U	190 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	548 U [464 U]	222 U	51.1 U	4.53 U
Dibromochloromethane	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	220,000 U	24,500 U	4,880 U	190 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	548 U [464 U]	222 U	51.1 U	4.53 U
Dichlorodifluoromethane	4.59 U	3.84 U	4.34 U	463 U	312 U	1,100,000 U	122,000 U	24,400 U	948 U	638 U	4.82 U	4.86 U	5.92 U [6.11 U]	2,740 U [2,320 U]	1,110 U	255 U	4.53 U
Methylene Chloride	18.4 U	15.4 U	17.4 U	463 U	312 U	1,100,000 U	122,000 U	24,400 U	948 U	638 U	19.3 U	2.28 J	23.7 U [24.4 U]	2,740 U [2,320 U]	1,110 U	255 U	3.80 J
trans-1,3-Dichloropropene	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	220,000 U	24,500 U	4,880 U	190 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	548 U [464 U]	222 U	51.1 U	4.53 U
Trichlorofluoromethane	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	220,000 U	24,500 U	4,880 U	190 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]		222 U	51.1 U	4.53 U
cis-1,2-Dichloroethene	11.8	3.84 U	4.28 J	92.6 U	62.5 U	220,000 U	24,500 U	1,220 J	58.8 J	568	4.82 U	4.86 U	5.92 U [6.11 U]	307 J [464 U]	222 U	501	4.53 U
Tetrachloroethene	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	220,000 U	24,500 U	4,880 U	190 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	548 U [464 U]	222 U	51.1 U	4.53 U
trans-1,2-Dichloroethene	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	220,000 U	24,500 U	4,880 U	190 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	548 U [464 U]	222 U	26.6 J	4.53 U
Trichloroethene	7.38	3.84 U	4.34 U	92.6 U	62.5 U	220,000 U	24,500 U	4,880 U	190 U	33.2 J	4.82 U	2.22 J	5.92 U [6.11 U]	548 U [464 U]	222 U	15.8 J	4.53 U
Vinyl Chloride	5.14	3.84 U	10.9	92.6 U	62.5 U	220,000 U	24,500 U	4,880 U	190 U	38.3 J	3.84 J	0.992 J	2.82 J [3.31 J]	115 J [464 U]	222 U	10.7 J	1.23 J
Total Chlorinated VOCs	24.3	ND	15.2 J	ND	ND	ND	ND	1,220 J	58.8 J	640 J	3.84 J	5.49 J	2.82 J [3.31 J]	422 J [ND]	ND	554 J	5.03 J
Total Petroleum Hydrocarbons (µg/kg)																	
Ethylene Glycol Monobutyl Ether	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
, -, ,																	

Location Identification:	SB-115	SB-115	SB-116	SB-116	SB-117	SB-117	SB-118	SB-118	SB-119	SB-119	SB-201	SB-201	SB-202	SB-202	SB-203	SB-203	SB-204
Sample Depth (Feet):	3	6	3	6	3	6	3	6	3	5	4	6	3	4.5	3	6	4
Date Collected:	09/01/15	09/01/15	09/01/15	09/01/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15
Volatile Organic Compounds (μg/kg)					•										•		
1,1,1,2-Tetrachloroethane	230,000 U	191 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U
1,1-Dichloropropene	230.000 U	191 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U
1,2,3-Trichlorobenzene	230,000 U	191 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U
1,2,3-Trichloropropane	230,000 U	191 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U
1,2,4-Trimethylbenzene	2,990,000	5,620	189 U	2.01 J	399 U	4.30 U	2,430 U	363 U	81.1 U	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U
1,2-Dibromoethane	230,000 U	191 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U
1,3,5-Trimethylbenzene	990,000	2,330	189 U	0.760 J	399 U	4.30 U	2,430 U	363 U	81.1 U	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U
1,3-Dichloropropane	230,000 U	191 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U
2,2-Dichloropropane	230,000 U	191 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U
2-Butanone	5,740,000 U	4,780 U	4,720 U	23.8 U	9,980 U	21.5 U	60,700 U	9,080 U	2,030 U	21.6 U	21.4 U	24.5 U	20.0 U	3,640 U	21.3 U	21.6 U	1,120 U
2-Chlorotoluene	230,000 U	191 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U
2-Hexanone	1,150,000 U	956 U	944 U	11.9 U	2,000 U	10.8 U	12,100 U	1,820 U	406 U	10.8 U	10.7 U	12.3 U	9.99 U	728 U	10.6 U	10.8 U	224 U
4-Chlorotoluene	230,000 U	191 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U
4-Methyl-2-pentanone	1,150,000 U	956 U	944 U	11.9 U	2,000 U	10.8 U	12,100 U	1,820 U	406 U	10.8 U	10.7 U	12.3 U	9.99 U	728 U	10.6 U	10.8 U	224 U
	5,740,000 U	4,780 U	4,720 U	8.08 J	9,980 U	14.5 J	60,700 U	9,080 U	2,030 U	18.1 J	22.9 J	26.7 J	11.4 J	3,640 U	9.89 J	16.6 J	1,120 U
Benzene	230,000 U	191 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U
Bromobenzene	230,000 U	191 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U
Bromochloromethane	230,000 U	191 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U
Bromoform	230,000 U	191 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U
Bromomethane	230,000 U	191 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U
Carbon Disulfide	230,000 U	191 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U
Cyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibromomethane	230,000 U	191 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U
Diisopropyl ether (DIPE)	230,000 U	191 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U
Ethyl Alcohol	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethylbenzene	230,000 U	191 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U	4.31 U	4.27 U	4.91 U	4.00 U	470	4.25 U	4.31 U	44.9 U
Hexachlorobutadiene	230,000 U	191 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U
lodomethane	230,000 U	191 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U
Isopropylbenzene	126,000 J	333	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U	4.31 U	4.27 U	4.91 U	4.00 U	189	4.25 U	4.31 U	44.9 U
m-,p-Xylene	459,000 U	382 U	378 U	9.50 U	798 U	8.61 U	4,860 U	727 U	162 U	8.63 U	8.55 U	9.81 U	7.99 U	291 U	8.50 U	8.63 U	89.8 U
Methyl Acetate	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methyl tert-butyl ether	230,000 U	191 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U
Methylcyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	230,000 U	191 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U
n-Butylbenzene	230,000 U	191 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U
n-Propylbenzene	542,000	1,200	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U
o-Xylene	230,000 U	143 J	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U
p-Isopropyltoluene	71,200 J	88.0 J	189 U	4.75 U	399 U	4.30 U	2,430 U	6,210	81.1 U	1.58 J	4.27 U	4.91 U	4.00 U	686	4.25 U	4.31 U	44.9 U
sec-Butylbenzene	230,000 U	191 U	189 U	4.75 U	399 U	4.30 U	2.430 U	363 U	81.1 U	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U

Location Identification:	SB-115	SB-115	SB-116	SB-116	SB-117	SB-117	SB-118	SB-118	SB-119	SB-119	SB-201	SB-201	SB-202	SB-202	SB-203	SB-203	SB-204
Sample Depth (Feet):	3	6	3	6	3	6	3	6	3	5	4	6	3	4.5	3	6	4
Date Collected:	09/01/15	09/01/15	09/01/15	09/01/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15
Styrene	230,000 U	191 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U
ert-Butylbenzene	230,000 U	191 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U
Toluene	230,000 U	191 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U	4.31 U	4.27 U	4.91 U	4.00 U	121 J	4.25 U	4.31 U	44.9 U
rans-1,4-Dichloro-2-butene	1,150,000 U	956 U	944 U	23.8 U	2,000 U	21.5 U	12,100 U	1,820 U	406 U	21.6 U	21.4 U	24.5 U	20.0 U	728 U	21.3 U	21.6 U	224 U
(ylenes (total)	459,000 U	143 J	378 U	9.50 U	798 U	8.61 U	4,860 U	727 U	162 U	8.63 U	8.55 U	9.81 U	7.99 U	291 U	8.50 U	8.63 U	89.8 U
,1,1-Trichloroethane	230,000 U	191 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U	4.31 U	4.27 U	4.91 U	29.1	146 U	27.5	4.31 U	556
,1,2,2-Tetrachloroethane	230,000 U	191 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U
,1,2-trichloro-1,2,2-trifluoroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
,1,2-Trichloroethane	230,000 U	191 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U
,1-Dichloroethane	230,000 U	191 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U	4.31 U	4.27 U	4.91 U	27.7	146 U	21.3	58.0	74.5
,1-Dichloroethene	230,000 U	191 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U	4.31 U	4.27 U	4.91 U	1.19 J	146 U	4.25 U	4.31 U	23.8 J
,2,4-Trichlorobenzene	230,000 U	191 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U
,2-Dibromo-3-chloropropane	1,150,000 U	956 U	944 U	28.5 U	2,000 U	25.8 U	12,100 U	1,820 U	406 U	25.9 U	25.6 U	29.4 U	24.0 U	728 U	25.5 U	25.9 U	224 U
,2-Dichlorobenzene	230,000 U	191 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U
,2-Dichloroethane	230,000 U	191 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U
,2-Dichloropropane	230,000 U	191 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U
,3-Dichlorobenzene	230,000 U	191 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U
,4-Dichlorobenzene	230,000 U	191 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U
Bromodichloromethane	230,000 U	191 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U
Carbon Tetrachloride	230,000 U	191 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U	4.31 U	4.27 U	4.91 U	4.30	146 U	3.94 J	4.31 U	44.9 U
Chlorobenzene	230,000 U	191 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U
/olatile Organic Compounds (μg/kg)																	
Chloroethane	230,000 U	191 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	45.0	44.9 U
Chloroform	230,000 U	191 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U
Chloromethane	230,000 U	191 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U
cis-1,3-Dichloropropene	230,000 U	191 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U
Dibromochloromethane	230,000 U	191 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U
Dichlorodifluoromethane	1,150,000 U	956 U	944 U	4.75 U	2,000 U	4.30 U	12,100 U	1,820 U	406 U	4.31 U	4.27 U	4.91 U	4.00 U	728 U	4.25 U	4.31 U	224 U
Methylene Chloride	1,150,000 U	956 U	944 U	19.0 U	2,000 U	17.2 U	12,100 U	1,820 U	406 U	17.3 U	17.1 U	19.6 U	16.0 U	728 U	17.0 U	17.3 U	224 U
rans-1,3-Dichloropropene	230,000 U	191 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U
Frichlorofluoromethane	230,000 U	191 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U
sis-1,2-Dichloroethene	230,000 U	191 U	871	22.8	1,960	32.6	7,140	182 J	200	38.3	1.39 J	4.91 U	32.6	146 U	19.3	1.15 J	110
	230,000 U	191 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U
rans-1,2-Dichloroethene	230,000 U	191 U	104 J	4.75 U	295 J	1.87 J	2,430 U	363 U	20.3 J	1.52 J	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U
- Frichloroethene	230,000 U	191 U	6,610	73.6	7,770	95.3	43,100	363 U	2,010	47.5	4.27 U	4.91 U	84.8	146 U	55.0	4.31 U	469
/inyl Chloride	230,000 U	191 U	189 U	1.47 J	399 U	2.75 J	2,430 U	363 U	81.1 U	18.7	4.27 U	4.91 U	4.00 U	146 U	4.25 U	3.67 J	44.9 U
Total Chlorinated VOCs	ND	ND	7,590 J	97.9 J	10,000 J	133 J	50,200	182 J	2,230 J	106 J	1.39 J	ND	180 J	ND	127 J	108 J	1,230 J
Total Petroleum Hydrocarbons (µg/kg)			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,														
	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethylene Glycol Monobutyl Ether	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA

Location Identification:	SB-204	SB-205	SB-205	SB-206	SB-206	SB-207	SB-207	SB-208	SB-208	SB-209	SB-209	SB-210	SB-210	SB-211	SB-211	SB-212	SB-212
Sample Depth (Feet):	6	4	6	3	7	3	6	3	5	4	6	1.5	4	3	5	3	5
Date Collected:	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15
Volatile Organic Compounds (μg/kg)											00.02.10		00.02.10			00.02.10	
	4.96 U [4.58 U]	4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5.600 U	5.82 U	173 U	9.440 U	25.600 U	197 U	96.5 U	1.810 U	9.320 U	4.88 U	178 U
1,1-Dichloropropene		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U
1,2,3-Trichlorobenzene		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U
1,2,3-Trichloropropane		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5.600 U	5.82 U	173 U	9.440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U
1.2.4-Trimethylbenzene		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U	9,440 U	25,600 U	140 J	96.5 U	1,810 U	9,870	4.88 U	178 U
1,2-Dibromoethane		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U
1,3,5-Trimethylbenzene		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U	9,440 U	25,600 U	197 U	96.5 U	1,810 U	3,540 J	4.88 U	178 U
1,3-Dichloropropane		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U
2,2-Dichloropropane	4.96 U [4.58 U]	4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U
2-Butanone	24.8 U [22.9 U]	22.4 U [22.5 U]	25.2 U	21.3 U	20.7 U	5,420 U	140,000 U	29.1 U	4,320 U	236,000 U	639,000 U	4,930 U	2,410 U	45,300 U	233,000 U	24.4 U	4,460 U
2-Chlorotoluene	4.96 U [4.58 U]	4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U
2-Hexanone	12.4 U [11.4 U]	11.2 U [11.3 U]	12.6 U	10.7 U	10.3 U	1,080 U	28,000 U	14.5 U	865 U	47,200 U	128,000 U	987 U	483 U	9,060 U	46,600 U	12.2 U	892 U
4-Chlorotoluene	4.96 U [4.58 U]	4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U
4-Methyl-2-pentanone	12.4 U [11.4 U]	11.2 U [11.3 U]	12.6 U	10.7 U	10.3 U	1,080 U	28,000 U	14.5 U	865 U	47,200 U	128,000 U	987 U	483 U	9,060 U	46,600 U	12.2 U	892 U
Acetone	25.9 J [15.8 J]	9.47 J [11.0 J]	24.6 J	20.1 J	41.4 U	5,420 U	140,000 U	77.8	4,320 U	236,000 U	639,000 U	4,930 U	2,410 U	45,300 U	233,000 U	9.26 J	4,460 U
Benzene		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	1.13 J	173 U	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U
Bromobenzene		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U
Bromochloromethane		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U
Bromoform		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U
Bromomethane		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U
Carbon Disulfide		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U
Cyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibromomethane		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U
Diisopropyl ether (DIPE)		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U
Ethyl Alcohol	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethylbenzene		4.48 U [4.51 U]	5.04 U	1.19 J	1.01 J	217 U	5,600 U	1.44 J	173 U	9,440 U	25,600 U	197 U	96.5 U	1,180 J	10,100	4.88 U	178 U
Hexachlorobutadiene		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U
Iodomethane		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U
Isopropylbenzene		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U	9,440 U	25,600 U	45.4 J	96.5 U	8,970	9,320 U	4.88 U	178 U
m-,p-Xylene		8.96 U [9.02 U]	10.1 U	2.64 J	5.36 J	434 U	11,200 U	11.6 U	346 U	18,900 U	51,100 U	355 J	193 U	3,620 U	35,700	9.76 U	357 U
Methyl Acetate	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methyl tert-butyl ether		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U
Methylcyclohexane	NA 1 00 H M 50 H	NA NA	NA	NA	NA	NA	NA	NA	NA 170 H	NA	NA	NA	NA TABLE	NA	NA	NA	NA 170 III
Naphthalene		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U	9,440 U	25,600 U	136 J	74.3 J	1,810 U	9,320 U	4.88 U	178 U
n-Butylbenzene		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U	9,440 U	25,600 U	94.8 J	96.5 U	1,230 J	9,320 U	4.88 U	178 U
n-Propylbenzene		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U	9,440 U	25,600 U	43.4 J	96.5 U	36,400	3,630 J	4.88 U	178 U
o-Xylene		4.48 U [4.51 U]	5.04 U	1.12 J	3.29 J	217 U	5,600 U	5.82 U	173 U	9,440 U	25,600 U	197 U	96.5 U	1,810 U	11,700	4.88 U	178 U
p-Isopropyltoluene		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	1.57 J	173 U	9,440 U	25,600 U	146 J	96.5 U	1,810 U	9,320 U	4.88 U	178 U
sec-Butylbenzene	4.96 U [4.58 U]	4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U	9,440 U	25,600 U	197 U	96.5 U	1,540 J	9,320 U	4.88 U	178 U

Location Identification:	SB-204	SB-205	SB-205	SB-206	SB-206	SB-207	SB-207	SB-208	SB-208	SB-209	SB-209	SB-210	SB-210	SB-211	SB-211	SB-212	SB-212
Sample Depth (Feet):	6	4	6	3	7	3	6	3	5	4	6	1.5	4	3	5	3	5
Date Collected:	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15
Styrene	4.96 U [4.58 U]	4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U
tert-Butylbenzene	4.96 U [4.58 U]	4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U
Toluene	4.96 U [4.58 U]	4.48 U [4.51 U]	5.04 U	2.82 J	4.14 U	217 U	5,600 U	4.56 J	173 U	9,440 U	25,600 U	197 U	96.5 U	1,810 U	305,000	4.88 U	87.4 J
trans-1,4-Dichloro-2-butene	24.8 U [22.9 U]	22.4 U [22.5 U]	25.2 U	21.3 U	20.7 U	1,080 U	28,000 U	29.1 U	865 U	47,200 U	128,000 U	987 U	483 U	9,060 U	46,600 U	24.4 U	892 U
Xylenes (total)	9.92 U [9.15 U]	8.96 U [9.02 U]	10.1 U	3.76 J	8.66	434 U	11,200 U	11.6 U	346 U	18,900 U	51,100 U	355 J	193 U	3,620 U	47,400	9.76 U	357 U
1,1,1-Trichloroethane	4.96 U [4.58 U]	8.76 [7.65]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U	35,300	15,100 J	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U
1,1,2,2-Tetrachloroethane	4.96 U [4.58 U]	4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U
1,1,2-trichloro-1,2,2-trifluoroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,2-Trichloroethane	4.96 U [4.58 U]	4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U
1,1-Dichloroethane	38.5 [32.5]	2.05 J [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	2.70 J	173 U	4,820 J	9,710 J	989	96.5 U	1,810 U	9,320 U	4.88 U	178 U
1,1-Dichloroethene		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U	16,900	40,400	88.8 J	96.5 U	1,810 U	9,320 U	4.88 U	178 U
1,2,4-Trichlorobenzene	4.96 U [4.58 U]	4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U
		26.9 U [27.0 U]	30.2 U	25.6 U	24.8 U	1,080 U	28,000 U	34.9 U	865 U	47,200 U	128,000 U	987 U	483 U	9,060 U	46,600 U	29.3 U	892 U
		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U
		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U
		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U
		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U
		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U
	4.96 U [4.58 U]	4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U
		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U
		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U
Volatile Organic Compounds (μg/kg)																	
Chloroethane	29.1 [19.7]	4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U
Chloroform	4.96 U [4.58 U]	4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U
		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U
		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U
		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U
		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	1,080 U	28,000 U	5.82 U	865 U	47,200 U	128,000 U	987 U	483 U	9,060 U	46,600 U	4.88 U	892 U
		17.9 U [18.0 U]	20.1 U	17.1 U	16.6 U	1,080 U	28,000 U	23.3 U	865 U	47,200 U	128,000 U	987 U	483 U	9,060 U	46,600 U	19.5 U	892 U
		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U
		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U
cis-1,2-Dichloroethene		4.48 U [4.51 U]	5.04 U	1.95 J	4.14 U	3,540	40,300	1.50 J	34.6 J	54,400	124,000	4,410	96.5 U	1,810 U	85,000	111	5,220
		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U
		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U
	4.96 U [4.58 U]		5.04 U	7.71	1.28 J	547	166,000	2.96 J	3,110	213,000	407,000	197 U	147	1,810 U	9,320 U	81.2	178 U
Vinyl Chloride		4.48 U [4.51 U]	5.04 U	4.26 U	0.836 J	84.6 J	2,800 J	1.45 J	173 U	2,360 J	5,110 J	288	96.5 U	1,810 U	10,200	4.88 U	6,200
-		17.4 J [12.2]	ND	9.66 J	2.12 J	4,170 J	209,000 J	8.61 J	3,140 J	327,000 J	601,000 J	5,780 J	147	ND	95,200	192	11.400
Total Petroleum Hydrocarbons (µg/kg)					=:-= 0	.,	===,,,,,,,,,	2.2.2	2,1.00	1=1,0000		-,: 55 5			11,200	. 3_	11,100
Ethylene Glycol Monobutyl Ether	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Location Identification:	SB-213	SB-214	SB-215	SB-215	SB-216	SB-216	SB-217	SB-217	SB-218	SB-218	SB-219	SB-219	SB-301	SB-301	SB-302	SB-302	SB-303
Sample Depth (Feet):	3	2.5	3	5	3	7	3	5	3	5	4	6	3	4	3	5	4
Date Collected:	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15
Volatile Organic Compounds (µg/kg)																	
1,1,1,2-Tetrachloroethane	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U
1,1-Dichloropropene	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U
1,2,3-Trichlorobenzene	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U
1,2,3-Trichloropropane	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U
1,2,4-Trimethylbenzene	4.62 U	45.0 U	11.1 J	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	206	169 U	4.12 U	5.27 U	4.76 U	5.61 U	105	5.17	8,930 U
1,2-Dibromoethane	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U
1,3,5-Trimethylbenzene	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	49.1 J	169 U	4.12 U	5.27 U	4.76 U	5.61 U	107	2.52 J	8,930 U
1,3-Dichloropropane	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U
2,2-Dichloropropane	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U
2-Butanone	23.1 U	1,130 U	1,070 U	30.3 U	22.3 U	314,000 U	23.1 U	27.7 U	3,840 U	4,230 U	20.6 U	26.4 U	23.8 U	28.0 U	2,280 U	22.4 U	223,000 U
2-Chlorotoluene	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U
2-Hexanone	11.5 U	225 U	214 U	15.1 U	11.2 U	62,700 U	11.6 U	13.9 U	768 U	846 U	10.3 U	13.2 U	11.9 U	14.0 U	455 U	11.2 U	44,600 U
4-Chlorotoluene	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U
4-Methyl-2-pentanone	11.5 U	225 U	214 U	15.1 U	11.2 U	62,700 U	11.6 U	13.9 U	768 U	846 U	10.3 U	13.2 U	11.9 U	14.0 U	455 U	11.2 U	44,600 U
Acetone	17.3 J	1,130 U	1,070 U	28.0 J	18.6 J	314,000 U	23.0 J	18.0 J	3,840 U	4,230 U	22.9 J	8.74 J	32.6 J	37.1 J	2,280 U	18.5 J	223,000 U
Benzene	4.62 U	45.0 U	42.8 U	1.28 J	4.46 U	12,500 U	4.62 U	5.55 U	154 U	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	0.850 J	8,930 U
Bromobenzene	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U
Bromochloromethane	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U
Bromoform	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U
Bromomethane	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U
Carbon Disulfide	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U
Cyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibromomethane	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U
Diisopropyl ether (DIPE)	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U
Ethyl Alcohol	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethylbenzene	4.62 U	45.0 U	121	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	32.2 J	129 J	5.21	3.36 J	4.76 U	5.61 U	132	12.7	8,930 U
Hexachlorobutadiene	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U
Iodomethane	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U
Isopropylbenzene	4.62 U	45.0 U	11.1 J	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	369	37.2 J	2.44 J	1.74 J	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U
m-,p-Xylene	9.23 U	90.1 U	195	12.1 U	8.93 U	25,100 U	9.25 U	11.1 U	3,390	4,210	151	10.5 U	9.51 U	11.2 U	1,270	20.7	17,900 U
Methyl Acetate	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methyl tert-butyl ether	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U
Methylcyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	4.62 U	45.0 U	9.84 J	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	2.21 J	8,930 U
n-Butylbenzene	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U
n-Propylbenzene	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	249	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	0.859 J	8,930 U
o-Xylene	4.62 U	45.0 U	206	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U	345	4.12 U	5.27 U	4.76 U	5.61 U	477	1.61 J	8,930 U
p-Isopropyltoluene	4.62 U	45.0 U	10.3 J	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	44.5 J	169 U	4.12 U	5.27 U	4.76 U	5.61 U	394	1.67 J	8,930 U
sec-Butylbenzene	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U

Location Identification:	SB-213	SB-214	SB-215	SB-215	SB-216	SB-216	SB-217	SB-217	SB-218	SB-218	SB-219	SB-219	SB-301	SB-301	SB-302	SB-302	SB-303
Sample Depth (Feet):	3	2.5	3	5	3	7	3	5	3	5	4	6	3	4	3	5	4
Date Collected:	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15
Styrene	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U
tert-Butylbenzene	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U
Toluene	4.62 U	45.0 U	180	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U	169 U	4.12 U	5.27 U	1.04 J	5.61 U	334	2.09 J	8,930 U
trans-1,4-Dichloro-2-butene	23.1 U	225 U	214 U	30.3 U	22.3 U	62,700 U	23.1 U	27.7 U	768 U	846 U	20.6 U	26.4 U	23.8 U	28.0 U	455 U	22.4 U	44,600 U
Xylenes (total)	9.23 U	90.1 U	400	12.1 U	8.93 U	25,100 U	9.25 U	11.1 U	3,390	4,550	151	10.5 U	9.51 U	11.2 U	1,740	22.3	17,900 U
1,1,1-Trichloroethane	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U	169 U	4.12 U	5.27 U	4.76 U	5.61 U	29.1 J	4.48 U	222,000
1,1,2,2-Tetrachloroethane	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U
1,1,2-trichloro-1,2,2-trifluoroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,2-Trichloroethane	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U
1,1-Dichloroethane	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U	169 U	4.12 U	7.82	4.76 U	5.61 U	61.9 J	2.43 J	4,020 J
1,1-Dichloroethene	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U	169 U	4.12 U	0.928 J	4.76 U	5.61 U	107	4.48 U	21,200
1,2,4-Trichlorobenzene	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U
1,2-Dibromo-3-chloropropane	27.7 U	225 U	214 U	36.3 U	26.8 U	62,700 U	27.7 U	33.3 U	768 U	846 U	24.7 U	31.6 U	28.5 U	33.7 U	455 U	26.9 U	44,600 U
1,2-Dichlorobenzene	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U
1,2-Dichloroethane	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U
1,2-Dichloropropane	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U
1,3-Dichlorobenzene	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U
1,4-Dichlorobenzene	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U
Bromodichloromethane	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U
Carbon Tetrachloride	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U
Chlorobenzene	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U
Volatile Organic Compounds (μg/kg)																	
Chloroethane	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U	169 U	4.12 U	5.27 U	4.76 U	3.32 J	91.0 U	6.53	8,930 U
Chloroform	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U
Chloromethane	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U
cis-1,3-Dichloropropene	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U
Dibromochloromethane	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U
Dichlorodifluoromethane	4.62 U	225 U	214 U	6.05 U	4.46 U	62,700 U	4.62 U	5.55 U	768 U	846 U	4.12 U	5.27 U	4.76 U	5.61 U	455 U	4.48 U	44,600 U
Methylene Chloride	18.5 U	225 U	214 U	24.2 U	17.9 U	62,700 U	3.80 J	4.97 J	768 U	846 U	16.5 U	21.1 U	3.46 J	4.15 J	455 U	17.9 U	44,600 U
trans-1,3-Dichloropropene	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U
Trichlorofluoromethane	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U
cis-1,2-Dichloroethene	11.8	172	42.8 U	6.05 U	2.15 J	77,100	3.66 J	5.55 U	154 U	169 U	4.12 U	11.6	4.76 U	5.61 U	826	3.83 J	27,900
Tetrachloroethene	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U
trans-1,2-Dichloroethene	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U
Trichloroethene	59.4	334	42.8 U	6.05 U	3.84 J	234,000	8.22	4.37 J	154 U	169 U	0.906 J	5.27 U	4.76 U	5.61 U	435	1.79 J	288,000
Vinyl Chloride	4.62 U	45.0 U	42.8 U	6.05 U	0.661 J	4,520 J	4.62 U	5.55 U	154 U	169 U	1.08 J	72.8	4.76 U	5.61 U	454	1.31 J	1,880 J
Total Chlorinated VOCs	71.2	506	ND	ND	6.65 J	316,000 J	15.7 J	9.34 J	ND	ND	1.99 J	93.1 J	3.46 J	7.47 J	1,910 J	15.9 J	565,000 J
Total Petroleum Hydrocarbons (µg/kg)																	
Ethylene Glycol Monobutyl Ether	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Location Identification:	SB-303	SB-304	SB-304	SB-305	SB-306	SB-307	SB-308	SB-308	SB-309	SB-309	SB-310	SB-310	SB-311	SB-311	SB-312	SB-312
Sample Depth (Feet):	6	3	5	3	6	2	3	5	3	5	3	5	3	5	3	5
Date Collected:	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15
Volatile Organic Compounds (μg/kg)																
1,1,1,2-Tetrachloroethane	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U
1,1-Dichloropropene	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U
1,2,3-Trichlorobenzene	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U
1,2,3-Trichloropropane	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U
1,2,4-Trimethylbenzene	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U
1,2-Dibromoethane	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U
1,3,5-Trimethylbenzene	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U
1,3-Dichloropropane	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U
2,2-Dichloropropane	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U
2-Butanone	5,490,000 U	1,180,000 U	1,420,000 U	1,250 U	1,600 U	21.9 U	23.1 U	6,420,000 U [1,010,000 U]	1,100 U [1,110 U]	4,630 U	22.6 U	24.3 U	21.6 U	204,000 U	23.0 U	5.67 J
2-Chlorotoluene	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U
2-Hexanone	1,100,000 U	235,000 U	284,000 U	250 U	320 U	10.9 U	11.5 U	1,280,000 U [202,000 U]	219 U [222 U]	925 U	11.3 U	12.1 U	10.8 U	40,900 U	11.5 U	10.6 U
4-Chlorotoluene	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U
4-Methyl-2-pentanone	1,100,000 U	235,000 U	284,000 U	250 U	320 U	10.9 U	11.5 U	1,280,000 U [202,000 U]	219 U [222 U]	925 U	11.3 U	12.1 U	10.8 U	40,900 U	11.5 U	10.6 U
Acetone	5,490,000 U	1,180,000 U	1,420,000 U	1,250 U	1,600 U	20.9 J	9.94 J	6,420,000 U [1,010,000 U]	1,100 U [1,110 U]	4,630 U	45.2 U	48.0 J	43.3 U	204,000 U	46.0 U	34.7 J
Benzene	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	1.06 J
Bromobenzene	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U
Bromochloromethane	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U
Bromoform	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U
Bromomethane	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U
Carbon Disulfide	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U
Cyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibromomethane	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U
Diisopropyl ether (DIPE)	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U
Ethyl Alcohol	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethylbenzene	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U
Hexachlorobutadiene	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U
Iodomethane	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U
Isopropylbenzene	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U
m-,p-Xylene	440,000 U	94,100 U	114,000 U	99.9 U	128 U	8.75 U	9.22 U	513,000 U [80,700 U]	87.6 U [89.0 U]	370 U	9.03 U	9.71 U	8.66 U	16,400 U	9.21 U	8.47 U
Methyl Acetate	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methyl tert-butyl ether	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U
Methylcyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U
n-Butylbenzene	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U
n-Propylbenzene	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U
o-Xylene	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U
p-Isopropyltoluene	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]	43.8 U [44.5 U]	157 J	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	0.728 J
sec-Butylbenzene	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U

Location Identification:	SB-303	SB-304	SB-304	SB-305	SB-306	SB-307	SB-308	SB-308	SB-309	SB-309	SB-310	SB-310	SB-311	SB-311	SB-312	SB-312
Sample Depth (Feet):	6	3	5	3	6	2	3	5	3	5	3	5	3	5	3	5
Date Collected:	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15
Styrene	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U
tert-Butylbenzene	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U
Toluene	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	1.23 J	8,180 U	4.60 U	1.30 J
trans-1,4-Dichloro-2-butene	1,100,000 U	235,000 U	284,000 U	250 U	320 U	21.9 U	23.1 U	1,280,000 U [202,000 U]	219 U [222 U]	925 U	22.6 U	24.3 U	21.6 U	40,900 U	23.0 U	21.2 U
Xylenes (total)	440,000 U	94,100 U	114,000 U	99.9 U	128 U	8.75 U	9.22 U	513,000 U [80,700 U]	87.6 U [89.0 U]	370 U	9.03 U	9.71 U	8.66 U	16,400 U	9.21 U	8.47 U
1,1,1-Trichloroethane	796,000	488,000	674,000	1,100	63.9 U	4.38 U	145	1,840,000 [475,000]	458 [402]	185 U	88.6	4.86 U	37.9	8,180 U	8.88	18.1
1,1,2,2-Tetrachloroethane	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U
1,1,2-trichloro-1,2,2-trifluoroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,2-Trichloroethane	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U
1,1-Dichloroethane	220,000 U	12,200 J	11,900 J	212	27.5 J	4.38 U	124	257,000 U [10,900 J]	66.6 [57.8]	2,510	82.9	4.86 U	16.6	8,180 U	5.01	4.24 U
1,1-Dichloroethene	125,000 J	12,700 J	34,600 J	81.4	14.1 J	4.38 U	20.4	136,000 J [44,800]	28.9 J [23.6 J]	1,100	7.38	4.86 U	3.20 J	8,180 U	4.60 U	4.24 U
1,2,4-Trichlorobenzene	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U
1,2-Dibromo-3-chloropropane	1,100,000 U	235,000 U	284,000 U	250 U	320 U	26.3 U	27.7 U	1,280,000 U [202,000 U]	219 U [222 U]	925 U	27.1 U	29.1 U	26.0 U	40,900 U	27.6 U	25.4 U
1,2-Dichlorobenzene	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U
1,2-Dichloroethane	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U
1,2-Dichloropropane	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U
1,3-Dichlorobenzene	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U
1,4-Dichlorobenzene	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U
Bromodichloromethane	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U
Carbon Tetrachloride	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	21.2	257,000 U [40,400 U]	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U
Chlorobenzene	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U
Volatile Organic Compounds (μg/kg)																
Chloroethane	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	17.3	257,000 U [40,400 U]	43.8 U [44.5 U]	459	1.39 J	1.81 J	4.33 U	8,180 U	4.60 U	4.24 U
Chloroform	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U
Chloromethane	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U
cis-1,3-Dichloropropene	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U
Dibromochloromethane	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U
Dichlorodifluoromethane	1,100,000 U	235,000 U	284,000 U	250 U	320 U	4.38 U	4.61 U	1,280,000 U [202,000 U]	219 U [222 U]	925 U	4.52 U	4.86 U	4.33 U	40,900 U	4.60 U	4.24 U
Methylene Chloride	1,100,000 U	235,000 U	284,000 U	250 U	320 U	17.5 U	4.26 J	1,280,000 U [202,000 U]	219 U [222 U]	925 U	18.1 U	19.4 U	17.3 U	40,900 U	18.4 U	16.9 U
trans-1,3-Dichloropropene	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U
Trichlorofluoromethane	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U
cis-1,2-Dichloroethene	143,000 J	32,900 J	16,500 J	675	606	1.47 J	176	257,000 U [18,200 J]	131 [122]	2,870	32.4	4.86 U	7.22	99,000	0.893 J	2.41 J
Tetrachloroethene	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U
trans-1,2-Dichloroethene	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	2.86 J	257,000 U [40,400 U]	43.8 U [44.5 U]	94.4 J	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U
Trichloroethene	4,020,000	47,500	357,000	726	67.1	5.91	58.0	2,730,000 [735,000]	267 [250]	83.3 J	58.3	4.86 U	49.5	8,180 U	27.7	5.57
Vinyl Chloride	220,000 U	47,000 U	56,800 U	50.0 U	158	4.38 U	12.8	257,000 U [40,400 U]	43.8 U [44.5 U]	801	4.52 U	4.86 U	4.33 U	5,560 J	4.60 U	4.24 U
Total Chlorinated VOCs	5,080,000 J	593,000 J	1,090,000 J	2,790	873 J	7.38 J	582 J	4,710,000 J [1,280,000 J]	952 J [855 J]	7,920 J	271 J	1.81 J	114 J	105,000 J	42.5 J	26.1 J
Total Petroleum Hydrocarbons (µg/kg)			, , , , , , , , , , , , , , , , , , , ,	=,. 55	2.00			,,		.,				, , , , , ,		==::-0
Ethylene Glycol Monobutyl Ether	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
=, C., cccobaty Earlor	, .	, ,	, .	, .	, .	, .	, ,			, .	, .	, ,	, .	, .	, .	, .

Location Identification:	SB-313	SB-313	SB-314	SB-314	SB-315	SB-315	SB-316	SB-316	SB-317	SB-317	SB-318	SB-318	SB-MB1-01	SB-MB1-02	SB-MB1-03	SB-MB1-04	SB-MB1-05
Sample Depth (Feet):	3	6	3	6	3	5	3	6	3	6	4	6					
Date Collected:	09/03/15	09/03/15	09/04/15	09/04/15	09/04/15	09/04/15	09/04/15	09/04/15	09/04/15	09/04/15	09/04/15	09/04/15	03/12/12	03/12/12	03/12/12	03/13/12	03/13/12
Volatile Organic Compounds (μg/kg)																	
1,1,1,2-Tetrachloroethane	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
1,1-Dichloropropene	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
1,2,3-Trichlorobenzene	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
1,2,3-Trichloropropane	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
1,2,4-Trimethylbenzene	20,900	43.5 J	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
1,2-Dibromoethane	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
1,3,5-Trimethylbenzene	5,770	35.7 J	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
1,3-Dichloropropane	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
2,2-Dichloropropane	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
2-Butanone	28,700 U	1,620 U	21.2 U	21.9 U	1,170 U	26,200 U	22.4 U	22.5 U	22.8 U	1,140 U	24.2 U	32.1 U	26.7 U	27.7 U	33.0 U	20.1 U	19.3 U
2-Chlorotoluene	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
2-Hexanone	5,740 U	325 U	10.6 U	11.0 U	233 U	5,240 U	11.2 U	11.2 U	11.4 U	227 U	12.1 U	16.0 U	13.3 U	13.9 U	16.5 U	10.1 U	9.66 U
4-Chlorotoluene	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
4-Methyl-2-pentanone	5,740 U	325 U	10.6 U	11.0 U	233 U	5,240 U	11.2 U	11.2 U	11.4 U	227 U	12.1 U	16.0 U	13.3 U	13.9 U	16.5 U	10.1 U	9.66 U
Acetone	28,700 U	1,620 U	42.5 U	19.0 J	1,170 U	26,200 U	16.6 J	30.6 J	45.7 U	1,140 U	15.3 J	13.7 J	4.51 J	55.4 U	8.82 J	40.3 U	3.02 J
Benzene	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	0.683 J	4.57 U	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
Bromobenzene	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
Bromochloromethane	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
Bromoform	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
Bromomethane	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
Carbon Disulfide	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
Cyclohexane	NA	NA	NA	NA	NA												
Dibromomethane	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
Diisopropyl ether (DIPE)	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
Ethyl Alcohol	NA	NA	NA	NA	NA												
Ethylbenzene	276 J	61.7 J	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
Hexachlorobutadiene	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
Iodomethane	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
Isopropylbenzene	1,680	425	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U	45.4 U	2.97 J	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
m-,p-Xylene	540 J	130 U	8.50 U	8.77 U	93.3 U	2,100 U	8.95 U	8.98 U	9.14 U	90.8 U	9.69 U	12.8 U	10.7 U	11.1 U	13.2 U	8.05 U	7.73 U
Methyl Acetate	NA	NA	NA	NA	NA												
Methyl tert-butyl ether	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
Methylcyclohexane	NA	NA	NA	NA	NA												
Naphthalene	1,150 U	102	4.25 U	4.39 U	14.5 J	1,050 U	4.48 U	4.49 U	4.57 U	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
n-Butylbenzene	425 J	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
n-Propylbenzene	5,890	1,450	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
o-Xylene	942 J	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
p-Isopropyltoluene	529 J	59.8 J	4.25 U	4.39 U	41.0 J	1,050 U	4.48 U	4.49 U	4.57 U	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
sec-Butylbenzene	1,150 U	24.7 J	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U

Location Identification:	SB-313	SB-313	SB-314	SB-314	SB-315	SB-315	SB-316	SB-316	SB-317	SB-317	SB-318	SB-318	SB-MB1-01	SB-MB1-02	SB-MB1-03	SB-MB1-04	SB-MB1-05
Sample Depth (Feet):	3	6	3	6	3	5	3	6	3	6	4	6					ı l
Date Collected:	09/03/15	09/03/15	09/04/15	09/04/15	09/04/15	09/04/15	09/04/15	09/04/15	09/04/15	09/04/15	09/04/15	09/04/15	03/12/12	03/12/12	03/12/12	03/13/12	03/13/12
Styrene	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
tert-Butylbenzene	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
Toluene	1,150 U	65.0 U	4.25 U	4.39 U	28.9 J	1,050 U	4.48 U	0.943 J	4.57 U	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
trans-1,4-Dichloro-2-butene	5,740 U	325 U	21.2 U	21.9 U	233 U	5,240 U	22.4 U	22.5 U	22.8 U	227 U	24.2 U	32.1 U	26.7 U	27.7 U	33.0 U	20.1 U	19.3 U
Xylenes (total)	1,480 J	130 U	8.50 U	8.77 U	93.3 U	2,100 U	8.95 U	8.98 U	9.14 U	90.8 U	9.69 U	12.8 U	NA	NA	NA	NA	NA
1,1,1-Trichloroethane	1,150 U	65.0 U	4.09 J	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	1.11 J	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
1,1,2,2-Tetrachloroethane	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
1,1,2-trichloro-1,2,2-trifluoroethane	NA	NA	NA	NA	NA												
1,1,2-Trichloroethane	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
1,1-Dichloroethane	1,150 U	65.0 U	8.13	4.39 U	327	2,380	7.91	87.9	4.57 U	12.7 J	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
1,1-Dichloroethene	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	2,620	4.48 U	4.49 U	4.57 U	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
1,2,4-Trichlorobenzene	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
1,2-Dibromo-3-chloropropane	5,740 U	325 U	25.5 U	26.3 U	233 U	5,240 U	26.9 U	27.0 U	27.4 U	227 U	29.1 U	38.5 U	32.0 U	33.3 U	39.6 U	24.2 U	23.2 U
1,2-Dichlorobenzene	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
1,2-Dichloroethane	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
1,2-Dichloropropane	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
1,3-Dichlorobenzene	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
1,4-Dichlorobenzene	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
Bromodichloromethane	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
Carbon Tetrachloride	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
Chlorobenzene	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
Volatile Organic Compounds (μg/kg)																	
Chloroethane	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	26.2	4.57 U	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
Chloroform	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
Chloromethane	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
cis-1,3-Dichloropropene	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
Dibromochloromethane	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
Dichlorodifluoromethane	5,740 U	325 U	4.25 U	4.39 U	233 U	5,240 U	4.48 U	4.49 U	4.57 U	227 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
Methylene Chloride	5,740 U	325 U	17.0 U	17.5 U	233 U	5,240 U	17.9 U	18.0 U	18.3 U	227 U	19.4 U	25.7 U	4.03 J	1.18 J	2.44 J	1.82 J	1.04 J
trans-1,3-Dichloropropene	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
Trichlorofluoromethane	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
cis-1,2-Dichloroethene	1,150 U	65.0 U	1.36 J	4.39 U	46.6 U	19,300	2.46 J	4.49 U	1.89 J	600	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
Tetrachloroethene	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
trans-1,2-Dichloroethene	1,150 U	65.0 U	4.25 U	4.39 U	36.8 J	241 J	4.48 U	1.22 J	4.57 U	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
Trichloroethene	1,150 U	65.0 U	8.07	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	18.2	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
Vinyl Chloride	1,150 U	65.0 U	4.25 U	4.39 U	513	7,240	1.07 J	16.3	4.57 U	62.7	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U
Total Chlorinated VOCs	ND	ND	21.7 J	ND	877 J	31,800 J	11.4 J	132 J	21.2 J	675 J	ND	ND	NA	NA	NA	NA	NA NA
Total Petroleum Hydrocarbons (µg/kg)			•		21.0	21,3000	11110										
Ethylene Glycol Monobutyl Ether	NA	NA	NA	NA	NA												
Eary of the Oryon Monobacy Earlor	14/1	14/1	1473	14/1	1471	1471	14/1	14/1	14/1	14/1	1471	1471	1471	14/1	1471	1471	1471

Location Identification:	SB-MB1-06	SB-MB1-07	SB-MB1-08	SB-MB1-09	SB-MB1-10	SB-MB1-11	SB-MB1-12	SB-MB1-13	SB-MB1-14	SB-MB1-15	SB-MB1-16	SB-MB1-17	SB-MB1-18	SB-MB1-19	SB-MB1-20	SB-MB1-21	SB-MB1-22
Sample Depth (Feet):			55										02				
Date Collected:	03/13/12	03/13/12	03/13/12	03/13/12	03/13/12	03/13/12	03/13/12	03/14/12	03/14/12	03/14/12	03/14/12	03/14/12	03/14/12	03/14/12	03/14/12	03/14/12	03/14/12
Volatile Organic Compounds (μg/kg)	03/13/12	03/13/12	03/13/12	03/13/12	03/13/12	03/13/12	03/13/12	03/14/12	03/14/12	03/14/12	03/14/12	03/14/12	03/14/12	03/14/12	05/14/12	03/14/12	03/14/12
1,1,1,2-Tetrachloroethane	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U
1,1-Dichloropropene	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U
1.2.3-Trichlorobenzene	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U
1,2,3-Trichloropropane	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U
1,2,4-Trimethylbenzene	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U
1.2-Dibromoethane	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U
1,3,5-Trimethylbenzene	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U
1,3-Dichloropropane	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U
2,2-Dichloropropane	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U
2-Butanone	20.0 U	20.0 U	20.9 U	18.9 U	20.8 U	19.7 U	26.2 U	27.3 U	28.6 U	23.3 U	27.1 U	27.8 U	28.6 U	27.0 U	27.7 U	23.7 U	26.9 U
2-Chlorotoluene	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U
2-Hexanone	9.99 U	10.0 U	10.4 U	9.47 U	10.4 U	9.84 U	13.1 U	13.7 U	14.3 U	11.6 U	13.5 U	13.9 U	14.3 U	13.5 U	13.8 U	11.8 U	13.4 U
4-Chlorotoluene	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U
4-Methyl-2-pentanone	9.99 U	10.0 U	10.4 U	9.47 U	10.4 U	9.84 U	13.1 U	13.7 U	14.3 U	11.6 U	13.5 U	13.9 U	14.3 U	13.5 U	13.8 U	11.8 U	13.4 U
Acetone	39.9 U	40.1 U	41.8 U	2.77 J	41.6 U	39.4 U	52.4 U	4.15 J	57.2 U	46.5 U	54.1 U	4.12 J	57.1 U	54.0 U	55.4 U	47.3 U	53.7 U
Benzene	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U
Bromobenzene	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U
Bromochloromethane	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U
Bromoform	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U
Bromomethane	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U
Carbon Disulfide	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U
Cyclohexane	NA																
Dibromomethane	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U
Diisopropyl ether (DIPE)	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U
Ethyl Alcohol	NA																
Ethylbenzene	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U
Hexachlorobutadiene	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U
lodomethane	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U
Isopropylbenzene	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U
m-,p-Xylene	7.99 U	8.01 U	8.36 U	7.58 U	8.31 U	7.87 U	10.5 U	10.9 U	11.4 U	9.30 U	10.8 U	11.1 U	11.4 U	10.8 U	11.1 U	9.46 U	10.7 U
Methyl Acetate	NA	NA 1 04 11	NA	NA 0.7011	NA	NA	NA 5 04 11	NA 5.40.11	NA 5.70.11	NA 4.05.11	NA	NA 5.50.11	NA 5.74.11	NA 5.40.11	NA	NA 4.70.11	NA 5 07 LL
Methyl tert-butyl ether	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U
Methylcyclohexane	NA 2 00 H	NA 4 04 LL	NA 4.40.11	NA 2.70.11	NA 4.46.11	NA 2 04 H	NA 5 24 LL	NA 5.46.11	NA 5.70.11	NA 4.65.11	NA 5 44 H	NA 5.50.11	NA 5.74.11	NA 5.40.11	NA 5.54.11	NA 4.72.11	NA 5 27 LL
Naphthalene	3.99 U	4.01 U	4.18 U	3.79 U 3.79 U	4.16 U	3.94 U 3.94 U	5.24 U	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U 5.56 U	5.71 U	5.40 U	5.54 U	4.73 U 4.73 U	5.37 U 5.37 U
n-Butylbenzene	3.99 U 3.99 U	4.01 U	4.18 U	3.79 U 3.79 U	4.16 U 4.16 U	3.94 U 3.94 U	5.24 U 5.24 U	5.46 U 5.46 U	5.72 U 5.72 U	4.65 U 4.65 U	5.41 U 5.41 U	5.56 U 5.56 U	5.71 U 5.71 U	5.40 U 5.40 U	5.54 U 5.54 U	4.73 U 4.73 U	5.37 U 5.37 U
n-Propylbenzene o-Xylene	3.99 U	4.01 U 4.01 U	4.18 U 4.18 U	3.79 U 3.79 U	4.16 U 4.16 U	3.94 U 3.94 U	5.24 U 5.24 U	5.46 U 5.46 U	5.72 U 5.72 U	4.65 U	5.41 U 5.41 U	5.56 U 5.56 U	5.71 U 5.71 U	5.40 U	5.54 U 5.54 U	4.73 U 4.73 U	5.37 U 5.37 U
	3.99 U	4.01 U 4.01 U	4.18 U 4.18 U	3.79 U 3.79 U	4.16 U 4.16 U	3.94 U 3.94 U	5.24 U 5.24 U	5.46 U 5.46 U	5.72 U 5.72 U	4.65 U	5.41 U 5.41 U	5.56 U 5.56 U	5.71 U 5.71 U	5.40 U	5.54 U 5.54 U	4.73 U 4.73 U	5.37 U
p-Isopropyltoluene sec-Butylbenzene	3.99 U	4.01 U 4.01 U	4.18 U 4.18 U	3.79 U	4.16 U 4.16 U	3.94 U 3.94 U	5.24 U 5.24 U	5.46 U 5.46 U	5.72 U 5.72 U	4.65 U	5.41 U 5.41 U	5.56 U 5.56 U	5.71 U 5.71 U	5.40 U	5.54 U 5.54 U	4.73 U 4.73 U	5.37 U 5.37 U
Sec-Dutylbelizelle	3.88 U	4.010	4.10 U	3.19 U	4.10 U	3.94 U	J.24 U	3.40 U	3.12 U	4.05 U	J.41 U	J.36 U	3.710	3.40 U	J.54 U	4.13 U	5.37 U

	SB-MB1-06	SB-MB1-07	SB-MB1-08	SB-MB1-09	SB-MB1-10	SB-MB1-11	SB-MB1-12	SB-MB1-13	SB-MB1-14	SB-MB1-15	SB-MB1-16	SB-MB1-17	SB-MB1-18	SB-MB1-19	SB-MB1-20	SB-MB1-21	SB-MB1-22
Sample Depth (Feet):																	
Date Collected:	03/13/12	03/13/12	03/13/12	03/13/12	03/13/12	03/13/12	03/13/12	03/14/12	03/14/12	03/14/12	03/14/12	03/14/12	03/14/12	03/14/12	03/14/12	03/14/12	03/14/12
Styrene	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U
tert-Butylbenzene	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U
Toluene	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	1.92 J	0.984 J	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U
trans-1,4-Dichloro-2-butene	20.0 U	20.0 U	20.9 U	18.9 U	20.8 U	19.7 U	26.2 U	27.3 U	28.6 U	23.3 U	27.1 U	27.8 U	28.6 U	27.0 U	27.7 U	23.7 U	26.9 U
Xylenes (total)	NA																
1,1,1-Trichloroethane	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U
1,1,2,2-Tetrachloroethane	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U
1,1,2-trichloro-1,2,2-trifluoroethane	NA																
1,1,2-Trichloroethane	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U
1,1-Dichloroethane	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U
1,1-Dichloroethene	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U
1,2,4-Trichlorobenzene	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U
1,2-Dibromo-3-chloropropane	24.0 U	24.0 U	25.1 U	22.7 U	24.9 U	23.6 U	31.4 U	32.8 U	34.3 U	27.9 U	32.5 U	33.4 U	34.3 U	32.4 U	33.2 U	28.4 U	32.2 U
1,2-Dichlorobenzene	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U
1,2-Dichloroethane	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U
1,2-Dichloropropane	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U
1,3-Dichlorobenzene	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U
1,4-Dichlorobenzene	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U
Bromodichloromethane	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U
Carbon Tetrachloride	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U
Chlorobenzene	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U
Volatile Organic Compounds (μg/kg)																	
Chloroethane	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U
Chloroform	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U
Chloromethane	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U
cis-1,3-Dichloropropene	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U
Dibromochloromethane	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U
Dichlorodifluoromethane	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U
Methylene Chloride	1.76 J	0.937 J	1.51 J	1.04 J	1.71 J	1.03 J	1.40 J	14.5 J	6.16 J	3.34 J	4.33 J	2.62 J	2.46 J	6.11 J	4.17 J	3.67 J	3.01 J
trans-1,3-Dichloropropene	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U
Trichlorofluoromethane	3.99 U	4.01 U	2.63 J	3.79 U	4.16 U	1.05 J	5.24 U	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U
cis-1,2-Dichloroethene	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U
Tetrachloroethene	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U
trans-1,2-Dichloroethene	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U
Trichloroethene	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	0.908 J	1.05 J
Vinyl Chloride	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U
Total Chlorinated VOCs	NA																
Total Petroleum Hydrocarbons (µg/kg)																	
Ethylene Glycol Monobutyl Ether	NA																

Location Identification:	SB-MB1-23	SB-MB1-24	SB-MB1-25	SB-MB1-26	SB-MB1-27	SB-MB1-28	SB-MB1-29	SB-MB1-30	SB-MB1-31	SB-MB1-32	SB-MB1-33	SB-MB1-34	SB-MB1-35	SB-MB1-36	SB-MB1-37	SB-MB1-38
Sample Depth (Feet):																
Date Collected:	03/14/12	03/14/12	03/14/12	03/14/12	03/14/12	03/14/12	03/14/12	03/14/12	03/15/12	03/15/12	03/15/12	03/15/12	03/15/12	03/15/12	03/15/12	03/16/12
Volatile Organic Compounds (µg/kg)																
1.1.1.2-Tetrachloroethane	5.60 U	1,340 U	7.30 U	7.23 U	753 U	13.400 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	1,790 U	5.46 U	5.07 U	5.23 U
1,1-Dichloropropene	5.60 U	1,340 U	7.30 U	7.23 U	753 U	13,400 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	1,790 U	5.46 U	5.07 U	5.23 U
1,2,3-Trichlorobenzene	5.60 U	1,340 U	7.30 U	7.23 U	753 U	13,400 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	1,790 U	5.46 U	5.07 U	5.23 U
1,2,3-Trichloropropane	5.60 U	1,340 U	7.30 U	7.23 U	753 U	13,400 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	1,790 U	5.46 U	5.07 U	5.23 U
1,2,4-Trimethylbenzene	5.60 U	1,340 U	7.30 U	7.23 U	753 U	13,400 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	1,790 U	5.46 U	5.07 U	5.23 U
1,2-Dibromoethane	5.60 U	1,340 U	7.30 U	7.23 U	753 U	13,400 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	1,790 U	5.46 U	5.07 U	5.23 U
1,3,5-Trimethylbenzene	5.60 U	1,340 U	7.30 U	7.23 U	753 U	13,400 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	1,790 U	5.46 U	5.07 U	5.23 U
1,3-Dichloropropane	5.60 U	1,340 U	7.30 U	7.23 U	753 U	13,400 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	1,790 U	5.46 U	5.07 U	5.23 U
2,2-Dichloropropane	5.60 U	1,340 U	7.30 U	7.23 U	753 U	13,400 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	1,790 U	5.46 U	5.07 U	5.23 U
2-Butanone	28.0 U	33,500 U	36.5 U	36.2 U	18,800 U	336,000 U	2,320 U	1,160 U	28.4 U	25.7 U	1,210 U	25.2 U	44,800 U	27.3 U	25.3 U	26.1 U
2-Chlorotoluene	5.60 U	1,340 U	7.30 U	7.23 U	753 U	13,400 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	1,790 U	5.46 U	5.07 U	5.23 U
2-Hexanone	14.0 U	6,700 U	18.3 U	18.1 U	3,760 U	67,200 U	464 U	232 U	14.2 U	12.9 U	241 U	12.6 U	8,970 U	13.6 U	12.7 U	13.1 U
4-Chlorotoluene	5.60 U	1,340 U	7.30 U	7.23 U	753 U	13,400 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	1,790 U	5.46 U	5.07 U	5.23 U
4-Methyl-2-pentanone	14.0 U	6,700 U	18.3 U	18.1 U	3,760 U	67,200 U	464 U	232 U	14.2 U	12.9 U	241 U	12.6 U	8,970 U	13.6 U	12.7 U	13.1 U
Acetone	56.0 U	33,500 U	73.0 U	72.3 U	18,800 U	336,000 U	2,320 U	1,160 U	3.02 J	51.4 U	1,210 U	50.5 U	44,800 U	54.6 U	50.7 U	52.3 U
Benzene	5.60 U	1,340 U	7.30 U	7.23 U	753 U	13,400 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	1,790 U	5.46 U	5.07 U	5.23 U
Bromobenzene	5.60 U	1,340 U	7.30 U	7.23 U	753 U	13,400 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	1,790 U	5.46 U	5.07 U	5.23 U
Bromochloromethane	5.60 U	1,340 U	7.30 U	7.23 U	753 U	13,400 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	1,790 U	5.46 U	5.07 U	5.23 U
Bromoform	5.60 U	1,340 U	7.30 U	7.23 U	753 U	13,400 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	1,790 U	5.46 U	5.07 U	5.23 U
Bromomethane	5.60 U	1,340 U	7.30 U	7.23 U	753 U	13,400 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	1,790 U	5.46 U	5.07 U	5.23 U
Carbon Disulfide	5.60 U	1,340 U	7.30 U	7.23 U	753 U	13,400 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	1,790 U	5.46 U	5.07 U	5.23 U
Cyclohexane	NA															
Dibromomethane	5.60 U	1,340 U	7.30 U	7.23 U	753 U	13,400 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	1,790 U	5.46 U	5.07 U	5.23 U
Diisopropyl ether (DIPE)	5.60 U	1,340 U	7.30 U	7.23 U	753 U	13,400 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	1,790 U	5.46 U	5.07 U	5.23 U
Ethyl Alcohol	NA															
Ethylbenzene	5.60 U	1,340 U	7.30 U	7.23 U	753 U	13,400 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	1,790 U	5.46 U	5.07 U	5.23 U
Hexachlorobutadiene	5.60 U	1,340 U	7.30 U	7.23 U	753 U	13,400 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	1,790 U	5.46 U	5.07 U	5.23 U
lodomethane	5.60 U	1,340 U	7.30 U	7.23 U	753 U	13,400 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	1,790 U	5.46 U	5.07 U	5.23 U
Isopropylbenzene	5.60 U	1,340 U	7.30 U	7.23 U	753 U	13,400 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	1,790 U	5.46 U	5.07 U	5.23 U
m-,p-Xylene	11.2 U	2,680 U	14.6 U	14.5 U	1,510 U	26,900 U	186 U	92.8 U	11.4 U	10.3 U	96.6 U	10.1 U	3,590 U	10.9 U	10.1 U	10.5 U
Methyl Acetate	NA															
Methyl tert-butyl ether	5.60 U	1,340 U	7.30 U	7.23 U	753 U	13,400 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	1,790 U	5.46 U	5.07 U	5.23 U
Methylcyclohexane	NA															
Naphthalene	5.60 U	1,340 U	7.30 U	7.23 U	753 U	13,400 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	1,790 U	5.46 U	5.07 U	5.23 U
n-Butylbenzene	5.60 U	1,340 U	7.30 U	7.23 U	753 U	13,400 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	1,790 U	5.46 U	5.07 U	5.23 U
n-Propylbenzene	5.60 U	1,340 U	7.30 U	7.23 U	753 U	13,400 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	1,790 U	5.46 U	5.07 U	5.23 U
o-Xylene	5.60 U	1,340 U	7.30 U	7.23 U	753 U	13,400 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	1,790 U	5.46 U	5.07 U	5.23 U
p-Isopropyltoluene	5.60 U	1,340 U	7.30 U	7.23 U	753 U	13,400 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	1,790 U	5.46 U	5.07 U	5.23 U
sec-Butylbenzene	5.60 U	1,340 U	7.30 U	7.23 U	753 U	13,400 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	1,790 U	5.46 U	5.07 U	5.23 U

Location Identification:	SB-MB1-23	SB-MB1-24	SB-MB1-25	SB-MB1-26	SB-MB1-27	SB-MB1-28	SB-MB1-29	SB-MB1-30	SB-MB1-31	SB-MB1-32	SB-MB1-33	SB-MB1-34	SB-MB1-35	SB-MB1-36	SB-MB1-37	SB-MB1-38
Sample Depth (Feet):																
Date Collected:	03/14/12	03/14/12	03/14/12	03/14/12	03/14/12	03/14/12	03/14/12	03/14/12	03/15/12	03/15/12	03/15/12	03/15/12	03/15/12	03/15/12	03/15/12	03/16/12
Styrene	5.60 U	1,340 U	7.30 U	7.23 U	753 U	13,400 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	1,790 U	5.46 U	5.07 U	5.23 U
tert-Butylbenzene	5.60 U	1,340 U	7.30 U	7.23 U	753 U	13,400 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	1,790 U	5.46 U	5.07 U	5.23 U
Toluene	5.60 U	1,340 U	7.30 U	7.23 U	753 U	13,400 U	92.8 U	46.4 U	1.37 J	5.14 U	48.3 U	5.05 U	1,790 U	1.03 J	5.07 U	5.23 U
trans-1,4-Dichloro-2-butene	28.0 U	6,700 U	36.5 U	36.2 U	3,760 U	67,200 U	464 U	232 U	28.4 U	25.7 U	241 U	25.2 U	8,970 U	27.3 U	25.3 U	26.1 U
Xylenes (total)	NA															
1,1,1-Trichloroethane	7.84	1,650	7.30 U	7.23 U	791	13,400 U	136	146	5.69 U	5.14 U	142	5.05 U	30,600	5.46 U	5.07 U	5.23 U
1,1,2,2-Tetrachloroethane	5.60 U	1,340 U	7.30 U	7.23 U	753 U	13,400 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	1,790 U	5.46 U	5.07 U	5.23 U
1,1,2-trichloro-1,2,2-trifluoroethane	NA															
1,1,2-Trichloroethane	5.60 U	1,340 U	7.30 U	7.23 U	753 U	13,400 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	1,790 U	5.46 U	5.07 U	5.23 U
1,1-Dichloroethane	5.60 U	1,340 U	7.30 U	7.23 U	753 U	13,400 U	92.8 U	53.4	5.69 U	5.14 U	86.4	5.05 U	1,790 U	5.46 U	5.07 U	5.23 U
1,1-Dichloroethene	5.60 U	1,340 U	7.30 U	7.23 U	753 U	13,400 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	1,790 U	5.46 U	5.07 U	5.23 U
1,2,4-Trichlorobenzene	5.60 U	1,340 U	7.30 U	7.23 U	753 U	13,400 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	1,790 U	5.46 U	5.07 U	5.23 U
1,2-Dibromo-3-chloropropane	33.6 U	6,700 U	43.8 U	43.4 U	3,760 U	67,200 U	464 U	232 U	34.1 U	30.9 U	241 U	30.3 U	8,970 U	32.7 U	30.4 U	31.4 U
1,2-Dichlorobenzene	5.60 U	1,340 U	7.30 U	7.23 U	753 U	13,400 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	1,790 U	5.46 U	5.07 U	5.23 U
1,2-Dichloroethane	5.60 U	1,340 U	7.30 U	7.23 U	753 U	13,400 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	1,790 U	5.46 U	5.07 U	5.23 U
1,2-Dichloropropane	5.60 U	1,340 U	7.30 U	7.23 U	753 U	13,400 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	1,790 U	5.46 U	5.07 U	5.23 U
1,3-Dichlorobenzene	5.60 U	1,340 U	7.30 U	7.23 U	753 U	13,400 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	1,790 U	5.46 U	5.07 U	5.23 U
1,4-Dichlorobenzene	5.60 U	1,340 U	7.30 U	7.23 U	753 U	13,400 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	1,790 U	5.46 U	5.07 U	5.23 U
Bromodichloromethane	5.60 U	1,340 U	7.30 U	7.23 U	753 U	13,400 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	1,790 U	5.46 U	5.07 U	5.23 U
Carbon Tetrachloride	5.60 U	1,340 U	7.30 U	7.23 U	753 U	13,400 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	1,790 U	5.46 U	5.07 U	5.23 U
Chlorobenzene	5.60 U	1,340 U	7.30 U	7.23 U	753 U	13,400 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	1,790 U	5.46 U	5.07 U	5.23 U
Volatile Organic Compounds (μg/kg)																
Chloroethane	5.60 U	1,340 U	7.30 U	7.23 U	753 U	13,400 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	1,790 U	5.46 U	5.07 U	5.23 U
Chloroform	5.60 U	1,340 U	7.30 U	7.23 U	753 U	13,400 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	1,790 U	5.46 U	5.07 U	5.23 U
Chloromethane	5.60 U	1,340 U	7.30 U	7.23 U	753 U	13,400 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	1,790 U	5.46 U	5.07 U	5.23 U
cis-1,3-Dichloropropene	5.60 U	1,340 U	7.30 U	7.23 U	753 U	13,400 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	1,790 U	5.46 U	5.07 U	5.23 U
Dibromochloromethane	5.60 U	1,340 U	7.30 U	7.23 U	753 U	13,400 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	1,790 U	5.46 U	5.07 U	5.23 U
Dichlorodifluoromethane	5.60 U	6,700 U	7.30 U	7.23 U	3,760 U	67,200 U	464 U	232 U	5.69 U	5.14 U	241 U	5.05 U	8,970 U	5.46 U	5.07 U	5.23 U
Methylene Chloride	4.45 J	6,700 U	4.75 J	5.95 J	361 J	8,200 J	75.2 J	19.0 J	2.83 J	2.54 J	16.4 J	2.49 J	8,970 U	2.01 J	1.88 J	2.53 J
trans-1,3-Dichloropropene	5.60 U	1,340 U	7.30 U	7.23 U	753 U	13,400 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	1,790 U	5.46 U	5.07 U	5.23 U
Trichlorofluoromethane	5.60 U	1,340 U	7.30 U	7.23 U	753 U	13,400 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	1,790 U	5.46 U	5.07 U	5.23 U
cis-1,2-Dichloroethene	5.60 U	1,980	1.55 J	7.23 U	753 U	17,900	92.8 U	160	5.69 U	5.14 U	954	5.05 U	538 J	5.46 U	5.07 U	5.23 U
Tetrachloroethene	5.60 U	1,340 U	7.30 U	7.23 U	753 U	13,400 U	92.8 U	36.2 J	5.69 U	5.14 U	24.1 J	5.05 U	1,790 U	5.46 U	5.07 U	5.23 U
trans-1,2-Dichloroethene	5.60 U	1,340 U	7.30 U	7.23 U	753 U	13,400 U	92.8 U	46.4 U	5.69 U	5.14 U	47.8 J	5.05 U	1,790 U	5.46 U	5.07 U	5.23 U
Trichloroethene	10.4	27,500	12.7	25.9	15,300	261,000	1,650	723	5.69 U	5.14 U	614	5.05 U	10,100	5.06 J	5.07 U	5.23 U
Vinyl Chloride	5.60 U	1,340 U	7.30 U	7.23 U	753 U	13,400 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	1,790 U	5.46 U	5.07 U	5.23 U
Total Chlorinated VOCs	NA															
Total Petroleum Hydrocarbons (µg/kg)																
Ethylene Glycol Monobutyl Ether	NA															

Location Identification:	SB-MB1-39	SB-MB1-40	SB-MB1-41	SB-MB1-42	SB-MB1-43	SB-MB1-44	SB-MB1-45	SB-MB1-46	SB-MB1-47	SB-MB1-48	SB-MB1-49	SB-MB1-50	SB-MB1-51	SB-MB1-52	SB-MB1-53	SB-MB1-54
Sample Depth (Feet):																
Date Collected:	03/16/12	03/16/12	03/16/12	03/16/12	03/16/12	03/22/12	03/22/12	03/22/12	03/22/12	03/22/12	03/22/12	03/22/12	03/22/12	03/22/12	03/22/12	03/27/12
Volatile Organic Compounds (μg/kg)	00	00,10,12	00.10.12	00, 10, 12	00.10.12											
1,1,1,2-Tetrachloroethane	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U	5.40 U	5.87 U
1,1-Dichloropropene	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U	5.40 U	5.87 U
1,2,3-Trichlorobenzene	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U	5.40 U	5.87 U
1,2,3-Trichloropropane	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U	5.40 U	5.87 U
1,2,4-Trimethylbenzene	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U	5.40 U	5.87 U
1,2-Dibromoethane	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U	5.40 U	5.87 U
1,3,5-Trimethylbenzene	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U	5.40 U	5.87 U
1,3-Dichloropropane	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U	5.40 U	5.87 U
2,2-Dichloropropane	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U	5.40 U	5.87 U
2-Butanone	1,080 U	26.1 U	1,120 U	1,120 U	28.1 U	25.7 U	26.4 U	1,360 U	28.1 U	25.8 U	28.9 U	26.8 U	26.9 U	25.0 U	27.0 U	29.3 U
2-Chlorotoluene	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U	5.40 U	5.87 U
2-Hexanone	217 U	13.0 U	223 U	224 U	14.1 U	12.8 U	13.2 U	273 U	14.1 U	12.9 U	14.4 U	13.4 U	13.4 U	12.5 U	13.5 U	14.7 U
4-Chlorotoluene	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U	5.40 U	5.87 U
4-Methyl-2-pentanone	217 U	13.0 U	223 U	224 U	14.1 U	12.8 U	13.2 U	273 U	14.1 U	12.9 U	14.4 U	13.4 U	13.4 U	12.5 U	13.5 U	14.7 U
Acetone	1,080 U	52.1 U	1,120 U	1,120 U	56.2 U	757	3.99 J	1,360 U	56.2 U	22.0 J	10.9 J	53.7 U	53.8 U	12.9 J	54.0 U	58.7 U
Benzene	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U	5.40 U	5.87 U
Bromobenzene	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U	5.40 U	5.87 U
Bromochloromethane	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U	5.40 U	5.87 U
Bromoform	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U	5.40 U	5.87 U
Bromomethane	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U	5.40 U	5.87 U
Carbon Disulfide	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U	5.40 U	5.87 U
Cyclohexane	NA															
Dibromomethane	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U	5.40 U	5.87 U
Diisopropyl ether (DIPE)	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U	5.40 U	5.87 U
Ethyl Alcohol	NA															
Ethylbenzene	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U	5.40 U	5.87 U
Hexachlorobutadiene	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U	5.40 U	5.87 U
lodomethane	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U	5.40 U	5.87 U
Isopropylbenzene	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U	5.40 U	5.87 U
m-,p-Xylene	86.6 U	10.4 U	89.3 U	89.5 U	11.2 U	10.3 U	10.6 U	109 U	11.2 U	10.3 U	11.6 U	10.7 U	10.8 U	9.98 U	10.8 U	11.7 U
Methyl Acetate	NA 40.011	NA	NA	NA	NA	NA 5.40.11	NA 5 00 11	NA 54.0.11	NA 5.00.11	NA 5.40.11	NA 5.70.11	NA 5.07.11	NA	NA 1 00 LL	NA 5.40.11	NA 5.07.11
Methyl tert-butyl ether	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U	5.40 U	5.87 U
Methylcyclohexane	NA 10.011	NA 5 04 H	NA 44.7.11	NA 44.0.11	NA 5.00.11	NA 5.40.11	NA 5 00 LL	NA 54.6.11	NA 5.00 LL	NA 5.40.11	NA 5.70.11	NA 5.07.11	NA 5 00 LL	NA 4 00 LL	NA 5.40.11	NA 5 07 LL
Naphthalene	43.3 U 43.3 U	5.21 U 5.21 U	44.7 U 44.7 U	44.8 U 44.8 U	5.62 U 5.62 U	5.13 U 5.13 U	5.28 U 5.28 U	54.6 U 54.6 U	5.62 U 5.62 U	5.16 U 5.16 U	5.78 U 5.78 U	5.37 U 5.37 U	5.38 U 5.38 U	4.99 U 4.99 U	5.40 U 5.40 U	5.87 U 5.87 U
n-Butylbenzene												5.37 U 5.37 U				
n-Propylbenzene	43.3 U 43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U 5.78 U	5.37 U 5.37 U	5.38 U 5.38 U	4.99 U 4.99 U	5.40 U	5.87 U 5.87 U
o-Xylene	43.3 U 43.3 U	5.21 U 5.21 U	44.7 U 44.7 U	44.8 U	5.62 U	5.13 U	5.28 U 5.28 U	54.6 U 54.6 U	5.62 U 5.62 U	5.16 U 5.16 U	5.78 U		5.38 U 5.38 U	4.99 U 4.99 U	5.40 U 5.40 U	5.87 U 5.87 U
p-Isopropyltoluene	43.3 U 43.3 U	5.21 U	44.7 U	44.8 U 44.8 U	5.62 U 5.62 U	5.13 U 5.13 U	5.28 U 5.28 U	54.6 U	5.62 U	5.16 U 5.16 U	5.78 U 5.78 U	5.37 U 5.37 U	5.38 U 5.38 U	4.99 U 4.99 U	5.40 U	5.87 U 5.87 U
sec-Butylbenzene	43.3 U	5.210	44.7 U	44.0 U	3.02 U	j 5.13 U	3.20 U	34.0 U	3.02 U	5.10 U	5.76 U	5.37 U	5.30 U	4.99 0	5.40 U	5.07 U

Location Identification:	SB-MB1-39	SB-MB1-40	SB-MB1-41	SB-MB1-42	SB-MB1-43	SB-MB1-44	SB-MB1-45	SB-MB1-46	SB-MB1-47	SB-MB1-48	SB-MB1-49	SB-MB1-50	SB-MB1-51	SB-MB1-52	SB-MB1-53	SB-MB1-54
Sample Depth (Feet):																
Date Collected:	03/16/12	03/16/12	03/16/12	03/16/12	03/16/12	03/22/12	03/22/12	03/22/12	03/22/12	03/22/12	03/22/12	03/22/12	03/22/12	03/22/12	03/22/12	03/27/12
Styrene	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U	5.40 U	5.87 U
tert-Butylbenzene	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U	5.40 U	5.87 U
Toluene	43.3 U	5.21 U	44.7 U	44.8 U	3.69 J	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U	5.40 U	5.87 U
trans-1,4-Dichloro-2-butene	217 U	26.1 U	223 U	224 U	28.1 U	25.7 U	26.4 U	273 U	28.1 U	25.8 U	28.9 U	26.8 U	26.9 U	25.0 U	27.0 U	29.3 U
Xylenes (total)	NA															
1,1,1-Trichloroethane	43.3 U	5.21 U	567	72.1	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U	5.40 U	5.87 U
1,1,2,2-Tetrachloroethane	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U	5.40 U	5.87 U
1,1,2-trichloro-1,2,2-trifluoroethane	NA															
1,1,2-Trichloroethane	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U	5.40 U	5.87 U
1,1-Dichloroethane	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U	5.40 U	5.87 U
1,1-Dichloroethene	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	535	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U	5.40 U	5.87 U
1,2,4-Trichlorobenzene	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U	5.40 U	5.87 U
1,2-Dibromo-3-chloropropane	217 U	31.3 U	223 U	224 U	33.7 U	30.8 U	31.7 U	273 U	33.7 U	30.9 U	34.7 U	32.2 U	32.3 U	30.0 U	32.4 U	35.2 U
1,2-Dichlorobenzene	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U	5.40 U	5.87 U
1,2-Dichloroethane	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U	5.40 U	5.87 U
1,2-Dichloropropane	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U	5.40 U	5.87 U
1,3-Dichlorobenzene	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U	5.40 U	5.87 U
1,4-Dichlorobenzene	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U	5.40 U	5.87 U
Bromodichloromethane	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U	5.40 U	5.87 U
Carbon Tetrachloride	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U	5.40 U	5.87 U
Chlorobenzene	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U	5.40 U	5.87 U
Volatile Organic Compounds (μg/kg)																
Chloroethane	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U	5.40 U	5.87 U
Chloroform	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U	5.40 U	5.87 U
Chloromethane	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U	5.40 U	5.87 U
cis-1,3-Dichloropropene	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U	5.40 U	5.87 U
Dibromochloromethane	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U	5.40 U	5.87 U
Dichlorodifluoromethane	217 U	5.21 U	223 U	224 U	5.62 U	5.13 U	5.28 U	273 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U	5.40 U	5.87 U
Methylene Chloride	217 U	2.58 J	223 U	224 U	2.69 J	4.14 J	3.65 J	273 U	6.01 J	4.27 J	2.21 J	21.5 U	21.5 U	1.42 J	4.02 J	23.5 U
trans-1,3-Dichloropropene	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U	5.40 U	5.87 U
Trichlorofluoromethane	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U	5.40 U	5.87 U
cis-1,2-Dichloroethene	90.1	5.21 U	130	49.2	5.62 U	5.13 U	5.28 U	16.9 J	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U	5.40 U	2.44 J
Tetrachloroethene	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U	5.40 U	5.87 U
trans-1,2-Dichloroethene	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U	5.40 U	5.87 U
Trichloroethene	268	5.21 U	1,080	408	4.09 J	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U	2.42 J	9.75
Vinyl Chloride	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	60.0	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U	5.40 U	5.87 U
Total Chlorinated VOCs	NA															
Total Petroleum Hydrocarbons (µg/kg)																
Ethylene Glycol Monobutyl Ether	NA															

Table 1
Summary of Soil Sample Analytical Results
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	SB-PDG-1	SB-PDG-2	SB-PDG-3	SB-PDG-4	SB-PDG-5	SB-PDG-6	SB-PDG-7	SB-PDG-8	SB-PDG-9	SB-PDG-10
Sample Depth (Feet):	1.5 - 2	1 - 1.5	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2
Date Collected:	06/02/09	06/02/09	06/02/09	06/02/09	06/02/09	06/02/09	06/02/09	06/02/09	06/02/09	06/02/09
olatile Organic Compounds (μg/kg)										
,1,1,2-Tetrachloroethane	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
,1-Dichloropropene	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
,2,3-Trichlorobenzene	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
,2,3-Trichloropropane	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
,2,4-Trimethylbenzene	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
,2-Dibromoethane	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
,3,5-Trimethylbenzene	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
,3-Dichloropropane	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
,2-Dichloropropane	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
-Butanone	22.0 U	22.6 U	22.6 U	22.0 U	22.1 U	21.2 U	22.2 U	20.8 U	23.1 U	22.7 U
-Chlorotoluene	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
-Hexanone	11.0 U	11.3 U	11.3 U	11.0 U	11.0 U	10.6 U	11.1 U	10.4 U	11.6 U	11.3 U
-Chlorotoluene	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
-Methyl-2-pentanone	11.0 U	11.3 U	11.3 U	11.0 U	11.0 U	10.6 U	11.1 U	10.4 U	11.6 U	11.3 U
cetone	12.6 J	7.14 J	18.8 J	24.4 J	26.0 J	11.3 J	24.5 J	14.7 J	46.3 U	45.4 U
enzene	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
romobenzene	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
Bromochloromethane	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
Bromoform	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
Bromomethane	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
Carbon Disulfide	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
Cyclohexane	NA									
Dibromomethane	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
Diisopropyl ether (DIPE)	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
thyl Alcohol	NA									
Ethylbenzene	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
lexachlorobutadiene	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
odomethane	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
sopropylbenzene	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
n-,p-Xylene	8.80 U	9.03 U	9.05 U	8.80 U	8.83 U	8.50 U	8.89 U	8.31 U	9.26 U	9.08 U
Methyl Acetate	NA									
lethyl tert-butyl ether	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
lethylcyclohexane	NA									
laphthalene	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
-Butylbenzene	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
-Propylbenzene	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
-Xylene	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
-Isopropyltoluene	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
ec-Butylbenzene	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U

Location Identification:	SB-PDG-1	SB-PDG-2	SB-PDG-3	SB-PDG-4	SB-PDG-5	SB-PDG-6	SB-PDG-7	SB-PDG-8	SB-PDG-9	SB-PDG-10
Sample Depth (Feet):	1.5 - 2	1 - 1.5	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2
Date Collected:	06/02/09	06/02/09	06/02/09	06/02/09	06/02/09	06/02/09	06/02/09	06/02/09	06/02/09	06/02/09
Styrene	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
tert-Butylbenzene	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
Toluene	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
trans-1,4-Dichloro-2-butene	22.0 U	22.6 U	22.6 U	22.0 U	22.1 U	21.2 U	22.2 U	20.8 U	23.1 U	22.7 U
Xylenes (total)	NA									
1,1,1-Trichloroethane	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
1,1,2,2-Tetrachloroethane	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
1,1,2-trichloro-1,2,2-trifluoroethane	NA									
1,1,2-Trichloroethane	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
1,1-Dichloroethane	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
1,1-Dichloroethene	4.40 U	4.52 U	27.4	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
1,2,4-Trichlorobenzene	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
1,2-Dibromo-3-chloropropane	22.0 U	22.6 U	22.6 U	22.0 U	22.1 U	21.2 U	22.2 U	20.8 U	23.1 U	22.7 U
1,2-Dichlorobenzene	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
1,2-Dichloroethane	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
1,2-Dichloropropane	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
1,3-Dichlorobenzene	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
1,4-Dichlorobenzene	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
Bromodichloromethane	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
Carbon Tetrachloride	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
Chlorobenzene	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
Volatile Organic Compounds (μg/kg)										
Chloroethane	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
Chloroform	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
Chloromethane	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
cis-1,3-Dichloropropene	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
Dibromochloromethane	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
Dichlorodifluoromethane	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
Methylene Chloride	17.6 U	18.1 U	18.1 U	17.6 U	17.7 U	17.0 U	17.8 U	16.6 U	18.5 U	18.2 U
trans-1,3-Dichloropropene	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
Trichlorofluoromethane	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
cis-1,2-Dichloroethene	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
Tetrachloroethene	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
trans-1,2-Dichloroethene	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
Trichloroethene	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
Vinyl Chloride	4.40 U	4.52 U	7.74	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U	4.54 U
Total Chlorinated VOCs	ND	ND	35.1	ND						
Total Petroleum Hydrocarbons (µg/kg)										
Ethylene Glycol Monobutyl Ether	NA									

Location Identification:	SB-PDG-11	SB-PDG-12	SB-PDG-13	SB-PDG-14	SB-PDG-15	SB-PDG-16	SB-PDG-17	SB-PDG-18	SB-PDG-19	SB-PDG-20	SB-PDG-21	SB-PDG-22	SB-PDG-23	SB-PDG-24	SB-PDG-25
Sample Depth (Feet):	1.5 - 2														
Date Collected:	06/02/09	01/14/10	01/14/10	01/15/10	01/15/10	01/15/10	01/19/10	01/19/10	01/19/10	01/19/10	01/20/10	01/20/10	01/20/10	01/20/10	01/20/10
Volatile Organic Compounds (μg/kg)															
1,1,1,2-Tetrachloroethane	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
1,1-Dichloropropene	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
1,2,3-Trichlorobenzene	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
1,2,3-Trichloropropane	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
1,2,4-Trimethylbenzene	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
1,2-Dibromoethane	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
1,3,5-Trimethylbenzene	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
1,3-Dichloropropane	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
2,2-Dichloropropane	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
2-Butanone	23.4 U	12.8 J	21.1 U	21.2 U	19.4 U	26.1 U	33.7 U	36.2 U	35.4 U	36.5 U	58.8 U	36.4 U	35.3 U	34.1 U	32.2 U
2-Chlorotoluene	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
2-Hexanone	11.7 U	11.0 U	10.6 U	10.6 U	9.68 U	13.1 U	16.9 U	18.1 U	17.7 U	18.2 U	29.4 U	18.2 U	17.6 U	17.1 U	16.1 U
4-Chlorotoluene	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
4-Methyl-2-pentanone	11.7 U	11.0 U	10.6 U	10.6 U	9.68 U	13.1 U	16.9 U	18.1 U	17.7 U	18.2 U	29.4 U	18.2 U	17.6 U	17.1 U	16.1 U
Acetone	46.9 U	73.7	14.0 J	16.2 J	23.2 J	10.8 J	16.5 J	21.3 J	70.7 U	18.4 J	118 U	24.6 J	30.3 J	27.0 J	23.5 J
Benzene	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
Bromobenzene	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
Bromochloromethane	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
Bromoform	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
Bromomethane	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
Carbon Disulfide	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
Cyclohexane	NA														
Dibromomethane	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
Diisopropyl ether (DIPE)	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
Ethyl Alcohol	NA														
Ethylbenzene	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
Hexachlorobutadiene	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
lodomethane	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
Isopropylbenzene	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
m-,p-Xylene	9.37 U	8.80 U	8.45 U	8.46 U	7.75 U	10.5 U	13.5 U	14.5 U	14.1 U	14.6 U	23.5 U	14.5 U	14.1 U	13.7 U	12.9 U
Methyl Acetate	NA														
Methyl tert-butyl ether	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
Methylcyclohexane	NA														
Naphthalene	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
n-Butylbenzene	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
n-Propylbenzene	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
o-Xylene	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
p-Isopropyltoluene	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
sec-Butylbenzene	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U

Location Identification:	SB-PDG-11	SB-PDG-12	SB-PDG-13	SB-PDG-14	SB-PDG-15	SB-PDG-16	SB-PDG-17	SB-PDG-18	SB-PDG-19	SB-PDG-20	SB-PDG-21	SB-PDG-22	SB-PDG-23	SB-PDG-24	SB-PDG-25
Sample Depth (Feet):	1.5 - 2														
Date Collected:	06/02/09	01/14/10	01/14/10	01/15/10	01/15/10	01/15/10	01/19/10	01/19/10	01/19/10	01/19/10	01/20/10	01/20/10	01/20/10	01/20/10	01/20/10
Styrene	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
tert-Butylbenzene	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
Toluene	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
trans-1,4-Dichloro-2-butene	23.4 U	22.0 U	21.1 U	21.2 U	19.4 U	26.1 U	33.7 U	36.2 U	35.4 U	36.5 U	58.8 U	36.4 U	35.3 U	34.1 U	32.2 U
Xylenes (total)	NA														
1,1,1-Trichloroethane	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
1,1,2,2-Tetrachloroethane	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
1,1,2-trichloro-1,2,2-trifluoroethane	NA														
1,1,2-Trichloroethane	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
1,1-Dichloroethane	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
1,1-Dichloroethene	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
1,2,4-Trichlorobenzene	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
1,2-Dibromo-3-chloropropane	23.4 U	22.0 U	21.1 U	21.2 U	19.4 U	26.1 U	33.7 U	36.2 U	35.4 U	36.5 U	58.8 U	36.4 U	35.3 U	34.1 U	32.2 U
1,2-Dichlorobenzene	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
1,2-Dichloroethane	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
1,2-Dichloropropane	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
1,3-Dichlorobenzene	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
1,4-Dichlorobenzene	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
Bromodichloromethane	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
Carbon Tetrachloride	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
Chlorobenzene	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
Volatile Organic Compounds (μg/kg)															
Chloroethane	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
Chloroform	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
Chloromethane	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
cis-1,3-Dichloropropene	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
Dibromochloromethane	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
Dichlorodifluoromethane	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
Methylene Chloride	18.7 U	17.6 U	16.9 U	1.69 JB	3.01 J	2.31 JB	27.0 U	28.9 U	2.23 J	29.2 U	47.0 U	29.1 U	28.2 U	27.3 U	25.8 U
trans-1,3-Dichloropropene	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
Trichlorofluoromethane	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
cis-1,2-Dichloroethene	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
Tetrachloroethene	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
trans-1,2-Dichloroethene	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
Trichloroethene	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
Vinyl Chloride	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U
Total Chlorinated VOCs	ND	ND	ND	1.69 J	3.01 J	2.31 J	ND	ND	2.23 J	ND	ND	ND	ND	ND	ND
Total Petroleum Hydrocarbons (µg/kg)				11300											
Ethylene Glycol Monobutyl Ether	NA														

Location Identification:	SB-PDG-26	SB-PDG-27	SB-PDG-28	SB-PDG-29	SB-PDG-RW	TMB-109	WCCS-3	WCCS-3	WCCS-4	WCCS-4	WCCS-4	WCCS-5	WCCS-5	WCCS-6	WCCS-8
Sample Depth (Feet):						7	8	13	11	22	27	15	24	10	8
Date Collected:	01/20/10	01/20/10	01/20/10	01/20/10	01/20/10	01/12/16	10/27/15	10/27/15	10/27/15	10/27/15	10/27/15	10/27/15	10/27/15	10/27/15	10/28/15
Volatile Organic Compounds (μg/kg)	01/20/10	01/20/10	01/20/10	01/20/10	01/20/10	01/12/10	10/21/10	10/2//10	10/21/10	10/21/10	10/2//10	10/2//10	10/21/10	10/27/10	10/20/10
1,1,1,2-Tetrachloroethane	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	47.9 U	4,000 U	49.5 U	3.600 U	42.0 U	588 U	91.7 U	21,100 U	89.300 U	235,000 U
1,1-Dichloropropene	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	47.9 U	4,000 U	49.5 U	3,600 U	42.0 U	588 U	91.7 U	21,100 U	89,300 U	235,000 U
1,2,3-Trichlorobenzene	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	47.9 U	4,000 U	49.5 U	3,600 U	42.0 U	588 U	91.7 U	21,100 U	89,300 U	235,000 U
1,2,3-Trichloropropane	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	47.9 U	4,000 U	49.5 U	3,600 U	42.0 U	588 U	91.7 U	21,100 U	89,300 U	235,000 U
1,2,4-Trimethylbenzene	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	69.0	4,000 U	492	3,600 U	42.0 U	588 U	91.7 U	21,100 U	89,300 U	235,000 U
1,2-Dibromoethane	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	47.9 U	4,000 U	49.5 U	3,600 U	42.0 U	588 U	91.7 U	21,100 U	89,300 U	235,000 U
1,3,5-Trimethylbenzene	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	1,190	4,000 U	254	3,600 U	42.0 U	588 U	91.7 U	21,100 U	89,300 U	235,000 U
1,3-Dichloropropane	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	47.9 U	4,000 U	49.5 U	3,600 U	42.0 U	588 U	91.7 U	21,100 U	89,300 U	235,000 U
2,2-Dichloropropane	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	47.9 U	4,000 U	49.5 U	3,600 U	42.0 U	588 U	91.7 U	21,100 U	89,300 U	235,000 U
2-Butanone	37.2 U	39.0 U	44.1 U	45.3 U	43.2 U	1,200 U	100,000 U	404 J	90,100 U	371 J	14,700 U	324 J	526,000 U	2,230,000 U	5,880,000 U
2-Chlorotoluene	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	47.9 U	4,000 U	49.5 U	3,600 U	42.0 U	588 U	91.7 U	21,100 U	89,300 U	235,000 U
2-Hexanone	18.6 U	19.5 U	22.0 U	22.6 U	21.6 U	240 U	20,000 U	248 U	18,000 U	210 U	2,940 U	459 U	105,000 U	446,000 U	1,180,000 U
4-Chlorotoluene	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	47.9 U	4,000 U	49.5 U	3,600 U	42.0 U	588 U	91.7 U	21,100 U	89,300 U	235,000 U
4-Methyl-2-pentanone	18.6 U	19.5 U	22.0 U	22.6 U	21.6 U	240 U	20,000 U	248 U	18,000 U	210 U	2,940 U	459 U	105,000 U	446,000 U	1,180,000 U
Acetone	14.5 J	38.6 J	44.1 J	21.9 J	18.0 J	1,200 U	100,000 U	93.6 J	90,100 U	1,050 U	14,700 U	2,290 U	526,000 U	2,230,000 U	5,880,000 U
Benzene	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	47.9 U	4,000 U	49.5 U	3,600 U	42.0 U	588 U	91.7 U	21,100 U	89,300 U	235,000 U
Bromobenzene	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	47.9 U	4,000 U	49.5 U	3,600 U	42.0 U	588 U	91.7 U	21,100 U	89,300 U	235,000 U
Bromochloromethane	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	47.9 U	4,000 U	49.5 U	3,600 U	42.0 U	588 U	91.7 U	21,100 U	89,300 U	235,000 U
Bromoform	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	47.9 U	4,000 U	49.5 U	3,600 U	42.0 U	588 U	91.7 U	21,100 U	89,300 U	235,000 U
Bromomethane	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	47.9 U	4,000 U	49.5 U	3,600 U	42.0 U	588 U	91.7 U	21,100 U	89,300 U	235,000 U
Carbon Disulfide	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	47.9 U	4,000 U	49.5 U	3,600 U	42.0 U	588 U	91.7 U	21,100 U	89,300 U	235,000 U
Cyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibromomethane	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	47.9 U	4,000 U	49.5 U	3,600 U	42.0 U	588 U	91.7 U	21,100 U	89,300 U	235,000 U
Diisopropyl ether (DIPE)	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	47.9 U	4,000 U	49.5 U	3,600 U	42.0 U	588 U	91.7 U	21,100 U	89,300 U	235,000 U
Ethyl Alcohol	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethylbenzene	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	6.71 J	4,000 U	93.1	3,600 U	91.6	588 U	82.6 J	21,100 U	89,300 U	235,000 U
Hexachlorobutadiene	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	47.9 U	4,000 U	49.5 U	3,600 U	42.0 U	588 U	91.7 U	21,100 U	89,300 U	235,000 U
lodomethane	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	47.9 U	4,000 U	49.5 U	3,600 U	42.0 U	588 U	91.7 U	21,100 U	89,300 U	235,000 U
Isopropylbenzene	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	192	4,000 U	51.0	3,600 U	42.0 U	588 U	91.7 U	21,100 U	89,300 U	235,000 U
m-,p-Xylene	14.9 U	15.6 U	17.6 U	18.1 U	17.3 U	95.8 U	8,000 U	78.2 J	7,210 U	84.0 U	1,180 U	183 U	42,100 U	179,000 U	471,000 U
Methyl Acetate	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methyl tert-butyl ether	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	47.9 U	4,000 U	49.5 U	3,600 U	42.0 U	588 U	91.7 U	21,100 U	89,300 U	235,000 U
Methylcyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	54.1	4,000 U	30.2 J	3,600 U	42.0 U	588 U	91.7 U	21,100 U	89,300 U	235,000 U
n-Butylbenzene	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	47.9 U	4,000 U	26.2 J	3,600 U	42.0 U	588 U	91.7 U	21,100 U	89,300 U	235,000 U
n-Propylbenzene	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	374	4,000 U	256	3,600 U	42.0 U	588 U	91.7 U	21,100 U	89,300 U	235,000 U
o-Xylene	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	63.7	4,000 U	87.6	3,600 U	42.0 U	588 U	91.7 U	21,100 U	89,300 U	235,000 U
p-Isopropyltoluene	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	35.9 J	4,000 U	1,490	3,600 U	42.0 U	588 U	91.7 U	21,100 U	89,300 U	235,000 U
sec-Butylbenzene	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	47.9 U	4,000 U	49.5 U	3,600 U	42.0 U	588 U	91.7 U	21,100 U	89,300 U	235,000 U

Location Identification:	SB-PDG-26	SB-PDG-27	SB-PDG-28	SB-PDG-29	SB-PDG-RW	TMB-109	WCCS-3	WCCS-3	WCCS-4	WCCS-4	WCCS-4	WCCS-5	WCCS-5	WCCS-6	WCCS-8
Sample Depth (Feet):						7	8	13	11	22	27	15	24	10	8
Date Collected:	01/20/10	01/20/10	01/20/10	01/20/10	01/20/10	01/12/16	10/27/15	10/27/15	10/27/15	10/27/15	10/27/15	10/27/15	10/27/15	10/27/15	10/28/15
Styrene	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	47.9 U	4,000 U	49.5 U	3,600 U	42.0 U	588 U	91.7 U	21,100 U	89,300 U	235,000 U
tert-Butylbenzene	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	47.9 U	4,000 U	49.5 U	3,600 U	42.0 U	588 U	91.7 U	21,100 U	89,300 U	235,000 U
Toluene	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	47.9 U	1,040 J	205	1,080 J	49.2	588 U	44.0 J	21,100 U	89,300 U	235,000 U
trans-1,4-Dichloro-2-butene	37.2 U	39.0 U	44.1 U	45.3 U	43.2 U	240 U	20,000 U	248 U	18,000 U	210 U	2,940 U	459 U	105,000 U	446,000 U	1,180,000 U
Xylenes (total)	NA	NA	NA	NA	NA	63.7 J	8,000 U	166	7,210 U	84.0 U	1,180 U	183 U	42,100 U	179,000 U	471,000 U
1,1,1-Trichloroethane	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	47.9 U	4,000 U	49.5 U	3,600 U	42.0 U	588 U	91.7 U	21,100 U	89,300 U	235,000 U
1,1,2,2-Tetrachloroethane	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	47.9 U	4,000 U	49.5 U	3,600 U	42.0 U	588 U	91.7 U	21,100 U	89,300 U	235,000 U
1,1,2-trichloro-1,2,2-trifluoroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,2-Trichloroethane	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	47.9 U	4,000 U	49.5 U	3,600 U	42.0 U	588 U	91.7 U	21,100 U	89,300 U	235,000 U
1,1-Dichloroethane	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	47.9 U	4,000 U	49.5 U	3,600 U	42.0 U	588 U	49.5 J	21,100 U	89,300 U	235,000 U
1,1-Dichloroethene	4.88 J	7.80 U	8.82 U	9.06 U	8.64 U	47.9 U	4,000 U	49.5 U	3,600 U	42.0 U	588 U	91.7 U	21,100 U	89,300 U	235,000 U
1,2,4-Trichlorobenzene	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	47.9 U	4,000 U	49.5 U	3,600 U	42.0 U	588 U	91.7 U	21,100 U	89,300 U	235,000 U
1,2-Dibromo-3-chloropropane	37.2 U	39.0 U	44.1 U	45.3 U	43.2 U	240 U	20,000 U	248 U	18,000 U	210 U	2,940 U	459 U	105,000 U	446,000 U	1,180,000 U
1,2-Dichlorobenzene	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	47.9 U	4,000 U	49.5 U	3,600 U	42.0 U	588 U	91.7 U	21,100 U	89,300 U	235,000 U
1,2-Dichloroethane	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	47.9 U	4,000 U	49.5 U	3,600 U	42.0 U	588 U	91.7 U	21,100 U	89,300 U	235,000 U
1,2-Dichloropropane	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	47.9 U	4,000 U	49.5 U	3,600 U	42.0 U	588 U	91.7 U	21,100 U	89,300 U	235,000 U
1,3-Dichlorobenzene	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	47.9 U	4,000 U	49.5 U	3,600 U	42.0 U	588 U	91.7 U	21,100 U	89,300 U	235,000 U
1,4-Dichlorobenzene	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	47.9 U	4,000 U	49.5 U	3,600 U	42.0 U	588 U	91.7 U	21,100 U	89,300 U	235,000 U
Bromodichloromethane	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	47.9 U	4,000 U	49.5 U	3,600 U	42.0 U	588 U	91.7 U	21,100 U	89,300 U	235,000 U
Carbon Tetrachloride	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	47.9 U	4,000 U	49.5 U	3,600 U	42.0 U	588 U	91.7 U	21,100 U	89,300 U	235,000 U
Chlorobenzene	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	47.9 U	4,000 U	49.5 U	3,600 U	42.0 U	588 U	91.7 U	21,100 U	89,300 U	235,000 U
Volatile Organic Compounds (μg/kg)															
Chloroethane	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	47.9 U	4,000 U	49.5 U	3,600 U	42.0 U	588 U	91.7 U	21,100 U	89,300 U	235,000 U
Chloroform	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	47.9 U	4,000 U	49.5 U	3,600 U	42.0 U	588 U	91.7 U	21,100 U	89,300 U	235,000 U
Chloromethane	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	47.9 U	4,000 U	49.5 U	3,600 U	42.0 U	588 U	91.7 U	21,100 U	89,300 U	235,000 U
cis-1,3-Dichloropropene	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	47.9 U	4,000 U	49.5 U	3,600 U	42.0 U	588 U	91.7 U	21,100 U	89,300 U	235,000 U
Dibromochloromethane	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	47.9 U	4,000 U	49.5 U	3,600 U	42.0 U	588 U	91.7 U	21,100 U	89,300 U	235,000 U
Dichlorodifluoromethane	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	240 U	20,000 U	248 U	18,000 U	210 U	2,940 U	459 U	105,000 U	446,000 U	1,180,000 U
Methylene Chloride	29.7 U	31.2 U	35.3 U	36.2 U	34.6 U	240 U	20,000 U	248 U	18,000 U	210 U	2,940 U	459 U	105,000 U	446,000 U	1,180,000 U
trans-1,3-Dichloropropene	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	47.9 U	4,000 U	49.5 U	3,600 U	42.0 U	588 U	91.7 U	21,100 U	89,300 U	235,000 U
Trichlorofluoromethane	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	47.9 U	4,000 U	49.5 U	3,600 U	42.0 U	588 U	91.7 U	21,100 U	89,300 U	235,000 U
cis-1,2-Dichloroethene	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	15.8 J	69,700	373	50,500	642	2,540	2,680	21,500	89,300 U	148,000 J
Tetrachloroethene	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	47.9 U	4,000 U	49.5 U	3,600 U	42.0 U	588 U	91.7 U	21,100 U	89,300 U	235,000 U
trans-1,2-Dichloroethene	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	47.9 U	4,000 U	49.5 U	3,600 U	42.0 U	588 U	91.7 U	21,100 U	89,300 U	235,000 U
Trichloroethene	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	47.9 U	24,000	1,230	3,600 U	271	12,700	2,270	298,000	2,790,000	4,380,000
Vinyl Chloride	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	47.9 U	1,320 J	49.5 U	7,280	34.9 J	588 U	139	21,100 U	89,300 U	235,000 U
Total Chlorinated VOCs	4.88 J	ND	ND	ND	ND	15.8 J	95,000 J	1,600	57,800	948 J	15,200	5,140 J	320,000	2,790,000	4,530,000 J
Total Petroleum Hydrocarbons (µg/kg)															
Ethylene Glycol Monobutyl Ether	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Location Identification:	WCCS-8	WCCS-9	WCCS-10	WCCS-12	WCCS-13	WCCS-14	WCCS-16	WCSS-1	WCSS-1	WCSS-1	WCSS-1	WCSS-1	WCSS-1	WCSS-1	WCSS-1
Sample Depth (Feet):	10	24	9	15	28	30	20							2	10
Date Collected:	10/28/15	10/28/15	10/28/15	10/28/15	10/29/15	10/29/15	10/29/15	12/03/15	12/03/15	12/03/15	12/03/15	12/03/15	12/03/15	10/26/15	10/26/15
Volatile Organic Compounds (μg/kg)															
1,1,1,2-Tetrachloroethane	101,000 U	51.0 U	47.6 U	4,240 U	5,810 U	24,400 U	3,390 U	47.7 U	48.7 U	17,300 U	10,200 U	7,000 U	89.2 U	103 U	25,600 U
1,1-Dichloropropene	101,000 U	51.0 U	47.6 U	4,240 U	5,810 U	24,400 U	3,390 U	47.7 U	48.7 U	17,300 U	10,200 U	7,000 U	89.2 U	103 U	25,600 U
1,2,3-Trichlorobenzene	101,000 U	51.0 U	47.6 U	4,240 U	5,810 U	24,400 U	3,390 U	47.7 U	48.7 U	17,300 U	10,200 U	7,000 U	89.2 U	103 U	25,600 U
1,2,3-Trichloropropane	101,000 U	51.0 U	47.6 U	4,240 U	5,810 U	24,400 U	3,390 U	47.7 U	48.7 U	17,300 U	10,200 U	7,000 U	89.2 U	103 U	25,600 U
1,2,4-Trimethylbenzene	101,000 U	51.0 U	47.6 U	4,240 U	5,810 U	24,400 U	3,390 U	47.7 U	48.7 U	17,300 U	10,200 U	7,000 U	89.2 U	103 U	25,600 U
1,2-Dibromoethane	101,000 U	51.0 U	47.6 U	4,240 U	5,810 U	24,400 U	3,390 U	47.7 U	48.7 U	17,300 U	10,200 U	7,000 U	89.2 U	103 U	25,600 U
1,3,5-Trimethylbenzene	101,000 U	51.0 U	47.6 U	4,240 U	5,810 U	24,400 U	3,390 U	47.7 U	48.7 U	17,300 U	10,200 U	7,000 U	89.2 U	103 U	25,600 U
1,3-Dichloropropane	101,000 U	51.0 U	47.6 U	4,240 U	5,810 U	24,400 U	3,390 U	47.7 U	48.7 U	17,300 U	10,200 U	7,000 U	89.2 U	103 U	25,600 U
2,2-Dichloropropane	101,000 U	51.0 U	47.6 U	4,240 U	5,810 U	24,400 U	3,390 U	47.7 U	48.7 U	17,300 U	10,200 U	7,000 U	89.2 U	103 U	25,600 U
2-Butanone	2,530,000 U	590 J	439 J	106,000 U	145,000 U	610,000 U	84,700 U	1,190 U	1,220 U	432,000 U	255,000 U	175,000 U	2,230 U	445 J	641,000 U
2-Chlorotoluene	101,000 U	51.0 U	47.6 U	4,240 U	5,810 U	24,400 U	3,390 U	47.7 U	48.7 U	17,300 U	10,200 U	7,000 U	89.2 U	103 U	25,600 U
2-Hexanone	505,000 U	255 U	238 U	21,200 U	29,100 U	122,000 U	16,900 U	239 U	243 U	86,500 U	50,900 U	35,000 U	446 U	515 U	128,000 U
4-Chlorotoluene	101,000 U	51.0 U	47.6 U	4,240 U	5,810 U	24,400 U	3,390 U	47.7 U	48.7 U	17,300 U	10,200 U	7,000 U	89.2 U	103 U	25,600 U
4-Methyl-2-pentanone	505,000 U	255 U	238 U	21,200 U	29,100 U	122,000 U	16,900 U	239 U	243 U	86,500 U	50,900 U	35,000 U	446 U	515 U	128,000 U
Acetone	2,530,000 U	1,280 U	1,190 U	106,000 U	145,000 U	610,000 U	84,700 U	1,190 U	1,220 U	432,000 U	255,000 U	175,000 U	2,230 U	2,580 U	641,000 U
Benzene	101,000 U	51.0 U	47.6 U	4,240 U	5,810 U	24,400 U	3,390 U	47.7 U	48.7 U	17,300 U	10,200 U	7,000 U	89.2 U	103 U	25,600 U
Bromobenzene	101,000 U	51.0 U	47.6 U	4,240 U	5,810 U	24,400 U	3,390 U	47.7 U	48.7 U	17,300 U	10,200 U	7,000 U	89.2 U	103 U	25,600 U
Bromochloromethane	101,000 U	51.0 U	47.6 U	4,240 U	5,810 U	24,400 U	3,390 U	47.7 U	48.7 U	17,300 U	10,200 U	7,000 U	89.2 U	103 U	25,600 U
Bromoform	101,000 U	51.0 U	47.6 U	4,240 U	5,810 U	24,400 U	3,390 U	47.7 U	48.7 U	17,300 U	10,200 U	7,000 U	89.2 U	103 U	25,600 U
Bromomethane	101,000 U	51.0 U	47.6 U	4,240 U	5,810 U	24,400 U	3,390 U	47.7 U	48.7 U	17,300 U	10,200 U	7,000 U	89.2 U	103 U	25,600 U
Carbon Disulfide	101,000 U	51.0 U	47.6 U	4,240 U	5,810 U	24,400 U	3,390 U	47.7 U	48.7 U	17,300 U	10,200 U	7,000 U	89.2 U	103 U	25,600 U
Cyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibromomethane	101,000 U	51.0 U	47.6 U	4,240 U	5,810 U	24,400 U	3,390 U	47.7 U	48.7 U	17,300 U	10,200 U	7,000 U	89.2 U	103 U	25,600 U
Diisopropyl ether (DIPE)	101,000 U	51.0 U	47.6 U	4,240 U	5,810 U	24,400 U	3,390 U	47.7 U	48.7 U	17,300 U	10,200 U	7,000 U	89.2 U	103 U	25,600 U
Ethyl Alcohol	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethylbenzene	101,000 U	106	99.5	4,240 U	5,810 U	24,400 U	3,390 U	47.7 U	48.7 U	17,300 U	10,200 U	7,000 U	89.2 U	105	25,600 U
Hexachlorobutadiene	101,000 U	51.0 U	47.6 U	4,240 U	5,810 U	24,400 U	3,390 U	47.7 U	48.7 U	17,300 U	10,200 U	7,000 U	89.2 U	103 U	25,600 U
Iodomethane	101,000 U	51.0 U	47.6 U	4,240 U	5,810 U	24,400 U	3,390 U	47.7 U	48.7 U	17,300 U	10,200 U	7,000 U	89.2 U	103 U	25,600 U
Isopropylbenzene	101,000 U	51.0 U	47.6 U	4,240 U	5,810 U	24,400 U	3,390 U	47.7 U	48.7 U	17,300 U	10,200 U	7,000 U	89.2 U	103 U	25,600 U
m-,p-Xylene	202,000 U	102 U	10.0 J	8,470 U	11,600 U	48,800 U	6,780 U	95.4 U	97.4 U	34,600 U	20,400 U	14,000 U	178 U	206 U	51,300 U
Methyl Acetate	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methyl tert-butyl ether	101,000 U	51.0 U	47.6 U	4,240 U	5,810 U	24,400 U	3,390 U	47.7 U	48.7 U	17,300 U	10,200 U	7,000 U	89.2 U	103 U	25,600 U
Methylcyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	101,000 U	51.0 U	47.6 U	4,240 U	5,810 U	24,400 U	3,390 U	47.7 U	48.7 U	17,300 U	10,200 U	7,000 U	89.2 U	103 U	25,600 U
n-Butylbenzene	101,000 U	51.0 U	47.6 U	4,240 U	5,810 U	24,400 U	3,390 U	47.7 U	48.7 U	17,300 U	10,200 U	7,000 U	89.2 U	103 U	25,600 U
n-Propylbenzene	101,000 U	51.0 U	47.6 U	4,240 U	5,810 U	24,400 U	3,390 U	47.7 U	48.7 U	17,300 U	10,200 U	7,000 U	89.2 U	103 U	25,600 U
o-Xylene	101,000 U	51.0 U	47.6 U	4,240 U	5,810 U	24,400 U	3,390 U	47.7 U	48.7 U	17,300 U	10,200 U	7,000 U	89.2 U	103 U	25,600 U
p-Isopropyltoluene	101,000 U	51.0 U	47.6 U	4,240 U	5,810 U	24,400 U	3,390 U	47.7 U	48.7 U	17,300 U	10,200 U	7,000 U	89.2 U	103 U	25,600 U
sec-Butylbenzene	101,000 U	51.0 U	47.6 U	4,240 U	5,810 U	24,400 U	3,390 U	47.7 U	48.7 U	17,300 U	10,200 U	7,000 U	89.2 U	103 U	25,600 U

Location Identification:	WCCS-8	WCCS-9	WCCS-10	WCCS-12	WCCS-13	WCCS-14	WCCS-16	WCSS-1	WCSS-1	WCSS-1	WCSS-1	WCSS-1	WCSS-1	WCSS-1	WCSS-1
Sample Depth (Feet):	10	24	9	15	28	30	20							2	10
Date Collected:	10/28/15	10/28/15	10/28/15	10/28/15	10/29/15	10/29/15	10/29/15	12/03/15	12/03/15	12/03/15	12/03/15	12/03/15	12/03/15	10/26/15	10/26/15
Styrene	101,000 U	51.0 U	47.6 U	4,240 U	5,810 U	24,400 U	3,390 U	47.7 U	48.7 U	17,300 U	10,200 U	7,000 U	89.2 U	103 U	25,600 U
tert-Butylbenzene	101,000 U	51.0 U	47.6 U	4,240 U	5,810 U	24,400 U	3,390 U	47.7 U	48.7 U	17,300 U	10,200 U	7,000 U	89.2 U	103 U	25,600 U
Toluene	101,000 U	52.6	51.9	4,240 U	5,810 U	24,400 U	3,390 U	47.7 U	13.1 J	17,300 U	10,200 U	7,000 U	89.2 U	55.7 J	25,600 U
trans-1,4-Dichloro-2-butene	505,000 U	255 U	238 U	21,200 U	29,100 U	122,000 U	16,900 U	239 U	243 U	86,500 U	50,900 U	35,000 U	446 U	515 U	128,000 U
Xylenes (total)	202,000 U	102 U	10.0 J	8,470 U	11,600 U	48,800 U	6,780 U	95.4 U	97.4 U	34,600 U	20,400 U	14,000 U	178 U	206 U	51,300 U
1,1,1-Trichloroethane	101,000 U	51.0 U	47.6 U	4,240 U	5,810 U	13,200 J	3,390 U	47.7 U	48.7 U	17,300 U	10,200 U	7,000 U	89.2 U	2,730	66,900
1,1,2,2-Tetrachloroethane	101,000 U	51.0 U	47.6 U	4,240 U	5,810 U	24,400 U	3,390 U	47.7 U	48.7 U	17,300 U	10,200 U	7,000 U	89.2 U	103 U	25,600 U
1,1,2-trichloro-1,2,2-trifluoroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,2-Trichloroethane	101,000 U	51.0 U	47.6 U	4,240 U	5,810 U	24,400 U	3,390 U	47.7 U	48.7 U	17,300 U	10,200 U	7,000 U	89.2 U	103 U	25,600 U
1,1-Dichloroethane	101,000 U	51.0 U	10.5 J	4,240 U	5,810 U	24,400 U	3,390 U	15.7 J	48.7 U	17,300 U	10,200 U	7,000 U	89.2 U	405	25,600 U
1,1-Dichloroethene	101,000 U	51.0 U	47.6 U	4,240 U	5,810 U	24,400 U	3,390 U	47.7 U	48.7 U	17,300 U	10,200 U	7,000 U	89.2 U	165	31,300
1,2,4-Trichlorobenzene	101,000 U	51.0 U	47.6 U	4,240 U	5,810 U	24,400 U	3,390 U	47.7 U	48.7 U	17,300 U	10,200 U	7,000 U	89.2 U	103 U	25,600 U
1,2-Dibromo-3-chloropropane	505,000 U	255 U	238 U	21,200 U	29,100 U	122,000 U	16,900 U	239 U	243 U	86,500 U	50,900 U	35,000 U	446 U	515 U	128,000 U
1,2-Dichlorobenzene	101,000 U	51.0 U	47.6 U	4,240 U	5,810 U	24,400 U	3,390 U	47.7 U	48.7 U	17,300 U	10,200 U	7,000 U	89.2 U	103 U	25,600 U
1,2-Dichloroethane	101,000 U	51.0 U	47.6 U	4,240 U	5,810 U	24,400 U	3,390 U	47.7 U	48.7 U	17,300 U	10,200 U	7,000 U	89.2 U	103 U	25,600 U
1,2-Dichloropropane	101,000 U	51.0 U	47.6 U	4,240 U	5,810 U	24,400 U	3,390 U	47.7 U	48.7 U	17,300 U	10,200 U	7,000 U	89.2 U	103 U	25,600 U
1,3-Dichlorobenzene	101,000 U	51.0 U	47.6 U	4,240 U	5,810 U	24,400 U	3,390 U	47.7 U	48.7 U	17,300 U	10,200 U	7,000 U	89.2 U	103 U	25,600 U
1,4-Dichlorobenzene	101,000 U	51.0 U	47.6 U	4,240 U	5,810 U	24,400 U	3,390 U	47.7 U	48.7 U	17,300 U	10,200 U	7,000 U	89.2 U	103 U	25,600 U
Bromodichloromethane	101,000 U	51.0 U	47.6 U	4,240 U	5,810 U	24,400 U	3,390 U	47.7 U	48.7 U	17,300 U	10,200 U	7,000 U	89.2 U	103 U	25,600 U
Carbon Tetrachloride	101,000 U	51.0 U	47.6 U	4,240 U	5,810 U	24,400 U	3,390 U	47.7 U	48.7 U	17,300 U	10,200 U	7,000 U	89.2 U	103 U	25,600 U
Chlorobenzene	101,000 U	51.0 U	47.6 U	4,240 U	5,810 U	24,400 U	3,390 U	47.7 U	48.7 U	17,300 U	10,200 U	7,000 U	89.2 U	103 U	25,600 U
Volatile Organic Compounds (μg/kg)	,			·	·	·	·			·	,				
Chloroethane	101,000 U	51.0 U	47.6 U	4,240 U	5,810 U	24,400 U	3,390 U	47.7 U	48.7 U	17,300 U	10,200 U	7,000 U	89.2 U	103 U	25,600 U
Chloroform	101,000 U	51.0 U	47.6 U	4,240 U	5,810 U	24,400 U	3,390 U	47.7 U	48.7 U	17,300 U	10,200 U	7,000 U	89.2 U	103 U	25,600 U
Chloromethane	101,000 U	51.0 U	47.6 U	4,240 U	5,810 U	24,400 U	3,390 U	47.7 U	48.7 U	17,300 U	10,200 U	7,000 U	89.2 U	103 U	25,600 U
cis-1,3-Dichloropropene	101,000 U	51.0 U	47.6 U	4,240 U	5,810 U	24,400 U	3,390 U	47.7 U	48.7 U	17,300 U	10,200 U	7,000 U	89.2 U	103 U	25,600 U
Dibromochloromethane	101,000 U	51.0 U	47.6 U	4,240 U	5,810 U	24,400 U	3,390 U	47.7 U	48.7 U	17,300 U	10,200 U	7,000 U	89.2 U	103 U	25,600 U
Dichlorodifluoromethane	505,000 U	255 U	238 U	21,200 U	29,100 U	122,000 U	16,900 U	239 U	243 U	86,500 U	50,900 U	35,000 U	446 U	515 U	128,000 U
Methylene Chloride	505,000 U	255 U	238 U	21,200 U	29,100 U	122,000 U	16,900 U	239 U	243 U	86,500 U	50,900 U	35,000 U	446 U	515 U	128,000 U
trans-1,3-Dichloropropene	101,000 U	51.0 U	47.6 U	4,240 U	5,810 U	24,400 U	3,390 U	47.7 U	48.7 U	17,300 U	10,200 U	7,000 U	89.2 U	103 U	25,600 U
Trichlorofluoromethane	101,000 U	51.0 U	47.6 U	4,240 U	5,810 U	24,400 U	3,390 U	47.7 U	48.7 U	17,300 U	10,200 U	7,000 U	89.2 U	103 U	25,600 U
cis-1,2-Dichloroethene	62,600 J	301	482	12,500	76,600	22,000 J	8,540	562	545	52,600	38,600	15,100	1,060	1,660	58,500
Tetrachloroethene	101,000 U	51.0 U	47.6 U	4,240 U	5,810 U	24,400 U	3,390 U	47.7 U	48.7 U	17,300 U	10,200 U	7,000 U	89.2 U	103 U	25,600 U
trans-1,2-Dichloroethene	101,000 U	51.0 U	47.6 U	4,240 U	5,810 U	24,400 U	3,390 U	47.7 U	48.7 U	17,300 U	10,200 U	7,000 U	89.2 U	103 U	25,600 U
Trichloroethene	2,430,000	360	192	87,800	115,000	400,000	53,200	53.9	15.1 J	447,000	334,000	149,000	2,220	458	617,000
Vinyl Chloride	101,000 U	26.5 J	64.3	4,240 U	5,810 U	24,400 U	3,390 U	13.4 J	268	3,110 J	1,430 J	7,000 U	89.2 U	87.6 J	25,600 U
Total Chlorinated VOCs	2,490,000 J	688 J	749 J	100,000	192,000	435,000 J	61,700	645 J	828 J	503,000 J	374,000 J	164,000	3,280	5,510 J	774,000
Total Petroleum Hydrocarbons (µg/kg)	_, .00,000 0			.00,000	.02,000	100,000 0	31,700	3.00	0200	000,000	0. 1,000 0	101,000	0,200	0,0100	7.7.,000
Ethylene Glycol Monobutyl Ether	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Eary of the Orygon Monoputy Ether	IVA	1 11/7	14/7	1 1/7	INA	14/7	14/7	INA	14/7	14/7	14/7	1 1/7	INA	14/7	14/4

Location Identification:	WCSS-1	WP-Com-Base	WP-Com-East	WP-Com-North	WP-Com-South	WP-Com-West	WP-SB-01	WP-SB-01	WP-SB-02	WP-SB-02	WP-SB-03	WP-SB-03
Sample Depth (Feet):	20						0.5 - 1.5	5 - 6	2 - 3	5 - 6	1 - 2	5 - 6
Date Collected:	10/26/15	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08
/olatile Organic Compounds (μg/kg)								<u> </u>				
1,1,1,2-Tetrachloroethane	204 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U
1,1-Dichloropropene	204 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U
1,2,3-Trichlorobenzene	204 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U
1,2,3-Trichloropropane	204 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U
1,2,4-Trimethylbenzene	204 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U
1,2-Dibromoethane	204 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U
1,3,5-Trimethylbenzene	204 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U
1,3-Dichloropropane	204 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U
2,2-Dichloropropane	204 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U
2-Butanone	459 J	17,600 U	21,700 U	27,300 U	1,170 U	2,620 U	2,060 U	3,140 U	4,800 U	1,800 U	24.4 U	24.9 U
2-Chlorotoluene	204 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U
2-Hexanone	1,020 U	3,530 U	4,340 U	5,460 U	233 U	525 U	413 U	628 U	960 U	360 U	12.2 U	12.4 U
4-Chlorotoluene	204 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U
4-Methyl-2-pentanone	1,020 U	3,530 U	4,340 U	5,460 U	233 U	525 U	413 U	628 U	960 U	360 U	12.2 U	12.4 U
Acetone	5,100 U	17,600 U	21,700 U	27,300 U	1,170 U	2,620 U	2,060 U	3,140 U	4,800 U	1,800 U	54.5	49.8 U
Benzene	204 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U
Bromobenzene	204 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U
Bromochloromethane	204 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U
Bromoform	204 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U
Bromomethane	204 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U
Carbon Disulfide	204 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U
Cyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibromomethane	204 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U
Diisopropyl ether (DIPE)	204 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U
Ethyl Alcohol	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethylbenzene	95.9 J	2,300	3,520	3,810	301	959	1,070	126 U	2,880	941	1.50 J	4.98 U
Hexachlorobutadiene	204 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U
lodomethane	204 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U
Isopropylbenzene	204 U	705 U	868 U	1,090 U	46.6 U	105 U	60.3 J	126 U	57.6 J	55.5 J	4.87 U	4.98 U
m-,p-Xylene	408 U	9,020	13,700	15,400	803	3,190	6,200	251 U	9,820	789	9.75 U	4.12 J
Methyl Acetate	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methyl tert-butyl ether	204 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U
Methylcyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	204 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U
n-Butylbenzene	204 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U
n-Propylbenzene	204 U	705 U	868 U	1,090 U	46.6 U	30.4 J	28.1 J	126 U	192 U	72.1 U	2.37 J	4.98 U
o-Xylene	204 U	818	677 J	1,090 U	46.6 U	105 U	408	126 U	1,090	259	4.87 U	1.53 J
p-Isopropyltoluene	204 U	705 U	868 U	1,090 U	46.6 U	33.6 J	97.4	126 U	192 U	72.1 U	4.87 U	4.98 U
sec-Butylbenzene	204 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U

Location Identification:	WCSS-1	WP-Com-Base	WP-Com-East	WP-Com-North	WP-Com-South	WP-Com-West	WP-SB-01	WP-SB-01	WP-SB-02	WP-SB-02	WP-SB-03	WP-SB-03
Sample Depth (Feet):	20						0.5 - 1.5	5 - 6	2 - 3	5 - 6	1 - 2	5 - 6
Date Collected:	10/26/15	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08
Styrene	204 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U
tert-Butylbenzene	204 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U
Toluene	143 J	63.5 J	868 U	1,090 U	46.6 U	16.8 J	21.5 J	126 U	61.5 J	12.3 J	1.60 J	4.98 U
trans-1,4-Dichloro-2-butene	1,020 U	3,530 U	4,340 U	5,460 U	233 U	525 U	413 U	628 U	960 U	360 U	24.4 U	24.9 U
Xylenes (total)	408 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,1-Trichloroethane	327	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U
1,1,2,2-Tetrachloroethane	204 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U
1,1,2-trichloro-1,2,2-trifluoroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,2-Trichloroethane	204 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U
1,1-Dichloroethane	65.3 J	705 U	868 U	1,090 U	46.6 U	33.6 J	82.6 U	215	192 U	118	7.32	4.98 U
1,1-Dichloroethene	204 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	124 J	192 U	72.1 U	4.87 U	4.98 U
1,2,4-Trichlorobenzene	204 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U
1,2-Dibromo-3-chloropropane	1,020 U	3,530 U	4,340 U	5,460 U	233 U	525 U	413 U	628 U	960 U	360 U	24.4 U	24.9 U
1,2-Dichlorobenzene	204 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U
1,2-Dichloroethane	204 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U
1,2-Dichloropropane	204 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U
1,3-Dichlorobenzene	204 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U
1,4-Dichlorobenzene	204 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U
Bromodichloromethane	204 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U
Carbon Tetrachloride	204 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U
Chlorobenzene	204 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U
Volatile Organic Compounds (μg/kg)												
Chloroethane	204 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U
Chloroform	204 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U
Chloromethane	204 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U
cis-1,3-Dichloropropene	204 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U
Dibromochloromethane	204 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U
Dichlorodifluoromethane	1,020 U	3,530 U	4,340 U	5,460 U	233 U	525 U	413 U	628 U	960 U	360 U	4.87 U	4.98 U
Methylene Chloride	1,020 U	233 J	304 J	1,460 J	114 J	73.4 J	152 J	230 J	334 J	143 J	19.5 U	1.70 J
trans-1,3-Dichloropropene	204 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U
Trichlorofluoromethane	204 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U
cis-1,2-Dichloroethene	6,670	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	2,200	192 U	393	4.87 U	4.98 U
Tetrachloroethene	204 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U
trans-1,2-Dichloroethene	204 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	33.9 J	192 U	72.1 U	4.87 U	4.98 U
Trichloroethene	11,400	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	22.6 J	192 U	72.1 U	4.87 U	4.98 U
Vinyl Chloride	147 J	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	476	192 U	518	4.87 U	4.98 U
Total Chlorinated VOCs	18,600 J	233 J	304 J	1,460 J	114 J	107 J	152 J	3,300 J	334 J	1,170 J	7.32	1.70 J
Total Petroleum Hydrocarbons (µg/kg)				,				, , , , , , , , , , , , , , , , , , , ,		,		
Ethylene Glycol Monobutyl Ether	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
==:,:::::	, .		, .	, .	, .	, .					, .	

Table 1
Summary of Soil Sample Analytical Results
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	WP-SB-04	WP-SB-04	WP-SB-05	WP-SB-05	WP-SB-06	WP-SB-06	WP-SB-07	WP-SB-07	WP-SB-08	WP-SB-08
Sample Depth (Feet):	0.5 - 1.5	3 - 4	0.5 - 1.5	3 - 4	0.5 - 1.5	3 - 4	0.5 - 1.5	3 - 4	0.5 - 1.5	4 - 5
Date Collected:	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08
olatile Organic Compounds (μg/kg)										
1,1,1,2-Tetrachloroethane	5.28 U	49.5 U	4.31 U	5.10 U	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U
1,1-Dichloropropene	5.28 U	49.5 U	4.31 U	5.10 U	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U
1,2,3-Trichlorobenzene	5.28 U	49.5 U	4.31 U	5.10 U	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U
1,2,3-Trichloropropane	5.28 U	49.5 U	4.31 U	5.10 U	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U
1,2,4-Trimethylbenzene	5.37	6.44 J	4.31 U	5.10 U	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U
1,2-Dibromoethane	5.28 U	49.5 U	4.31 U	5.10 U	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U
1,3,5-Trimethylbenzene	3.66 J	49.5 U	4.31 U	5.10 U	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U
1,3-Dichloropropane	5.28 U	49.5 U	4.31 U	5.10 U	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U
2,2-Dichloropropane	5.28 U	49.5 U	4.31 U	5.10 U	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U
2-Butanone	26.4 U	1,240 U	21.6 U	25.5 U	3,160 U	22.8 U	36.4 U	26.4 U	4,840 U	28.8 U
2-Chlorotoluene	5.28 U	49.5 U	4.31 U	5.10 U	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U
2-Hexanone	13.2 U	248 U	10.8 U	12.7 U	632 U	11.4 U	18.2 U	13.2 U	967 U	14.4 U
1-Chlorotoluene	5.28 U	49.5 U	4.31 U	5.10 U	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U
4-Methyl-2-pentanone	13.2 U	248 U	10.8 U	12.7 U	632 U	11.4 U	18.2 U	13.2 U	967 U	14.4 U
Acetone	44.8 J	1,240 U	34.7 J	44.1 J	3,160 U	45.6 U	84.6	33.0 J	4,840 U	57.7 U
Benzene	5.28 U	49.5 U	4.31 U	5.10 U	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U
Bromobenzene	5.28 U	49.5 U	4.31 U	5.10 U	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U
Bromochloromethane	5.28 U	49.5 U	4.31 U	5.10 U	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U
Bromoform	5.28 U	49.5 U	4.31 U	5.10 U	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U
Bromomethane	5.28 U	49.5 U	4.31 U	5.10 U	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U
Carbon Disulfide	5.28 U	49.5 U	4.31 U	5.10 U	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U
Cyclohexane	NA	NA								
Dibromomethane	5.28 U	49.5 U	4.31 U	5.10 U	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U
Diisopropyl ether (DIPE)	5.28 U	49.5 U	4.31 U	5.10 U	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U
Ethyl Alcohol	NA	NA								
Ethylbenzene	21.6	1,280	5.42	3.98 J	911	1.59 J	7.28 U	5.28 U	867	9.00
Hexachlorobutadiene	5.28 U	49.5 U	4.31 U	5.10 U	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U
odomethane	5.28 U	49.5 U	4.31 U	5.10 U	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U
sopropylbenzene	1.07 J	15.4 J	4.31 U	5.10 U	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U
n-,p-Xylene	48.4	54.0 J	7.99 J	4.75 J	7,060	3.09 J	14.6 U	10.6 U	6,680	35.3
Methyl Acetate	NA	NA								
Methyl tert-butyl ether	5.28 U	49.5 U	4.31 U	5.10 U	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U
Methylcyclohexane	NA	NA								
Naphthalene	5.28 U	49.5 U	4.31 U	5.10 U	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U
n-Butylbenzene	5.28 U	49.5 U	4.31 U	5.10 U	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U
n-Propylbenzene	5.28 U	49.5 U	4.31 U	5.10 U	150	4.56 U	7.28 U	5.28 U	193 U	5.77 U
p-Xylene	13.7	91.1	4.31 U	5.10 U	126 U	4.56 U	7.28 U	5.28 U	193 U	2.33 J
o-Isopropyltoluene	2.61 J	14.9 J	4.31 U	5.10 U	97.3 J	4.56 U	7.28 U	5.28 U	193 U	5.77 U
sec-Butylbenzene	5.28 U	49.5 U	4.31 U	5.10 U	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U

Location Identification:	WP-SB-04	WP-SB-04	WP-SB-05	WP-SB-05	WP-SB-06	WP-SB-06	WP-SB-07	WP-SB-07	WP-SB-08	WP-SB-08
Sample Depth (Feet):	0.5 - 1.5	3 - 4	0.5 - 1.5	3 - 4	0.5 - 1.5	3 - 4	0.5 - 1.5	3 - 4	0.5 - 1.5	4 - 5
Date Collected:	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08
Styrene	5.28 U	49.5 U	4.31 U	5.10 U	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U
tert-Butylbenzene	5.28 U	49.5 U	4.31 U	5.10 U	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U
Toluene	8.65	17.3 J	4.31 U	5.10 U	32.8 J	4.56 U	7.28 U	5.28 U	193 U	5.77 U
trans-1,4-Dichloro-2-butene	26.4 U	248 U	21.6 U	25.5 U	632 U	22.8 U	36.4 U	26.4 U	967 U	28.8 U
Xylenes (total)	NA	NA								
1,1,1-Trichloroethane	5.28 U	49.5 U	4.31 U	5.10 U	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U
1,1,2,2-Tetrachloroethane	5.28 U	49.5 U	4.31 U	5.10 U	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U
1,1,2-trichloro-1,2,2-trifluoroethane	NA	NA								
1,1,2-Trichloroethane	5.28 U	49.5 U	4.31 U	5.10 U	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U
1,1-Dichloroethane	24.1	311	4.35	7.87	20.2 J	7.10	6.16 J	5.56	54.2 J	76.3
1,1-Dichloroethene	5.28 U	49.5 U	4.31 U	5.10 U	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U
1,2,4-Trichlorobenzene	5.28 U	49.5 U	4.31 U	5.10 U	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U
1,2-Dibromo-3-chloropropane	26.4 U	248 U	21.6 U	25.5 U	632 U	22.8 U	36.4 U	26.4 U	967 U	28.8 U
1,2-Dichlorobenzene	5.28 U	49.5 U	4.31 U	5.10 U	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U
1,2-Dichloroethane	5.28 U	49.5 U	4.31 U	5.10 U	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U
1,2-Dichloropropane	5.28 U	49.5 U	4.31 U	5.10 U	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U
1,3-Dichlorobenzene	5.28 U	49.5 U	4.31 U	5.10 U	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U
1,4-Dichlorobenzene	5.28 U	49.5 U	4.31 U	5.10 U	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U
Bromodichloromethane	5.28 U	49.5 U	4.31 U	5.10 U	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U
Carbon Tetrachloride	5.28 U	49.5 U	4.31 U	5.10 U	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U
Chlorobenzene	5.28 U	49.5 U	4.31 U	5.10 U	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U
Volatile Organic Compounds (μg/kg)										
Chloroethane	5.28 U	73.8	4.31 U	5.10 U	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U
Chloroform	5.28 U	49.5 U	4.31 U	5.10 U	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U
Chloromethane	5.28 U	49.5 U	4.31 U	5.10 U	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U
cis-1,3-Dichloropropene	5.28 U	49.5 U	4.31 U	5.10 U	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U
Dibromochloromethane	5.28 U	49.5 U	4.31 U	5.10 U	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U
Dichlorodifluoromethane	5.28 U	248 U	4.31 U	5.10 U	632 U	4.56 U	7.28 U	5.28 U	967 U	5.77 U
Methylene Chloride	2.09 J	98.6 J	1.56 J	20.4 U	225 J	18.2 U	29.1 U	21.1 U	230 J	23.1 U
trans-1,3-Dichloropropene	5.28 U	49.5 U	4.31 U	5.10 U	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U
Trichlorofluoromethane	5.28 U	49.5 U	4.31 U	5.10 U	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U
cis-1,2-Dichloroethene	5.28 U	21.3 J	4.31 U	5.10 U	126 U	4.56 U	7.28 U	5.28 U	193 U	15.4
Tetrachloroethene	5.28 U	49.5 U	4.31 U	5.10 U	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U
trans-1,2-Dichloroethene	3.97 J	49.5 U	4.31 U	5.10 U	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U
Trichloroethene	5.28 U	49.5 U	4.31 U	5.10 U	80.9 J	4.56 U	7.28 U	5.28 U	193 U	5.77 U
Vinyl Chloride	5.28 U	111	4.31 U	5.10 U	126 U	4.56 U	7.28 U	5.28 U	193 U	21.2
Total Chlorinated VOCs	30.2 J	616 J	5.91 J	7.87	326 J	7.10	6.16 J	5.56	284 J	113
Total Petroleum Hydrocarbons (µg/kg)										
Ethylene Glycol Monobutyl Ether	NA	NA								

Table 1
Summary of Soil Sample Analytical Results
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	WP-SB-09	WP-SB-10	WP-SB-11	WP-SB-12	WP-SB-13	WP-SB-14
Sample Depth (Feet):	0.5 - 1.5	0.5 - 1.5	0.5 - 1.5	0.5 - 1.5	0.5 - 1.5	0.5 - 1.5
Date Collected:	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08
Volatile Organic Compounds (μg/kg)						
1,1,1,2-Tetrachloroethane	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
1,1-Dichloropropene	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
1,2,3-Trichlorobenzene	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
1,2,3-Trichloropropane	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
1,2,4-Trimethylbenzene	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
1,2-Dibromoethane	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
1,3,5-Trimethylbenzene	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
1,3-Dichloropropane	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
2,2-Dichloropropane	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
2-Butanone	23.5 U	25.1 U	22.1 U	19.2 U	26.1 U	22.6 U
2-Chlorotoluene	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
2-Hexanone	11.7 U	12.5 U	11.0 U	9.62 U	13.1 U	11.3 U
4-Chlorotoluene	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
4-Methyl-2-pentanone	11.7 U	12.5 U	11.0 U	9.62 U	13.1 U	11.3 U
Acetone	27.0 J	28.2 J	30.6 J	21.3 J	24.6 J	18.0 J
Benzene	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Bromobenzene	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Bromochloromethane	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Bromoform	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Bromomethane	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Carbon Disulfide	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Cyclohexane	NA	NA	NA	NA	NA	NA
Dibromomethane	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Diisopropyl ether (DIPE)	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Ethyl Alcohol	NA	NA	NA	NA	NA	NA
Ethylbenzene	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Hexachlorobutadiene	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
lodomethane	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Isopropylbenzene	0.958 J	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
m-,p-Xylene	9.39 U	10.0 U	8.83 U	7.69 U	10.5 U	9.05 U
Methyl Acetate	NA	NA	NA	NA	NA	NA
Methyl tert-butyl ether	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Methylcyclohexane	NA	NA	NA	NA	NA	NA
Naphthalene	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
n-Butylbenzene	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
n-Propylbenzene	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
o-Xylene	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
p-Isopropyltoluene	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
sec-Butylbenzene	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U

Location Identification:	WP-SB-09	WP-SB-10	WP-SB-11	WP-SB-12	WP-SB-13	WP-SB-14
Sample Depth (Feet):	0.5 - 1.5	0.5 - 1.5	0.5 - 1.5	0.5 - 1.5	0.5 - 1.5	0.5 - 1.5
Date Collected:	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08
Styrene	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
tert-Butylbenzene	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Toluene	4.70 U	5.02 U	4.42 U	1.15 J	5.23 U	4.52 U
trans-1,4-Dichloro-2-butene	23.5 U	25.1 U	22.1 U	19.2 U	26.1 U	22.6 U
Xylenes (total)	NA	NA	NA	NA	NA	NA
1,1,1-Trichloroethane	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
1,1,2,2-Tetrachloroethane	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
1,1,2-trichloro-1,2,2-trifluoroethane	NA	NA	NA	NA	NA	NA
1,1,2-Trichloroethane	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
1,1-Dichloroethane	4.70 U	5.02 U	4.42 U	2.57 J	1.41 J	4.52 U
1,1-Dichloroethene	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
1,2,4-Trichlorobenzene	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
1,2-Dibromo-3-chloropropane	23.5 U	25.1 U	22.1 U	19.2 U	26.1 U	22.6 U
1,2-Dichlorobenzene	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
1,2-Dichloroethane	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
1,2-Dichloropropane	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
1,3-Dichlorobenzene	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
1,4-Dichlorobenzene	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Bromodichloromethane	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Carbon Tetrachloride	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Chlorobenzene	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Volatile Organic Compounds (μg/kg)						
Chloroethane	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Chloroform	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Chloromethane	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
cis-1,3-Dichloropropene	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Dibromochloromethane	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Dichlorodifluoromethane	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Methylene Chloride	1.62 J	1.73 J	1.85 J	15.4 U	20.9 U	18.1 U
trans-1,3-Dichloropropene	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Trichlorofluoromethane	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
cis-1,2-Dichloroethene	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Tetrachloroethene	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
trans-1,2-Dichloroethene	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Trichloroethene	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Vinyl Chloride	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Total Chlorinated VOCs	1.62 J	1.73 J	1.85 J	2.57 J	1.41 J	ND
Total Petroleum Hydrocarbons (µg/kg)						
Ethylene Glycol Monobutyl Ether	NA	NA	NA	NA	NA	NA

Table 1

Summary of Soil Sample Analytical Results Human Health Risk Assessment AVX Corporation Myrtle Beach, South Carolina

Notes:

% = percent
NA = not applicable
μg/kg = micrograms per kilogram
μg/L = micrograms per Liter

Laboratory Qualifiers:

B = Analyte was found in the associated blank, as well as in the sample.

J = Indicates an estimated value.

ND = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

Table 2
Summary of Groundwater Sample Analytical Results
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	DPW-1D	DPW-1D	DPW-1D	DPW-1D	DPW-1D	DPW-1D	DPW-3SD	DPW-3SD	DPW-3SD	DPW-3SD	DPW-3SD	DPW-3SD	DPW-4SD	DPW-4SD	DPW-4SD	DPW-4SD
							20 - 30	20 - 30	20 - 30	20 - 30	20 - 30	20 - 30	19.5 - 29.5	19.5 - 29.5	19.5 - 29.5	19.5 - 29.5
Sample Depth (Feet):	36 - 46	36 - 46	36 - 46	36 - 46	36 - 46	36 - 46	40 - 45	40 - 45	40 - 45	40 - 45	40 - 45	40 - 45	29.6 - 44.5	29.6 - 44.5	29.6 - 44.5	29.6 - 44.5
Date Collected:	04/02/13	04/29/14	04/27/15	04/12/16	04/11/17	04/18/18	04/02/13	04/29/14	04/27/15	04/12/16	04/11/17	04/18/18	04/02/13	04/29/14	04/27/15	04/12/16
Volatile Organic Compounds (µg/L)																
1,1,1,2-Tetrachloroethane	50.0 U	10.0 U	40.0 U	4.00 U	1.00 U	250 U	200 U	200 U	160 U							
1,1-Dichloropropene	50.0 U	10.0 U	40.0 U	4.00 U	1.00 U	250 U	200 U	200 U	160 U							
1,2,3-Trichlorobenzene	50.0 U	10.0 U	40.0 U	4.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	250 U	200 U	200 U	160 U
1,2,3-Trichloropropane	50.0 U	10.0 U	40.0 U	4.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	250 U	200 U	200 U	160 U
1,2,4-Trimethylbenzene	50.0 U	10.0 U	40.0 U	4.00 U	1.00 U	250 U	200 U	200 U	160 U							
1,2-Dibromoethane	50.0 U	10.0 U	40.0 U	4.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	250 U	200 U	200 U	160 U
1,3,5-Trimethylbenzene	50.0 U	10.0 U	40.0 U	4.00 U	1.00 U	250 U	200 U	200 U	160 U							
1,3-Dichloropropane	50.0 U	10.0 U	40.0 U	4.00 U	1.00 U	250 U	200 U	200 U	160 U							
2,2-Dichloropropane	50.0 U	10.0 U	40.0 U	4.00 U	1.00 U	250 U	200 U	200 U	160 U							
2-Butanone	260 J	250 U	1,000 U	100 U	5.00 U	5.00 U	4.39 J	25.0 U	25.0 U	25.0 U	5.00 U	5.00 U	6,250 U	5,000 U	5,000 U	4,000 U
2-Chlorotoluene	50.0 U	10.0 U	40.0 U	4.00 U	1.00 U	250 U	200 U	200 U	160 U							
2-Hexanone	250 U	50.0 U	200 U	20.0 U	10.0 U	10.0 U	5.00 U	5.00 U	5.00 U	5.00 U	10.0 U	10.0 U	1,250 U	1,000 U	1,000 U	800 U
4-Chlorotoluene	50.0 U	10.0 U	40.0 U	4.00 U	1.00 U	250 U	200 U	200 U	160 U							
4-Methyl-2-pentanone	250 U	50.0 U	200 U	20.0 U	5.00 U	1,250 U	1,000 U	1,000 U	800 U							
Acetone	1,250 U	47.4 J	1,000 U	100 U	25.0 U	25.0 U	32.0	7.94 J	2.30 J	25.0 U	25.0 U	25.0 U	6,250 U	5,000 U	5,000 U	4,000 U
Benzene	50.0 U	10.0 U	40.0 U	4.00 U	1.00 U	1.00 U	0.120 J	1.00 U	250 U	200 U	200 U	160 U				
Bromobenzene	50.0 U	10.0 U	40.0 U	4.00 U	1.00 U	250 U	200 U	200 U	160 U							
Bromochloromethane	50.0 U	10.0 U	40.0 U	4.00 U	1.00 U	250 U	200 U	200 U	160 U							
Bromoform	50.0 U	10.0 U	40.0 U	4.00 U	1.00 U	250 U	200 U	200 U	160 U							
Bromomethane	50.0 U	10.0 U	40.0 U	4.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	250 U	200 U	200 U	160 U
Carbon Disulfide	50.0 U	10.0 U	40.0 U	4.00 U	NA	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NA	2.00 U	35.0 J	200 U	200 U	160 U
Dibromomethane	50.0 U	10.0 U	40.0 U	4.00 U	NA	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NA	2.00 U	250 U	200 U	200 U	160 U
Diisopropyl ether (DIPE)	50.0 U	10.0 U	40.0 U	4.00 U	1.00 U	250 U	200 U	200 U	160 U							
Ethyl Alcohol	NA	NA	NA	NA	200 U	NA	NA	NA	NA	NA	200 U	NA	NA	NA	NA	NA
Ethylbenzene	50.0 U	10.0 U	40.0 U	4.00 U	1.00 U	250 U	200 U	200 U	160 U							
Hexachlorobutadiene	50.0 U	10.0 U	40.0 U	4.00 U	NA	0.770 J	1.00 U	1.00 U	1.00 U	1.00 U	NA	2.00 U	250 U	200 U	200 U	160 U
Iodomethane	50.0 U	10.0 U	40.0 U	4.00 U	NA	1.00 U	NA	1.00 U	250 U	200 U	200 U	160 U				
Isopropylbenzene	50.0 U	10.0 U	40.0 U	4.00 U	1.00 U	250 U	200 U	200 U	160 U							
m-,p-Xylene	100 U	20.0 U	80.0 U	8.00 U	2.00 U	500 U	400 U	400 U	320 U							
Methyl tert-butyl ether	50.0 U	10.0 U	40.0 U	4.00 U	1.00 U	1.00 U	0.130 J	1.00 U	250 U	200 U	200 U	160 U				
Naphthalene	50.0 U	10.0 U	40.0 U	4.00 U	5.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	5.00 U	250 U	200 U	200 U	160 U
n-Butylbenzene	50.0 U	10.0 U	40.0 U	4.00 U	1.00 U	250 U	200 U	200 U	160 U							
n-Propylbenzene	50.0 U	10.0 U	40.0 U	4.00 U	1.00 U	250 U	200 U	200 U	160 U							
o-Xylene	50.0 U	10.0 U	40.0 U	4.00 U	1.00 U	250 U	200 U	200 U	160 U							
p-Isopropyltoluene	50.0 U	10.0 U	40.0 U	4.00 U	1.00 U	250 U	200 U	200 U	160 U							
sec-Butylbenzene	50.0 U	10.0 U	40.0 U	4.00 U	1.00 U	250 U	200 U	200 U	160 U							
Styrene	50.0 U	10.0 U	40.0 U	4.00 U	1.00 U	250 U	200 U	200 U	160 U							
tert-Butylbenzene	50.0 U	10.0 U	40.0 U	4.00 U	1.00 U	250 U	200 U	200 U	160 U							
Toluene	50.0 U	10.0 U	40.0 U	4.00 U	1.00 U	1.00 U	0.150 J	1.00 U	250 U	200 U	200 U	160 U				
trans-1.4-Dichloro-2-butene	250 U	50.0 U	200 U	20.0 U	NA	NA	5.00 U	5.00 U	5.00 U	5.00 U	NA	NA	1.250 U	1.000 U	1.000 U	800 U

Table 2
Summary of Groundwater Sample Analytical Results
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification	n: DPW-1D	DPW-1D	DPW-1D	DPW-1D	DPW-1D	DPW-1D	DPW-3SD	DPW-3SD	DPW-3SD	DPW-3SD	DPW-3SD	DPW-3SD	DPW-4SD	DPW-4SD	DPW-4SD	DPW-4SD
County Double (Fore	00 40	00 40	00 40	00 40	00 40	00 40	20 - 30	20 - 30	20 - 30	20 - 30	20 - 30	20 - 30	19.5 - 29.5	19.5 - 29.5	19.5 - 29.5	19.5 - 29.5
Sample Depth (Fee	t): 36 - 46	36 - 46	36 - 46	36 - 46	36 - 46	36 - 46	40 - 45	40 - 45	40 - 45	40 - 45	40 - 45	40 - 45	29.6 - 44.5	29.6 - 44.5	29.6 - 44.5	29.6 - 44.5
Date Collecte	d: 04/02/13	04/29/14	04/27/15	04/12/16	04/11/17	04/18/18	04/02/13	04/29/14	04/27/15	04/12/16	04/11/17	04/18/18	04/02/13	04/29/14	04/27/15	04/12/16
Vinyl Acetate	NA	NA	NA	NA	10.0 U	10.0 U	NA	NA	NA	NA	10.0 U	10.0 U	NA	NA	NA	NA
Xylenes (total)	NA	NA	NA	NA	3.00 U	NA	NA	NA	NA	NA	3.00 U	NA	NA	NA	NA	NA
1,1,1-Trichloroethane	50.0 U	10.0 U	40.0 U	4.00 U	1.00 U	250 U	200 U	200 U	160 U							
1,1,2,2-Tetrachloroethane	50.0 U	10.0 U	40.0 U	4.00 U	1.00 U	250 U	200 U	200 U	160 U							
1,1,2-Trichloroethane	50.0 U	10.0 U	40.0 U	4.00 U	1.00 U	250 U	200 U	200 U	160 U							
1,1-Dichloroethane	50.0 U	3.60 J	40.0 U	4.00 U	1.00 U	1.00 U	0.280 J	1.00 U	118 J	52.0 J	72.0 J	56.0 J				
1,1-Dichloroethene	50.0 U	10.0 U	40.0 U	4.00 U	1.00 U	103 J	44.0 J	68.0 J	68.8 J							
1,2,4-Trichlorobenzene	50.0 U	10.0 U	40.0 U	4.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	250 U	200 U	200 U	160 U
1,2-Dibromo-3-chloropropane	250 U	50.0 U	200 U	20.0 U	NA	5.00 U	NA	5.00 U	1,250 U	1,000 U	1,000 U	800 U				
1,2-Dichlorobenzene	50.0 U	10.0 U	40.0 U	4.00 U	1.00 U	250 U	200 U	200 U	160 U							
1,2-Dichloroethane	50.0 U	10.0 U	40.0 U	4.00 U	1.00 U	250 U	200 U	200 U	160 U							
1,2-Dichloropropane	50.0 U	10.0 U	40.0 U	4.00 U	1.00 U	250 U	200 U	200 U	160 U							
1,3-Dichlorobenzene	50.0 U	10.0 U	40.0 U	4.00 U	1.00 U	250 U	200 U	200 U	160 U							
1,4-Dichlorobenzene	50.0 U	10.0 U	40.0 U	4.00 U	1.00 U	250 U	200 U	200 U	160 U							
Bromodichloromethane	50.0 U	10.0 U	40.0 U	4.00 U	1.00 U	250 U	200 U	200 U	160 U							
Carbon Tetrachloride	50.0 U	10.0 U	40.0 U	4.00 U	1.00 U	250 U	200 U	200 U	160 U							
Chlorobenzene	50.0 U	10.0 U	40.0 U	4.00 U	1.00 U	250 U	200 U	200 U	160 U							
Chloroethane	50.0 U	10.0 U	40.0 U	4.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	250 U	200 U	200 U	160 U
Chloroform	50.0 U	10.0 U	40.0 U	4.00 U	1.00 U	250 U	200 U	200 U	160 U							
Chloromethane	50.0 U	10.0 U	40.0 U	4.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	250 U	200 U	200 U	160 U
cis-1,3-Dichloropropene	50.0 U	10.0 U	40.0 U	4.00 U	1.00 U	250 U	200 U	200 U	160 U							
Dibromochloromethane	50.0 U	10.0 U	40.0 U	4.00 U	1.00 U	250 U	200 U	200 U	160 U							
Dichlorodifluoromethane	250 U	50.0 U	200 U	20.0 U	2.00 U	2.00 U	5.00 U	5.00 U	5.00 U	5.00 U	2.00 U	2.00 U	1,250 U	1,000 U	1,000 U	800 U
Methylene Chloride	250 U	50.0 U	200 U	20.0 U	5.00 U	1,250 U	1,000 U	1,000 U	800 U							
trans-1,3-Dichloropropene	50.0 U	10.0 U	40.0 U	4.00 U	1.00 U	250 U	200 U	200 U	160 U							
Trichlorofluoromethane	50.0 U	10.0 U	40.0 U	4.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	250 U	200 U	200 U	160 U
cis-1,2-Dichloroethene	874	134	416	27.3	1.00 U	13.4	0.790 J	0.390 J	0.730 J	0.580 J	0.880 J	1.20	10,400	3,300	3,180	2,760
Tetrachloroethene	50.0 U	10.0 U	40.0 U	4.00 U	1.00 U	250 U	200 U	200 U	160 U							
trans-1,2-Dichloroethene	9.50 J	10.0 U	40.0 U	4.00 U	1.00 U	90.0 J	200 U	200 U	160 U							
Trichloroethene	50.0 U	10.0 U	40.0 U	2.92 J	1.00	18.7	0.660 J	0.250 J	0.650 J	0.410 J	0.630 J	0.810 J	2,980	786	860	1,340
Vinyl Chloride	1,890	233	242	94.6	1.60	1.00 U	3.22	1.43	0.550 J	1.39	1.20	3.50	1,490	602	598	637
Inorganics - Total (µg/L)																
Iron	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Inorganics - Dissolved (µg/L)																
Iron	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon (mg/L)																
Total Organic Carbon	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	16

Location Identification	n: DPW-4SD	DPW-4SD	DPW-5SD	DPW-5SD	DPW-5SD	DPW-5SD	DPW-5SD	MW-2S	MW-2S	MW-2S	MW-2S	MW-2S	MW-2S	MW-9D	MW-9D	MW-9D	MW-9D	MW-9D
Sample Depth (Feet	19.5 - 29.5	19.5 - 29.5	19 - 24	19 - 24	19 - 24	19 - 24	19 - 24	10 - 15	10 - 15	10 - 15	10 - 15	10 - 15	10 - 15	35 - 45	35 - 45	35 - 45	35 - 45	35 - 45
	29.6 - 44.5	29.6 - 44.5	31 - 41	31 - 41	31 - 41	31 - 41	31 - 41				10 - 15	10 - 15	10 - 15				35 - 45	33 - 45
Date Collected		04/18/18	04/29/14	04/27/15	04/12/16	04/11/17	04/18/18	04/02/13	04/29/14	04/27/15	04/12/16	04/11/17	04/18/18	04/02/13	04/29/14	04/27/15	04/12/16	04/11/17
Volatile Organic Compounds (µg/l	•																	
1,1,1,2-Tetrachloroethane	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	4.00 U	1.00 U
1,1-Dichloropropene	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	4.00 U	1.00 U
1,2,3-Trichlorobenzene	200 U	200 UJ	800 U	800 U	800 U	200 U	200 UJ	20.0 U	20.0 U	50.0 U	10.0 U	40.0 U	10.0 U	1.00 U	1.00 U	1.00 U	4.00 U	2.00 U
1,2,3-Trichloropropane	200 U	200 UJ	800 U	800 U	800 U	200 U	200 UJ	20.0 U	20.0 U	50.0 U	10.0 U	40.0 U	10.0 U	1.00 U	1.00 U	1.00 U	4.00 U	2.00 U
1,2,4-Trimethylbenzene	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	4.00 U	1.00 U
1,2-Dibromoethane	200 U	200 UJ	800 U	800 U	800 U	200 U	200 UJ	20.0 U	20.0 U	50.0 U	10.0 U	40.0 U	10.0 U	1.00 U	1.00 U	1.00 U	4.00 U	2.00 U
1,3,5-Trimethylbenzene	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	4.00 U	1.00 U
1,3-Dichloropropane	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	4.00 U	1.00 U
2,2-Dichloropropane	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	4.00 U	1.00 U
2-Butanone	500 U	500 UJ	20,000 U	20,000 U	20,000 U	500 U	500 UJ	500 U	500 U	1,250 U	250 U	100 U	25.0 U	25.0 U	25.0 U	25.0 U	100 U	5.00 U
2-Chlorotoluene	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	4.00 U	1.00 U
2-Hexanone	1,000 U	1,000 UJ	4,000 U	4,000 U	4,000 U	1,000 U	1,000 UJ	100 U	100 U	250 U	50.0 U	200 U	50.0 U	5.00 U	5.00 U	5.00 U	20.0 U	10.0 U
4-Chlorotoluene	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	4.00 U	1.00 U
4-Methyl-2-pentanone	500 U	500 UJ	4,000 U	4,000 U	4,000 U	500 U	500 UJ	100 U	100 U	250 U	50.0 U	100 U	25.0 U	5.00 U	5.00 U	5.00 U	20.0 U	5.00 U
Acetone	2,500 U	2,500 UJ	20,000 U	20,000 U	20,000 U	2,500 U	2,500 UJ	500 U	500 U	1,250 U	250 U	500 U	130 U	25.0 U	3.10 J	25.0 U	100 U	25.0 U
Benzene	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	4.00 U	1.00 U
Bromobenzene	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	4.00 U	1.00 U
Bromochloromethane	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	4.00 U	1.00 U
Bromoform	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	4.00 U	1.00 U
Bromomethane	200 U	200 UJ	800 U	800 U	800 UJ	200 U	200 UJ	20.0 U	20.0 U	50.0 U	10.0 U	40.0 U	10.0 U	1.00 U	1.00 U	1.00 U	4.00 U	2.00 U
Carbon Disulfide	NA	200 UJ	800 U	800 U	800 U	NA	200 UJ	2.80 J	20.0 U	50.0 U	10.0 U	NA	10.0 U	1.00 U	1.00 U	1.00 U	4.00 U	NA
Dibromomethane	NA	200 UJ	800 U	800 U	800 U	NA	200 UJ	20.0 U	20.0 U	50.0 U	10.0 U	NA	10.0 U	1.00 U	1.00 U	1.00 U	4.00 U	NA
Diisopropyl ether (DIPE)	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	4.00 U	1.00 U
Ethyl Alcohol	20,000 U	NA	NA NA	NA	NA	20,000 U	NA	NA	NA NA	NA	NA	4,000 U	NA	NA	NA	NA	NA	200 U
Ethylbenzene	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 UJ	1.00 U	1.00 U	4.00 U	1.00 U
Hexachlorobutadiene	NA	200 UJ	800 U	800 U	800 U	NA	200 UJ	20.0 U	20.0 U	50.0 U	10.0 U	NA	10.0 U	1.00 U	1.00 U	1.00 U	4.00 U	NA
lodomethane	NA	100 UJ	800 U	800 U	800 U	NA	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	NA	5.00 U	1.00 U	1.00 U	1.00 U	4.00 U	NA
Isopropylbenzene	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	4.00 U	1.00 U
m-,p-Xylene	200 U	200 UJ	1,600 U	1,600 U	1,600 U	200 U	200 UJ	40.0 U	40.0 U	100 U	20.0 U	40.0 U	10.0 U	2.00 U	2.00 U	2.00 U	8.00 U	2.00 U
Methyl tert-butyl ether	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	0.380 J	0.270 J	1.00 U	4.00 U	1.00 U
Naphthalene	500 U	500 UJ	800 U	800 U	800 U	500 U	500 UJ	20.0 U	20.0 U	50.0 U	10.0 U	100 U	25.0 U	1.00 U	1.00 U	1.00 U	4.00 U	5.00 U
n-Butylbenzene	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 UJ	1.00 U	1.00 U	4.00 U	1.00 U
n-Propylbenzene	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	4.00 U	1.00 U
o-Xylene	100 U	100 UJ	800 U	800 U	800 UJ	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	4.00 U	1.00 U
p-Isopropyltoluene	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	4.00 U	1.00 U
sec-Butylbenzene	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	4.00 U	1.00 U
Styrene	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	4.00 U	1.00 U
tert-Butylbenzene	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	4.00 U	1.00 U
Toluene	100 U	100 UJ	800 U	800 U	800 U	33.3 J	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	4.00 U	1.00 U
trans-1,4-Dichloro-2-butene	NA	NA	4,000 U	4,000 U	4,000 U	NA	NA	100 U	100 U	250 U	50.0 U	NA	NA	5.00 U	5.00 U	5.00 U	20.0 U	NA

Location Identification:	DPW-4SD	DPW-4SD	DPW-5SD	DPW-5SD	DPW-5SD	DPW-5SD	DPW-5SD	MW-2S	MW-2S	MW-2S	MW-2S	MW-2S	MW-2S	MW-9D	MW-9D	MW-9D	MW-9D	MW-9D
0 1 5 4 5 0	19.5 - 29.5	19.5 - 29.5	19 - 24	19 - 24	19 - 24	19 - 24	19 - 24	40 45	40.45	40.45	40.45	40.45	40.45	05.45	05.45	05.45		05.45
Sample Depth (Feet):	29.6 - 44.5	29.6 - 44.5	31 - 41	31 - 41	31 - 41	31 - 41	31 - 41	10 - 15	10 - 15	10 - 15	10 - 15	10 - 15	10 - 15	35 - 45	35 - 45	35 - 45	35 - 45	35 - 45
Date Collected:	04/11/17	04/18/18	04/29/14	04/27/15	04/12/16	04/11/17	04/18/18	04/02/13	04/29/14	04/27/15	04/12/16	04/11/17	04/18/18	04/02/13	04/29/14	04/27/15	04/12/16	04/11/17
Vinyl Acetate	1,000 U	1,000 UJ	NA	NA	NA	1,000 U	1,000 UJ	NA	NA	NA	NA	200 U	50.0 U	NA	NA	NA	NA	10.0 U
Xylenes (total)	300 U	NA	NA	NA	NA	300 U	NA	NA	NA	NA	NA	60.0 U	NA	NA	NA	NA	NA	3.00 U
1,1,1-Trichloroethane	100 U	100 UJ	800 U	800 U	800 U	49.1 J	61.2 J	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	4.00 U	1.00 U
1,1,2,2-Tetrachloroethane	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	4.00 U	1.00 U
1,1,2-Trichloroethane	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	4.00 U	1.00 U
1,1-Dichloroethane	57.2 J	71.4 J	800 U	800 U	136 J	108	72.9 J	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	0.400 J	1.00 U	1.00 U	4.00 U	1.00 U
1,1-Dichloroethene	87.4 J	83.9 J	800 U	800 U	800 U	69.2 J	61.3 J	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	2.40 J	0.540 J	0.320 J	0.380 J	4.00 U	1.00 U
1,2,4-Trichlorobenzene	200 U	200 UJ	800 U	800 U	800 U	200 U	200 UJ	20.0 U	20.0 U	50.0 U	10.0 U	40.0 U	10.0 U	1.00 U	1.00 U	1.00 U	4.00 U	2.00 U
1,2-Dibromo-3-chloropropane	NA	500 UJ	4,000 U	4,000 U	4,000 U	NA	500 UJ	100 U	100 U	250 U	50.0 U	NA	25.0 U	5.00 U	5.00 U	5.00 U	20.0 U	NA
1,2-Dichlorobenzene	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	4.00 U	1.00 U
1,2-Dichloroethane	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	4.00 U	1.00 U
1,2-Dichloropropane	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	4.00 U	1.00 U
1,3-Dichlorobenzene	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	4.00 U	1.00 U
1,4-Dichlorobenzene	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	4.00 U	1.00 U
Bromodichloromethane	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	4.00 U	1.00 U
Carbon Tetrachloride	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	4.00 U	1.00 U
Chlorobenzene	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	4.00 U	1.00 U
Chloroethane	200 U	200 UJ	800 U	800 U	800 U	200 U	200 UJ	20.0 U	20.0 U	50.0 U	10.0 U	40.0 U	10.0 U	1.00 U	1.00 U	1.00 U	4.00 U	2.00 U
Chloroform	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	4.00 U	1.00 U
Chloromethane	200 U	200 UJ	800 U	800 U	800 U	200 U	200 UJ	20.0 U	20.0 U	50.0 U	10.0 U	40.0 U	10.0 U	1.00 U	1.00 U	1.00 U	4.00 U	2.00 U
cis-1,3-Dichloropropene	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	4.00 U	1.00 U
Dibromochloromethane	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	4.00 U	1.00 U
Dichlorodifluoromethane	200 U	200 UJ	4,000 U	4,000 U	4,000 U	200 U	200 UJ	100 U	100 U	250 U	50.0 U	40.0 U	10.0 U	5.00 U	5.00 U	5.00 U	20.0 U	2.00 U
Methylene Chloride	500 U	500 UJ	4,000 U	4,000 U	4,000 U	500 U	500 UJ	100 U	100 U	250 U	50.0 U	100 U	25.0 U	5.00 U	5.00 U	5.00 U	20.0 U	5.00 U
trans-1,3-Dichloropropene	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	4.00 U	1.00 U
Trichlorofluoromethane	200 U	200 UJ	800 U	800 U	800 U	200 U	200 UJ	20.0 U	20.0 U	50.0 U	10.0 U	40.0 U	10.0 U	1.00 U	1.00 U	1.00 U	4.00 U	2.00 U
cis-1,2-Dichloroethene	5,040	5,760 J	13,600	12,100	13,900	8,800	8,040 J	1,030	354	1,020	266	1,080	659	63.2	51.1	56.3	77.1	47.9
Tetrachloroethene	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	4.00 U	1.00 U
trans-1,2-Dichloroethene	34.9 J	100 UJ	800 U	800 U	800 U	27.6 J	100 UJ	5.80 J	20.0 U	50.0 U	10.0 U	8.40 J	4.20 J	1.00 U	0.220 J	1.00 U	4.00 U	0.340 J
Trichloroethene	1,210	1,230 J	4,110	6,920	1,340	7,000	9,230 J	473	149	407	159	527	275	1.00 U	0.260 J	1.00 U	4.00 U	1.00 U
Vinyl Chloride	470	385 J	1,220	968	1,320	713	501 J	20.0 U	4.60 J	50.0 U	10.0 U	20.0 U	3.50 J	1.74	1.01	1.69	1.96 J	1.10
Inorganics - Total (µg/L)																		
Iron	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Inorganics - Dissolved (µg/L)																		
Iron	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon (mg/L)																		
Total Organic Carbon	NA	NA	NA	NA	13	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA

Table 2
Summary of Groundwater Sample Analytical Results
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	MW-9D	MW-14S	MW-14S	MW-14S	MW-14S	MW-14S	MW-14S	MW-17D	MW-17D	MW-17D	MW-17D	MW-17D	MW-17D	MW-19S	MW-19S	MW-19S	MW-19S	MW-19S	MW-19S
Sample Depth (Feet):	35 - 45	10 - 15	10 - 15	10 - 15	10 - 15	10 - 15	10 - 15	36 - 46	36 - 46	36 - 46	36 - 46	36 - 46	36 - 46	10 - 20	10 - 20	10 - 20	10 - 20	10 - 20	10 - 20
Date Collected:	04/18/18	04/02/13	04/29/14	04/27/15	04/12/16	04/11/17	04/18/18	04/02/13	04/29/14	04/27/15	04/12/16	04/11/17	04/18/18	04/02/13	04/29/14	04/27/15	04/12/16	04/11/17	04/18/18
Volatile Organic Compounds (µg/L)																			
1,1,1,2-Tetrachloroethane	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U												
1,1-Dichloropropene	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U												
1,2,3-Trichlorobenzene	2.00 U	10.0 U	50.0 U	10.0 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	20.0 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U
1,2,3-Trichloropropane	2.00 U	10.0 U	50.0 U	10.0 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	20.0 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U
1,2,4-Trimethylbenzene	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	1.20	20.0 U	1.00 U	1.00 U	1.00 U	1.00 U	1.19	1.00 U	1.00 U	1.00 U				
1,2-Dibromoethane	2.00 U	10.0 U	50.0 U	10.0 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	20.0 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U
1,3,5-Trimethylbenzene	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U												
1,3-Dichloropropane	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U												
2,2-Dichloropropane	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U												
2-Butanone	5.00 U	250 U	1,250 U	250 U	25.0 U	5.00 U	5.00 U	25.0 U	25.0 U	25.0 U	500 U	5.00 U	5.00 U	25.0 U	25.0 U	25.0 U	25.0 U	5.00 U	5.00 U
2-Chlorotoluene	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U												
2-Hexanone	10.0 U	50.0 U	250 U	50.0 U	5.00 U	10.0 U	10.0 U	5.00 U	5.00 U	5.00 U	100 U	10.0 U	10.0 U	5.00 U	5.00 U	5.00 U	5.00 U	10.0 U	10.0 U
4-Chlorotoluene	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U												
4-Methyl-2-pentanone	5.00 U	50.0 U	250 U	50.0 U	5.00 U	100 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U					
Acetone	25.0 U	250 U	1,250 U	250 U	25.0 U	25.0 U	25.0 U	25.0 U	3.46 J	25.0 U	572	120	25.0 U	1.21 J	3.30 J	25.0 U	25.0 U	25.0 U	25.0 U
Benzene	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	1.00 U	1.00 U	0.220 J	1.00 U	1.00 U	20.0 U	1.00 U	1.00 U	1.00 U	0.770 J	1.53	2.06	0.860 J	1.00 U
Bromobenzene	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U												
Bromochloromethane	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U												
Bromoform	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U												
Bromomethane	2.00 U	10.0 U	50.0 U	10.0 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	20.0 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U
Carbon Disulfide	2.00 U	1.50 J	50.0 U	10.0 U	1.00 U	NA	2.00 U	1.00 U	1.00 U	1.00 U	20.0 U	NA	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NA	2.00 U
Dibromomethane	2.00 U	10.0 U	50.0 U	10.0 U	1.00 U	NA	2.00 U	1.00 U	1.00 U	1.00 U	20.0 U	NA	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NA	2.00 U
Diisopropyl ether (DIPE)	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U												
Ethyl Alcohol	NA	NA	NA	NA	NA	200 U	NA	NA	NA	NA	NA	200 U	NA	NA	NA	NA	NA	200 U	NA
Ethylbenzene	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U	1.00 U	1.00 U	1.00 U	1.79	0.410 J	1.00 U	1.00 U					
Hexachlorobutadiene	2.00 U	10.0 U	50.0 U	10.0 U	1.00 U	NA	2.00 U	1.00 U	1.00 U	1.00 U	20.0 U	NA	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NA	2.00 U
lodomethane	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	NA	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	NA	1.00 U	NA	1.00 U				
Isopropylbenzene	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U												
m-,p-Xylene	2.00 U	20.0 U	100 U	20.0 U	2.00 U	2.32	40.0 U	2.00 U	2.00 U	2.00 U	2.00 U	2.42	2.00 U	2.00 U	2.00 U				
Methyl tert-butyl ether	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U												
Naphthalene	5.00 U	10.0 U	50.0 U	10.0 U	1.00 U	5.00 U	5.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	5.00 U	0.530 J	9.50	43.3	39.8	5.00 U	5.00 U
n-Butylbenzene	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U												
n-Propylbenzene	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U												
o-Xylene	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U	1.00 U	1.00 U	0.210 J	2.17	0.660 J	1.00 U	1.00 U					
p-Isopropyltoluene	1.00 U	10.0 U	50.0 U	10.0 U	0.450 J	1.00 U	20.0 U	1.00 U											
sec-Butylbenzene	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U												
Styrene	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U												
tert-Butylbenzene	1.00 U	10.0 U	50.0 U	10.0 U	0.450 J	0.480 J	1.00 U	0.990 J	1.05	1.00 U	20.0 U	1.00 U							
Toluene	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 UB	1.00 U	1.00 U	1.00 U	0.230 J	0.700 J	1.00 UB	1.00 U	1.00 U					
trans-1,4-Dichloro-2-butene	NA	50.0 U	250 U	50.0 U	5.00 U	NA	NA	5.00 U	5.00 U	5.00 U	100 U	NA	NA	5.00 U	5.00 U	5.00 U	5.00 U	NA	NA

Table 2
Summary of Groundwater Sample Analytical Results
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	MW-9D	MW-14S	MW-14S	MW-14S	MW-14S	MW-14S	MW-14S	MW-17D	MW-17D	MW-17D	MW-17D	MW-17D	MW-17D	MW-19S	MW-19S	MW-19S	MW-19S	MW-19S	MW-19S
Sample Depth (Feet):	35 - 45	10 - 15	10 - 15	10 - 15	10 - 15	10 - 15	10 - 15	36 - 46	36 - 46	36 - 46	36 - 46	36 - 46	36 - 46	10 - 20	10 - 20	10 - 20	10 - 20	10 - 20	10 - 20
Date Collected:	04/18/18	04/02/13	04/29/14	04/27/15	04/12/16	04/11/17	04/18/18	04/02/13	04/29/14	04/27/15	04/12/16	04/11/17	04/18/18	04/02/13	04/29/14	04/27/15	04/12/16	04/11/17	04/18/18
/inyl Acetate	10.0 U	NA	NA	NA	NA	10.0 U	10.0 U	NA	NA	NA	NA	10.0 U	10.0 U	NA	NA	NA	NA	10.0 U	10.0 U
(ylenes (total)	NA	NA	NA	NA	NA	3.00 U	NA	NA	NA	NA	NA	3.00 U	NA	NA	NA	NA	NA	3.00 U	NA
I,1,1-Trichloroethane	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	3.50	1.00 U											
I,1,2,2-Tetrachloroethane	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U					
I,1,2-Trichloroethane	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U					
I,1-Dichloroethane	1.00 U	10.0 U	50.0 U	10.0 U	0.240 J	0.520 J	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.80	1.00 U	0.220 J	0.330 J	0.120 J	1.00 U	0.700 J	0.540 J
I,1-Dichloroethene	0.470 J	8.10 J	50.0 U	10.0 U	1.00 U	1.00 U	1.00 U	0.230 J	1.00 U	1.00 U	20.0 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
1,2,4-Trichlorobenzene	2.00 U	10.0 U	50.0 U	10.0 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	20.0 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U
1,2-Dibromo-3-chloropropane	5.00 U	50.0 U	250 U	50.0 U	5.00 U	NA	5.00 U	5.00 U	5.00 U	5.00 U	100 U	NA	5.00 U	NA	5.00 U				
I,2-Dichlorobenzene	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U					
I,2-Dichloroethane	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U					
1,2-Dichloropropane	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U					
I,3-Dichlorobenzene	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U					
I,4-Dichlorobenzene	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U					
Bromodichloromethane	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U					
Carbon Tetrachloride	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U					
Chlorobenzene	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U					
Chloroethane	2.00 U	10.0 U	50.0 U	10.0 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	20.0 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U
Chloroform	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U					
Chloromethane	2.00 U	10.0 U	50.0 U	10.0 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	20.0 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U
cis-1.3-Dichloropropene	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U					
Dibromochloromethane	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U					
Dichlorodifluoromethane	2.00 U	50.0 U	250 U	50.0 U	5.00 U	2.00 U	2.00 U	5.00 U	5.00 U	5.00 U	100 U	2.00 U	2.00 U	5.00 U	5.00 U	5.00 U	5.00 U	2.00 U	2.00 U
Methylene Chloride	5.00 U	50.0 U	250 U	50.0 U	5.00 U	100 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	0.580 J	5.00 U	5.00 U					
rans-1,3-Dichloropropene	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U					
Frichlorofluoromethane	2.00 U	10.0 U	50.0 U	10.0 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	20.0 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U
cis-1.2-Dichloroethene	70.1	512	1,060	198	17.3	7.30	2.80	7.95	4.51	4.74	389	30.9	0.620 J	0.220 J	1.96	2.35	3.54	5.70	0.610 J
Tetrachloroethene	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U					
rans-1,2-Dichloroethene	1.00 U	1.50 J	50.0 U	10.0 U	1.00 U	1.00 U	1.00 U	0.150 J	1.00 U	1.00 U	5.00 J	0.450 J	1.00 U	1.00 U	1.00 U	1.00 U	0.350 J	1.00 U	1.00 U
Frichloroethene	1.00 U	63.7	50.0 U	10.0 U	1.00 U	1.00 U	1.00 U	22.1	13.2	5.56	239	4.30	1.00 U	1.00 U	0.450 J	1.45	2.35	0.360 J	1.00 U
/inyl Chloride	2.10	79.9	85.5	15.8	5.37	3.50	4.50	1.00 U	1.00 U	1.00 U	36.0	1.00 U	1.00 U	1.00 U	0.480 J	0.300 J	1.52	0.700 J	1.00 U
norganics - Total (µg/L)											, , , , , ,								
ron	NA	NA	NA	NA	NA	NA	NA	NA	NA										
Manganese	NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA	NA
norganics - Dissolved (ug/L)							.,,												111
ron	NA	NA	NA	NA	NA	NA	NA	NA	NA										
Manganese	NA NA	NA	NA NA	NA NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA
Total Organic Carbon (mg/L)	14/1	14/1	147	147	1 47 1	14/ \	1471	14/1	14/1	17/1	177	14/1	14/1	14/1	14/1	14/1	14/1	1471	14.
Fotal Organic Carbon	NA	NA	NA	NA	NA	NA	NA	NA	NA										

Table 2
Summary of Groundwater Sample Analytical Results
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	PW-1S	PW-1S	PW-1S	PW-1S	PW-1S	PW-1S	PW-7S	PW-7S	PW-7S	PW-7S	PW-7S	PW-7S	MW-105D	MW-105S	MW-201D	MW-202D	HPT-01	HPT-02
Sample Depth (Feet):	Assume 15-25	Assume 15-25	Assume 15-25	Assume 15-25	Assume 15-25	Assume 15-25	15 - 22	15 - 22	15 - 22	15 - 22	15 - 22	15 - 22	39.3 - 46.3	13.5 - 23.5	25 - 40	25 - 40	18 - 20	10 - 12
Date Collected:	04/02/13	04/29/14	04/27/15	04/12/16	04/11/17	04/18/18	04/02/13	04/29/14	04/27/15	04/12/16	04/11/17	04/18/18	01/06/13	01/06/13	01/06/13	01/06/13	10/26/15	12/05/15
olatile Organic Compounds (µg/L)												•	•					
1.1.2-Tetrachloroethane	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U
,1-Dichloropropene	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U
.2.3-Trichlorobenzene	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U
,2,3-Trichloropropane	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U
.2.4-Trimethylbenzene	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	0.110 J	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U
.2-Dibromoethane	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U
,3,5-Trimethylbenzene	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U
.3-Dichloropropane	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U
.,2-Dichloropropane	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U
d-Butanone	25.0 U	25.0 U	25.0 U	25.0 U	5.00 U	5.00 U	25.0 U	25.0 U	25.0 U	25.0 U	5.00 U	5.00 U	250 U	25.0 U	20,000 U	10,000 U	25.0 U	25.0 U
-Chlorotoluene	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U
-Hexanone	5.00 U	5.00 U	5.00 U	5.00 U	10.0 U	10.0 U	5.00 U	5.00 U	5.00 U	5.00 U	10.0 U	10.0 U	50.0 U	5.00 U	4,000 U	2,000 U	5.00 U	5.00 U
-Chlorotoluene	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U
-Methyl-2-pentanone	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	50.0 U	5.00 U	4.000 U	2.000 U	5.00 U	5.00 U
cetone	2.03 J	25.0 U	25.0 U	25.0 U	25.0 U	25.0 U	25.0 U	25.0 U	25.0 U	25.0 U	25.0 U	25.0 U	250 U	25.0 U	20,000 U	10,000 U	25.0 U	25.0 U
Benzene	0.200 J	0.550 J	0.360 J	0.260 J	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U
romobenzene	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U
Bromochloromethane	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U
Bromoform	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U
Bromomethane	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U
Carbon Disulfide	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U
	1.00 U	1.00 U	1.00 U	1.00 U	NA NA	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NA NA	2.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U
Dibromomethane	1.00 U				1.00 U	1.00 U		1.00 U										1.00 U
Diisopropyl ether (DIPE)	1.00 U	1.00 U	1.00 U	1.00 U			1.00 U	1.00 U	1.00 U	1.00 U NA	1.00 U 200 U	1.00 U NA	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U
thyl Alcohol		NA 1 00 II	NA 1 00 LL	NA 1 00 H	200 U	NA 4 00 H	NA NA		NA 1 00 H				NA 10.011	NA 4 00 III	NA	NA 100 H	NA 1 00 H	
thylbenzene	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	0.220 J	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U
lexachlorobutadiene	1.00 U	1.00 U	1.00 U	1.00 U	NA NA	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NA	2.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U
odomethane	1.00 U	1.00 U	1.00 U	1.00 U	NA 1 00 LL	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NA	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U
sopropylbenzene	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U
n-,p-Xylene	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	0.360 J	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	20.0 U	2.00 U	1,600 U	800 U	2.00 U	2.00 U
Methyl tert-butyl ether	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U
laphthalene	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	5.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U
-Butylbenzene	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U
-Propylbenzene	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U
Xylene	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	0.110 J	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U
-Isopropyltoluene	1.00 U	1.00 U	1.00 U	0.160 J	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U
ec-Butylbenzene	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U
tyrene	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U
ert-Butylbenzene	1.00 U	1.00 U	1.52	0.160 J	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U
oluene	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	0.260 J
ans-1,4-Dichloro-2-butene	5.00 U	5.00 U	5.00 U	5.00 U	NA	NA	5.00 U	5.00 U	5.00 U	5.00 U	NA	NA	50.0 U	5.00 U	4,000 U	2,000 U	5.00 U	5.00 U

Location Identification:	PW-1S	PW-1S	PW-1S	PW-1S	PW-1S	PW-1S	PW-7S	PW-7S	PW-7S	PW-7S	PW-7S	PW-7S	MW-105D	MW-105S	MW-201D	MW-202D	HPT-01	HPT-02
Sample Depth (Feet):	Assume 15-25	15 - 22	15 - 22	15 - 22	15 - 22	15 - 22	15 - 22	39.3 - 46.3	13.5 - 23.5	25 - 40	25 - 40	18 - 20	10 - 12					
Date Collected:	04/02/13	04/29/14	04/27/15	04/12/16	04/11/17	04/18/18	04/02/13	04/29/14	04/27/15	04/12/16	04/11/17	04/18/18	01/06/13	01/06/13	01/06/13	01/06/13	10/26/15	12/05/15
/inyl Acetate	NA	NA	NA	NA	10.0 U	10.0 U	NA	NA	NA	NA	10.0 U	10.0 U	NA	NA	NA	NA	NA	NA
(ylenes (total)	NA	NA	NA	NA	3.00 U	NA	NA	NA	NA	NA	3.00 U	NA	NA	NA	NA	NA	NA	NA
,1,1-Trichloroethane	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U					
,1,2,2-Tetrachloroethane	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U					
,1,2-Trichloroethane	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U					
,1-Dichloroethane	1.87	0.620 J	0.450 J	0.810 J	1.10	0.420 J	0.260 J	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U				
,1-Dichloroethene	0.640 J	0.720 J	0.720 J	0.560 J	0.480 J	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	11.5	1.00 U	800 U	400 U	1.00 U	1.00 U
,2,4-Trichlorobenzene	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U
,2-Dibromo-3-chloropropane	5.00 U	5.00 U	5.00 U	5.00 U	NA	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	NA	5.00 U	50.0 U	5.00 U	4,000 U	2,000 U	5.00 U	5.00 U
,2-Dichlorobenzene	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U					
,2-Dichloroethane	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U					
,2-Dichloropropane	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U					
,3-Dichlorobenzene	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U					
,4-Dichlorobenzene	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U					
Bromodichloromethane	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U					
Carbon Tetrachloride	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U					
Chlorobenzene	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U					
Chloroethane	2.27	0.460 J	1.00 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U
Chloroform	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U					
Chloromethane	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U
cis-1,3-Dichloropropene	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U					
Dibromochloromethane	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U					
Dichlorodifluoromethane	5.00 U	5.00 U	5.00 U	5.00 U	2.00 U	2.00 U	5.00 U	5.00 U	5.00 U	5.00 U	2.00 U	2.00 U	50.0 U	5.00 U	4,000 U	2,000 U	5.00 U	5.00 U
Methylene Chloride	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	50.0 U	5.00 U	4,000 U	2,000 U	5.00 U	5.00 U					
rans-1,3-Dichloropropene	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U					
richlorofluoromethane	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U
cis-1,2-Dichloroethene	29.7	31.7	31.3	27.3	33.9	32.7	3.06	1.74	0.910 J	1.00 U	1.00 U	1.00 U	399	1.00 U	13,200	400 U	26.2	1.00 U
Tetrachloroethene	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U					
rans-1,2-Dichloroethene	0.170 J	1.00 U	0.220 J	1.00 U	0.230 J	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	10.0 U	1.00 U	800 U	124 J	0.620 J	1.00 U
 richloroethene	2.28	1.61	1.07	1.21	0.710 J	1.00 U	0.840 J	0.230 J	0.250 J	1.00 U	1.00 U	1.00 U	10.0 U	1.00 U	4,530	400 U	1.00 U	0.850 J
/inyl Chloride	28.7	17.8	16.0	22.6	22.2	35.0	2.83	1.66	0.990 J	1.00 U	1.00 U	1.00 U	51.3	1.00 U	800 U	4,680	0.550 J	1.00 U
norganics - Total (µg/L)																		
ron	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	500	5,100	5,500	17,000	NA	NA
Manganese	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	58.0	21.0	69.0	440	NA	NA
norganics - Dissolved (µg/L)																		
ron	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	180	820	2,300	16,000	NA	NA
Manganese	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	65.0	13.0 J	62.0	480	NA	NA NA
Total Organic Carbon (mg/L)							,		1471	, .			33.0	. 5.0 0	<u></u>	.55		. # 1
Total Organic Carbon	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.9	6	2.3	760	NA	NA

Table 2
Summary of Groundwater Sample Analytical Results
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	HPT-02	HPT-02	HPT-03	HPT-03	HPT-03	HPT-03	HPT-04	HPT-05	HPT-22	HPT-22	HPT-22	HPT-24	HPT-24	HPT-24	HPT-24
Sample Depth (Feet):	16 - 18	16 - 18	9 - 11	16 - 18	22 - 24	30 - 32	16 - 18	17 - 21	16 - 18	27 - 29	38 - 40	12 - 14	18 - 20	24 - 26	40 - 42
Date Collected:	10/27/15	12/05/15	12/05/15	12/05/15	10/27/15	12/05/15	10/28/15	10/28/15	12/03/15	12/03/15	12/03/15	12/02/15	12/02/15	12/03/15	12/03/15
olatile Organic Compounds (µg/L)															
1,1,2-Tetrachloroethane	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5.000 U	200 U	5.00 U	2.000 U
1-Dichloropropene	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U
2.3-Trichlorobenzene	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U
2,3-Trichloropropane	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U
2,4-Trimethylbenzene	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U
2-Dibromoethane	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U
3,5-Trimethylbenzene	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U
3-Dichloropropane	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U
2-Dichloropropane	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U
Butanone	125 U	400 U	125 U	2,000 U	2,500 U	125 U	5,000 U	1,000 U	25,000 U [25,000 U]		10,000 U	125,000 U	5,000 U	125 U	50,000 L
Chlorotoluene	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U
Hexanone	25.0 U	80.0 U	25.0 U	400 U	500 U	25.0 U	1,000 U	200 U	5,000 U [5,000 U]	1,000 U [1,000 U]	2,000 U	25,000 U	1,000 U	25.0 U	10,000 L
Chlorotoluene	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U
Methyl-2-pentanone	25.0 U	80.0 U	25.0 U	400 U	500 U	25.0 U	1,000 U	200 U	5,000 U [5,000 U]	1,000 U [1,000 U]	2,000 U	25,000 U	1,000 U	25.0 U	10,000 L
cetone	125 U	400 U	125 U	2,000 U	2,500 U	125 U	5,000 U	1,000 U	25,000 U [25,000 U]	5,000 U [5,000 U]	10,000 U	125,000 U	5,000 U	125 U	50,000 L
enzene	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2.000 U
romobenzene	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U
romochloromethane	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5.000 U	200 U	5.00 U	2.000 U
romoform	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U
romomethane	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U
arbon Disulfide	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5.000 U	200 U	3.75 J	2.000 U
ibromomethane	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U
isopropyl ether (DIPE)	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U
thyl Alcohol	NA	NA	NA	NA	NA	NA	NA								
thylbenzene	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U
exachlorobutadiene	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U
domethane	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U
opropylbenzene	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U
-,p-Xylene	10.0 U	32.0 U	10.0 U	160 U	200 U	10.0 U	400 U	80.0 U	2,000 U [2,000 U]	400 U [400 U]	800 U	10,000 U	400 U	10.0 U	4,000 U
ethyl tert-butyl ether	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U
aphthalene	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U
Butylbenzene	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U
Propylbenzene	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U
Xylene	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U
Isopropyltoluene	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U
ec-Butylbenzene	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U
tyrene	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U
rt-Butylbenzene	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U
oluene	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	0.550 J	2,000 U
ans-1.4-Dichloro-2-butene	25.0 U	80.0 U	25.0 U	400 U	500 U	25.0 U	1.000 U	200 U	5,000 U [5,000 U]	1,000 U [1,000 U]	2,000 U	25,000 U	1.000 U	25.0 U	10,000 L

Location Identification:	HPT-02	HPT-02	HPT-03	HPT-03	HPT-03	HPT-03	HPT-04	HPT-05	HPT-22	HPT-22	HPT-22	HPT-24	HPT-24	HPT-24	HPT-24
Sample Depth (Feet):	16 - 18	16 - 18	9 - 11	16 - 18	22 - 24	30 - 32	16 - 18	17 - 21	16 - 18	27 - 29	38 - 40	12 - 14	18 - 20	24 - 26	40 - 42
Date Collected:	10/27/15	12/05/15	12/05/15	12/05/15	10/27/15	12/05/15	10/28/15	10/28/15	12/03/15	12/03/15	12/03/15	12/02/15	12/02/15	12/03/15	12/03/15
/inyl Acetate	NA	NA	NA	NA	NA	NA	NA								
(ylenes (total)	NA	NA	NA	NA	NA	NA	NA								
,1,1-Trichloroethane	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U
,1,2,2-Tetrachloroethane	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U
,1,2-Trichloroethane	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U
,1-Dichloroethane	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U	40.0 U	800 J [810 J]	200 U [200 U]	400 U	2,100 J	164 J	1.05 J	2,000 U
,1-Dichloroethene	5.00 U	16.0 U	5.00 U	80.0 U	42.0 J	5.00 U	200 U	40.0 U	920 J [1,030]	200 U [200 U]	76.0 J	1,950 J	60.0 J	0.650 J	280 J
,2,4-Trichlorobenzene	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U
,2-Dibromo-3-chloropropane	25.0 U	80.0 U	25.0 U	400 U	500 U	25.0 U	1,000 U	200 U	5,000 U [5,000 U]	1,000 U [1,000 U]	2,000 U	25,000 U	1,000 U	25.0 U	10,000 U
,2-Dichlorobenzene	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U
,2-Dichloroethane	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U
,2-Dichloropropane	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U
,3-Dichlorobenzene	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U
,4-Dichlorobenzene	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U
Bromodichloromethane	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U
Carbon Tetrachloride	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U
Chlorobenzene	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U
Chloroethane	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U
Chloroform	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U
Chloromethane	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U
is-1,3-Dichloropropene	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U
Dibromochloromethane	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U
Dichlorodifluoromethane	25.0 U	80.0 U	25.0 U	400 U	500 U	25.0 U	1,000 U	200 U	5,000 U [5,000 U]	1,000 U [1,000 U]	2,000 U	25,000 U	1,000 U	25.0 U	10,000 U
Methylene Chloride	25.0 U	80.0 U	25.0 U	400 U	500 U	25.0 U	1,000 U	200 U	5,000 U [5,000 U]	1,000 U [1,000 U]	2,000 U	25,000 U	1,000 U	25.0 U	10,000 U
rans-1,3-Dichloropropene	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U
richlorofluoromethane	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U
is-1,2-Dichloroethene	33.0	331	124	1,560	1,190	123	4,150	40.0 U	4,910 [5,120]	200 U [40.0 J]	8,960	11,600	4,080	26.0	20,300
etrachloroethene	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U
rans-1,2-Dichloroethene	1.55 J	30.9	9.75	43.2 J	100 U	5.00 U	142 J	40.0 U	1,000 U [1,000 U]	24.0 J [200 U]	72.0 J	5,000 U	200 U	0.850 J	2,000 U
richloroethene	57.9	38.7	61.0	259	375	6.20	286	484	28,600 [34,600]	200 U [68.0 J]	464	261,000	3,030	41.3	41,700
/inyl Chloride	5.00 U	19.7	5.00 U	175	239	6.70	1,540	40.0 U	240 J [250 J]	4,240 [4,200]	1,740	5,000 U	200 U	8.60	1,800 J
norganics - Total (ug/L)							,				,	·			
ron	NA	NA	NA	NA	NA	NA	NA								
Manganese	NA	NA	NA	NA	NA	NA	NA								
norganics - Dissolved (µg/L)															
ron	NA	NA	NA	NA	NA	NA	NA								
Manganese	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA	NA NA	NA	NA
otal Organic Carbon (mg/L)					, ,	,			. 17 1		, .				
otal Organic Carbon	NA	NA	NA	NA	NA	NA	NA								

Table 2
Summary of Groundwater Sample Analytical Results
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	HPT-25	HPT-25	HPT-25	HPT-25	HPT-25	HPT-26	HPT-26	HPT-26	HPT-26	HPT-26	HPT-26	HPT-27	HPT-27	HPT-27	HPT-27
Sample Depth (Feet):	13 - 15	20 - 22	24 - 26	27 - 29	40 - 42	14 - 16	19 - 21	24 - 26	27 - 29	41 - 43	44 - 46	12 - 14	18 - 20	22 - 24	27 - 29
Date Collected:	12/02/15	12/02/15	12/02/15	12/03/15	12/03/15	12/02/15	12/02/15	12/02/15	12/02/15	12/02/15	12/02/15	12/02/15	12/02/15	12/02/15	12/02/15
olatile Organic Compounds (µg/L)															
,1,1,2-Tetrachloroethane	40.0 U	20.0 U	1.00 U	200 U	50.0 U	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U				
I,1-Dichloropropene	40.0 U	20.0 U	1.00 U	200 U	50.0 U	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U				
I,2,3-Trichlorobenzene	40.0 U	20.0 U	1.00 U	200 U	50.0 U	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U				
1,2,3-Trichloropropane	40.0 U	20.0 U	1.00 U	200 U	50.0 U	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U				
1,2,4-Trimethylbenzene	40.0 U	20.0 U	1.00 U	200 U	50.0 U	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U				
1,2-Dibromoethane	40.0 U	20.0 U	1.00 U	200 U	50.0 U	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U				
1,3,5-Trimethylbenzene	40.0 U	20.0 U	1.00 U	200 U	50.0 U	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U				
1,3-Dichloropropane	40.0 U	20.0 U	1.00 U	200 U	50.0 U	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U				
2,2-Dichloropropane	40.0 U	20.0 U	1.00 U	200 U	50.0 U	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U				
2-Butanone	1,000 U	500 U	25.0 U	5,000 U	1,250 U	25.0 U	25.0 U	0.940 J	12,500 U	500 U	25.0 U	25.0 U	25.0 U	25.0 U	25.0 U
2-Chlorotoluene	40.0 U	20.0 U	1.00 U	200 U	50.0 U	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U				
2-Hexanone	200 U	100 U	5.00 U	1,000 U	250 U	5.00 U	5.00 U	5.00 U	2,500 U	100 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
4-Chlorotoluene	40.0 U	20.0 U	1.00 U	200 U	50.0 U	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U				
4-Methyl-2-pentanone	200 U	100 U	5.00 U	1,000 U	250 U	5.00 U	5.00 U	5.00 U	2,500 U	100 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Acetone	1,000 U	500 U	3.40 J	5,000 U	1,250 U	25.0 U	2.62 J	2.13 J	12,500 U	500 U	2.09 J	3.90 J	2.49 J	25.0 U	25.0 U
Benzene	40.0 U	20.0 U	0.210 J	200 U	50.0 U	1.00 U	1.00 U	0.270 J	500 U	20.0 U	1.00 U	1.00 U	1.00 U	1.00 U	1.05
Bromobenzene	40.0 U	20.0 U	1.00 U	200 U	50.0 U	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U				
Bromochloromethane	40.0 U	20.0 U	1.00 U	200 U	50.0 U	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U				
Bromoform	40.0 U	20.0 U	1.00 U	200 U	50.0 U	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U				
Bromomethane	40.0 U	20.0 U	1.00 U	200 U	50.0 U	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U				
Carbon Disulfide	40.0 U	20.0 U	0.630 J	200 U	50.0 U	1.00 U	1.14	2.92	500 U	2.60 J	0.520 J	1.00 U	1.00 U	0.450 J	1.00 U
Dibromomethane	40.0 U	20.0 U	1.00 U	200 U	50.0 U	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U				
Diisopropyl ether (DIPE)	40.0 U	20.0 U	1.00 U	200 U	50.0 U	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U				
Ethyl Alcohol	NA														
Ethylbenzene	40.0 U	20.0 U	1.00 U	200 U	50.0 U	1.00 U	1.00 U	1.00 U	500 U	20.0 U	0.160 J	1.00 U	1.00 U	1.00 U	1.00 U
Hexachlorobutadiene	40.0 U	20.0 U	1.00 U	200 U	50.0 U	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U				
odomethane	40.0 U	20.0 U	1.00 U	200 U	50.0 U	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U				
sopropylbenzene	40.0 U	20.0 U	1.00 U	200 U	50.0 U	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U				
n-,p-Xylene	80.0 U	40.0 U	2.00 U	400 U	100 U	2.00 U	0.150 J	0.130 J	1,000 U	40.0 U	0.370 J	2.00 U	2.00 U	2.00 U	2.00 U
Methyl tert-butyl ether	40.0 U	20.0 U	0.670 J	200 U	50.0 U	1.00 U	1.00 U	0.320 J	500 U	20.0 U	1.00 U	1.00 U	1.00 U	1.00 U	0.370 J
Naphthalene	40.0 U	20.0 U	1.00 U	200 U	50.0 U	1.00 U	1.00 U	1.04	500 U	20.0 U	0.120 J	1.00 U	1.00 U	1.00 U	1.00 U
n-Butylbenzene	40.0 U	20.0 U	1.00 U	200 U	50.0 U	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U				
n-Propylbenzene	40.0 U	20.0 U	1.00 U	200 U	50.0 U	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U				
o-Xylene	40.0 U	20.0 U	1.00 U	200 U	50.0 U	1.00 U	1.00 U	1.00 U	500 U	20.0 U	0.180 J	1.00 U	1.00 U	1.00 U	1.00 U
o-Isopropyltoluene	40.0 U	20.0 U	1.00 U	200 U	50.0 U	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U				
sec-Butylbenzene	40.0 U	20.0 U	1.00 U	200 U	50.0 U	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U				
Styrene	40.0 U	20.0 U	1.00 U	200 U	50.0 U	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U				
ert-Butylbenzene	40.0 U	20.0 U	1.00 U	200 U	50.0 U	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U				
Toluene	40.0 U	20.0 U	0.210 J	200 U	50.0 U	1.00 U	0.340 J	0.450 J	500 U	20.0 U	0.680 J	1.00 U	0.220 J	1.00 U	0.490 J
rans-1,4-Dichloro-2-butene	200 U	100 U	5.00 U	1,000 U	250 U	5.00 U	5.00 U	5.00 U	2,500 U	100 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U

Table 2
Summary of Groundwater Sample Analytical Results
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	HPT-25	HPT-25	HPT-25	HPT-25	HPT-25	HPT-26	HPT-26	HPT-26	HPT-26	HPT-26	HPT-26	HPT-27	HPT-27	HPT-27	HPT-27
Sample Depth (Feet):	13 - 15	20 - 22	24 - 26	27 - 29	40 - 42	14 - 16	19 - 21	24 - 26	27 - 29	41 - 43	44 - 46	12 - 14	18 - 20	22 - 24	27 - 29
Date Collected:	12/02/15	12/02/15	12/02/15	12/03/15	12/03/15	12/02/15	12/02/15	12/02/15	12/02/15	12/02/15	12/02/15	12/02/15	12/02/15	12/02/15	12/02/15
Vinyl Acetate	NA														
Xylenes (total)	NA														
1,1,1-Trichloroethane	40.0 U	20.0 U	1.00 U	200 U	50.0 U	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U				
1,1,2,2-Tetrachloroethane	40.0 U	20.0 U	1.00 U	200 U	50.0 U	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U				
1,1,2-Trichloroethane	40.0 U	20.0 U	1.00 U	200 U	50.0 U	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U				
1,1-Dichloroethane	11.2 J	12.8 J	1.85	200 U	50.0 U	1.00 U	0.260 J	3.13	500 U	20.0 U	1.00 U	1.00 U	1.00 U	0.440 J	1.06
1,1-Dichloroethene	40.0 U	20.0 U	0.400 J	200 U	7.50 J	1.00 U	0.250 J	1.12	500 U	5.00 J	0.480 J	1.00 U	0.320 J	1.00 U	1.00 U
1,2,4-Trichlorobenzene	40.0 U	20.0 U	1.00 U	200 U	50.0 U	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U				
1,2-Dibromo-3-chloropropane	200 U	100 U	5.00 U	1,000 U	250 U	5.00 U	5.00 U	5.00 U	2,500 U	100 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
1,2-Dichlorobenzene	40.0 U	20.0 U	1.00 U	200 U	50.0 U	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U				
1,2-Dichloroethane	40.0 U	20.0 U	1.00 U	200 U	50.0 U	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U				
1,2-Dichloropropane	40.0 U	20.0 U	1.00 U	200 U	50.0 U	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U				
1,3-Dichlorobenzene	40.0 U	20.0 U	1.00 U	200 U	50.0 U	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U				
1,4-Dichlorobenzene	40.0 U	20.0 U	1.00 U	200 U	50.0 U	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U				
Bromodichloromethane	40.0 U	20.0 U	1.00 U	200 U	50.0 U	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U				
Carbon Tetrachloride	40.0 U	20.0 U	1.00 U	200 U	50.0 U	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U				
Chlorobenzene	40.0 U	20.0 U	1.00 U	200 U	50.0 U	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U				
Chloroethane	40.0 U	20.0 U	1.00 U	200 U	50.0 U	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U				
Chloroform	40.0 U	20.0 U	1.00 U	200 U	50.0 U	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U				
Chloromethane	40.0 U	20.0 U	1.00 U	200 U	50.0 U	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U				
cis-1,3-Dichloropropene	40.0 U	20.0 U	1.00 U	200 U	50.0 U	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U				
Dibromochloromethane	40.0 U	20.0 U	1.00 U	200 U	50.0 U	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U				
Dichlorodifluoromethane	200 U	100 U	5.00 U	1,000 U	250 U	5.00 U	5.00 U	5.00 U	2,500 U	100 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Methylene Chloride	200 U	100 U	5.00 U	1,000 U	250 U	5.00 U	5.00 U	5.00 U	2,500 U	100 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
trans-1,3-Dichloropropene	40.0 U	20.0 U	1.00 U	200 U	50.0 U	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U				
Trichlorofluoromethane	40.0 U	20.0 U	1.00 U	200 U	50.0 U	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U				
cis-1,2-Dichloroethene	770	607	12.3	200 U	1,640	1.00 U	1.00 U	5.85	500 U	533	34.3	1.00 U	1.00 U	1.75	0.110 J
Tetrachloroethene	40.0 U	20.0 U	1.00 U	200 U	50.0 U	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U				
trans-1,2-Dichloroethene	13.6 J	9.00 J	0.910 J	200 U	50.0 U	1.00 U	1.00 U	0.460 J	500 U	20.0 U	0.240 J	1.00 U	1.00 U	0.140 J	0.200 J
Trichloroethene	54.4	46.8	7.74	200 U	50.0 U	1.00 U	1.00 U	0.620 J	500 U	20.0 U	1.00 U	1.00 U	1.00 U	1.54	1.00 U
Vinyl Chloride	40.0 U	20.0 U	8.50	4,250	749	1.00 U	1.00 U	0.590 J	7,000	161	54.9	1.00 U	1.00 U	0.250 J	1.00 U
Inorganics - Total (µg/L)															
Iron	NA														
Manganese	NA														
Inorganics - Dissolved (µg/L)															
Iron	NA														
Manganese	NA														
Total Organic Carbon (mg/L)															
Total Organic Carbon	NA														

Table 2
Summary of Groundwater Sample Analytical Results
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	HPT-27	HPT-28	HPT-28	HPT-28	HPT-28	HPT-28	HPT-29	HPT-29	HPT-29	HPT-29	HPT-29	HPT-29	HPT-30	HPT-30	HPT-30
Sample Depth (Feet):	41 - 44	13 - 15	18 - 20	24 - 26	30 - 33	37 - 40	13 - 15	19 - 21	25 - 27	29 - 31	36 - 38	39 - 41	13 - 15	17 - 19	24 - 26
Date Collected:	12/02/15	12/01/15	12/01/15	12/01/15	12/01/15	12/01/15	12/01/15	12/01/15	12/01/15	12/01/15	12/01/15	12/01/15	11/30/15	11/30/15	12/01/15
/olatile Organic Compounds (µg/L)															
.1.1.2-Tetrachloroethane	1.00 U	1.00 U	1.00 U	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U
I,1-Dichloropropene	1.00 U	1.00 U	1.00 U	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U
1.2.3-Trichlorobenzene	1.00 U	1.00 U	1.00 U	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U
1,2,3-Trichloropropane	1.00 U	1.00 U	1.00 U	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U
I,2,4-Trimethylbenzene	1.00 U	1.00 U	1.00 U	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	0.420 J	1.00 U	1.00 U	0.420 J
1,2-Dibromoethane	1.00 U	1.00 U	1.00 U	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U
1,3,5-Trimethylbenzene	1.00 U	1.00 U	1.00 U	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U
1,3-Dichloropropane	1.00 U	1.00 U	1.00 U	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U
2,2-Dichloropropane	1.00 U	1.00 U	1.00 U	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U
2-Butanone	12.3 J	25.0 U	25.0 U	25.0 U	20,000 U	14.6 J	25.0 U	25.0 U	25.0 U	500 U	125 U	36.4	25.0 U	25.0 U	25.0 U
2-Chlorotoluene	1.00 U	1.00 U	1.00 U	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U
2-Hexanone	5.00 U	5.00 U	5.00 U	5.00 U	4,000 U	5.00 U	5.00 U	5.00 U	5.00 U	100 U	25.0 U	5.00 U	5.00 U	5.00 U	5.00 U
4-Chlorotoluene	1.00 U	1.00 U	1.00 U	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U
4-Methyl-2-pentanone	5.00 U	5.00 U	5.00 U	5.00 U	4,000 U	5.00 U	5.00 U	5.00 U	5.00 U	100 U	25.0 U	5.00 U	5.00 U	5.00 U	5.00 U
Acetone	38.4	8.16 J	3.59 J	25.0 U	20,000 U	9.86 J	25.0 U	25.0 U	25.0 U	500 U	125 U	49.6	25.0 U	25.0 U	25.0 U
Benzene	0.300 J	1.00 U	1.00 U	0.620 J	800 U	0.180 J	1.00 U	1.00 U	0.820 J	20.0 U	0.750 J	0.450 J	1.00 U	1.00 U	0.750 J
Bromobenzene	1.00 U	1.00 U	1.00 U	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Bromochloromethane	1.00 U	1.00 U	1.00 U	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Bromoform	1.00 U	1.00 U	1.00 U	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Bromomethane	1.00 U	1.00 U	1.00 U	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Carbon Disulfide	0.510 J	1.00 U	1.00 U	2.00	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Dibromomethane	1.00 U	1.00 U	1.00 U	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Diisopropyl ether (DIPE)	1.00 U	1.00 U	1.00 U	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Ethyl Alcohol	NA														
Ethylbenzene	1.00 U	1.00 U	1.00 U	0.430 J	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Hexachlorobutadiene	1.00 U	1.00 U	1.00 U	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U
lodomethane	1.00 U	1.00 U	1.00 U	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Isopropylbenzene	1.00 U	1.00 U	1.00 U	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U
m-,p-Xylene	0.160 J	0.550 J	2.00 U	2.00 U	1,600 U	2.00 U	2.00 U	0.620 J	0.560 J	40.0 U	10.0 U	0.640 J	2.00 U	2.00 U	0.670 J
Methyl tert-butyl ether	1.00 U	1.00 U	1.00 U	1.02	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Naphthalene	1.00 U	1.00 U	1.00 U	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	0.690 J	1.00 U	1.00 U	1.00 U
n-Butylbenzene	1.00 U	1.00 U	1.00 U	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U
n-Propylbenzene	1.00 U	1.00 U	1.00 U	0.290 J	800 U	1.00 U	1.00 U	1.00 U	0.300 J	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U
o-Xylene	1.00 U	1.00 U	1.00 U	1.00 U	800 U	1.00 U	1.00 U	1.00 U	0.450 J	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	0.480 J
p-Isopropyltoluene	1.00 U	1.00 U	1.00 U	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U
sec-Butylbenzene	1.00 U	1.00 U	1.00 U	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Styrene	1.00 U	1.00 U	1.00 U	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U
tert-Butylbenzene	1.00 U	1.00 U	1.00 U	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Toluene	0.420 J	0.150 J	1.00 U	0.650 J	800 U	13.4	1.00 U	0.190 J	2.18	88.8	110	43.6	1.00 U	1.00 U	0.270 J
rans-1.4-Dichloro-2-butene	5.00 U	5.00 U	5.00 U	5.00 U	4.000 U	5.00 U	5.00 U	5.00 U	5.00 U	100 U	25.0 U	5.00 U	5.00 U	5.00 U	5.00 U

Location Identification:	HPT-27	HPT-28	HPT-28	HPT-28	HPT-28	HPT-28	HPT-29	HPT-29	HPT-29	HPT-29	HPT-29	HPT-29	HPT-30	HPT-30	HPT-30
Sample Depth (Feet):	41 - 44	13 - 15	18 - 20	24 - 26	30 - 33	37 - 40	13 - 15	19 - 21	25 - 27	29 - 31	36 - 38	39 - 41	13 - 15	17 - 19	24 - 26
Date Collected:	12/02/15	12/01/15	12/01/15	12/01/15	12/01/15	12/01/15	12/01/15	12/01/15	12/01/15	12/01/15	12/01/15	12/01/15	11/30/15	11/30/15	12/01/15
/inyl Acetate	NA														
(ylenes (total)	NA														
,1,1-Trichloroethane	1.00 U	1.00 U	1.00 U	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U
I,1,2,2-Tetrachloroethane	1.00 U	1.00 U	1.00 U	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U
,1,2-Trichloroethane	1.00 U	1.00 U	1.00 U	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U
,1-Dichloroethane	3.99	1.00 U	1.00 U	0.720 J	800 U	1.36	1.00 U	1.00 U	1.78	20.0 U	5.00 U	0.370 J	1.00 U	0.280 J	3.84
,1-Dichloroethene	1.00 U	1.00 U	1.00 U	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	0.750 J	1.00 U
,2,4-Trichlorobenzene	1.00 U	1.00 U	1.00 U	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U
1,2-Dibromo-3-chloropropane	5.00 U	5.00 U	5.00 U	5.00 U	4,000 U	5.00 U	5.00 U	5.00 U	5.00 U	100 U	25.0 U	5.00 U	5.00 U	5.00 U	5.00 U
,2-Dichlorobenzene	1.00 U	1.00 U	1.00 U	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U
,2-Dichloroethane	1.00 U	1.00 U	1.00 U	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U
,2-Dichloropropane	1.00 U	1.00 U	1.00 U	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U
,3-Dichlorobenzene	1.00 U	1.00 U	1.00 U	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U
.4-Dichlorobenzene	1.00 U	1.00 U	1.00 U	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Bromodichloromethane	1.00 U	1.00 U	1.00 U	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Carbon Tetrachloride	1.00 U	1.00 U	1.00 U	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Chlorobenzene	1.00 U	1.00 U	1.00 U	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Chloroethane	1.00 U	1.00 U	1.00 U	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Chloroform	1.00 U	1.00 U	1.00 U	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Chloromethane	1.00 U	1.00 U	1.00 U	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U
cis-1,3-Dichloropropene	1.00 U	1.00 U	1.00 U	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Dibromochloromethane	1.00 U	1.00 U	1.00 U	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Dichlorodifluoromethane	5.00 U	5.00 U	5.00 U	5.00 U	4.000 U	5.00 U	5.00 U	5.00 U	5.00 U	100 U	25.0 U	5.00 U	5.00 U	5.00 U	5.00 U
Methylene Chloride	5.00 U	5.00 U	5.00 U	5.00 U	4.000 U	5.00 U	5.00 U	5.00 U	5.00 U	100 U	25.0 U	5.00 U	5.00 U	5.00 U	5.00 U
rans-1,3-Dichloropropene	1.00 U	1.00 U	1.00 U	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U
richlorofluoromethane	1.00 U	1.00 U	1.00 U	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U
sis-1.2-Dichloroethene	30.0	1.00 U	1.00 U	1.00 U	11.400	1.11	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	3.34	1.00 U	0.930 J	3.66
etrachloroethene	1.00 U	1.00 U	1.00 U	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	2.88	1.00 U	1.00 U	1.00 U
rans-1.2-Dichloroethene	1.00 U	1.00 U	1.00 U	1.00 U	800 U	1.00 U	1.00 U	1.00 U	2.98	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U
richloroethene	0.790 J	1.00 U	0.630 J	1.00 U	800 U	1.00 U	1.00 U	0.250 J	1.00 U	20.0 U	5.00 U	1.39	1.00 U	0.960 J	0.320 J
/inyl Chloride	32.1	1.00 U	1.00 U	7.27	14.900	2.02	1.00 U	1.00 U	1.04	426	3.40 J	2.27	1.00 U	1.00 U	2.54
norganics - Total (ug/L)	JZ. I	1.00 0	1.00 0	1.41	14,500	2.02	1.00 0	1.00 0	1.04	420	J.+U J	2.21	1.00 0	1.00 0	4.J 4
ron	NA														
Manganese	NA NA														
	INA														
norganics - Dissolved (µg/L)	NIA														
ron	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA
Manganese	NA														
otal Organic Carbon (mg/L) otal Organic Carbon	NA														
otal Organic Carbon	INA														

Table 2
Summary of Groundwater Sample Analytical Results
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	HPT-30	HPT-30	HPT-30	HPT-31	HPT-31	HPT-31	HPT-31	HPT-31	HPT-32	HPT-32	HPT-32	HPT-32	HPT-32	HPT-33	HPT-33
Sample Depth (Feet):	30 - 32	33 - 35	40 - 42	12 - 14	18 - 20	23 - 25	29 - 31	32 - 34	9 - 11	15 - 17	22 - 24	28 - 30	32 - 34	8 - 10	14 - 16
Date Collected:	12/01/15	12/01/15	12/01/15	12/03/15	12/03/15	12/03/15	12/03/15	12/03/15	12/04/15	12/04/15	12/04/15	12/04/15	12/04/15	12/04/15	12/04/15
olatile Organic Compounds (µg/L)															
.1.1.2-Tetrachloroethane	125 U	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U	5.000 U
,1-Dichloropropene	125 U	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U	5,000 U
.2.3-Trichlorobenzene	125 U	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U	5,000 U
,2,3-Trichloropropane	125 U	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U	5,000 U
,2,4-Trimethylbenzene	125 U	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	28.8 J	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U	5.000 U
.2-Dibromoethane	125 U	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U	5,000 U
,3,5-Trimethylbenzene	125 U	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U	5,000 U
.3-Dichloropropane	125 U	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U	5.000 U
2,2-Dichloropropane	125 U	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U	5,000 U
2-Butanone	3,130 U	500 U	25.0 U	2.26 J [1.38 J]	500 U	100 U	2,000 U	1,000 U	4,000 U	5,000 U [6,250 U]	250 U	1,000 U	25.0 U	5,000 U	125,000 U
2-Chlorotoluene	125 U	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U	5,000 U
2-Hexanone	625 U	100 U	5.00 U	5.00 U [5.00 U]	100 U	20.0 U	400 U	200 U	800 U	1,000 U [1,250 U]	50.0 U	200 U	5.00 U	1,000 U	25,000 U
4-Chlorotoluene	125 U	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U	5.000 U
4-Methyl-2-pentanone	625 U	100 U	5.00 U	5.00 U [5.00 U]	100 U	20.0 U	400 U	200 U	800 U	1,000 U [1,250 U]	50.0 U	200 U	5.00 U	1.000 U	25,000 U
Acetone	3,130 U	500 U	25.0 U	4.06 J [2.19 J]	500 U	100 U	2,000 U	1,000 U	4,000 U	5,000 U [6,250 U]	250 U	1,000 U	25.0 U	5,000 U	125,000 U
Benzene	125 U	20.0 U	0.200 J	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	0.300 J	200 U	5.000 U
Bromobenzene	125 U	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U	5,000 U
Bromochloromethane	125 U	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U	5,000 U
Bromoform	125 U	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U	5,000 U
Bromomethane	125 U	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U	5,000 U
Carbon Disulfide	125 U	20.0 U	1.00 U	0.510 J [0.160 J]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U	5.000 U
Dibromomethane	125 U	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U	5,000 U
Diisopropyl ether (DIPE)	125 U	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U	5,000 U
Ethyl Alcohol	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	0,000 U
Ethylbenzene	125 U	20.0 U	0.500 J	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U	5,000 U
Hexachlorobutadiene	125 U	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U	5.000 U
odomethane	125 U	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U	5,000 U
sopropylbenzene	125 U	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U	5,000 U
n-,p-Xylene	250 U	40.0 U	0.830 J	2.00 U [2.00 U]	40.0 U	8.00 U	160 U	80.0 U	320 U	400 U [500 U]	20.0 U	80.0 U	2.00 U	400 U	10.000 U
Methyl tert-butyl ether	125 U	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U	5,000 U
Naphthalene	125 U	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	1,140	200 U [250 U]	10.0 U	40.0 U	0.700 J	200 U	5,000 U
n-Butylbenzene	125 U	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	1,140 160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U	5,000 U
,	125 U	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U	5,000 U
n-Propylbenzene p-Xylene	125 U	20.0 U	0.540 J	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U	5,000 U
,	125 U	20.0 U	1.00 U		20.0 U	4.00 U	80.0 U	40.0 U	160 U		10.0 U	40.0 U	1.00 U	200 U	5,000 U
o-Isopropyltoluene				1.00 U [1.00 U]						200 U [250 U]					-,
sec-Butylbenzene	125 U	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U	5,000 U
Styrene	125 U	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U	5,000 U
ert-Butylbenzene	125 U	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.89	200 U	5,000 U
oluene	125 U	20.0 U	1.30	0.330 J [0.250 J]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	0.330 J	200 U	5,000 U
ans-1,4-Dichloro-2-butene	625 U	100 U	5.00 U	5.00 U [5.00 U]	100 U	20.0 U	400 U	200 U	800 U	1,000 U [1,250 U]	50.0 U	200 U	5.00 U	1,000 U	25,000 U

Location Identification:	HPT-30	HPT-30	HPT-30	HPT-31	HPT-31	HPT-31	HPT-31	HPT-31	HPT-32	HPT-32	HPT-32	HPT-32	HPT-32	HPT-33	HPT-33
Sample Depth (Feet):	30 - 32	33 - 35	40 - 42	12 - 14	18 - 20	23 - 25	29 - 31	32 - 34	9 - 11	15 - 17	22 - 24	28 - 30	32 - 34	8 - 10	14 - 16
Date Collected:	12/01/15	12/01/15	12/01/15	12/03/15	12/03/15	12/03/15	12/03/15	12/03/15	12/04/15	12/04/15	12/04/15	12/04/15	12/04/15	12/04/15	12/04/15
/inyl Acetate	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
(ylenes (total)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
,1,1-Trichloroethane	125 U	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U	5,000 U
,1,2,2-Tetrachloroethane	125 U	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U	5,000 U
,1,2-Trichloroethane	125 U	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U	5,000 U
,1-Dichloroethane	125 U	20.0 U	1.00 U	1.00 U [1.00 U]	471	7.24	80.0 U	40.0 U	160 U	78.0 J [95.0 J]	10.0 U	40.0 U	0.170 J	1,090	5,000 U
,1-Dichloroethene	125 U	20.0 U	1.00 U	1.00 U [1.00 U]	41.6	11.2	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	1,070	5,000 U
,2,4-Trichlorobenzene	125 U	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U	5,000 U
1,2-Dibromo-3-chloropropane	625 U	100 U	5.00 U	5.00 U [5.00 U]	100 U	20.0 U	400 U	200 U	800 U	1,000 U [1,250 U]	50.0 U	200 U	5.00 U	1,000 U	25,000 U
I,2-Dichlorobenzene	125 U	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U	5,000 U
1,2-Dichloroethane	125 U	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U	5,000 U
1,2-Dichloropropane	125 U	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U	5,000 U
1,3-Dichlorobenzene	125 U	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U	5,000 U
1.4-Dichlorobenzene	125 U	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U	5,000 U
Bromodichloromethane	125 U	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U	5,000 U
Carbon Tetrachloride	125 U	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U	5,000 U
Chlorobenzene	125 U	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U	5,000 U
Chloroethane	125 U	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U	5.000 U
Chloroform	125 U	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U	5,000 U
Chloromethane	125 U	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U	5,000 U
cis-1,3-Dichloropropene	125 U	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U	5,000 U
Dibromochloromethane	125 U	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U	5,000 U
Dichlorodifluoromethane	625 U	100 U	5.00 U	5.00 U [5.00 U]	100 U	20.0 U	400 U	200 U	800 U	1,000 U [1,250 U]	50.0 U	200 U	5.00 U	1.000 U	25.000 U
Methylene Chloride	625 U	100 U	5.00 U	5.00 U [5.00 U]	100 U	20.0 U	400 U	200 U	800 U	1,000 U [1,250 U]	50.0 U	200 U	5.00 U	1,000 U	25,000 U
rans-1,3-Dichloropropene	125 U	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U	5.000 U
Trichlorofluoromethane	125 U	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U	5.000 U
cis-1.2-Dichloroethene	2,270	381	9.21	1.00 U [1.00 U]	15.2 J	82.6	2.390	801	160 U	4,650 [6,140]	217	1.000	16.5	1,780	109.000
Tetrachloroethene	125 U	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U	5,000 U
rans-1.2-Dichloroethene	125 U	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	2.16 J	12.0 J	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U	5,000 U
Frichloroethene	125 U	20.0 U	0.370 J	0.380 J [1.00 U]	20.0 U	18.0	80.0 U	40.0 U	160 U	268 [363]	5.20 J	832	4.95	200 U	164,000
/inyl Chloride	125 U	134	1.68	1.00 U [1.00 U]	20.0 U	3.84 J	80.0 U	40.0 U	160 U	844 [1,130]	33.5	40.0	1.19	4,620	3,200 J
norganics - Total (ug/L)	123 0	134	1.00	1.00 0 [1.00 0]	20.0 0	3.04 3	80.00	40.00	100 0	044 [1,130]	33.3	40.0	1.19	4,020	3,200 3
ron	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Manganese Piecelused (v.m/l.)	INA	INA	INA	INA	INA	INA	I NA	INA INA	INA	INA I	INA	INA INA	INA	INA	INA
norganics - Dissolved (µg/L)	NIA	N/A	A I A	NIA.	NIA	N/A	N/A	NIA.	N.A.	N/A	NI A	N/A	NI A	N/A	NIA
ron	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA
Manganese	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
otal Organic Carbon (mg/L)															
otal Organic Carbon	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Location Identification:	HPT-33	HPT-33	HPT-33	HPT-34							
Sample Depth (Feet):	20 - 22	28 - 30	32 - 34	11 - 13	17 - 19	21 - 23	30 - 32	37 - 39	38 - 40	39 - 41	42 - 44
Date Collected:	12/04/15	12/04/15	12/04/15	12/04/15	12/04/15	12/04/15	12/04/15	12/04/15	12/04/15	12/04/15	12/04/15
Volatile Organic Compounds (µg/L)											
1,1,1,2-Tetrachloroethane	50.0 U	40.0 U	1.00 U	1.00 U	2.000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
1,1-Dichloropropene	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
1,2,3-Trichlorobenzene	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
1,2,3-Trichloropropane	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
1,2,4-Trimethylbenzene	50.0 U	40.0 U	1.00 U	0.460 J	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	0.410 J
1,2-Dibromoethane	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
1,3,5-Trimethylbenzene	50.0 U	40.0 U	1.00 U	0.420 J	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
1,3-Dichloropropane	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
2,2-Dichloropropane	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
2-Butanone	1,250 U	1,000 U	25.0 U	25.0 U	50,000 U	1,000 U	1,000 U	25.0 U	1,000 U	10,000 U	25.0 U
2-Chlorotoluene	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
2-Hexanone	250 U	200 U	5.00 U	5.00 U	10,000 U	200 U	200 U	5.00 U	200 U	2,000 U	5.00 U
4-Chlorotoluene	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
4-Methyl-2-pentanone	250 U	200 U	5.00 U	5.00 U	10,000 U	200 U	200 U	5.00 U	200 U	2,000 U	5.00 U
Acetone	1,250 U	1,000 U	25.0 U	25.0 U	50,000 U	1,000 U	1,000 U	25.0 U	1,000 U	10,000 U	25.0 U
Benzene	50.0 U	40.0 U	0.540 J	0.280 J	2,000 U	40.0 U	40.0 U	0.260 J	40.0 U	400 U	0.170 J
Bromobenzene	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
Bromochloromethane	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
Bromoform	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
Bromomethane	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
Carbon Disulfide	50.0 U	40.0 U	1.00 U	0.700 J	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
Dibromomethane	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
Diisopropyl ether (DIPE)	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
Ethyl Alcohol	NA										
Ethylbenzene	50.0 U	40.0 U	1.00 U	0.520 J	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	0.500 J
Hexachlorobutadiene	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
odomethane	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
sopropylbenzene	50.0 U	40.0 U	1.00 U	0.560 J	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
m-,p-Xylene	100 U	80.0 U	0.560 J	0.980 J	4,000 U	80.0 U	80.0 U	0.550 J	80.0 U	800 U	0.690 J
Methyl tert-butyl ether	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
Naphthalene	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	383	1.00 U	31.2 J	400 U	0.710 J
n-Butylbenzene	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
n-Propylbenzene	50.0 U	40.0 U	1.00 U	0.240 J	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
o-Xylene	50.0 U	40.0 U	1.00 U	0.850 J	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
p-Isopropyltoluene	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
sec-Butylbenzene	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
Styrene	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
ert-Butylbenzene	50.0 U	40.0 U	0.810 J	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
Toluene	50.0 U	40.0 U	1.00 U	0.730 J	2,000 U	40.0 U	40.0 U	0.160 J	40.0 U	400 U	0.820 J
trans-1.4-Dichloro-2-butene	250 U	200 U	5.00 U	5.00 U	10.000 U	200 U	200 U	5.00 U	200 U	2.000 U	5.00 U

Location Identification:	HPT-33	HPT-33	HPT-33	HPT-34	HPT-34	HPT-34	HPT-34	HPT-34	HPT-34	HPT-34	HPT-34
Sample Depth (Feet):	20 - 22	28 - 30	32 - 34	11 - 13	17 - 19	21 - 23	30 - 32	37 - 39	38 - 40	39 - 41	42 - 44
Date Collected:	12/04/15	12/04/15	12/04/15	12/04/15	12/04/15	12/04/15	12/04/15	12/04/15	12/04/15	12/04/15	12/04/15
Vinyl Acetate	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Xylenes (total)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,1-Trichloroethane	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
1,1,2,2-Tetrachloroethane	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
1,1,2-Trichloroethane	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
1,1-Dichloroethane	50.0 U	40.0 U	1.00 U	1.77	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
1,1-Dichloroethene	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
1,2,4-Trichlorobenzene	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
1,2-Dibromo-3-chloropropane	250 U	200 U	5.00 U	5.00 U	10,000 U	200 U	200 U	5.00 U	200 U	2,000 U	5.00 U
1,2-Dichlorobenzene	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
1,2-Dichloroethane	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
1,2-Dichloropropane	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
1,3-Dichlorobenzene	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
1,4-Dichlorobenzene	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
Bromodichloromethane	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
Carbon Tetrachloride	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
Chlorobenzene	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
Chloroethane	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
Chloroform	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
Chloromethane	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
cis-1,3-Dichloropropene	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
Dibromochloromethane	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
Dichlorodifluoromethane	250 U	200 U	5.00 U	5.00 U	10,000 U	200 U	200 U	5.00 U	200 U	2,000 U	5.00 U
Methylene Chloride	250 U	200 U	5.00 U	5.00 U	10,000 U	200 U	200 U	5.00 U	200 U	2,000 U	5.00 U
trans-1,3-Dichloropropene	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
Trichlorofluoromethane	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
cis-1,2-Dichloroethene	1,090	494	1.83	0.840 J	52,700	1,080	90.8	2.39	578	576	22.9
Tetrachloroethene	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
trans-1,2-Dichloroethene	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
Trichloroethene	473	908	1.74	1.00 U	64,200	114	79.6	5.42	685	7,400	46.8
Vinyl Chloride	55.5	42.8	1.00 U	6.69	2,640	83.2	40.0 U	1.00 U	40.0 U	400 U	0.670 J
Inorganics - Total (µg/L)					· · · · · · · · · · · · · · · · · · ·						
Iron	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Inorganics - Dissolved (µg/L)											
Iron	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon (mg/L)											
Total Organic Carbon	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Table 2

Summary of Groundwater Sample Analytical Results Human Health Risk Assessment AVX Corporation Myrtle Beach, South Carolina

Notes:

mg/L = milligrams per liter NA = not applicable μ g/L = micrograms per liter

Laboratory Qualifiers:

B = Analyte was found in the associated blank, as well as in the sample.

J = Indicates an estimated value.

ND = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

Table 3
Summary of Groundwater Sample Analytical Results from 2013-2018
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	DPW-1D	DPW-1D	DPW-1D	DPW-1D DPW-1D	DPW-1D	DPW-3SD	DPW-3SD	DPW-3SD	DPW-3SD	DPW-3SD	DPW-3SD	DPW-4SD	DPW-4SD	DPW-4SD
Sample Depth (Feet):	36 - 46	36 - 46	36 - 46	36 - 46 36 - 46	36 - 46	20 - 30 40 - 45		19.5 - 29.5 29.6 - 44.5	19.5 - 29.5 29.6 - 44.5	19.5 - 29.5 29.6 - 44.5				
Date Collected:	04/02/13	04/29/14	04/27/15	04/12/16 04/11/17	04/18/18	04/02/13	04/29/14	04/27/15	04/12/16	04/11/17	04/18/18	04/02/13	04/29/14	04/27/15
Volatile Organic Compounds (µg/L)	0 0													
1,1,1,2-Tetrachloroethane	50.0 U	10.0 U	40.0 U	4.00 U 1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	250 U	200 U	200 U
1,1-Dichloropropene	50.0 U	10.0 U	40.0 U	4.00 U 1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	250 U	200 U	200 U
1,2,3-Trichlorobenzene	50.0 U	10.0 U	40.0 U	4.00 U 2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	250 U	200 U	200 U
1,2,3-Trichloropropane	50.0 U	10.0 U	40.0 U	4.00 U 2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	250 U	200 U	200 U
1,2,4-Trimethylbenzene	50.0 U	10.0 U	40.0 U	4.00 U 1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	250 U	200 U	200 U
1,2-Dibromoethane	50.0 U	10.0 U	40.0 U	4.00 U 2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	250 U	200 U	200 U
1,3,5-Trimethylbenzene	50.0 U	10.0 U	40.0 U	4.00 U 1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	250 U	200 U	200 U
1,3-Dichloropropane	50.0 U	10.0 U	40.0 U	4.00 U 1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	250 U	200 U	200 U
2,2-Dichloropropane	50.0 U	10.0 U	40.0 U	4.00 U 1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	250 U	200 U	200 U
2-Butanone	260 J	250 U	1,000 U	100 U 5.00 U	5.00 U	4.39 J	25.0 U	25.0 U	25.0 U	5.00 U	5.00 U	6,250 U	5,000 U	5,000 U
2-Chlorotoluene	50.0 U	10.0 U	40.0 U	4.00 U 1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	250 U	200 U	200 U
2-Hexanone	250 U	50.0 U	200 U	20.0 U 10.0 U	10.0 U	5.00 U	5.00 U	5.00 U	5.00 U	10.0 U	10.0 U	1,250 U	1,000 U	1,000 U
4-Chlorotoluene	50.0 U	10.0 U	40.0 U	4.00 U 1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	250 U	200 U	200 U
4-Methyl-2-pentanone	250 U	50.0 U	200 U	20.0 U 5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	1,250 U	1,000 U	1,000 U
Acetone	1,250 U	47.4 J	1,000 U	100 U 25.0 U	25.0 U	32.0	7.94 J	2.30 J	25.0 U	25.0 U	25.0 U	6,250 U	5,000 U	5,000 U
Benzene	50.0 U	10.0 U	40.0 U	4.00 U 1.00 U	1.00 U	0.120 J	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	250 U	200 U	200 U
Bromobenzene	50.0 U	10.0 U	40.0 U	4.00 U 1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	250 U	200 U	200 U
Bromochloromethane	50.0 U	10.0 U	40.0 U	4.00 U 1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	250 U	200 U	200 U
Bromoform	50.0 U	10.0 U	40.0 U	4.00 U 1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	250 U	200 U	200 U
Bromomethane	50.0 U	10.0 U	40.0 U	4.00 U 2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	250 U	200 U	200 U
Carbon Disulfide	50.0 U	10.0 U	40.0 U	4.00 U NA	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NA	2.00 U	35.0 J	200 U	200 U
Dibromomethane	50.0 U	10.0 U	40.0 U	4.00 U NA	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NA	2.00 U	250 U	200 U	200 U
Diisopropyl ether (DIPE)	50.0 U	10.0 U	40.0 U	4.00 U 1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	250 U	200 U	200 U
Ethyl Alcohol	NA	NA	NA	NA 200 U	NA	NA	NA	NA	NA	200 U	NA	NA	NA	NA
Ethylbenzene	50.0 U	10.0 U	40.0 U	4.00 U 1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	250 U	200 U	200 U
Hexachlorobutadiene	50.0 U	10.0 U	40.0 U	4.00 U NA	0.770 J	1.00 U	1.00 U	1.00 U	1.00 U	NA	2.00 U	250 U	200 U	200 U
lodomethane	50.0 U	10.0 U	40.0 U	4.00 U NA	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NA	1.00 U	250 U	200 U	200 U
Isopropylbenzene	50.0 U	10.0 U	40.0 U	4.00 U 1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	250 U	200 U	200 U
m-,p-Xylene	100 U	20.0 U	80.0 U	8.00 U 2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	500 U	400 U	400 U
Methyl tert-butyl ether	50.0 U	10.0 U	40.0 U	4.00 U 1.00 U	1.00 U	0.130 J	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	250 U	200 U	200 U
Naphthalene	50.0 U	10.0 U	40.0 U	4.00 U 5.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	5.00 U	250 U	200 U	200 U
n-Butylbenzene	50.0 U	10.0 U	40.0 U	4.00 U 1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	250 U	200 U	200 U
n-Propylbenzene	50.0 U	10.0 U	40.0 U	4.00 U 1.00 U		1.00 U	1.00 U	250 U	200 U	200 U				
o-Xylene	50.0 U	10.0 U	40.0 U	4.00 U 1.00 U		1.00 U	1.00 U	250 U	200 U	200 U				
p-Isopropyltoluene	50.0 U	10.0 U	40.0 U	4.00 U 1.00 U		1.00 U	1.00 U	250 U	200 U	200 U				
sec-Butylbenzene	50.0 U	10.0 U	40.0 U	4.00 U 1.00 U		1.00 U	1.00 U	250 U	200 U	200 U				
Styrene	50.0 U	10.0 U	40.0 U	4.00 U 1.00 U		1.00 U	1.00 U	250 U	200 U	200 U				
tert-Butylbenzene	50.0 U	10.0 U	40.0 U	4.00 U 1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	250 U	200 U	200 U
Toluene	50.0 U	10.0 U	40.0 U	4.00 U 1.00 U		0.150 J	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	250 U	200 U	200 U

Location Identification:	DPW-1D	DPW-1D	DPW-1D	DPW-1D DP	PW-1D I	DPW-1D	DPW-3SD	DPW-3SD	DPW-3SD	DPW-3SD	DPW-3SD	DPW-3SD	DPW-4SD	DPW-4SD	DPW-4SD
Sample Depth (Feet):	36 - 46	36 - 46	36 - 46	36 - 46 36	6 - 46	36 - 46	20 - 30 40 - 45		19.5 - 29.5 29.6 - 44.5	19.5 - 29.5 29.6 - 44.5	19.5 - 29.5 29.6 - 44.5				
Date Collected:	04/02/13	04/29/14	04/27/15	04/12/16 04/	/11/17	04/18/18	04/02/13	04/29/14	04/27/15	04/12/16	04/11/17	04/18/18	04/02/13	04/29/14	04/27/15
trans-1,4-Dichloro-2-butene	250 U	50.0 U	200 U	20.0 U	NA	NA	5.00 U	5.00 U	5.00 U	5.00 U	NA	NA	1,250 U	1,000 U	1,000 U
Vinyl Acetate	NA	NA	NA	NA 10	0.0 U	10.0 U	NA	NA	NA	NA	10.0 U	10.0 U	NA	NA	NA
Xylenes (total)	NA	NA	NA	NA 3.	.00 U	NA	NA	NA	NA	NA	3.00 U	NA	NA	NA	NA
1,1,1-Trichloroethane	50.0 U	10.0 U	40.0 U	4.00 U 1.	.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	250 U	200 U	200 U
1,1,2,2-Tetrachloroethane	50.0 U	10.0 U	40.0 U	4.00 U 1.	.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	250 U	200 U	200 U
1,1,2-Trichloroethane	50.0 U	10.0 U	40.0 U	4.00 U 1.	.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	250 U	200 U	200 U
1,1-Dichloroethane	50.0 U	3.60 J	40.0 U	4.00 U 1.	.00 U	1.00 U	0.280 J	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	118 J	52.0 J	72.0 J
1,1-Dichloroethene	50.0 U	10.0 U	40.0 U	4.00 U 1.	.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	103 J	44.0 J	68.0 J
1,2,4-Trichlorobenzene	50.0 U	10.0 U	40.0 U	4.00 U 2.	.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	250 U	200 U	200 U
1,2-Dibromo-3-chloropropane	250 U	50.0 U	200 U	20.0 U	NA	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	NA	5.00 U	1,250 U	1,000 U	1,000 U
1,2-Dichlorobenzene	50.0 U	10.0 U	40.0 U	4.00 U 1.	.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	250 U	200 U	200 U
1,2-Dichloroethane	50.0 U	10.0 U	40.0 U	4.00 U 1.	.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	250 U	200 U	200 U
1,2-Dichloropropane	50.0 U	10.0 U	40.0 U	4.00 U 1.	.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	250 U	200 U	200 U
1,3-Dichlorobenzene	50.0 U	10.0 U	40.0 U	4.00 U 1.	.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	250 U	200 U	200 U
1,4-Dichlorobenzene	50.0 U	10.0 U	40.0 U	4.00 U 1.	.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	250 U	200 U	200 U
Bromodichloromethane	50.0 U	10.0 U	40.0 U	4.00 U 1.	.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	250 U	200 U	200 U
Carbon Tetrachloride	50.0 U	10.0 U	40.0 U	4.00 U 1.	.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	250 U	200 U	200 U
Chlorobenzene	50.0 U	10.0 U	40.0 U	4.00 U 1.	.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	250 U	200 U	200 U
Chloroethane	50.0 U	10.0 U	40.0 U	4.00 U 2.	.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	250 U	200 U	200 U
Chloroform	50.0 U	10.0 U	40.0 U	4.00 U 1.	.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	250 U	200 U	200 U
Chloromethane	50.0 U	10.0 U	40.0 U	4.00 U 2.	.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	250 U	200 U	200 U
cis-1,3-Dichloropropene	50.0 U	10.0 U	40.0 U	4.00 U 1.	.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	250 U	200 U	200 U
Dibromochloromethane	50.0 U	10.0 U	40.0 U	4.00 U 1.	.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	250 U	200 U	200 U
Dichlorodifluoromethane	250 U	50.0 U	200 U	20.0 U 2.	.00 U	2.00 U	5.00 U	5.00 U	5.00 U	5.00 U	2.00 U	2.00 U	1,250 U	1,000 U	1,000 U
Methylene Chloride	250 U	50.0 U	200 U	20.0 U 5.	.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	1,250 U	1,000 U	1,000 U
trans-1,3-Dichloropropene	50.0 U	10.0 U	40.0 U	4.00 U 1.	.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	250 U	200 U	200 U
Trichlorofluoromethane	50.0 U	10.0 U	40.0 U	4.00 U 2.	.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	250 U	200 U	200 U
cis-1,2-Dichloroethene	874	134	416	27.3 1.	.00 U	13.4	0.790 J	0.390 J	0.730 J	0.580 J	0.880 J	1.20	10,400	3,300	3,180
Tetrachloroethene	50.0 U	10.0 U	40.0 U	4.00 U 1.	.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	250 U	200 U	200 U
trans-1,2-Dichloroethene	9.50 J	10.0 U	40.0 U	4.00 U 1.	.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	90.0 J	200 U	200 U
Trichloroethene	50.0 U	10.0 U	40.0 U	2.92 J 1	1.00	18.7	0.660 J	0.250 J	0.650 J	0.410 J	0.630 J	0.810 J	2,980	786	860
Vinyl Chloride	1,890	233	242	94.6 1	1.60	1.00 U	3.22	1.43	0.550 J	1.39	1.20	3.50	1,490	602	598
Inorganics - Total (µg/L)															
Iron	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Inorganics - Dissolved (µg/L)															
Iron	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon (mg/L)															
Total Organic Carbon	NA	NA	NA	NA I	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Table 3
Summary of Groundwater Sample Analytical Results from 2013-2018
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	DPW-4SD	DPW-4SD	DPW-4SD	DPW-5SD	DPW-5SD	DPW-5SD	DPW-5SD	DPW-5SD	MW-2S	MW-2S	MW-2S	MW-2S	MW-2S	MW-2S	MW-9D	MW-9D
	19.5 - 29.5	19.5 - 29.5	19.5 - 29.5	19 - 24	19 - 24	19 - 24	19 - 24	19 - 24								
Sample Depth (Feet):		29.6 - 44.5		31 - 41	31 - 41	31 - 41	31 - 41	31 - 41	10 - 15	10 - 15	10 - 15	10 - 15	10 - 15	10 - 15	35 - 45	35 - 45
Date Collected:	04/12/16	04/11/17	04/18/18	04/29/14	04/27/15	04/12/16	04/11/17	04/18/18	04/02/13	04/29/14	04/27/15	04/12/16	04/11/17	04/18/18	04/02/13	04/29/14
Volatile Organic Compounds (µg/L)	0 1 10	•	0 11 10/10	0 11 20111	0 1121110	0		0 1.70,70	0020	0 1120/11	0 1121110	0		0 11 10/10	0 0	0 11 20 1 1
1,1,1,2-Tetrachloroethane	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U
1,1-Dichloropropene	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U
1,2,3-Trichlorobenzene	160 U	200 U	200 UJ	800 U	800 U	800 U	200 U	200 UJ	20.0 U	20.0 U	50.0 U	10.0 U	40.0 U	10.0 U	1.00 U	1.00 U
1,2,3-Trichloropropane	160 U	200 U	200 UJ	800 U	800 U	800 U	200 U	200 UJ	20.0 U	20.0 U	50.0 U	10.0 U	40.0 U	10.0 U	1.00 U	1.00 U
1,2,4-Trimethylbenzene	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U
1,2-Dibromoethane	160 U	200 U	200 UJ	800 U	800 U	800 U	200 U	200 UJ	20.0 U	20.0 U	50.0 U	10.0 U	40.0 U	10.0 U	1.00 U	1.00 U
1,3,5-Trimethylbenzene	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U
1,3-Dichloropropane	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U
2,2-Dichloropropane	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U
2-Butanone	4,000 U	500 U	500 UJ	20,000 U	20,000 U	20,000 U	500 U	500 UJ	500 U	500 U	1,250 U	250 U	100 U	25.0 U	25.0 U	25.0 U
2-Chlorotoluene	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U
2-Hexanone	800 U	1,000 U	1,000 UJ	4,000 U	4,000 U	4,000 U	1,000 U	1,000 UJ	100 U	100 U	250 U	50.0 U	200 U	50.0 U	5.00 U	5.00 U
4-Chlorotoluene	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U
4-Methyl-2-pentanone	800 U	500 U	500 UJ	4,000 U	4,000 U	4,000 U	500 U	500 UJ	100 U	100 U	250 U	50.0 U	100 U	25.0 U	5.00 U	5.00 U
Acetone	4,000 U	2,500 U	2,500 UJ	20,000 U	20,000 U	20,000 U	2,500 U	2,500 UJ	500 U	500 U	1,250 U	250 U	500 U	130 U	25.0 U	3.10 J
Benzene	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U
Bromobenzene	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U
Bromochloromethane	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U
Bromoform	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U
Bromomethane	160 U	200 U	200 UJ	800 U	800 U	800 UJ	200 U	200 UJ	20.0 U	20.0 U	50.0 U	10.0 U	40.0 U	10.0 U	1.00 U	1.00 U
Carbon Disulfide	160 U	NA	200 UJ	800 U	800 U	800 U	NA	200 UJ	2.80 J	20.0 U	50.0 U	10.0 U	NA	10.0 U	1.00 U	1.00 U
Dibromomethane	160 U	NA	200 UJ	800 U	800 U	800 U	NA	200 UJ	20.0 U	20.0 U	50.0 U	10.0 U	NA	10.0 U	1.00 U	1.00 U
Diisopropyl ether (DIPE)	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U
Ethyl Alcohol	NA	20,000 U	NA	NA	NA	NA	20,000 U	NA	NA	NA	NA	NA	4,000 U	NA	NA	NA
Ethylbenzene	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 UJ	1.00 U
Hexachlorobutadiene	160 U	NA	200 UJ	800 U	800 U	800 U	NA	200 UJ	20.0 U	20.0 U	50.0 U	10.0 U	NA	10.0 U	1.00 U	1.00 U
Iodomethane	160 U	NA	100 UJ	800 U	800 U	800 U	NA	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	NA	5.00 U	1.00 U	1.00 U
Isopropylbenzene	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U
m-,p-Xylene	320 U	200 U	200 UJ	1,600 U	1,600 U	1,600 U	200 U	200 UJ	40.0 U	40.0 U	100 U	20.0 U	40.0 U	10.0 U	2.00 U	2.00 U
Methyl tert-butyl ether	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	0.380 J	0.270 J
Naphthalene	160 U	500 U	500 UJ	800 U	800 U	800 U	500 U	500 UJ	20.0 U	20.0 U	50.0 U	10.0 U	100 U	25.0 U	1.00 U	1.00 U
n-Butylbenzene	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 UJ	1.00 U
n-Propylbenzene	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U		5.00 U		1.00 U
o-Xylene	160 U	100 U	100 UJ	800 U	800 U	800 UJ	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U		5.00 U		1.00 U
p-Isopropyltoluene	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U			5.00 U		1.00 U
sec-Butylbenzene	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U		5.00 U		1.00 U
Styrene	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U				1.00 U
tert-Butylbenzene	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U		5.00 U		1.00 U
Toluene	160 U	100 U	100 UJ	800 U	800 U	800 U	33.3 J	100 UJ	20.0 U	20.0 U	50.0 U			5.00 U		1.00 U

Table 3
Summary of Groundwater Sample Analytical Results from 2013-2018
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	DPW-4SD	DPW-4SD	DPW-4SD	DPW-5SD	DPW-5SD	DPW-5SD	DPW-5SD	DPW-5SD	MW-2S	MW-2S	MW-2S	MW-2S	MW-2S	MW-2S	MW-9D	MW-9D
Sample Depth (Feet):		19.5 - 29.5 29.6 - 44.5		19 - 24 31 - 41	10 - 15	10 - 15	10 - 15	10 - 15	10 - 15	10 - 15	35 - 45	35 - 45				
Date Collected:	04/12/16	04/11/17	04/18/18	04/29/14	04/27/15	04/12/16	04/11/17	04/18/18	04/02/13	04/29/14	04/27/15	04/12/16	04/11/17	04/18/18	04/02/13	04/29/14
trans-1,4-Dichloro-2-butene	800 U	NA	NA	4,000 U	4,000 U	4,000 U	NA	NA	100 U	100 U	250 U	50.0 U	NA	NA	5.00 U	5.00 U
Vinyl Acetate	NA	1,000 U	1,000 UJ	NA	NA	NA	1,000 U	1,000 UJ	NA	NA	NA	NA	200 U	50.0 U	NA	NA
Xylenes (total)	NA	300 U	NA	NA	NA	NA	300 U	NA	NA	NA	NA	NA	60.0 U	NA	NA	NA
1,1,1-Trichloroethane	160 U	100 U	100 UJ	800 U	800 U	800 U	49.1 J	61.2 J	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U
1,1,2,2-Tetrachloroethane	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U
1,1,2-Trichloroethane	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U
1,1-Dichloroethane	56.0 J	57.2 J	71.4 J	800 U	800 U	136 J	108	72.9 J	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	0.400 J	1.00 U
1,1-Dichloroethene	68.8 J	87.4 J	83.9 J	800 U	800 U	800 U	69.2 J	61.3 J	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	2.40 J	0.540 J	0.320 J
1,2,4-Trichlorobenzene	160 U	200 U	200 UJ	800 U	800 U	800 U	200 U	200 UJ	20.0 U	20.0 U	50.0 U	10.0 U	40.0 U	10.0 U	1.00 U	1.00 U
1,2-Dibromo-3-chloropropane	800 U	NA	500 UJ	4,000 U	4,000 U	4,000 U	NA	500 UJ	100 U	100 U	250 U	50.0 U	NA	25.0 U	5.00 U	5.00 U
1,2-Dichlorobenzene	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U
1,2-Dichloroethane	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U
1,2-Dichloropropane	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U
1,3-Dichlorobenzene	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U
1,4-Dichlorobenzene	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U
Bromodichloromethane	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U
Carbon Tetrachloride	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U
Chlorobenzene	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U
Chloroethane	160 U	200 U	200 UJ	800 U	800 U	800 U	200 U	200 UJ	20.0 U	20.0 U	50.0 U	10.0 U	40.0 U	10.0 U	1.00 U	1.00 U
Chloroform	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U
Chloromethane	160 U	200 U	200 UJ	800 U	800 U	800 U	200 U	200 UJ	20.0 U	20.0 U	50.0 U	10.0 U	40.0 U	10.0 U	1.00 U	1.00 U
cis-1,3-Dichloropropene	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U
Dibromochloromethane	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U
Dichlorodifluoromethane	800 U	200 U	200 UJ	4,000 U	4,000 U	4,000 U	200 U	200 UJ	100 U	100 U	250 U	50.0 U	40.0 U	10.0 U	5.00 U	5.00 U
Methylene Chloride	800 U	500 U	500 UJ	4,000 U	4,000 U	4,000 U	500 U	500 UJ	100 U	100 U	250 U	50.0 U	100 U	25.0 U	5.00 U	5.00 U
trans-1,3-Dichloropropene	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U
Trichlorofluoromethane	160 U	200 U	200 UJ	800 U	800 U	800 U	200 U	200 UJ	20.0 U	20.0 U	50.0 U	10.0 U	40.0 U	10.0 U	1.00 U	1.00 U
cis-1,2-Dichloroethene	2,760	5,040	5,760 J	13,600	12,100	13,900	8,800	8,040 J	1,030	354	1,020	266	1,080	659	63.2	51.1
Tetrachloroethene	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	1.00 U	1.00 U
trans-1,2-Dichloroethene	160 U	34.9 J	100 UJ	800 U	800 U	800 U	27.6 J	100 UJ	5.80 J	20.0 U	50.0 U	10.0 U	8.40 J	4.20 J	1.00 U	0.220 J
Trichloroethene	1,340	1,210	1,230 J	4,110	6,920	1,340	7,000	9,230 J	473	149	407	159	527	275	1.00 U	0.260 J
Vinyl Chloride	637	470	385 J	1,220	968	1,320	713	501 J	20.0 U	4.60 J	50.0 U	10.0 U	20.0 U	3.50 J	1.74	1.01
Inorganics - Total (µg/L)				·												
Iron	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Inorganics - Dissolved (µg/L)																
Iron	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA NA
Total Organic Carbon (mg/L)	1471	147 (1471	100	100	147 (14/1	1471	1471	14/1	1 77 1	1471	1471	1471	1471	1 47 (
Total Organic Carbon	16	NA	NA	NA	NA	13	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Location Identification:	MW-9D	MW-9D	MW-9D	MW-9D	MW-14S	MW-14S	MW-14S	MW-14S	MW-14S	MW-14S	MW-17D	MW-17D	MW-17D	MW-17D	MW-17D	MW-17D	MW-19S
Sample Depth (Feet):	35 - 45	35 - 45	35 - 45	35 - 45	10 - 15	10 - 15	10 - 15	10 - 15	10 - 15	10 - 15	36 - 46	36 - 46	36 - 46	36 - 46	36 - 46	36 - 46	10 - 20
Date Collected:	04/27/15	04/12/16	04/11/17	04/18/18	04/02/13	04/29/14	04/27/15	04/12/16	04/11/17	04/18/18	04/02/13	04/29/14	04/27/15	04/12/16	04/11/17	04/18/18	04/02/13
Volatile Organic Compounds (µg/L)																	
1,1,1,2-Tetrachloroethane	1.00 U	4.00 U	1.00 U	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U	1.00 U	1.00 U					
1,1-Dichloropropene	1.00 U	4.00 U	1.00 U	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U	1.00 U	1.00 U					
1,2,3-Trichlorobenzene	1.00 U	4.00 U	2.00 U	2.00 U	10.0 U	50.0 U	10.0 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	20.0 U	2.00 U	2.00 U	1.00 U
1,2,3-Trichloropropane	1.00 U	4.00 U	2.00 U	2.00 U	10.0 U	50.0 U	10.0 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	20.0 U	2.00 U	2.00 U	1.00 U
1,2,4-Trimethylbenzene	1.00 U	4.00 U	1.00 U	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	1.20	20.0 U	1.00 U	1.00 U	1.00 U				
1,2-Dibromoethane	1.00 U	4.00 U	2.00 U	2.00 U	10.0 U	50.0 U	10.0 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	20.0 U	2.00 U	2.00 U	1.00 U
1,3,5-Trimethylbenzene	1.00 U	4.00 U	1.00 U	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U	1.00 U	1.00 U					
1,3-Dichloropropane	1.00 U	4.00 U	1.00 U	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U	1.00 U	1.00 U					
2,2-Dichloropropane	1.00 U	4.00 U	1.00 U	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U	1.00 U						
2-Butanone	25.0 U	100 U	5.00 U	5.00 U	250 U	1,250 U	250 U	25.0 U	5.00 U	5.00 U	25.0 U	25.0 U	25.0 U	500 U	5.00 U	5.00 U	
2-Chlorotoluene	1.00 U	4.00 U	1.00 U	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U	1.00 U						
2-Hexanone	5.00 U	20.0 U	10.0 U	10.0 U	50.0 U	250 U	50.0 U	5.00 U	10.0 U	10.0 U	5.00 U	5.00 U	5.00 U	100 U	10.0 U	10.0 U	
4-Chlorotoluene	1.00 U	4.00 U	1.00 U	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U	1.00 U	1.00 U					
4-Methyl-2-pentanone	5.00 U	20.0 U	5.00 U	5.00 U	50.0 U	250 U	50.0 U	5.00 U	100 U	5.00 U	5.00 U	5.00 U					
Acetone	25.0 U	100 U	25.0 U	25.0 U	250 U	1,250 U	250 U	25.0 U	25.0 U	25.0 U	25.0 U	3.46 J	25.0 U	572	120	25.0 U	1.21 J
Benzene	1.00 U	4.00 U	1.00 U	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	1.00 U	1.00 U	0.220 J	1.00 U	1.00 U	20.0 U	1.00 U	1.00 U	1.00 U
Bromobenzene	1.00 U	4.00 U	1.00 U	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U	1.00 U	1.00 U					
Bromochloromethane	1.00 U	4.00 U	1.00 U	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U	1.00 U						
Bromoform	1.00 U	4.00 U	1.00 U	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U	1.00 U	1.00 U					
Bromomethane	1.00 U	4.00 U	2.00 U	2.00 U	10.0 U	50.0 U	10.0 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	20.0 U	2.00 U	2.00 U	1.00 U
Carbon Disulfide	1.00 U	4.00 U	NA	2.00 U	1.50 J	50.0 U	10.0 U	1.00 U	NA	2.00 U	1.00 U	1.00 U	1.00 U	20.0 U	NA	2.00 U	1.00 U
Dibromomethane	1.00 U	4.00 U	NA	2.00 U	10.0 U	50.0 U	10.0 U	1.00 U	NA	2.00 U	1.00 U	1.00 U	1.00 U	20.0 U	NA	2.00 U	1.00 U
Diisopropyl ether (DIPE)	1.00 U	4.00 U	1.00 U	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U	1.00 U	1.00 U					
Ethyl Alcohol	NA	NA	200 U	NA	NA	NA	NA	NA	200 U	NA	NA	NA	NA	NA	200 U	NA	NA
Ethylbenzene	1.00 U	4.00 U	1.00 U	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U	1.00 U	1.00 U					
Hexachlorobutadiene	1.00 U	4.00 U	NA	2.00 U	10.0 U	50.0 U	10.0 U	1.00 U	NA	2.00 U	1.00 U	1.00 U	1.00 U	20.0 U	NA	2.00 U	1.00 U
lodomethane	1.00 U	4.00 U	NA	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	NA	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	NA	1.00 U	1.00 U
Isopropylbenzene	1.00 U	4.00 U	1.00 U	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U	1.00 U	1.00 U					
m-,p-Xylene	2.00 U	8.00 U	2.00 U	2.00 U	20.0 U	100 U	20.0 U	2.00 U	2.32	40.0 U	2.00 U	2.00 U	2.00 U				
Methyl tert-butyl ether	1.00 U	4.00 U	1.00 U	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U	1.00 U	1.00 U					
Naphthalene	1.00 U	4.00 U	5.00 U	5.00 U	10.0 U	50.0 U	10.0 U	1.00 U	5.00 U	5.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	5.00 U	0.530 J
n-Butylbenzene	1.00 U	4.00 U				50.0 U	10.0 U	1.00 U	1.00 U		1.00 U	1.00 U	1.00 U		1.00 U		
n-Propylbenzene	1.00 U	4.00 U				50.0 U	10.0 U		1.00 U		1.00 U	1.00 U	1.00 U	20.0 U		1.00 U	
o-Xylene	1.00 U	4.00 U				50.0 U	10.0 U		1.00 U		1.00 U	1.00 U	1.00 U	20.0 U		1.00 U	
p-Isopropyltoluene	1.00 U	4.00 U				50.0 U	10.0 U		1.00 U		1.00 U	1.00 U	1.00 U			1.00 U	
sec-Butylbenzene	1.00 U	4.00 U				50.0 U	10.0 U		1.00 U		1.00 U	1.00 U	1.00 U		1.00 U		1.00 U
Styrene	1.00 U	4.00 U				50.0 U	10.0 U		1.00 U	20.0 U	1.00 U		1.00 U				
tert-Butylbenzene	1.00 U	4.00 U			10.0 U	50.0 U	10.0 U		0.480 J			1.05	1.00 U			1.00 U	
Toluene	1.00 U	4.00 U			10.0 U	50.0 U	10.0 U			1.00 U		1.00 U	1.00 U			1.00 U	

Location Identification:	MW-9D	MW-9D	MW-9D	MW-9D	MW-14S	MW-14S	MW-14S	MW-14S	MW-14S	MW-14S	MW-17D	MW-17D	MW-17D	MW-17D	MW-17D	MW-17D	MW-19S
Sample Depth (Feet):	35 - 45	35 - 45	35 - 45	35 - 45	10 - 15	10 - 15	10 - 15	10 - 15	10 - 15	10 - 15	36 - 46	36 - 46	36 - 46	36 - 46	36 - 46	36 - 46	10 - 20
Date Collected:	04/27/15	04/12/16	04/11/17	04/18/18	04/02/13	04/29/14	04/27/15	04/12/16	04/11/17	04/18/18	04/02/13	04/29/14	04/27/15	04/12/16	04/11/17	04/18/18	04/02/13
trans-1,4-Dichloro-2-butene	5.00 U	20.0 U	NA	NA	50.0 U	250 U	50.0 U	5.00 U	NA	NA	5.00 U	5.00 U	5.00 U	100 U	NA	NA	5.00 U
Vinyl Acetate	NA	NA	10.0 U	10.0 U	NA	NA	NA	NA	10.0 U	10.0 U	NA	NA	NA	NA	10.0 U	10.0 U	NA
Xylenes (total)	NA	NA	3.00 U	NA	NA	NA	NA	NA	3.00 U	NA	NA	NA	NA	NA	3.00 U	NA	NA
1,1,1-Trichloroethane	1.00 U	4.00 U	1.00 U	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	3.50	1.00 U	1.00 U					
1,1,2,2-Tetrachloroethane	1.00 U	4.00 U	1.00 U	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U	1.00 U	1.00 U					
1,1,2-Trichloroethane	1.00 U	4.00 U	1.00 U	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U	1.00 U	1.00 U					
1,1-Dichloroethane	1.00 U	4.00 U	1.00 U	1.00 U	10.0 U	50.0 U	10.0 U	0.240 J	0.520 J	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.80	1.00 U	0.220 J
1,1-Dichloroethene	0.380 J	4.00 U	1.00 U	0.470 J	8.10 J	50.0 U	10.0 U	1.00 U	1.00 U	1.00 U	0.230 J	1.00 U	1.00 U	20.0 U	1.00 U	1.00 U	1.00 U
1,2,4-Trichlorobenzene	1.00 U	4.00 U	2.00 U	2.00 U	10.0 U	50.0 U	10.0 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	20.0 U	2.00 U	2.00 U	1.00 U
1,2-Dibromo-3-chloropropane	5.00 U	20.0 U	NA	5.00 U	50.0 U	250 U	50.0 U	5.00 U	NA	5.00 U	5.00 U	5.00 U	5.00 U	100 U	NA	5.00 U	5.00 U
1,2-Dichlorobenzene	1.00 U	4.00 U	1.00 U	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U	1.00 U	1.00 U					
1,2-Dichloroethane	1.00 U	4.00 U	1.00 U	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U	1.00 U	1.00 U					
1,2-Dichloropropane	1.00 U	4.00 U	1.00 U	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U	1.00 U	1.00 U					
1,3-Dichlorobenzene	1.00 U	4.00 U	1.00 U	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U	1.00 U	1.00 U					
1,4-Dichlorobenzene	1.00 U	4.00 U	1.00 U	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U	1.00 U	1.00 U					
Bromodichloromethane	1.00 U	4.00 U	1.00 U	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U	1.00 U	1.00 U					
Carbon Tetrachloride	1.00 U	4.00 U	1.00 U	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U	1.00 U	1.00 U					
Chlorobenzene	1.00 U	4.00 U	1.00 U	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U	1.00 U	1.00 U					
Chloroethane	1.00 U	4.00 U	2.00 U	2.00 U	10.0 U	50.0 U	10.0 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	20.0 U	2.00 U	2.00 U	1.00 U
Chloroform	1.00 U	4.00 U	1.00 U	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U	1.00 U	1.00 U					
Chloromethane	1.00 U	4.00 U	2.00 U	2.00 U	10.0 U	50.0 U	10.0 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	20.0 U	2.00 U	2.00 U	1.00 U
cis-1,3-Dichloropropene	1.00 U	4.00 U	1.00 U	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U	1.00 U	1.00 U					
Dibromochloromethane	1.00 U	4.00 U	1.00 U	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U	1.00 U	1.00 U					
Dichlorodifluoromethane	5.00 U	20.0 U	2.00 U	2.00 U	50.0 U	250 U	50.0 U	5.00 U	2.00 U	2.00 U	5.00 U	5.00 U	5.00 U	100 U	2.00 U	2.00 U	5.00 U
Methylene Chloride	5.00 U	20.0 U	5.00 U	5.00 U	50.0 U	250 U	50.0 U	5.00 U	100 U	5.00 U	5.00 U	5.00 U					
trans-1,3-Dichloropropene	1.00 U	4.00 U	1.00 U	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U	1.00 U	1.00 U					
Trichlorofluoromethane	1.00 U	4.00 U	2.00 U	2.00 U	10.0 U	50.0 U	10.0 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	20.0 U	2.00 U	2.00 U	1.00 U
cis-1,2-Dichloroethene	56.3	77.1	47.9	70.1	512	1,060	198	17.3	7.30	2.80	7.95	4.51	4.74	389	30.9	0.620 J	
Tetrachloroethene	1.00 U	4.00 U	1.00 U	1.00 U	10.0 U	50.0 U	10.0 U	1.00 U	20.0 U	1.00 U	1.00 U	1.00 U					
trans-1,2-Dichloroethene	1.00 U	4.00 U	0.340 J	1.00 U	1.50 J	50.0 U	10.0 U	1.00 U	1.00 U	1.00 U	0.150 J	1.00 U	1.00 U	5.00 J	0.450 J	1.00 U	1.00 U
Trichloroethene	1.00 U	4.00 U	1.00 U	1.00 U	63.7	50.0 U	10.0 U	1.00 U	1.00 U	1.00 U	22.1	13.2	5.56	239	4.30	1.00 U	1.00 U
Vinyl Chloride	1.69	1.96 J	1.10	2.10	79.9	85.5	15.8	5.37	3.50	4.50	1.00 U	1.00 U	1.00 U	36.0	1.00 U	1.00 U	1.00 U
,	1.03	1.30 0	1.10	2.10	19.9	00.0	13.0	3.37	3.30	7.50	1.00 0	1.00 0	1.00 0	30.0	1.00 0	1.00 0	1.00 0
Inorganics - Total (µg/L)	NA																
Iron	NA NA		NA NA														
Manganese	INA	NA	INA														
Inorganics - Dissolved (µg/L)	NI A	N I A	N I A	N.A	NI A	NIA	NIA.	N I A	NI A	N.I.A	NIA	NIA	NIA	NIA.	N I A	N I A	NIA
Iron	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA
Manganese	NA																
Total Organic Carbon (mg/L)																	
Total Organic Carbon	NA																

Table 3
Summary of Groundwater Sample Analytical Results from 2013-2018
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	MW-19S	MW-19S	MW-19S	MW-19S	MW-19S	PW-1S	PW-1S	PW-1S	PW-1S	PW-1S	PW-1S	PW-7S	PW-7S	PW-7S	PW-7S
Sample Depth (Feet):	10 - 20	10 - 20	10 - 20	10 - 20	10 - 20	Assume 15-25	15 - 22	15 - 22	15 - 22	15 - 22					
Date Collected:	04/29/14	04/27/15	04/12/16	04/11/17	04/18/18	04/02/13	04/29/14	04/27/15	04/12/16	04/11/17	04/18/18	04/02/13	04/29/14	04/27/15	04/12/16
Volatile Organic Compounds (µg/L)															
1,1,1,2-Tetrachloroethane	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U										
1,1-Dichloropropene	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U										
1,2,3-Trichlorobenzene	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U
1,2,3-Trichloropropane	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U
1,2,4-Trimethylbenzene	1.00 U	1.19	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	0.110 J	1.00 U	1.00 U	1.00 U
1,2-Dibromoethane	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U
1,3,5-Trimethylbenzene	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U										
1,3-Dichloropropane	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U										
2,2-Dichloropropane	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U										
2-Butanone	25.0 U	25.0 U	25.0 U	5.00 U	5.00 U	25.0 U	25.0 U	25.0 U	25.0 U	5.00 U	5.00 U	25.0 U	25.0 U	25.0 U	25.0 U
2-Chlorotoluene	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U										
2-Hexanone	5.00 U	5.00 U	5.00 U	10.0 U	10.0 U	5.00 U	5.00 U	5.00 U	5.00 U	10.0 U	10.0 U	5.00 U	5.00 U	5.00 U	5.00 U
4-Chlorotoluene	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U										
4-Methyl-2-pentanone	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U										
Acetone	3.30 J	25.0 U	25.0 U	25.0 U	25.0 U	2.03 J	25.0 U	25.0 U	25.0 U	25.0 U	25.0 U				
Benzene	0.770 J	1.53	2.06	0.860 J	1.00 U	0.200 J	0.550 J	0.360 J	0.260 J	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Bromobenzene	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U										
Bromochloromethane	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U										
Bromoform	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U										
Bromomethane	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Carbon Disulfide	1.00 U	1.00 U	1.00 U	NA	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NA	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Dibromomethane	1.00 U	1.00 U	1.00 U	NA	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NA	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Diisopropyl ether (DIPE)	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U										
Ethyl Alcohol	NA	NA	NA	200 U	NA	NA	NA	NA	NA	200 U	NA	NA	NA	NA	NA
Ethylbenzene	1.00 U	1.79	0.410 J	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	0.220 J	1.00 U	1.00 U	1.00 U
Hexachlorobutadiene	1.00 U	1.00 U	1.00 U	NA	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NA	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Iodomethane	1.00 U	1.00 U	1.00 U	NA	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NA	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Isopropylbenzene	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U										
m-,p-Xylene	2.00 U	2.42	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	0.360 J	2.00 U	2.00 U	2.00 U
Methyl tert-butyl ether	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U										
Naphthalene	9.50	43.3	39.8	5.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U
n-Butylbenzene	1.00 U	1.00 U	1.00 U	1.00 U		1.00 U	1.00 U	1.00 U	1.00 U	1.00 U					
n-Propylbenzene	1.00 U	1.00 U		1.00 U		1.00 U	1.00 U	1.00 U	1.00 U	1.00 U					
o-Xylene	0.210 J	2.17		1.00 U		1.00 U	0.110 J	1.00 U	1.00 U	1.00 U					
p-Isopropyltoluene	1.00 U	1.00 U		1.00 U		1.00 U	1.00 U	1.00 U	0.160 J	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
sec-Butylbenzene	1.00 U	1.00 U		1.00 U		1.00 U	1.00 U	1.00 U	1.00 U	1.00 U					
Styrene	1.00 U	1.00 U		1.00 U		1.00 U	1.00 U	1.00 U	1.00 U	1.00 U					
tert-Butylbenzene	1.00 U	1.00 U		1.00 U		1.00 U	1.00 U	1.52	0.160 J	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Toluene	0.230 J	0.700 J		1.00 U		1.00 U	1.00 U	1.00 U	1.00 U	1.00 U					

Table 3
Summary of Groundwater Sample Analytical Results from 2013-2018
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	MW-19S	MW-19S	MW-19S	MW-19S	MW-19S	PW-1S	PW-1S	PW-1S	PW-1S	PW-1S	PW-1S	PW-7S	PW-7S	PW-7S	PW-7S
Sample Depth (Feet):	10 - 20	10 - 20	10 - 20	10 - 20	10 - 20	Assume 15-25	15 - 22	15 - 22	15 - 22	15 - 22					
Date Collected:	04/29/14	04/27/15	04/12/16	04/11/17	04/18/18	04/02/13	04/29/14	04/27/15	04/12/16	04/11/17	04/18/18	04/02/13	04/29/14	04/27/15	04/12/16
trans-1,4-Dichloro-2-butene	5.00 U	5.00 U	5.00 U	NA	NA	5.00 U	5.00 U	5.00 U	5.00 U	NA	NA	5.00 U	5.00 U	5.00 U	5.00 U
Vinyl Acetate	NA	NA	NA	10.0 U	10.0 U	NA	NA	NA	NA	10.0 U	10.0 U	NA	NA	NA	NA
Xylenes (total)	NA	NA	NA	3.00 U	NA	NA	NA	NA	NA	3.00 U	NA	NA	NA	NA	NA
1,1,1-Trichloroethane	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U										
1,1,2,2-Tetrachloroethane	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U										
1,1,2-Trichloroethane	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U										
1,1-Dichloroethane	0.330 J	0.120 J	1.00 U	0.700 J	0.540 J	1.87	0.620 J	0.450 J	0.810 J	1.10	0.420 J	0.260 J	1.00 U	1.00 U	1.00 U
1,1-Dichloroethene	1.00 U	0.640 J	0.720 J	0.720 J	0.560 J	0.480 J	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U				
1,2,4-Trichlorobenzene	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U
1,2-Dibromo-3-chloropropane	5.00 U	5.00 U	5.00 U	NA	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	NA	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
1,2-Dichlorobenzene	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U										
1,2-Dichloroethane	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U										
1,2-Dichloropropane	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U										
1,3-Dichlorobenzene	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U										
1,4-Dichlorobenzene	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U										
Bromodichloromethane	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U										
Carbon Tetrachloride	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U										
Chlorobenzene	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U										
Chloroethane	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	2.27	0.460 J	1.00 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Chloroform	1.00 U	1.00 U	1.00 U		1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Chloromethane	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U
cis-1,3-Dichloropropene	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U										
Dibromochloromethane	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U										
Dichlorodifluoromethane	5.00 U	5.00 U	5.00 U	2.00 U	2.00 U	5.00 U	5.00 U	5.00 U	5.00 U	2.00 U	2.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Methylene Chloride	5.00 U	5.00 U	0.580 J	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
trans-1,3-Dichloropropene	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U										
Trichlorofluoromethane	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U
cis-1,2-Dichloroethene	1.96	2.35	3.54	5.70	0.610 J	29.7	31.7	31.3	27.3	33.9	32.7	3.06	1.74	0.910 J	1.00 U
Tetrachloroethene	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U										
trans-1,2-Dichloroethene	1.00 U	1.00 U	0.350 J	1.00 U	1.00 U	0.170 J	1.00 U	0.220 J	1.00 U	0.230 J	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Trichloroethene	0.450 J	1.45	2.35	0.360 J	1.00 U	2.28	1.61	1.07	1.21	0.710 J	1.00 U	0.840 J	0.230 J	0.250 J	1.00 U
Vinyl Chloride	0.480 J	0.300 J	1.52	0.700 J	1.00 U	28.7	17.8	16.0	22.6	22.2	35.0	2.83	1.66	0.990 J	1.00 U
Inorganics - Total (µg/L)															
Iron	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Inorganics - Dissolved (µg/L)															
Iron	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon (mg/L)															
Total Organic Carbon	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Table 3
Summary of Groundwater Sample Analytical Results from 2013-2018
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	PW-7S	PW-7S	MW-105D	MW-105S	MW-201D	MW-202D	HPT-01	HPT-02	HPT-02	HPT-02	HPT-03	HPT-03	HPT-03	HPT-03	HPT-04
Sample Depth (Feet):	15 - 22	15 - 22	39.3 - 46.3	13.5 - 23.5	25 - 40	25 - 40	18 - 20	10 - 12	16 - 18	16 - 18	9 - 11	16 - 18	22 - 24	30 - 32	16 - 18
Date Collected:	04/11/17	04/18/18	01/06/13	01/06/13	01/06/13	01/06/13	10/26/15	12/05/15	10/27/15	12/05/15	12/05/15	12/05/15	10/27/15	12/05/15	10/28/15
Volatile Organic Compounds (µg/L)	0-1711711	0-1/10/10	0 1/00/10	01/00/10	0 1700710	01/00/10	10/20/10	12/00/10	10/21/10	12/00/10	12/00/10	12/00/10	10/21/10	12/00/10	10/20/10
1,1,1,2-Tetrachloroethane	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U
1,1-Dichloropropene	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U
1,2,3-Trichlorobenzene	2.00 U	2.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U
1,2,3-Trichloropropane	2.00 U	2.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U
1,2,4-Trimethylbenzene	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U
1,2-Dibromoethane	2.00 U	2.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U
1,3,5-Trimethylbenzene	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U
1,3-Dichloropropane	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U
2,2-Dichloropropane	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U
2-Butanone	5.00 U	5.00 U	250 U	25.0 U	20,000 U		25.0 U	25.0 U	125 U	400 U	125 U	2,000 U	2,500 U	125 U	5,000 U
2-Chlorotoluene	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U
2-Hexanone	10.0 U	10.0 U	50.0 U	5.00 U	4,000 U	2,000 U	5.00 U	5.00 U	25.0 U	80.0 U	25.0 U	400 U	500 U	25.0 U	1,000 U
4-Chlorotoluene	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U
4-Methyl-2-pentanone	5.00 U	5.00 U	50.0 U	5.00 U	4,000 U	2,000 U	5.00 U	5.00 U	25.0 U	80.0 U	25.0 U	400 U	500 U	25.0 U	1,000 U
Acetone	25.0 U	25.0 U	250 U	25.0 U	20,000 U	10,000 U	25.0 U	25.0 U	125 U	400 U	125 U	2,000 U	2,500 U	125 U	5,000 U
Benzene	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U
Bromobenzene	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U
Bromochloromethane	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U
Bromoform	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U
Bromomethane	2.00 U	2.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U
Carbon Disulfide	NA	2.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U
Dibromomethane	NA	2.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U
Diisopropyl ether (DIPE)	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U
Ethyl Alcohol	200 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethylbenzene	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U
Hexachlorobutadiene	NA	2.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U
Iodomethane	NA	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U
Isopropylbenzene	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U
m-,p-Xylene	2.00 U	2.00 U	20.0 U	2.00 U	1,600 U	800 U	2.00 U	2.00 U	10.0 U	32.0 U	10.0 U	160 U	200 U	10.0 U	400 U
Methyl tert-butyl ether	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U
Naphthalene	5.00 U	5.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U
n-Butylbenzene	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U
n-Propylbenzene		1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U
o-Xylene		1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U
p-Isopropyltoluene	1.00 U		10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U
sec-Butylbenzene	1.00 U		10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U
Styrene		1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U
tert-Butylbenzene		1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U
Toluene	1.00 U		10.0 U	1.00 U	800 U	400 U	1.00 U	0.260 J	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U

Table 3
Summary of Groundwater Sample Analytical Results from 2013-2018
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	PW-7S	PW-7S	MW-105D	MW-105S	MW-201D	MW-202D	HPT-01	HPT-02	HPT-02	HPT-02	HPT-03	HPT-03	HPT-03	HPT-03	HPT-04
Sample Depth (Feet):	15 - 22	15 - 22	39.3 - 46.3	13.5 - 23.5	25 - 40	25 - 40	18 - 20	10 - 12	16 - 18	16 - 18	9 - 11	16 - 18	22 - 24	30 - 32	16 - 18
Date Collected:	04/11/17	NA/18/18	01/06/13	01/06/13	01/06/13	01/06/13	10/26/15	12/05/15	10/27/15	12/05/15	12/05/15	12/05/15	10/27/15	12/05/15	10/28/15
trans-1,4-Dichloro-2-butene	NA	NA	50.0 U	5.00 U	4,000 U	2,000 U	5.00 U	5.00 U	25.0 U	80.0 U	25.0 U	400 U	500 U	25.0 U	1,000 U
Vinyl Acetate	10.0 U	10.0 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Xylenes (total)	3.00 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,1-Trichloroethane	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U
1,1,2,2-Tetrachloroethane	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U
1,1,2-Trichloroethane	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U
1,1-Dichloroethane	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U
1,1-Dichloroethene	1.00 U	1.00 U	11.5	1.00 U	800 U	400 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	42.0 J	5.00 U	200 U
1,2,4-Trichlorobenzene	2.00 U	2.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U
1,2-Dibromo-3-chloropropane	NA	5.00 U	50.0 U	5.00 U	4,000 U	2,000 U	5.00 U	5.00 U	25.0 U	80.0 U	25.0 U	400 U	500 U	25.0 U	1,000 U
1,2-Dichlorobenzene	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U
1,2-Dichloroethane	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U
1,2-Dichloropropane	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U
1,3-Dichlorobenzene	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U
1,4-Dichlorobenzene	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U
Bromodichloromethane	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U
Carbon Tetrachloride	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U
Chlorobenzene	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U
Chloroethane	2.00 U	2.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U
Chloroform	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U
Chloromethane	2.00 U	2.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U
cis-1,3-Dichloropropene	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U
Dibromochloromethane	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U
Dichlorodifluoromethane	2.00 U	2.00 U	50.0 U	5.00 U	4,000 U	2,000 U	5.00 U	5.00 U	25.0 U	80.0 U	25.0 U	400 U	500 U	25.0 U	1,000 U
Methylene Chloride	5.00 U	5.00 U	50.0 U	5.00 U	4,000 U	2,000 U	5.00 U	5.00 U	25.0 U	80.0 U	25.0 U	400 U	500 U	25.0 U	1,000 U
trans-1,3-Dichloropropene	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U
Trichlorofluoromethane	2.00 U	2.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U
cis-1,2-Dichloroethene	1.00 U	1.00 U	399	1.00 U	13,200	400 U	26.2	1.00 U	33.0	331	124	1,560	1,190	123	4,150
Tetrachloroethene	1.00 U	1.00 U	10.0 U	1.00 U	800 U	400 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	5.00 U	200 U
trans-1,2-Dichloroethene	1.00 U	1.00 U	10.0 U	1.00 U	800 U	124 J	0.620 J	1.00 U	1.55 J	30.9	9.75	43.2 J	100 U	5.00 U	142 J
Trichloroethene	1.00 U	1.00 U	10.0 U	1.00 U	4,530	400 U	1.00 U	0.850 J	57.9	38.7	61.0	259	375	6.20	286
Vinyl Chloride	1.00 U	1.00 U	51.3	1.00 U	800 U	4,680	0.550 J	1.00 U	5.00 U	19.7	5.00 U	175	239	6.70	1,540
Inorganics - Total (µg/L)															
Iron	NA	NA	500	5,100	5,500	17,000	NA								
Manganese	NA	NA	58.0	21.0	69.0	440	NA								
Inorganics - Dissolved (µg/L)															
Iron	NA	NA	180	820	2,300	16,000	NA								
Manganese	NA	NA	65.0	13.0 J	62.0	480	NA								
Total Organic Carbon (mg/L)															
Total Organic Carbon	NA	NA	2.9	6	2.3	760	NA								

Table 3
Summary of Groundwater Sample Analytical Results from 2013-2018
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	HPT-05	HPT-22	HPT-22	HPT-22	HPT-24	HPT-24	HPT-24	HPT-24	HPT-25	HPT-25	HPT-25	HPT-25	HPT-25
Sample Depth (Feet):	17 - 21	16 - 18	27 - 29	38 - 40	12 - 14	18 - 20	24 - 26	40 - 42	13 - 15	20 - 22	24 - 26	27 - 29	40 - 42
Date Collected:	10/28/15	12/03/15	12/03/15	12/03/15	12/02/15	12/02/15	12/03/15	12/03/15	12/02/15	12/02/15	12/02/15	12/03/15	12/03/15
Volatile Organic Compounds (µg/L)													
1,1,1,2-Tetrachloroethane	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U	40.0 U	20.0 U	1.00 U	200 U	50.0 U
1,1-Dichloropropene	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U	40.0 U	20.0 U	1.00 U	200 U	50.0 U
1,2,3-Trichlorobenzene	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U	40.0 U	20.0 U	1.00 U	200 U	50.0 U
1,2,3-Trichloropropane	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U	40.0 U	20.0 U	1.00 U	200 U	50.0 U
1,2,4-Trimethylbenzene	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U	40.0 U	20.0 U	1.00 U	200 U	50.0 U
1,2-Dibromoethane	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U	40.0 U	20.0 U	1.00 U	200 U	50.0 U
1,3,5-Trimethylbenzene	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U	40.0 U	20.0 U	1.00 U	200 U	50.0 U
1,3-Dichloropropane	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U	40.0 U	20.0 U	1.00 U	200 U	50.0 U
2,2-Dichloropropane	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U	40.0 U	20.0 U	1.00 U	200 U	50.0 U
2-Butanone	1,000 U	25,000 U [25,000 U]		10,000 U	125,000 U	5,000 U	125 U	50,000 U	1,000 U	500 U	25.0 U	5,000 U	1,250 U
2-Chlorotoluene	40.0 U	1,000 U [1,000 U]		400 U	5,000 U	200 U	5.00 U	2,000 U	40.0 U	20.0 U	1.00 U	200 U	50.0 U
2-Hexanone	200 U	5,000 U [5,000 U]	1,000 U [1,000 U]	2,000 U	25,000 U	1,000 U	25.0 U	10,000 U	200 U	100 U	5.00 U	1,000 U	250 U
4-Chlorotoluene	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U	40.0 U	20.0 U	1.00 U	200 U	50.0 U
4-Methyl-2-pentanone	200 U	5,000 U [5,000 U]	1,000 U [1,000 U]	2,000 U	25,000 U	1,000 U	25.0 U	10,000 U	200 U	100 U	5.00 U	1,000 U	250 U
Acetone	1,000 U	25,000 U [25,000 U]	5,000 U [5,000 U]	10,000 U	125,000 U	5,000 U	125 U	50,000 U	1,000 U	500 U	3.40 J	5,000 U	1,250 U
Benzene	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U	40.0 U	20.0 U	0.210 J	200 U	50.0 U
Bromobenzene	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U	40.0 U	20.0 U	1.00 U	200 U	50.0 U
Bromochloromethane	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U	40.0 U	20.0 U	1.00 U	200 U	50.0 U
Bromoform	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U	40.0 U	20.0 U	1.00 U	200 U	50.0 U
Bromomethane	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U	40.0 U	20.0 U	1.00 U	200 U	50.0 U
Carbon Disulfide	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	3.75 J	2,000 U	40.0 U	20.0 U	0.630 J	200 U	50.0 U
Dibromomethane	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U	40.0 U	20.0 U	1.00 U	200 U	50.0 U
Diisopropyl ether (DIPE)	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U	40.0 U	20.0 U	1.00 U	200 U	50.0 U
Ethyl Alcohol	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethylbenzene	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U	40.0 U	20.0 U	1.00 U	200 U	50.0 U
Hexachlorobutadiene	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U	40.0 U	20.0 U	1.00 U	200 U	50.0 U
Iodomethane	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U	40.0 U	20.0 U	1.00 U	200 U	50.0 U
Isopropylbenzene	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U	40.0 U	20.0 U	1.00 U	200 U	50.0 U
m-,p-Xylene	80.0 U	2,000 U [2,000 U]	400 U [400 U]	800 U	10,000 U	400 U	10.0 U	4,000 U	80.0 U	40.0 U	2.00 U	400 U	100 U
Methyl tert-butyl ether	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U	40.0 U	20.0 U	0.670 J	200 U	50.0 U
Naphthalene	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U	40.0 U	20.0 U	1.00 U	200 U	50.0 U
n-Butylbenzene	40.0 U	1,000 U [1,000 U]		400 U	5,000 U	200 U	5.00 U	2,000 U	40.0 U	20.0 U	1.00 U	200 U	50.0 U
n-Propylbenzene	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U	40.0 U	20.0 U	1.00 U	200 U	50.0 U
o-Xylene	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U	40.0 U	20.0 U	1.00 U	200 U	50.0 U
p-Isopropyltoluene	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U	40.0 U	20.0 U	1.00 U	200 U	50.0 U
sec-Butylbenzene	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U	40.0 U	20.0 U	1.00 U	200 U	50.0 U
Styrene	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U	40.0 U	20.0 U	1.00 U	200 U	50.0 U
tert-Butylbenzene	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U	40.0 U	20.0 U	1.00 U	200 U	50.0 U
Toluene	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	0.550 J	2,000 U	40.0 U	20.0 U	0.210 J	200 U	50.0 U

Location Identification:	HPT-05	HPT-22	HPT-22	HPT-22	HPT-24	HPT-24	HPT-24	HPT-24	HPT-25	HPT-25	HPT-25	HPT-25	HPT-25
Sample Depth (Feet):	17 - 21	16 - 18	27 - 29	38 - 40	12 - 14	18 - 20	24 - 26	40 - 42	13 - 15	20 - 22	24 - 26	27 - 29	40 - 42
Date Collected:	10/28/15	12/03/15	12/03/15	12/03/15	12/02/15	12/02/15	12/03/15	12/03/15	12/02/15	12/02/15	12/02/15	12/03/15	12/03/15
trans-1,4-Dichloro-2-butene	200 U	5,000 U [5,000 U]	1,000 U [1,000 U]	2,000 U	25,000 U	1,000 U	25.0 U	10,000 U	200 U	100 U	5.00 U	1,000 U	250 U
Vinyl Acetate	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Xylenes (total)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,1-Trichloroethane	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U	40.0 U	20.0 U	1.00 U	200 U	50.0 U
1,1,2,2-Tetrachloroethane	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U	40.0 U	20.0 U	1.00 U	200 U	50.0 U
1,1,2-Trichloroethane	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U	40.0 U	20.0 U	1.00 U	200 U	50.0 U
1,1-Dichloroethane	40.0 U	800 J [810 J]	200 U [200 U]	400 U	2,100 J	164 J	1.05 J	2,000 U	11.2 J	12.8 J	1.85	200 U	50.0 U
1,1-Dichloroethene	40.0 U	920 J [1,030]	200 U [200 U]	76.0 J	1,950 J	60.0 J	0.650 J	280 J	40.0 U	20.0 U	0.400 J	200 U	7.50 J
1,2,4-Trichlorobenzene	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U	40.0 U	20.0 U	1.00 U	200 U	50.0 U
1,2-Dibromo-3-chloropropane	200 U	5,000 U [5,000 U]	1,000 U [1,000 U]	2,000 U	25,000 U	1,000 U	25.0 U	10,000 U	200 U	100 U	5.00 U	1,000 U	250 U
1,2-Dichlorobenzene	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U	40.0 U	20.0 U	1.00 U	200 U	50.0 U
1,2-Dichloroethane	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U	40.0 U	20.0 U	1.00 U	200 U	50.0 U
1,2-Dichloropropane	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U	40.0 U	20.0 U	1.00 U	200 U	50.0 U
1,3-Dichlorobenzene	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U	40.0 U	20.0 U	1.00 U	200 U	50.0 U
1,4-Dichlorobenzene	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U	40.0 U	20.0 U	1.00 U	200 U	50.0 U
Bromodichloromethane	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U	40.0 U	20.0 U	1.00 U	200 U	50.0 U
Carbon Tetrachloride	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U	40.0 U	20.0 U	1.00 U	200 U	50.0 U
Chlorobenzene	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U	40.0 U	20.0 U	1.00 U	200 U	50.0 U
Chloroethane	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U	40.0 U	20.0 U	1.00 U	200 U	50.0 U
Chloroform	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U	40.0 U	20.0 U	1.00 U	200 U	50.0 U
Chloromethane	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U	40.0 U	20.0 U	1.00 U	200 U	50.0 U
cis-1,3-Dichloropropene	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U	40.0 U	20.0 U	1.00 U	200 U	50.0 U
Dibromochloromethane	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U	40.0 U	20.0 U	1.00 U	200 U	50.0 U
Dichlorodifluoromethane	200 U	5,000 U [5,000 U]		2,000 U	25,000 U	1,000 U	25.0 U	10,000 U	200 U	100 U	5.00 U	1,000 U	250 U
Methylene Chloride	200 U	5,000 U [5,000 U]		2,000 U	25,000 U	1,000 U	25.0 U	10,000 U	200 U	100 U	5.00 U	1,000 U	250 U
trans-1,3-Dichloropropene	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U	40.0 U	20.0 U	1.00 U	200 U	50.0 U
Trichlorofluoromethane	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U	40.0 U	20.0 U	1.00 U	200 U	50.0 U
cis-1,2-Dichloroethene	40.0 U	4,910 [5,120]	200 U [40.0 J]	8,960	11,600	4,080	26.0	20,300	770	607	12.3	200 U	1,640
Tetrachloroethene	40.0 U	1,000 U [1,000 U]	200 U [200 U]	400 U	5,000 U	200 U	5.00 U	2,000 U	40.0 U	20.0 U	1.00 U	200 U	50.0 U
trans-1,2-Dichloroethene	40.0 U	1,000 U [1,000 U]	24.0 J [200 U]	72.0 J	5,000 U	200 U	0.850 J	2,000 U	13.6 J	9.00 J	0.910 J	200 U	50.0 U
Trichloroethene	484	28,600 [34,600]	200 U [68.0 J]	464	261,000	3,030	41.3	41,700	54.4	46.8	7.74	200 U	50.0 U
Vinyl Chloride	40.0 U	240 J [250 J]	4,240 [4,200]	1,740	5,000 U	200 U	8.60	1,800 J	40.0 U	20.0 U	8.50	4,250	749
Inorganics - Total (µg/L)	10.00	2 10 0 [200 0]	., [.,]	1,1 10	0,000	200 0	0.00	1,000	10.0 0	20.00	0.00	.,	
Iron	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA	NA	NA NA
Inorganics - Dissolved (µg/L)	ING	INC	INA	INA	INA	INA	INA	IVA	INA	INA	INA	INA	IVA
Iron	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA
Total Organic Carbon (mg/L)	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA
Total Organic Carbon	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Table 3
Summary of Groundwater Sample Analytical Results from 2013-2018
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	HPT-26	HPT-26	HPT-26	HPT-26	HPT-26	HPT-26	HPT-27	HPT-27	HPT-27	HPT-27	HPT-27	HPT-28	HPT-28
Sample Depth (Feet):	14 - 16	19 - 21	24 - 26	27 - 29	41 - 43	44 - 46	12 - 14	18 - 20	22 - 24	27 - 29	41 - 44	13 - 15	18 - 20
Date Collected:	12/02/15	12/02/15	12/02/15	12/02/15	12/02/15	12/02/15	12/02/15	12/02/15	12/02/15	12/02/15	12/02/15	12/01/15	12/01/15
Volatile Organic Compounds (µg/L)	12/02/13	12/02/13	12/02/13	12/02/13	12/02/13	12/02/13	12/02/13	12/02/13	12/02/10	12/02/13	12/02/13	12/01/13	12/01/13
1,1,1,2-Tetrachloroethane	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U							
1,1-Dichloropropene	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U							
1,2,3-Trichlorobenzene	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U							
1,2,3-Trichloropropane	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U							
1,2,4-Trimethylbenzene	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U							
1,2-Dibromoethane	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U							
1,3,5-Trimethylbenzene	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U							
1,3-Dichloropropane	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U							
2,2-Dichloropropane	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U							
2-Butanone	25.0 U	25.0 U	0.940 J	12,500 U	500 U	25.0 U	25.0 U	25.0 U	25.0 U	25.0 U	12.3 J	25.0 U	25.0 U
2-Chlorotoluene	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U							
2-Hexanone	5.00 U	5.00 U	5.00 U	2,500 U	100 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
4-Chlorotoluene	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U							
4-Methyl-2-pentanone	5.00 U	5.00 U	5.00 U	2,500 U	100 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Acetone	25.0 U	2.62 J	2.13 J	12,500 U	500 U	2.09 J	3.90 J	2.49 J	25.0 U	25.0 U	38.4	8.16 J	3.59 J
Benzene	1.00 U	1.00 U	0.270 J	500 U	20.0 U	1.00 U	1.00 U	1.00 U	1.00 U	1.05	0.300 J	1.00 U	1.00 U
Bromobenzene	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U							
Bromochloromethane	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U							
Bromoform	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U							
Bromomethane	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U							
Carbon Disulfide	1.00 U	1.14	2.92	500 U	2.60 J	0.520 J	1.00 U	1.00 U	0.450 J	1.00 U	0.510 J	1.00 U	1.00 U
Dibromomethane	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U							
Diisopropyl ether (DIPE)	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U							
Ethyl Alcohol	NA												
Ethylbenzene	1.00 U	1.00 U	1.00 U	500 U	20.0 U	0.160 J	1.00 U						
Hexachlorobutadiene	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U							
Iodomethane	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U							
Isopropylbenzene	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U							
m-,p-Xylene	2.00 U	0.150 J	0.130 J	1,000 U	40.0 U	0.370 J	2.00 U	2.00 U	2.00 U	2.00 U	0.160 J	0.550 J	2.00 U
Methyl tert-butyl ether	1.00 U	1.00 U	0.320 J	500 U	20.0 U	1.00 U	1.00 U	1.00 U	1.00 U	0.370 J	1.00 U	1.00 U	1.00 U
Naphthalene	1.00 U	1.00 U	1.04	500 U	20.0 U	0.120 J	1.00 U						
n-Butylbenzene	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U							
n-Propylbenzene	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U							
o-Xylene	1.00 U	1.00 U	1.00 U	500 U	20.0 U	0.180 J	1.00 U						
p-Isopropyltoluene	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U							
sec-Butylbenzene	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U							
Styrene	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U							
tert-Butylbenzene	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U							
Toluene	1.00 U	0.340 J	0.450 J	500 U	20.0 U	0.680 J	1.00 U	0.220 J	1.00 U	0.490 J	0.420 J	0.150 J	1.00 U

Table 3
Summary of Groundwater Sample Analytical Results from 2013-2018
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	HPT-26	HPT-26	HPT-26	HPT-26	HPT-26	HPT-26	HPT-27	HPT-27	HPT-27	HPT-27	HPT-27	HPT-28	HPT-28
Sample Depth (Feet):	14 - 16	19 - 21	24 - 26	27 - 29	41 - 43	44 - 46	12 - 14	18 - 20	22 - 24	27 - 29	41 - 44	13 - 15	18 - 20
Date Collected:	12/02/15	12/02/15	12/02/15	12/02/15	12/02/15	12/02/15	12/02/15	12/02/15	12/02/15	12/02/15	12/02/15	12/01/15	12/01/15
trans-1,4-Dichloro-2-butene	5.00 U	5.00 U	5.00 U	2,500 U	100 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Vinyl Acetate	NA	NA	NA										
Xylenes (total)	NA	NA	NA										
1,1,1-Trichloroethane	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U	1.00 U	1.00 U					
1,1,2,2-Tetrachloroethane	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U	1.00 U	1.00 U					
1,1,2-Trichloroethane	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U	1.00 U	1.00 U					
1,1-Dichloroethane	1.00 U	0.260 J	3.13	500 U	20.0 U	1.00 U	1.00 U	1.00 U	0.440 J	1.06	3.99	1.00 U	1.00 U
1,1-Dichloroethene	1.00 U	0.250 J	1.12	500 U	5.00 J	0.480 J	1.00 U	0.320 J	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
1,2,4-Trichlorobenzene	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U	1.00 U	1.00 U					
1,2-Dibromo-3-chloropropane	5.00 U	5.00 U	5.00 U	2,500 U	100 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
1,2-Dichlorobenzene	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U	1.00 U	1.00 U					
1,2-Dichloroethane	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U	1.00 U	1.00 U					
1,2-Dichloropropane	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U	1.00 U	1.00 U					
1,3-Dichlorobenzene	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U	1.00 U	1.00 U					
1,4-Dichlorobenzene	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U	1.00 U	1.00 U					
Bromodichloromethane	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U	1.00 U	1.00 U					
Carbon Tetrachloride	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U	1.00 U	1.00 U					
Chlorobenzene	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U	1.00 U	1.00 U					
Chloroethane	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U	1.00 U	1.00 U					
Chloroform	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U	1.00 U	1.00 U					
Chloromethane	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U	1.00 U	1.00 U					
cis-1,3-Dichloropropene	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U	1.00 U	1.00 U					
Dibromochloromethane	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U	1.00 U	1.00 U					
Dichlorodifluoromethane	5.00 U	5.00 U	5.00 U	2,500 U	100 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Methylene Chloride	5.00 U	5.00 U	5.00 U	2,500 U	100 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
trans-1,3-Dichloropropene	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U	1.00 U	1.00 U					
Trichlorofluoromethane	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U	1.00 U	1.00 U					
cis-1,2-Dichloroethene	1.00 U	1.00 U	5.85	500 U	533	34.3	1.00 U	1.00 U	1.75	0.110 J	30.0	1.00 U	1.00 U
Tetrachloroethene	1.00 U	1.00 U	1.00 U	500 U	20.0 U	1.00 U	1.00 U	1.00 U					
trans-1,2-Dichloroethene	1.00 U	1.00 U	0.460 J	500 U	20.0 U	0.240 J	1.00 U	1.00 U	0.140 J	0.200 J	1.00 U	1.00 U	1.00 U
Trichloroethene	1.00 U	1.00 U	0.620 J	500 U	20.0 U	1.00 U	1.00 U	1.00 U	1.54	1.00 U	0.790 J	1.00 U	0.630 J
Vinyl Chloride	1.00 U	1.00 U	0.590 J	7,000	161	54.9	1.00 U	1.00 U	0.250 J	1.00 U	32.1	1.00 U	1.00 U
-	1.00 0	1.00 0	0.000 0	7,000	101	04.0	1.00 0	1.00 0	0.200 0	1.00 0	02. 1	1.00 0	1.00 0
Inorganics - Total (µg/L)	NA	NA	NA										
Manganese	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA					
Inorganics - Dissolved (µg/L)	11/7	INA	IVA	INA									
	NΙΛ	NIA	NΙΔ	NΙΔ	NA								
Iron	NA NA	NA NA	NA	NA NA	NA NA								
Manganese	NA	NA	NA										
Total Organic Carbon (mg/L)													
Total Organic Carbon	NA	NA	NA										

Table 3
Summary of Groundwater Sample Analytical Results from 2013-2018
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	HPT-28	HPT-28	HPT-28	HPT-29	HPT-29	HPT-29	HPT-29	HPT-29	HPT-29	HPT-30	HPT-30	HPT-30	HPT-30
Sample Depth (Feet):	24 - 26	30 - 33	37 - 40	13 - 15	19 - 21	25 - 27	29 - 31	36 - 38	39 - 41	13 - 15	17 - 19	24 - 26	30 - 32
Date Collected:	12/01/15	12/01/15	12/01/15	12/01/15	12/01/15	12/01/15	12/01/15	12/01/15	12/01/15	11/30/15	11/30/15	12/01/15	12/01/15
Volatile Organic Compounds (μg/L)		12.01.10	12.011.10	12.011.10	12.01110	12.011.10	12.01110	12.0 11.10	12.01110	1 1100/10	11100110		12/0 // 10
1,1,1,2-Tetrachloroethane	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	125 U
1,1-Dichloropropene	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	125 U
1,2,3-Trichlorobenzene	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	125 U
1,2,3-Trichloropropane	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	125 U
1,2,4-Trimethylbenzene	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	0.420 J	1.00 U	1.00 U	0.420 J	125 U
1,2-Dibromoethane	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	125 U
1,3,5-Trimethylbenzene	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	125 U
1,3-Dichloropropane	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	125 U
2,2-Dichloropropane	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	125 U
2-Butanone	25.0 U	20,000 U	14.6 J	25.0 U	25.0 U	25.0 U	500 U	125 U	36.4	25.0 U	25.0 U	25.0 U	3,130 U
2-Chlorotoluene	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	125 U
2-Hexanone	5.00 U	4,000 U	5.00 U	5.00 U	5.00 U	5.00 U	100 U	25.0 U	5.00 U	5.00 U	5.00 U	5.00 U	625 U
4-Chlorotoluene	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	125 U
4-Methyl-2-pentanone	5.00 U	4,000 U	5.00 U	5.00 U	5.00 U	5.00 U	100 U	25.0 U	5.00 U	5.00 U	5.00 U	5.00 U	625 U
Acetone	25.0 U	20,000 U	9.86 J	25.0 U	25.0 U	25.0 U	500 U	125 U	49.6	25.0 U	25.0 U	25.0 U	3,130 U
Benzene	0.620 J	800 U	0.180 J	1.00 U	1.00 U	0.820 J	20.0 U	0.750 J	0.450 J	1.00 U	1.00 U	0.750 J	125 U
Bromobenzene	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	125 U
Bromochloromethane	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	125 U
Bromoform	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	125 U
Bromomethane	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	125 U
Carbon Disulfide	2.00	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	125 U
Dibromomethane	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	125 U
Diisopropyl ether (DIPE)	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	125 U
Ethyl Alcohol	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethylbenzene	0.430 J	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	125 U
Hexachlorobutadiene	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	125 U
lodomethane	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	125 U
Isopropylbenzene	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	125 U
m-,p-Xylene	2.00 U	1,600 U	2.00 U	2.00 U	0.620 J	0.560 J	40.0 U	10.0 U	0.640 J	2.00 U	2.00 U	0.670 J	250 U
Methyl tert-butyl ether	1.02	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	125 U
Naphthalene	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	0.690 J	1.00 U	1.00 U	1.00 U	125 U
n-Butylbenzene	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	125 U
n-Propylbenzene	0.290 J	800 U	1.00 U	1.00 U	1.00 U	0.300 J	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	125 U
o-Xylene	1.00 U	800 U	1.00 U	1.00 U	1.00 U	0.450 J	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	0.480 J	125 U
p-Isopropyltoluene	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	125 U
sec-Butylbenzene	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	125 U
Styrene	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	125 U
tert-Butylbenzene	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	125 U
Toluene	0.650 J	800 U	13.4	1.00 U	0.190 J	2.18	88.8	110	43.6	1.00 U	1.00 U	0.270 J	125 U

Table 3
Summary of Groundwater Sample Analytical Results from 2013-2018
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	HPT-28	HPT-28	HPT-28	HPT-29	HPT-29	HPT-29	HPT-29	HPT-29	HPT-29	HPT-30	HPT-30	HPT-30	HPT-30
Sample Depth (Feet):	24 - 26	30 - 33	37 - 40	13 - 15	19 - 21	25 - 27	29 - 31	36 - 38	39 - 41	13 - 15	17 - 19	24 - 26	30 - 32
Date Collected:	12/01/15	12/01/15	12/01/15	12/01/15	12/01/15	12/01/15	12/01/15	12/01/15	12/01/15	11/30/15	11/30/15	12/01/15	12/01/15
trans-1,4-Dichloro-2-butene	5.00 U	4,000 U	5.00 U	5.00 U	5.00 U	5.00 U	100 U	25.0 U	5.00 U	5.00 U	5.00 U	5.00 U	625 U
Vinyl Acetate	NA												
Xylenes (total)	NA												
1,1,1-Trichloroethane	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	125 U
1,1,2,2-Tetrachloroethane	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	125 U
1,1,2-Trichloroethane	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	125 U
1,1-Dichloroethane	0.720 J	800 U	1.36	1.00 U	1.00 U	1.78	20.0 U	5.00 U	0.370 J	1.00 U	0.280 J	3.84	125 U
1,1-Dichloroethene	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	0.750 J	1.00 U	125 U
1,2,4-Trichlorobenzene	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	125 U
1,2-Dibromo-3-chloropropane	5.00 U	4,000 U	5.00 U	5.00 U	5.00 U	5.00 U	100 U	25.0 U	5.00 U	5.00 U	5.00 U	5.00 U	625 U
1,2-Dichlorobenzene	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	125 U
1,2-Dichloroethane	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	125 U
1,2-Dichloropropane	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	125 U
1,3-Dichlorobenzene	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	125 U
1,4-Dichlorobenzene	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	125 U
Bromodichloromethane	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	125 U
Carbon Tetrachloride	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	125 U
Chlorobenzene	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	125 U
Chloroethane	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	125 U
Chloroform	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	125 U
Chloromethane	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	125 U
cis-1,3-Dichloropropene	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	125 U
Dibromochloromethane	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	125 U
Dichlorodifluoromethane	5.00 U	4,000 U	5.00 U	5.00 U	5.00 U	5.00 U	100 U	25.0 U	5.00 U	5.00 U	5.00 U	5.00 U	625 U
Methylene Chloride	5.00 U	4,000 U	5.00 U	5.00 U	5.00 U	5.00 U	100 U	25.0 U	5.00 U	5.00 U	5.00 U	5.00 U	625 U
trans-1,3-Dichloropropene	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	125 U
Trichlorofluoromethane	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	125 U
cis-1,2-Dichloroethene	1.00 U	11,400	1.11	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	3.34	1.00 U	0.930 J	3.66	2,270
Tetrachloroethene	1.00 U	800 U	1.00 U	1.00 U	1.00 U	1.00 U	20.0 U	5.00 U	2.88	1.00 U	1.00 U	1.00 U	125 U
trans-1,2-Dichloroethene	1.00 U	800 U	1.00 U	1.00 U	1.00 U	2.98	20.0 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	125 U
Trichloroethene	1.00 U	800 U	1.00 U	1.00 U	0.250 J	1.00 U	20.0 U	5.00 U	1.39	1.00 U	0.960 J	0.320 J	125 U
Vinyl Chloride	7.27	14,900	2.02	1.00 U	1.00 U	1.04	426	3.40 J	2.27	1.00 U	1.00 U	2.54	125 U
Inorganics - Total (µg/L)													
Iron	NA												
Manganese	NA												
Inorganics - Dissolved (µg/L)													
Iron	NA												
Manganese	NA												
Total Organic Carbon (mg/L)													
Total Organic Carbon	NA												

Table 3
Summary of Groundwater Sample Analytical Results from 2013-2018
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	HPT-30	HPT-30	HPT-31	HPT-31	HPT-31	HPT-31	HPT-31	HPT-32	HPT-32	HPT-32	HPT-32	HPT-32	HPT-33
Sample Depth (Feet):	33 - 35	40 - 42	12 - 14	18 - 20	23 - 25	29 - 31	32 - 34	9 - 11	15 - 17	22 - 24	28 - 30	32 - 34	8 - 10
Date Collected:	12/01/15	12/01/15	12/03/15	12/03/15	12/03/15	12/03/15	12/03/15	12/04/15	12/04/15	12/04/15	12/04/15	12/04/15	12/04/15
Volatile Organic Compounds (µg/L)	12.01.10	12.01.10	12.00.10	12/00/10	12/00/10	12/00/10	12.00.10	12.011.0	12.0 10	12/0 // 10	12.0 10	12.0 10	12.0 10
1,1,1,2-Tetrachloroethane	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U
1,1-Dichloropropene	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U
1,2,3-Trichlorobenzene	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U
1,2,3-Trichloropropane	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U
1,2,4-Trimethylbenzene	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	28.8 J	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U
1,2-Dibromoethane	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U
1,3,5-Trimethylbenzene	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U
1,3-Dichloropropane	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U
2,2-Dichloropropane	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U
2-Butanone	500 U	25.0 U	2.26 J [1.38 J]	500 U	100 U	2,000 U	1,000 U	4,000 U	5,000 U [6,250 U]	250 U	1,000 U	25.0 U	5,000 U
2-Chlorotoluene	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U
2-Hexanone	100 U	5.00 U	5.00 U [5.00 U]	100 U	20.0 U	400 U	200 U	800 U	1,000 U [1,250 U]	50.0 U	200 U	5.00 U	1,000 U
4-Chlorotoluene	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U
4-Methyl-2-pentanone	100 U	5.00 U	5.00 U [5.00 U]	100 U	20.0 U	400 U	200 U	800 U	1,000 U [1,250 U]	50.0 U	200 U	5.00 U	1,000 U
Acetone	500 U	25.0 U	4.06 J [2.19 J]	500 U	100 U	2,000 U	1,000 U	4,000 U	5,000 U [6,250 U]	250 U	1,000 U	25.0 U	5,000 U
Benzene	20.0 U	0.200 J	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	0.300 J	200 U
Bromobenzene	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U
Bromochloromethane	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U
Bromoform	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U
Bromomethane	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U
Carbon Disulfide	20.0 U	1.00 U	0.510 J [0.160 J]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U
Dibromomethane	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U
Diisopropyl ether (DIPE)	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U
Ethyl Alcohol	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethylbenzene	20.0 U	0.500 J	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U
Hexachlorobutadiene	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U
Iodomethane	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U
Isopropylbenzene	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U
m-,p-Xylene	40.0 U	0.830 J	2.00 U [2.00 U]	40.0 U	8.00 U	160 U	80.0 U	320 U	400 U [500 U]	20.0 U	80.0 U	2.00 U	400 U
Methyl tert-butyl ether	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U
Naphthalene	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	1,140	200 U [250 U]	10.0 U	40.0 U	0.700 J	200 U
n-Butylbenzene	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U
n-Propylbenzene	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U
o-Xylene	20.0 U	0.540 J	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U
p-Isopropyltoluene	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U
sec-Butylbenzene	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U
Styrene	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U
tert-Butylbenzene	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.89	200 U
Toluene	20.0 U	1.30	0.330 J [0.250 J]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	0.330 J	200 U

Location Identification:	HPT-30	HPT-30	HPT-31	HPT-31	HPT-31	HPT-31	HPT-31	HPT-32	HPT-32	HPT-32	HPT-32	HPT-32	HPT-33
Sample Depth (Feet):	33 - 35	40 - 42	12 - 14	18 - 20	23 - 25	29 - 31	32 - 34	9 - 11	15 - 17	22 - 24	28 - 30	32 - 34	8 - 10
Date Collected:	12/01/15	12/01/15	12/03/15	12/03/15	12/03/15	12/03/15	12/03/15	12/04/15	12/04/15	12/04/15	12/04/15	12/04/15	12/04/15
rans-1,4-Dichloro-2-butene	100 U	5.00 U	5.00 U [5.00 U]	100 U	20.0 U	400 U	200 U	800 U	1,000 U [1,250 U]	50.0 U	200 U	5.00 U	1,000 U
/inyl Acetate	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
(ylenes (total)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
,1,1-Trichloroethane	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U
1,1,2,2-Tetrachloroethane	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U
,1,2-Trichloroethane	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U
,1-Dichloroethane	20.0 U	1.00 U	1.00 U [1.00 U]	471	7.24	80.0 U	40.0 U	160 U	78.0 J [95.0 J]	10.0 U	40.0 U	0.170 J	1,090
,1-Dichloroethene	20.0 U	1.00 U	1.00 U [1.00 U]	41.6	11.2	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	1,070
,2,4-Trichlorobenzene	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U
,2-Dibromo-3-chloropropane	100 U	5.00 U	5.00 U [5.00 U]	100 U	20.0 U	400 U	200 U	800 U	1,000 U [1,250 U]	50.0 U	200 U	5.00 U	1,000 U
1,2-Dichlorobenzene	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U
,,2-Dichloroethane	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U
1,2-Dichloropropane	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U
1,3-Dichlorobenzene	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U
,4-Dichlorobenzene	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U
Bromodichloromethane	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U
Carbon Tetrachloride	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U
Chlorobenzene	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U
Chloroethane	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U
Chloroform	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U
Chloromethane	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U
sis-1,3-Dichloropropene	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U
Dibromochloromethane	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U
Dichlorodifluoromethane	100 U	5.00 U	5.00 U [5.00 U]	100 U	20.0 U	400 U	200 U	800 U	1,000 U [1,250 U]	50.0 U	200 U	5.00 U	1,000 U
Methylene Chloride	100 U	5.00 U	5.00 U [5.00 U]	100 U	20.0 U	400 U	200 U	800 U	1,000 U [1,250 U]	50.0 U	200 U	5.00 U	1,000 U
rans-1,3-Dichloropropene	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U
richlorofluoromethane	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U
cis-1,2-Dichloroethene	381	9.21	1.00 U [1.00 U]	15.2 J	82.6	2,390	801	160 U		217	1,000	16.5	1,780
									4,650 [6,140]				
Tetrachloroethene	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	80.0 U	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U
rans-1,2-Dichloroethene	20.0 U	1.00 U	1.00 U [1.00 U]	20.0 U	2.16 J	12.0 J	40.0 U	160 U	200 U [250 U]	10.0 U	40.0 U	1.00 U	200 U
Trichloroethene	20.0 U	0.370 J	0.380 J [1.00 U]	20.0 U	18.0	80.0 U	40.0 U	160 U	268 [363]	5.20 J	832	4.95	200 U
/inyl Chloride	134	1.68	1.00 U [1.00 U]	20.0 U	3.84 J	80.0 U	40.0 U	160 U	844 [1,130]	33.5	40.0	1.19	4,620
norganics - Total (µg/L)													
ron	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
norganics - Dissolved (µg/L)													
ron	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon (mg/L)													
Total Organic Carbon	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Table 3
Summary of Groundwater Sample Analytical Results from 2013-2018
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	HPT-33	HPT-33	HPT-33	HPT-33	HPT-34							
Sample Depth (Feet):	14 - 16	20 - 22	28 - 30	32 - 34	11 - 13	17 - 19	21 - 23	30 - 32	37 - 39	38 - 40	39 - 41	42 - 44
Date Collected:	12/04/15	12/04/15	12/04/15	12/04/15	12/04/15	12/04/15	12/04/15	12/04/15	12/04/15	12/04/15	12/04/15	12/04/15
Volatile Organic Compounds (µg/L)	12/04/13	12/04/13	12/04/13	12/04/13	12/04/13	12/04/13	12/04/13	12/04/13	12/04/13	12/04/13	12/04/13	12/04/13
1,1,1,2-Tetrachloroethane	5,000 U	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
1,1-Dichloropropene	5,000 U	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
1,2,3-Trichlorobenzene	5,000 U	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
1,2,3-Trichloropropane	5,000 U	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
1,2,4-Trimethylbenzene	5,000 U	50.0 U	40.0 U	1.00 U	0.460 J	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	0.410 J
1,2-Dibromoethane	5,000 U	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
1,3,5-Trimethylbenzene	5,000 U	50.0 U	40.0 U	1.00 U	0.420 J	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
1,3-Dichloropropane	5,000 U	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
2,2-Dichloropropane	5,000 U	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
2-Butanone	125,000 U	1,250 U	1,000 U	25.0 U	25.0 U	50,000 U	1,000 U	1,000 U	25.0 U	1,000 U	10,000 U	25.0 U
2-Chlorotoluene	5,000 U	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
2-Hexanone	25,000 U	250 U	200 U	5.00 U	5.00 U	10,000 U	200 U	200 U	5.00 U	200 U	2,000 U	5.00 U
4-Chlorotoluene	5,000 U	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
4-Methyl-2-pentanone	25,000 U	250 U	200 U	5.00 U	5.00 U	10,000 U	200 U	200 U	5.00 U	200 U	2,000 U	5.00 U
Acetone	125,000 U	1,250 U	1,000 U	25.0 U	25.0 U	50,000 U	1,000 U	1,000 U	25.0 U	1,000 U	10,000 U	25.0 U
Benzene	5,000 U	50.0 U	40.0 U	0.540 J	0.280 J	2,000 U	40.0 U	40.0 U	0.260 J	40.0 U	400 U	0.170 J
Bromobenzene	5,000 U	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
Bromochloromethane	5,000 U	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
Bromoform	5,000 U	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
Bromomethane	5,000 U	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
Carbon Disulfide	5,000 U	50.0 U	40.0 U	1.00 U	0.700 J	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
Dibromomethane	5,000 U	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
Diisopropyl ether (DIPE)	5,000 U	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
Ethyl Alcohol	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethylbenzene	5,000 U	50.0 U	40.0 U	1.00 U	0.520 J	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	0.500 J
Hexachlorobutadiene	5,000 U	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
Iodomethane	5,000 U	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
Isopropylbenzene	5,000 U	50.0 U	40.0 U	1.00 U	0.560 J	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
m-,p-Xylene	10,000 U	100 U	80.0 U	0.560 J	0.980 J	4,000 U	80.0 U	80.0 U	0.550 J	80.0 U	800 U	0.690 J
Methyl tert-butyl ether	5,000 U	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
Naphthalene	5,000 U	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	383	1.00 U	31.2 J	400 U	0.710 J
n-Butylbenzene	5,000 U	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
n-Propylbenzene	5,000 U	50.0 U	40.0 U	1.00 U	0.240 J	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
o-Xylene	5,000 U	50.0 U	40.0 U	1.00 U	0.850 J	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
p-Isopropyltoluene	5,000 U	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
sec-Butylbenzene	5,000 U	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
Styrene	5,000 U	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
tert-Butylbenzene	5,000 U	50.0 U	40.0 U	0.810 J	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
Toluene	5,000 U	50.0 U	40.0 U	1.00 U	0.730 J	2,000 U	40.0 U	40.0 U	0.160 J	40.0 U	400 U	0.820 J
TOIGOTIO	0,000 0	00.00	70.00	1.00 0	0.7000	2,000 0	70.00	+0.0 €	0.100 0	+0.0 0	700 0	0.020 0

Location Identification:	HPT-33	HPT-33	HPT-33	HPT-33	HPT-34							
Sample Depth (Feet):	14 - 16	20 - 22	28 - 30	32 - 34	11 - 13	17 - 19	21 - 23	30 - 32	37 - 39	38 - 40	39 - 41	42 - 44
Date Collected:	12/04/15	12/04/15	12/04/15	12/04/15	12/04/15	12/04/15	12/04/15	12/04/15	12/04/15	12/04/15	12/04/15	12/04/15
trans-1,4-Dichloro-2-butene	25,000 U	250 U	200 U	5.00 U	5.00 U	10,000 U	200 U	200 U	5.00 U	200 U	2,000 U	5.00 U
Vinyl Acetate	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Xylenes (total)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,1-Trichloroethane	5,000 U	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
1,1,2,2-Tetrachloroethane	5,000 U	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
1,1,2-Trichloroethane	5,000 U	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
1,1-Dichloroethane	5,000 U	50.0 U	40.0 U	1.00 U	1.77	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
1,1-Dichloroethene	5,000 U	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
1,2,4-Trichlorobenzene	5,000 U	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
1,2-Dibromo-3-chloropropane	25,000 U	250 U	200 U	5.00 U	5.00 U	10,000 U	200 U	200 U	5.00 U	200 U	2,000 U	5.00 U
1,2-Dichlorobenzene	5,000 U	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
1,2-Dichloroethane	5,000 U	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
1,2-Dichloropropane	5,000 U	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
1,3-Dichlorobenzene	5,000 U	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
1,4-Dichlorobenzene	5,000 U	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
Bromodichloromethane	5,000 U	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
Carbon Tetrachloride	5,000 U	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
Chlorobenzene	5,000 U	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
Chloroethane	5,000 U	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
Chloroform	5,000 U	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
Chloromethane	5,000 U	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
cis-1,3-Dichloropropene	5,000 U	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
Dibromochloromethane	5,000 U	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
Dichlorodifluoromethane	25,000 U	250 U	200 U	5.00 U	5.00 U	10,000 U	200 U	200 U	5.00 U	200 U	2,000 U	5.00 U
Methylene Chloride	25,000 U	250 U	200 U	5.00 U	5.00 U	10,000 U	200 U	200 U	5.00 U	200 U	2,000 U	5.00 U
trans-1,3-Dichloropropene	5,000 U	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
Trichlorofluoromethane	5,000 U	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
cis-1,2-Dichloroethene	109,000	1,090	494	1.83	0.840 J	52,700	1,080	90.8	2.39	578	576	22.9
Tetrachloroethene	5,000 U	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
trans-1,2-Dichloroethene	5,000 U	50.0 U	40.0 U	1.00 U	1.00 U	2,000 U	40.0 U	40.0 U	1.00 U	40.0 U	400 U	1.00 U
Trichloroethene	164,000	473	908	1.74	1.00 U	64,200	114	79.6	5.42	685	7,400	46.8
Vinyl Chloride	3,200 J	55.5	42.8	1.74 1.00 U	6.69	2,640	83.2	40.0 U	1.00 U	40.0 U	400 U	0.670 J
	3,200 3	33.3	72.0	1.00 0	0.03	2,040	03.2	40.0 0	1.00 0	40.00	400 0	0.0703
Inorganics - Total (μg/L)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron	NA NA			NA NA	NA NA				NA NA	NA NA		
Manganese	INA	NA	NA	INA	NA NA	NA	NA	NA	INA	INA	NA	NA
Inorganics - Dissolved (µg/L)	NI A	N/A	NIA.	N/A	NIA.	N.I.A.	NIA	N.I.A.	NIA.	N.I.A	NIA.	N/A
Iron	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon (mg/L)												
Total Organic Carbon	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Table 3

Summary of Groundwater Sample Analytical Results from 2013-2018 Human Health Risk Assessment AVX Corporation Myrtle Beach, South Carolina

Notes:

mg/L = milligrams per liter NA = not applicable $\mu g/L$ = micrograms per liter

Laboratory Qualifiers:

B = Analyte was found in the associated blank, as well as in the sample.

J = Indicates an estimated value.

ND = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

Data Tables for Report 1-25-19 21/21

Table 4
Surface Soil Sample Analytical Results (0-2 Feet)
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	Corp-01	Corp-02	Corp-03	Corp-04	Corp-05	Corp-06	MB1-01	MB1-02	MB1-03	MB1-04	MB1-05
Sample Depth (Feet):	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	0.5 - 1.0	1.0 - 1.5	1.5 - 2.0	1.0 - 1.5	1.5 - 2.0
Date Collected:	05/06/15	05/06/15	05/06/15	05/06/15	05/06/15	05/06/15	07/14/15	07/14/15	07/14/15	07/14/15	07/14/15
/olatile Organic Compounds (μg/kg)	00/00/10	1 00/00/10	00/00/10	00/00/10	1 00.00.10	1 00.00.10	1 0111110	01111110	0.77 10	01711110	01711110
1,1,1,2-Tetrachloroethane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U
I,1-Dichloropropene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U
1,2,3-Trichlorobenzene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U
,2,3-Trichloropropane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U
,2,4-Trimethylbenzene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U
,2-Dibromoethane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U
1,3,5-Trimethylbenzene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U
,3-Dichloropropane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U
2,2-Dichloropropane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U
2-Butanone	1.88 J	14.2 J	21.0 U	23.3 U	4.54 J	23.8 U	2.55 J	1.82 J	2.64 J	3.14 J	24.1 U
2-Chlorotoluene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U
2-Hexanone	11.0 U	10.8 U	10.5 U	11.7 U	10.3 U	11.9 U	12.0 U	11.6 U	11.2 U	12.6 U	12.1 U
l-Chlorotoluene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U
-Methyl-2-pentanone	11.0 U	10.8 U	10.5 U	11.7 U	10.3 U	11.9 U	12.0 U	11.6 U	11.2 U	12.6 U	12.1 U
Acetone	15.0 J	60.0	7.30 J	5.67 J	44.7	6.90 J	18.9 J	14.4 J	17.9 J	17.9 J	8.97 J
Benzene	4.41 U	4.34 U	4.21 U	2.35 J	4.12 U	2.31 J	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U
Bromobenzene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U
Bromochloromethane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U
Bromoform	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U
Bromomethane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U
Carbon Disulfide	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U
Cyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibromomethane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U
Diisopropyl ether (DIPE)	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U
Ethylbenzene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U
lexachlorobutadiene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U
odomethane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U
sopropylbenzene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U
n-,p-Xylene	8.83 U	8.67 U	8.41 U	9.34 U	8.24 U	9.51 U	9.58 U	9.28 U	8.98 U	10.0 U	9.65 U
Nethyl Acetate	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nethyl tert-butyl ether	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U
/lethylcyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
laphthalene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U
-Butylbenzene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U
-Propylbenzene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U
p-Xylene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U
o-Isopropyltoluene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U
sec-Butylbenzene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U

Table 4
Surface Soil Sample Analytical Results (0-2 Feet)
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	Corp-01	Corp-02	Corp-03	Corp-04	Corp-05	Corp-06	MB1-01	MB1-02	MB1-03	MB1-04	MB1-05
Sample Depth (Feet):	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	0.5 - 1.0	1.0 - 1.5	1.5 - 2.0	1.0 - 1.5	1.5 - 2.0
Date Collected:	05/06/15	05/06/15	05/06/15	05/06/15	05/06/15	05/06/15	07/14/15	07/14/15	07/14/15	07/14/15	07/14/15
Styrene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	1.42 J	4.64 U	4.49 U	5.02 U	4.82 U
tert-Butylbenzene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U
Toluene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4.79 U	4.64 U	0.925 J	5.02 U	0.974 J
trans-1,4-Dichloro-2-butene	22.1 U	21.7 U	21.0 U	23.3 U	20.6 U	23.8 U	23.9 U	23.2 U	22.4 U	25.1 U	24.1 U
Xylenes (total)	8.83 U	8.67 U	8.41 U	9.34 U	8.24 U	9.51 U	9.58 U	9.28 U	8.98 U	10.0 U	9.65 U
1,1,1-Trichloroethane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	15.0	4.64 U	4.49 U	5.02 U	4.82 U
1,1,2,2-Tetrachloroethane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U
1,1,2-trichloro-1,2,2-trifluoroethane	NA	NA	NA	NA	NA						
1,1,2-Trichloroethane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U
1,1-Dichloroethane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U
1,1-Dichloroethene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U
1,2,4-Trichlorobenzene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U
1,2-Dibromo-3-chloropropane	26.5 U	26.0 U	25.2 U	28.0 U	24.7 U	28.5 U	28.7 U	27.8 U	26.9 U	30.1 U	28.9 U
1,2-Dichlorobenzene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U
1,2-Dichloroethane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U
1,2-Dichloropropane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U
1,3-Dichlorobenzene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U
1,4-Dichlorobenzene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U
Bromodichloromethane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U
Carbon Tetrachloride	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U
Chlorobenzene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U
Chloroethane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U
Chloroform	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U
Chloromethane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U
cis-1,3-Dichloropropene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U
Dibromochloromethane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U
Dichlorodifluoromethane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U
Methylene Chloride	17.7 U	17.3 U	16.8 U	18.7 U	16.5 U	19.0 U	19.2 U	18.6 U	18.0 U	20.1 U	19.3 U
trans-1,3-Dichloropropene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U
Trichlorofluoromethane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U
cis-1,2-Dichloroethene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U
Tetrachloroethene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U
trans-1,2-Dichloroethene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U
Trichloroethene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4.17 J	4.64 U	4.49 U	5.02 U	4.82 U
Vinyl Chloride	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U
Total Petroleum Hydrocarbons (µg/kg)											
Ethylene Glycol Monobutyl Ether	NA	NA	NA	NA	NA						

Table 4
Surface Soil Sample Analytical Results (0-2 Feet)
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	MB1-06	MB1-07	MB1-08	MB1-09	MB1-10	MB1-11	MB1-12	MB1-13	MB1-14	MB1-15	MB1-16
Sample Depth (Feet):	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.0 - 1.5	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0
Date Collected:	07/14/15	07/14/15	07/14/15	07/14/15	07/14/15	07/14/15	07/14/15	07/14/15	07/14/15	07/14/15	07/14/15
/olatile Organic Compounds (μg/kg)	01711110	1 0111110	0.77.11.0	1 0/// 11/0	1 0111110	1 0/// 1// 10	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0171 1110	0.771 10	01111110	01/11/10
,1,1,2-Tetrachloroethane	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U
,1-Dichloropropene	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U
,2,3-Trichlorobenzene	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U
,2,3-Trichloropropane	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U
,2,4-Trimethylbenzene	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U
,2-Dibromoethane	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U
I,3,5-Trimethylbenzene	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U
I,3-Dichloropropane	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U
2,2-Dichloropropane	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U
2-Butanone	24.3 U	23.7 U	23.3 U	22.6 U	26.0 U	24.3 U	24.7 U	23.4 U	23.7 U	26.5 U	25.3 U
2-Chlorotoluene	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U
2-Hexanone	12.2 U	11.9 U	11.6 U	11.3 U	13.0 U	12.1 U	12.4 U	11.7 U	11.9 U	13.3 U	12.6 U
1-Chlorotoluene	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U
I-Methyl-2-pentanone	12.2 U	11.9 U	11.6 U	11.3 U	13.0 U	12.1 U	12.4 U	11.7 U	11.9 U	13.3 U	12.6 U
Acetone	6.66 J	6.45 J	10.8 J	9.43 J	51.9 U	11.2 J	10.6 J	15.7 J	18.1 J	17.8 J	15.0 J
Benzene	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U
Bromobenzene	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U
Bromochloromethane	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U
Bromoform	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U
Bromomethane	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U
Carbon Disulfide	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U
Cyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibromomethane	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U
Diisopropyl ether (DIPE)	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U
Ethylbenzene	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U
Hexachlorobutadiene	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U
odomethane	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U
sopropylbenzene	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U
n-,p-Xylene	9.73 U	9.49 U	9.30 U	9.03 U	10.4 U	9.71 U	9.90 U	9.38 U	9.48 U	10.6 U	10.1 U
Methyl Acetate	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methyl tert-butyl ether	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U
Methylcyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U
n-Butylbenzene	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U
n-Propylbenzene	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U
p-Xylene	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U
o-Isopropyltoluene	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U
sec-Butylbenzene	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U

Table 4
Surface Soil Sample Analytical Results (0-2 Feet)
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	MB1-06	MB1-07	MB1-08	MB1-09	MB1-10	MB1-11	MB1-12	MB1-13	MB1-14	MB1-15	MB1-16
Sample Depth (Feet):	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.0 - 1.5	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0
Date Collected:	07/14/15	07/14/15	07/14/15	07/14/15	07/14/15	07/14/15	07/14/15	07/14/15	07/14/15	07/14/15	07/14/15
Styrene	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U
tert-Butylbenzene	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U
Toluene	1.27 J	4.75 U	4.65 U	0.966 J	1.17 J	1.20 J	1.19 J	1.15 J	4.74 U	5.30 U	5.06 U
trans-1,4-Dichloro-2-butene	24.3 U	23.7 U	23.3 U	22.6 U	26.0 U	24.3 U	24.7 U	23.4 U	23.7 U	26.5 U	25.3 U
Xylenes (total)	9.73 U	9.49 U	9.30 U	9.03 U	10.4 U	9.71 U	9.90 U	9.38 U	9.48 U	10.6 U	10.1 U
1,1,1-Trichloroethane	4.86 U	1.67 J	32.2	12.9	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	1.36 J
1,1,2,2-Tetrachloroethane	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U
1,1,2-trichloro-1,2,2-trifluoroethane	NA										
1,1,2-Trichloroethane	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U
1,1-Dichloroethane	4.86 U	4.75 U	4.72	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U
1,1-Dichloroethene	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U
1,2,4-Trichlorobenzene	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U
1,2-Dibromo-3-chloropropane	29.2 U	28.5 U	27.9 U	27.1 U	31.1 U	29.1 U	29.7 U	28.1 U	28.4 U	31.8 U	30.3 U
1,2-Dichlorobenzene	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U
1,2-Dichloroethane	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U
1,2-Dichloropropane	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U
1,3-Dichlorobenzene	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U
1,4-Dichlorobenzene	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U
Bromodichloromethane	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U
Carbon Tetrachloride	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U
Chlorobenzene	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U
Chloroethane	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U
Chloroform	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U
Chloromethane	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U
cis-1,3-Dichloropropene	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U
Dibromochloromethane	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U
Dichlorodifluoromethane	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U
Methylene Chloride	19.5 U	19.0 U	18.6 U	18.1 U	20.8 U	19.4 U	19.8 U	18.8 U	19.0 U	21.2 U	20.2 U
trans-1,3-Dichloropropene	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U
Trichlorofluoromethane	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U
cis-1,2-Dichloroethene	4.86 U	4.75 U	1.99 J	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U
Tetrachloroethene	4.86 U	4.75 U	1.52 J	1.18 J	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U
trans-1,2-Dichloroethene	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U
Trichloroethene	4.86 U	4.75 U	8.11	1.26 J	5.19 U	4.86 U	1.04 J	4.69 U	4.74 U	3.43 J	14.9
Vinyl Chloride	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U	5.30 U	5.06 U
Total Petroleum Hydrocarbons (µg/kg)											
Ethylene Glycol Monobutyl Ether	NA										

Table 4
Surface Soil Sample Analytical Results (0-2 Feet)
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	MB1-17	MB1-18	MB1-19	MB1-20	MB1-21	MB1-22	MB1-23	MB1-24	MB1-25	MB1-26	MB1-27
Sample Depth (Feet):	1.5 - 2.0	0.5 - 1.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0
Date Collected:	07/14/15	07/14/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15
/olatile Organic Compounds (μg/kg)	01111110	1 0/// 1// 1/0	1 01710710	1 01110110	01110110	1 01110110	1 01110110	1 01110/10	01710710	01710710	01710710
,1,1,2-Tetrachloroethane	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U
,1-Dichloropropene	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U
,2,3-Trichlorobenzene	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U
,2,3-Trichloropropane	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U
,2,4-Trimethylbenzene	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U
,2-Dibromoethane	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U
,3,5-Trimethylbenzene	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U
,3-Dichloropropane	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U
2,2-Dichloropropane	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U
-Butanone	21.8 U	3.71 J	21.8 U	22.6 U	27.0 U	28.7 U	22.9 U	4.52 J	26.9 U	26.3 U	26,900 U
2-Chlorotoluene	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U
2-Hexanone	10.9 U	12.6 U	10.9 U	11.3 U	13.5 U	14.3 U	11.5 U	13.0 U	13.4 U	13.1 U	5,380 U
-Chlorotoluene	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U
-Methyl-2-pentanone	10.9 U	12.6 U	10.9 U	11.3 U	13.5 U	14.3 U	11.5 U	13.0 U	13.4 U	13.1 U	5,380 U
cetone	13.7 J	35.2 J	14.4 J	20.2 J	17.2 J	15.7 J	9.01 J	40.7 J	30.9 J	14.0 J	26,900 U
Senzene	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	4.59 U	1.26 J	1.34 J	5.25 U	1,080 U
Bromobenzene	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U
Bromochloromethane	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U
Bromoform	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U
Bromomethane	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U
Carbon Disulfide	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U
Cyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibromomethane	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U
Diisopropyl ether (DIPE)	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U
thylbenzene	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U
lexachlorobutadiene	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U
odomethane	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U
sopropylbenzene	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U
n-,p-Xylene	8.71 U	10.1 U	8.74 U	9.06 U	10.8 U	11.5 U	9.18 U	10.4 U	10.7 U	10.5 U	2,150 U
Methyl Acetate	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nethyl tert-butyl ether	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U
/lethylcyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
laphthalene	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U
-Butylbenzene	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U
-Propylbenzene	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U
p-Xylene	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U
o-Isopropyltoluene	1.35 J	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U
sec-Butylbenzene	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U

Table 4
Surface Soil Sample Analytical Results (0-2 Feet)
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	MB1-17	MB1-18	MB1-19	MB1-20	MB1-21	MB1-22	MB1-23	MB1-24	MB1-25	MB1-26	MB1-27
Sample Depth (Feet):	1.5 - 2.0	0.5 - 1.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0
Date Collected:	07/14/15	07/14/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15
Styrene	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U
tert-Butylbenzene	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U
Toluene	4.36 U	1.23 J	1.18 J	1.23 J	1.40 J	5.74 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U
trans-1,4-Dichloro-2-butene	21.8 U	25.2 U	21.8 U	22.6 U	27.0 U	28.7 U	22.9 U	26.1 U	26.9 U	26.3 U	5,380 U
Xylenes (total)	8.71 U	10.1 U	8.74 U	9.06 U	10.8 U	11.5 U	9.18 U	10.4 U	10.7 U	10.5 U	2,150 U
1,1,1-Trichloroethane	4.36 U	1.08 J	4.37 U	4.53 U	5.39 U	11.6	2.32 J	5.22 U	5.37 U	5.25 U	1,080 U
1,1,2,2-Tetrachloroethane	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U
1,1,2-trichloro-1,2,2-trifluoroethane	NA										
1,1,2-Trichloroethane	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U
1,1-Dichloroethane	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	7.61	1.94 J	5.22 U	5.37 U	5.25 U	1,080 U
1,1-Dichloroethene	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U
1,2,4-Trichlorobenzene	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U
1,2-Dibromo-3-chloropropane	26.1 U	30.2 U	26.2 U	27.2 U	32.3 U	34.4 U	27.5 U	31.3 U	32.2 U	31.5 U	5,380 U
1,2-Dichlorobenzene	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U
1,2-Dichloroethane	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U
1,2-Dichloropropane	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U
1,3-Dichlorobenzene	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U
1,4-Dichlorobenzene	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U
Bromodichloromethane	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U
Carbon Tetrachloride	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U
Chlorobenzene	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U
Chloroethane	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U
Chloroform	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U
Chloromethane	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U
cis-1,3-Dichloropropene	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U
Dibromochloromethane	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U
Dichlorodifluoromethane	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	4.59 U	5.22 U	5.37 U	5.25 U	5,380 U
Methylene Chloride	17.4 U	20.1 U	17.5 U	18.1 U	21.6 U	23.0 U	18.4 U	20.9 U	21.5 U	21.0 U	5,380 U
trans-1,3-Dichloropropene	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U
Trichlorofluoromethane	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U
cis-1,2-Dichloroethene	4.36 U	5.04 U	27.1	4.53 U	5.39 U	5.74 U	4.59 U	5.22 U	5.37 U	5.25 U	7,210
Tetrachloroethene	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U
trans-1,2-Dichloroethene	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	4.59 U	5.22 U	5.37 U	5.25 U	1,230
Trichloroethene	1.14 J	4.97 J	43.9	1.38 J	5.39 U	21.8	13.7	5.22 U	1.21 J	2.51 J	30,100
Vinyl Chloride	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U
Total Petroleum Hydrocarbons (µg/kg)											
Ethylene Glycol Monobutyl Ether	NA										

Table 4
Surface Soil Sample Analytical Results (0-2 Feet)
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	MB1-28	MB1-29	MB1-30	MB1-31	MB1-32	MB1-33	MB1-34	MB1-35	MB1-36	MB1-37A	MB1-37B
Sample Depth (Feet):	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	0.5 - 1.0	1.5 - 2.0	1.0 - 1.5	1.0 - 1.5	1.5 - 2.0	1.5 - 2.0	0.0 - 0.5	0.5 - 1.0
Date Collected:	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15
/olatile Organic Compounds (μg/kg)	01710710	1 01110110	1 01110110	01710/10	01110110	1 01110110	1 01110110	1 01110110	1 01110110	1 01110110	01/10/10
1,1,1,2-Tetrachloroethane	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U
,1-Dichloropropene	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U
,2,3-Trichlorobenzene	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U
,2,3-Trichloropropane	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U
1,2,4-Trimethylbenzene	170	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	210	57.2 U	989 U
.2-Dibromoethane	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U
,3,5-Trimethylbenzene	41.2 J	0.974 J	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	1,100	57.2 U	989 U
,3-Dichloropropane	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U
2,2-Dichloropropane	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U
2-Butanone	73.0 J	24.6 U	24.7 U	22.9 J	22.7 U	24.2 U	28,900 U	21.7 J	38.0 J	1,430 U	24,700 U
2-Chlorotoluene	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U
2-Hexanone	312 U	12.3 U	12.3 U	14.2 U	11.3 U	12.1 U	5,790 U	11.0 U	247 U	286 U	4.940 U
-Chlorotoluene	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U
-Methyl-2-pentanone	312 U	12.3 U	12.3 U	5.13 J	2.25 J	12.1 U	5,790 U	11.0 U	247 U	286 U	4,940 U
cetone	1,560 U	11.1 J	23.2 J	119	7.76 J	6.33 J	28,900 U	87.3	1,230 U	1,430 U	24,700 U
Benzene	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U
Bromobenzene	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1.160 U	4.38 U	49.3 U	57.2 U	989 U
Bromochloromethane	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U
Bromoform	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U
Bromomethane	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U
Carbon Disulfide	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U
Cyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibromomethane	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U
Diisopropyl ether (DIPE)	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U
Ethylbenzene	48.7 J	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	1.56 J	6.90 J	57.2 U	989 U
lexachlorobutadiene	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U
odomethane	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U
sopropylbenzene	23.7 J	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	401	57.2 U	989 U
n-,p-Xylene	287	9.84 U	9.87 U	1.75 J	9.07 U	9.69 U	2,320 U	3.64 J	11.8 J	114 U	1,980 U
Methyl Acetate	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methyl tert-butyl ether	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U
1ethylcyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
aphthalene	187	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	68.0	57.2 U	989 U
-Butylbenzene	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U
-Propylbenzene	31.2 J	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	165	57.2 U	989 U
-Xylene	137	4.92 U	4.94 U	0.978 J	4.53 U	4.84 U	1,160 U	1.66 J	15.3 J	57.2 U	989 U
-Isopropyltoluene	118	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,370	2.28 J	106	57.2 U	989 U
sec-Butylbenzene	33.7 J	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1.160 U	4.38 U	105	57.2 U	989 U

Table 4
Surface Soil Sample Analytical Results (0-2 Feet)
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	MB1-28	MB1-29	MB1-30	MB1-31	MB1-32	MB1-33	MB1-34	MB1-35	MB1-36	MB1-37A	MB1-37B
Sample Depth (Feet):	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	0.5 - 1.0	1.5 - 2.0	1.0 - 1.5	1.0 - 1.5	1.5 - 2.0	1.5 - 2.0	0.0 - 0.5	0.5 - 1.0
Date Collected:	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15
Styrene	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U
tert-Butylbenzene	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U
Toluene	497	4.92 U	1.05 J	3.19 J	5.66	11.4	8,280	36.1	49.3 U	57.2 U	989 U
trans-1,4-Dichloro-2-butene	312 U	24.6 U	24.7 U	28.4 U	22.7 U	24.2 U	5,790 U	21.9 U	247 U	286 U	4,940 U
Xylenes (total)	424	9.84 U	9.87 U	2.73 J	9.07 U	9.69 U	2,320 U	5.30 J	27.1 J	114 U	1,980 U
1,1,1-Trichloroethane	691	16.6	28.0	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	191	41,600
1,1,2,2-Tetrachloroethane	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U
1,1,2-trichloro-1,2,2-trifluoroethane	NA										
1,1,2-Trichloroethane	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U
1,1-Dichloroethane	12.5 J	7.78	18.5	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U
1,1-Dichloroethene	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U
1,2,4-Trichlorobenzene	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U
1,2-Dibromo-3-chloropropane	312 U	29.5 U	29.6 U	34.1 U	27.2 U	29.1 U	5,790 U	26.3 U	247 U	286 U	4,940 U
1,2-Dichlorobenzene	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U
1,2-Dichloroethane	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U
1,2-Dichloropropane	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U
1,3-Dichlorobenzene	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U
1,4-Dichlorobenzene	62.4 U	4.92 U	4.94 U	1.02 J	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U
Bromodichloromethane	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U
Carbon Tetrachloride	62.4 U	2.33 J	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U
Chlorobenzene	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U
Chloroethane	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	13.4	49.3 U	57.2 U	989 U
Chloroform	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U
Chloromethane	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U
cis-1,3-Dichloropropene	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U
Dibromochloromethane	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U
Dichlorodifluoromethane	312 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	5,790 U	4.38 U	247 U	286 U	4,940 U
Methylene Chloride	312 U	19.7 U	19.7 U	22.7 U	18.1 U	19.4 U	5,790 U	17.5 U	247 U	286 U	4,940 U
trans-1,3-Dichloropropene	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U
Trichlorofluoromethane	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U
cis-1,2-Dichloroethene	9.98 J	3.75 J	7.23	1.84 J	4.53 U	4.84 U	1,160 U	2.66 J	178	57.2 U	326 J
Tetrachloroethene	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U
trans-1,2-Dichloroethene	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U
Trichloroethene	150	41.4	34.5	6.33	3.84 J	3.30 J	1,160 U	1.70 J	35.5 J	449	16,400
Vinyl Chloride	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U	57.2 U	989 U
Total Petroleum Hydrocarbons (µg/kg)											
Ethylene Glycol Monobutyl Ether	NA										

Table 4
Surface Soil Sample Analytical Results (0-2 Feet)
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	MB1-37C	MB1-37D	MB1-38	MB1-39	MB1-40	MB1-41	MB1-42	MB1-43	MB1-44	MB1-45	MB1-46
Sample Depth (Feet):	1.0 - 1.5	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0
Date Collected:	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15
/olatile Organic Compounds (μg/kg)											
.1,1,2-Tetrachloroethane	47.5 U	50.2 U	46.3 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U
,1-Dichloropropene	47.5 U	50.2 U	46.3 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U
I,2,3-Trichlorobenzene	47.5 U	50.2 U	46.3 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U
I,2,3-Trichloropropane	47.5 U	50.2 U	46.3 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U
I,2,4-Trimethylbenzene	329	318	46.3 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U
I,2-Dibromoethane	47.5 U	50.2 U	46.3 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U
I,3,5-Trimethylbenzene	170	145	46.3 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U
I,3-Dichloropropane	47.5 U	50.2 U	46.3 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U
2,2-Dichloropropane	47.5 U	50.2 U	46.3 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U
2-Butanone	1,190 U	37.1 J	1,160 U	2,850 U	22.5 U	23.0 U	22.5 U	21.8 U	23.4 U	25.0 U	7.74 J
2-Chlorotoluene	47.5 U	50.2 U	46.3 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U
2-Hexanone	238 U	251 U	231 U	570 U	11.2 U	11.5 U	11.2 U	10.9 U	11.7 U	12.5 U	11.2 U
1-Chlorotoluene	47.5 U	50.2 U	46.3 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U
l-Methyl-2-pentanone	238 U	251 U	231 U	570 U	11.2 U	11.5 U	11.2 U	10.9 U	11.7 U	12.5 U	11.2 U
Acetone	1,190 U	54.7 J	1,160 U	2,850 U	10.8 J	14.6 J	8.05 J	15.7 J	9.76 J	12.1 J	49.2
Benzene	47.5 U	50.2 U	46.3 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U
Bromobenzene	47.5 U	50.2 U	46.3 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U
Bromochloromethane	47.5 U	50.2 U	46.3 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U
Bromoform	47.5 U	50.2 U	46.3 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U
Bromomethane	47.5 U	50.2 U	46.3 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U
Carbon Disulfide	47.5 U	50.2 U	46.3 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U
Cyclohexane	NA										
Dibromomethane	47.5 U	50.2 U	46.3 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U
Diisopropyl ether (DIPE)	47.5 U	50.2 U	46.3 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U
Ethylbenzene	10.9 J	33.1 J	46.3 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U
Hexachlorobutadiene	47.5 U	50.2 U	46.3 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U
odomethane	47.5 U	50.2 U	46.3 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U
sopropylbenzene	9.51 J	12.0 J	46.3 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U
n-,p-Xylene	23.8 J	37.6 J	92.5 U	228 U	9.00 U	9.21 U	8.99 U	8.71 U	9.35 U	10.0 U	8.93 U
Methyl Acetate	NA										
Methyl tert-butyl ether	47.5 U	50.2 U	46.3 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U
Methylcyclohexane	NA										
laphthalene	17.1 J	80.8	46.3 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U
n-Butylbenzene	47.5 U	50.2 U	46.3 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U
n-Propylbenzene	47.1 J	64.2	46.3 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U
o-Xylene	18.1 J	25.1 J	46.3 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U
p-Isopropyltoluene	43.3 J	161	46.3 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U
sec-Butylbenzene	47.5 U	29.1 J	46.3 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U

Table 4
Surface Soil Sample Analytical Results (0-2 Feet)
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	MB1-37C	MB1-37D	MB1-38	MB1-39	MB1-40	MB1-41	MB1-42	MB1-43	MB1-44	MB1-45	MB1-46
Sample Depth (Feet):	1.0 - 1.5	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0
Date Collected:	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15
Styrene	47.5 U	50.2 U	46.3 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U
tert-Butylbenzene	47.5 U	50.2 U	46.3 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U
Toluene	16.6 J	132	46.3 U	114 U	0.828 J	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U
trans-1,4-Dichloro-2-butene	238 U	251 U	231 U	570 U	22.5 U	23.0 U	22.5 U	21.8 U	23.4 U	25.0 U	22.3 U
Xylenes (total)	41.8 J	62.7 J	92.5 U	228 U	9.00 U	9.21 U	8.99 U	8.71 U	9.35 U	10.0 U	8.93 U
1,1,1-Trichloroethane	526	152	219	156	3.39 J	4.61 U	4.49 U	4.36 U	59.7	21.8	4.47 U
1,1,2,2-Tetrachloroethane	47.5 U	50.2 U	46.3 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U
1,1,2-trichloro-1,2,2-trifluoroethane	NA										
1,1,2-Trichloroethane	47.5 U	50.2 U	46.3 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U
1,1-Dichloroethane	47.5 U	130	35.2 J	22.8 J	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.81	4.47 U
1,1-Dichloroethene	47.5 U	50.2 U	46.3 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	1.15 J	4.47 U
1,2,4-Trichlorobenzene	47.5 U	50.2 U	46.3 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U
1,2-Dibromo-3-chloropropane	238 U	251 U	231 U	570 U	27.0 U	27.6 U	27.0 U	26.1 U	28.1 U	30.0 U	26.8 U
1,2-Dichlorobenzene	47.5 U	50.2 U	46.3 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U
1,2-Dichloroethane	47.5 U	50.2 U	46.3 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U
1,2-Dichloropropane	47.5 U	50.2 U	46.3 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U
1,3-Dichlorobenzene	47.5 U	50.2 U	46.3 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U
1,4-Dichlorobenzene	47.5 U	50.2 U	46.3 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U
Bromodichloromethane	47.5 U	50.2 U	46.3 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U
Carbon Tetrachloride	47.5 U	50.2 U	46.3 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	8.41	5.00 U	4.47 U
Chlorobenzene	47.5 U	50.2 U	46.3 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U
Chloroethane	47.5 U	52.2	46.3 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U
Chloroform	47.5 U	50.2 U	46.3 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U
Chloromethane	47.5 U	50.2 U	46.3 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U
cis-1,3-Dichloropropene	47.5 U	50.2 U	46.3 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U
Dibromochloromethane	47.5 U	50.2 U	46.3 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U
Dichlorodifluoromethane	238 U	251 U	231 U	570 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U
Methylene Chloride	238 U	251 U	231 U	570 U	18.0 U	18.4 U	18.0 U	17.4 U	18.7 U	20.0 U	17.9 U
trans-1,3-Dichloropropene	47.5 U	50.2 U	46.3 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U
Trichlorofluoromethane	47.5 U	50.2 U	46.3 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U
cis-1,2-Dichloroethene	16.6 J	58.7	124	216	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	8.02	4.47 U
Tetrachloroethene	47.5 U	50.2 U	46.3 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U
trans-1,2-Dichloroethene	47.5 U	50.2 U	46.3 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U
Trichloroethene	418	178	201	823	16.6	4.61 U	4.49 U	4.36 U	19.8	21.5	4.47 U
Vinyl Chloride	47.5 U	12.5 J	46.3 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U
Total Petroleum Hydrocarbons (µg/kg)											
Ethylene Glycol Monobutyl Ether	NA										

Table 4
Surface Soil Sample Analytical Results (0-2 Feet)
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	MB1-47	MB1-48	MB1-49	MB1-50	MB1-51	MB1-52	MB1-53	MB1-54	MB1-55	MB1-56	MB1-57
Sample Depth (Feet):	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.0 - 1.5	1.5 - 2.0	1.5 - 2.0
Date Collected:	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15
Volatile Organic Compounds (μg/kg)	01710710	1 01110110	1 01110110	1 01110110	01110110	1 01110/10	01110110	01710/10	1 01110110	1 01110/10	01710710
1,1,1,2-Tetrachloroethane	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U
1,1-Dichloropropene	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U
1,2,3-Trichlorobenzene	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U
1,2,3-Trichloropropane	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U
1,2,4-Trimethylbenzene	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U
1,2-Dibromoethane	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U
1,3,5-Trimethylbenzene	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U
1,3-Dichloropropane	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U
2,2-Dichloropropane	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U
2-Butanone	23.5 U	6.23 J	25.1 U	22.7 U	26.2 U	23.5 U	1,410 U	23.8 U	21.5 U	21.8 U	2.98 J
2-Chlorotoluene	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U
2-Hexanone	11.8 U	10.6 U	12.6 U	11.3 U	13.1 U	11.7 U	282 U	11.9 U	10.8 U	10.9 U	12.2 U
4-Chlorotoluene	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U
4-Methyl-2-pentanone	11.8 U	10.6 U	12.6 U	11.3 U	13.1 U	11.7 U	282 U	11.9 U	10.8 U	10.9 U	12.2 U
Acetone	23.6 J	32.0 J	7.83 J	9.88 J	12.8 J	14.8 J	1,410 U	15.6 J	9.71 J	14.5 J	19.6 J
Benzene	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U
Bromobenzene	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U
Bromochloromethane	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U
Bromoform	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U
Bromomethane	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U
Carbon Disulfide	4.70 U	2.27 J	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	1.65 J
Cyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibromomethane	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U
Diisopropyl ether (DIPE)	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U
Ethylbenzene	4.70 U	0.767 J	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U
Hexachlorobutadiene	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U
lodomethane	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U
Isopropylbenzene	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U
m-,p-Xylene	9.41 U	8.52 U	10.0 U	9.08 U	10.5 U	9.39 U	113 U	9.52 U	8.62 U	8.70 U	9.75 U
Methyl Acetate	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methyl tert-butyl ether	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U
Methylcyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U
n-Butylbenzene	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U
n-Propylbenzene	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U
o-Xylene	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U
p-Isopropyltoluene	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U
sec-Butylbenzene	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U

Table 4
Surface Soil Sample Analytical Results (0-2 Feet)
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	MB1-47	MB1-48	MB1-49	MB1-50	MB1-51	MB1-52	MB1-53	MB1-54	MB1-55	MB1-56	MB1-57
Sample Depth (Feet):	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.0 - 1.5	1.5 - 2.0	1.5 - 2.0
Date Collected:	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15
Styrene	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U
tert-Butylbenzene	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U
Toluene	4.70 U	1.01 J	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U
trans-1,4-Dichloro-2-butene	23.5 U	21.3 U	25.1 U	22.7 U	26.2 U	23.5 U	282 U	23.8 U	21.5 U	21.8 U	24.4 U
Xylenes (total)	9.41 U	8.52 U	10.0 U	9.08 U	10.5 U	9.39 U	113 U	9.52 U	8.62 U	8.70 U	9.75 U
1,1,1-Trichloroethane	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	0.940 J	4.87 U
1,1,2,2-Tetrachloroethane	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U
1,1,2-trichloro-1,2,2-trifluoroethane	NA										
1,1,2-Trichloroethane	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U
1,1-Dichloroethane	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U
1,1-Dichloroethene	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U
1,2,4-Trichlorobenzene	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U
1,2-Dibromo-3-chloropropane	28.2 U	25.6 U	30.1 U	27.2 U	31.4 U	28.2 U	282 U	28.6 U	25.9 U	26.1 U	29.2 U
1,2-Dichlorobenzene	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U
1,2-Dichloroethane	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U
1,2-Dichloropropane	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U
1,3-Dichlorobenzene	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U
1,4-Dichlorobenzene	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U
Bromodichloromethane	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U
Carbon Tetrachloride	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U
Chlorobenzene	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U
Chloroethane	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U
Chloroform	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U
Chloromethane	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U
cis-1,3-Dichloropropene	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U
Dibromochloromethane	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U
Dichlorodifluoromethane	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	282 U	4.76 U	4.31 U	4.35 U	4.87 U
Methylene Chloride	18.8 U	0.869 J	1.11 J	18.2 U	1.08 J	0.929 J	282 U	19.0 U	17.2 U	17.4 U	19.5 U
trans-1,3-Dichloropropene	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U
Trichlorofluoromethane	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	1.16 J	4.87 U
cis-1,2-Dichloroethene	1.03 J	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U
Tetrachloroethene	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	1.99 J	56.3 U	4.76 U	4.31 U	1.04 J	4.87 U
trans-1,2-Dichloroethene	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U
Trichloroethene	7.32	1.71 J	8.79	9.85	5.23 U	4.69 U	157	4.16 J	4.31 U	6.53	4.10 J
Vinyl Chloride	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U	4.76 U	4.31 U	4.35 U	4.87 U
Total Petroleum Hydrocarbons (µg/kg)											
Ethylene Glycol Monobutyl Ether	NA										

Table 4
Surface Soil Sample Analytical Results (0-2 Feet)
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	MB1-58	MB1-59	MB1-60	MB1-61	MB1-62	MB1-63	MB1-64	ME-01	ME-02	ME-03	ME-04
Sample Depth (Feet):	1.5 - 2.0	1.5 - 2.0	0.5 - 1.0	0.5 - 1.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5-2	1.5-2	1.5-2	1.5-2
Date Collected:	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	05/06/15	05/06/15	05/06/15	05/06/15
olatile Organic Compounds (μg/kg)											
1,1,2-Tetrachloroethane	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
,1-Dichloropropene	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
,2,3-Trichlorobenzene	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
,2,3-Trichloropropane	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
,2,4-Trimethylbenzene	4.28 U	42.3 J	45.4 U	4.26 U	77.1 J	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
,2-Dibromoethane	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
,3,5-Trimethylbenzene	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
,3-Dichloropropane	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
,2-Dichloropropane	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
2-Butanone	21.4 U	49.2 J	1,130 U	21.3 U	2,380 U	22.2 U	21.9 U	5.46 J	22.9 U	21.7 U	21.7 U
2-Chlorotoluene	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
2-Hexanone	10.7 U	265 U	227 U	10.6 U	476 U	11.1 U	10.9 U	10.7 U	11.4 U	10.9 U	10.8 U
I-Chlorotoluene	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
l-Methyl-2-pentanone	10.7 U	265 U	227 U	10.6 U	476 U	11.1 U	10.9 U	10.7 U	11.4 U	10.9 U	10.8 U
cetone	11.4 J	1,320 U	1,130 U	9.71 J	148 J	14.3 J	8.75 J	48.3	7.03 J	5.52 J	4.15 J
Benzene	4.28 U	12.2 J	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
Bromobenzene	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
Bromochloromethane	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
Bromoform	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
Bromomethane	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
Carbon Disulfide	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
Cyclohexane	NA	NA	NA	NA	NA						
Dibromomethane	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
Diisopropyl ether (DIPE)	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
Ethylbenzene	4.28 U	95.3	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
-lexachlorobutadiene	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
odomethane	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
sopropylbenzene	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
n-,p-Xylene	8.56 U	106 U	90.7 U	8.52 U	190 U	8.89 U	8.74 U	8.52 U	9.15 U	8.69 U	8.67 U
Methyl Acetate	NA	NA	NA	NA	NA						
Nethyl tert-butyl ether	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
Nethylcyclohexane	NA	NA	NA	NA	NA						
laphthalene	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
ı-Butylbenzene	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
-Propylbenzene	4.28 U	9.00 J	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
-Xylene	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
o-Isopropyltoluene	4.28 U	88.9	45.4 U	4.26 U	89.5 J	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
sec-Butylbenzene	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U

Table 4
Surface Soil Sample Analytical Results (0-2 Feet)
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	MB1-58	MB1-59	MB1-60	MB1-61	MB1-62	MB1-63	MB1-64	ME-01	ME-02	ME-03	ME-04
Sample Depth (Feet):	1.5 - 2.0	1.5 - 2.0	0.5 - 1.0	0.5 - 1.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5-2	1.5-2	1.5-2	1.5-2
Date Collected:	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	05/06/15	05/06/15	05/06/15	05/06/15
Styrene	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
tert-Butylbenzene	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
Toluene	4.28 U	175	45.4 U	4.26 U	13.3 J	1.08 J	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
trans-1,4-Dichloro-2-butene	21.4 U	265 U	227 U	21.3 U	476 U	22.2 U	21.9 U	21.3 U	22.9 U	21.7 U	21.7 U
Xylenes (total)	8.56 U	106 U	90.7 U	8.52 U	190 U	8.89 U	8.74 U	8.52 U	9.15 U	8.69 U	8.67 U
1,1,1-Trichloroethane	4.28 U	52.9 U	9.07 J	4.26 U	95.2 U	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
1,1,2,2-Tetrachloroethane	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
1,1,2-trichloro-1,2,2-trifluoroethane	NA	NA	NA	NA	NA						
1,1,2-Trichloroethane	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
1,1-Dichloroethane	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
1,1-Dichloroethene	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
1,2,4-Trichlorobenzene	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
1,2-Dibromo-3-chloropropane	25.7 U	265 U	227 U	25.6 U	476 U	26.7 U	26.2 U	25.6 U	27.4 U	26.1 U	26.0 U
1,2-Dichlorobenzene	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
1,2-Dichloroethane	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
1,2-Dichloropropane	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
1,3-Dichlorobenzene	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
1,4-Dichlorobenzene	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
Bromodichloromethane	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
Carbon Tetrachloride	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
Chlorobenzene	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
Chloroethane	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
Chloroform	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
Chloromethane	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
cis-1,3-Dichloropropene	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
Dibromochloromethane	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
Dichlorodifluoromethane	4.28 U	265 U	227 U	4.26 U	476 U	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
Methylene Chloride	17.1 U	265 U	227 U	17.0 U	476 U	17.8 U	17.5 U	17.0 U	18.3 U	17.4 U	17.3 U
trans-1,3-Dichloropropene	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
Trichlorofluoromethane	4.28 U	52.9 U	33.6 J	4.26 U	95.2 U	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
cis-1,2-Dichloroethene	4.28 U	52.9 U	45.4 U	3.02 J	95.2 U	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
Tetrachloroethene	4.28 U	52.9 U	45.4 U	4.26 U	18.1 J	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
trans-1,2-Dichloroethene	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
Trichloroethene	2.82 J	52.9 U	45.4 U	10.9	1,010	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
Vinyl Chloride	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	4.26 U	4.57 U	4.34 U	4.34 U
Total Petroleum Hydrocarbons (µg/kg)											
Ethylene Glycol Monobutyl Ether	NA	NA	NA	NA	NA						

Table 4
Surface Soil Sample Analytical Results (0-2 Feet)
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	ME-05	ME-06	ME-07	ME-08	ME-09	ME-10	MIS-01	MIS-02	MIS-03	MIS-04	MIS-05
Sample Depth (Feet):	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2
Date Collected:	05/06/15	05/06/15	05/06/15	05/06/15	05/06/15	05/06/15	05/04/15	05/04/15	05/04/15	05/04/15	05/04/15
/olatile Organic Compounds (μg/kg)											
,1,1,2-Tetrachloroethane	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
,1-Dichloropropene	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
,2,3-Trichlorobenzene	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
,2,3-Trichloropropane	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
,2,4-Trimethylbenzene	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
,2-Dibromoethane	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
,3,5-Trimethylbenzene	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
,3-Dichloropropane	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
2,2-Dichloropropane	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
-Butanone	22.2 U	22.2 U	21.9 U	22.5 U	21.7 U	1.37 J	20.9 U	21.7 U	22.1 U	21.3 U	21.5 U
2-Chlorotoluene	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
2-Hexanone	11.1 U	11.1 U	10.9 U	11.2 U	10.9 U	10.8 U	10.5 U	10.8 U	11.1 U	10.6 U	10.8 U
-Chlorotoluene	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
-Methyl-2-pentanone	11.1 U	11.1 U	10.9 U	11.2 U	10.9 U	10.8 U	10.5 U	10.8 U	11.1 U	10.6 U	10.8 U
cetone	7.83 J	4.96 J	3.93 J	4.80 J	8.77 J	12.4 J	3.17 J	4.18 J	5.87 J	3.88 J	4.05 J
Benzene	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
Bromobenzene	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
Bromochloromethane	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
Bromoform	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
romomethane	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
Carbon Disulfide	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
Cyclohexane	NA										
Dibromomethane	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
Diisopropyl ether (DIPE)	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
Ethylbenzene	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
lexachlorobutadiene	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
odomethane	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
sopropylbenzene	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
n-,p-Xylene	8.87 U	8.90 U	8.74 U	8.98 U	8.69 U	8.67 U	8.37 U	8.66 U	8.85 U	8.52 U	8.61 U
lethyl Acetate	NA										
Methyl tert-butyl ether	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
1ethylcyclohexane	NA										
laphthalene	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
-Butylbenzene	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
-Propylbenzene	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
-Xylene	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
-Isopropyltoluene	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
ec-Butylbenzene	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U

Table 4
Surface Soil Sample Analytical Results (0-2 Feet)
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	ME-05	ME-06	ME-07	ME-08	ME-09	ME-10	MIS-01	MIS-02	MIS-03	MIS-04	MIS-05
Sample Depth (Feet):	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2
Date Collected:	05/06/15	05/06/15	05/06/15	05/06/15	05/06/15	05/06/15	05/04/15	05/04/15	05/04/15	05/04/15	05/04/15
Styrene	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
tert-Butylbenzene	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
Toluene	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
trans-1,4-Dichloro-2-butene	22.2 U	22.2 U	21.9 U	22.5 U	21.7 U	21.7 U	20.9 U	21.7 U	22.1 U	21.3 U	21.5 U
Xylenes (total)	8.87 U	8.90 U	8.74 U	8.98 U	8.69 U	8.67 U	8.37 U	8.66 U	8.85 U	8.52 U	8.61 U
1,1,1-Trichloroethane	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
1,1,2,2-Tetrachloroethane	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
1,1,2-trichloro-1,2,2-trifluoroethane	NA										
1,1,2-Trichloroethane	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
1,1-Dichloroethane	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
1,1-Dichloroethene	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
1,2,4-Trichlorobenzene	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
1,2-Dibromo-3-chloropropane	26.6 U	26.7 U	26.2 U	26.9 U	26.1 U	26.0 U	25.1 U	26.0 U	26.5 U	25.6 U	25.8 U
1,2-Dichlorobenzene	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
1,2-Dichloroethane	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
1,2-Dichloropropane	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
1,3-Dichlorobenzene	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
1,4-Dichlorobenzene	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
Bromodichloromethane	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
Carbon Tetrachloride	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
Chlorobenzene	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
Chloroethane	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
Chloroform	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
Chloromethane	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
cis-1,3-Dichloropropene	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
Dibromochloromethane	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
Dichlorodifluoromethane	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
Methylene Chloride	17.7 U	17.8 U	17.5 U	18.0 U	17.4 U	17.3 U	16.7 U	17.3 U	17.7 U	17.0 U	17.2 U
trans-1,3-Dichloropropene	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
Trichlorofluoromethane	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
cis-1,2-Dichloroethene	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
Tetrachloroethene	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
trans-1,2-Dichloroethene	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
Trichloroethene	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
Vinyl Chloride	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U
Total Petroleum Hydrocarbons (µg/kg)											
Ethylene Glycol Monobutyl Ether	NA										

Table 4
Surface Soil Sample Analytical Results (0-2 Feet)
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	MIS-06	MIS-07	MIS-08	MIS-09	MIS-10	MIS-11	MIS-12	MIS-13	MIS-14	MIS-15	MIS-16
Sample Depth (Feet):	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2
Date Collected:	05/04/15	05/05/15	05/05/15	05/05/15	05/05/15	05/05/15	05/05/15	05/05/15	05/05/15	05/05/15	05/05/15
/olatile Organic Compounds (μg/kg)	00.0 10	00/00/10	1 00/00/10	00/00/10	1 00/00/10	00.00.10	1 00/00/10	1 00/00/10	00/00/10	00/00/10	00/00/10
1,1,1,2-Tetrachloroethane	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
I,1-Dichloropropene	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
I,2,3-Trichlorobenzene	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
,2,3-Trichloropropane	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
,2,4-Trimethylbenzene	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
,2-Dibromoethane	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
I,3,5-Trimethylbenzene	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
I,3-Dichloropropane	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
2,2-Dichloropropane	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
2-Butanone	21.2 U	2.44 J	3.99 J	20.7 U	22.4 U	21.1 U	2.09 J	2.24 J	21.3 U	22.1 U	22.1 U
2-Chlorotoluene	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
2-Hexanone	10.6 U	11.2 U	11.4 U	10.3 U	11.2 U	10.6 U	10.8 U	10.3 U	10.7 U	11.1 U	11.0 U
1-Chlorotoluene	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
I-Methyl-2-pentanone	10.6 U	11.2 U	11.4 U	10.3 U	11.2 U	10.6 U	10.8 U	10.3 U	10.7 U	11.1 U	11.0 U
Acetone	6.45 J	11.2 J	29.5 J	5.34 J	4.22 J	4.92 J	19.2 J	19.3 J	4.78 J	7.04 J	4.56 J
Benzene	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
Bromobenzene	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
Bromochloromethane	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
Bromoform	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
Bromomethane	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
Carbon Disulfide	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
Cyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibromomethane	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
Diisopropyl ether (DIPE)	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
Ethylbenzene	4.24 U	1.02 J	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
-lexachlorobutadiene	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
odomethane	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
sopropylbenzene	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
n-,p-Xylene	8.48 U	8.93 U	9.15 U	8.26 U	8.96 U	8.44 U	8.66 U	8.26 U	8.54 U	8.85 U	8.82 U
Methyl Acetate	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methyl tert-butyl ether	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
Methylcyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
n-Butylbenzene	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
n-Propylbenzene	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
p-Xylene	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
p-Isopropyltoluene	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
sec-Butylbenzene	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U

Table 4
Surface Soil Sample Analytical Results (0-2 Feet)
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	MIS-06	MIS-07	MIS-08	MIS-09	MIS-10	MIS-11	MIS-12	MIS-13	MIS-14	MIS-15	MIS-16
Sample Depth (Feet):	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2
Date Collected:	05/04/15	05/05/15	05/05/15	05/05/15	05/05/15	05/05/15	05/05/15	05/05/15	05/05/15	05/05/15	05/05/15
Styrene	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
tert-Butylbenzene	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
Toluene	4.24 U	1.09 J	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
trans-1,4-Dichloro-2-butene	21.2 U	22.3 U	22.9 U	20.7 U	22.4 U	21.1 U	21.7 U	20.6 U	21.3 U	22.1 U	22.1 U
Xylenes (total)	8.48 U	8.93 U	9.15 U	8.26 U	8.96 U	8.44 U	8.66 U	8.26 U	8.54 U	8.85 U	8.82 U
1,1,1-Trichloroethane	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
1,1,2,2-Tetrachloroethane	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
1,1,2-trichloro-1,2,2-trifluoroethane	NA										
1,1,2-Trichloroethane	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
1,1-Dichloroethane	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
1,1-Dichloroethene	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
1,2,4-Trichlorobenzene	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
1,2-Dibromo-3-chloropropane	25.4 U	26.8 U	27.5 U	24.8 U	26.9 U	25.3 U	26.0 U	24.8 U	25.6 U	26.5 U	26.5 U
1,2-Dichlorobenzene	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
1,2-Dichloroethane	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
1,2-Dichloropropane	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
1,3-Dichlorobenzene	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
1,4-Dichlorobenzene	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
Bromodichloromethane	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
Carbon Tetrachloride	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
Chlorobenzene	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
Chloroethane	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
Chloroform	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
Chloromethane	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
cis-1,3-Dichloropropene	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
Dibromochloromethane	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
Dichlorodifluoromethane	4.24 U	9.52	4.58 U	1.00 J	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	1.88 J
Methylene Chloride	17.0 U	17.9 U	18.3 U	16.5 U	17.9 U	16.9 U	17.3 U	16.5 U	17.1 U	17.7 U	17.6 U
trans-1,3-Dichloropropene	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
Trichlorofluoromethane	4.24 U	1.45 J	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
cis-1,2-Dichloroethene	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
Tetrachloroethene	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
trans-1,2-Dichloroethene	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
Trichloroethene	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
Vinyl Chloride	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U
Total Petroleum Hydrocarbons (µg/kg)											
Ethylene Glycol Monobutyl Ether	NA										

Table 4
Surface Soil Sample Analytical Results (0-2 Feet)
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	MIS-17	MIS-18	RC-3	RC-5	RC-14	RC-19	RC-73	RC-78	RC-84	RC-98	RC-109
Sample Depth (Feet):	1.5-2	1.5-2	2	2	2	2	2	2	1	2	1
Date Collected:	05/05/15	05/05/15	08/20/18	08/20/18	08/20/18	08/20/18	08/20/18	08/20/18	08/21/18	08/20/18	08/21/18
/olatile Organic Compounds (μg/kg)	00/00/10	00/00/10	00/20/10	00/20/10	00/20/10	00/20/10	00/20/10	00/20/10	00/21/10	00/20/10	00/21/10
1,1,1,2-Tetrachloroethane	4.48 U	4.18 U	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1-Dichloropropene	4.48 U	4.18 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3-Trichlorobenzene	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U
1,2,3-Trichloropenzene	4.48 U	4.18 U	NA	1.40 0 NA	NA	4.70 U	4.50 U	4.50 U	NA	NA	4.30 U
,2,4-Trimethylbenzene	4.48 U	4.18 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2-Dibromoethane	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U
1,3,5-Trimethylbenzene	4.48 U	4.18 U	NA	1.40 0 NA	NA	NA	4.50 U	4.50 U	NA	1.80 U	4.30 U
1,3-Dichloropropane	4.48 U	4.18 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2,2-Dichloropropane	4.48 U	4.18 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2-Butanone	22.4 U	20.9 U	22.0 U	22.0 U	22.0 U	23.0 U	22.0 U	22.0 U	1,300 U	24.0 U	22.0 U
2-Chlorotoluene 2-Hexanone	4.48 U 11.2 U	4.18 U 10.4 U	NA 22.0.11	NA 22.0 U	NA 22.0 U	NA 23.0 U	NA 22.0 U	NA 22.0 U	NA 1,300 U	NA 24.0 U	NA 22.0 U
	4.48 U	4.18 U	22.0 U NA		22.0 U NA	23.0 U NA		22.0 U NA			
1-Chlorotoluene				NA			NA		NA 4 200 H	NA 24.0.11	NA
-Methyl-2-pentanone	11.2 U	10.4 U	22.0 U	22.0 U	22.0 U	23.0 U	22.0 U	22.0 U	1,300 U	24.0 U	22.0 U
Acetone	12.3 J	6.53 J	22.0 U	25.0	22.0 U	23.0 U	26.0	22.0 U	1,300 U	28.0	22.0 U
Benzene	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U
Bromobenzene	4.48 U	4.18 U	NA	NA NA	NA	NA 1 = 0 1 1	NA 1.50.11	NA 1 = 2 · · ·	NA	NA	NA
Bromochloromethane	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U
Bromoform	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U
Bromomethane	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U
Carbon Disulfide	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U
Cyclohexane	NA	NA	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U
Dibromomethane	4.48 U	4.18 U	NA	NA	NA	NA	NA	NA	NA	NA	NA
Diisopropyl ether (DIPE)	4.48 U	4.18 U	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethylbenzene	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	320	4.80 U	4.30 U
Hexachlorobutadiene	4.48 U	4.18 U	NA	NA	NA	NA	NA	NA	NA	NA	NA
odomethane	4.48 U	4.18 U	NA	NA	NA	NA	NA	NA	NA	NA	NA
sopropylbenzene	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U
n-,p-Xylene	8.95 U	8.35 U	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methyl Acetate	NA	NA	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U
Methyl tert-butyl ether	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U
Methylcyclohexane	NA	NA	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U
Naphthalene	4.48 U	4.18 U	NA	NA	NA	NA	NA	NA	NA	NA	NA
n-Butylbenzene	4.48 U	4.18 U	NA	NA	NA	NA	NA	NA	NA	NA	NA
n-Propylbenzene	4.48 U	4.18 U	NA	NA	NA	NA	NA	NA	NA	NA	NA
p-Xylene	4.48 U	4.18 U	NA	NA	NA	NA	NA	NA	NA	NA	NA
o-Isopropyltoluene	4.48 U	4.18 U	NA	NA	NA	NA	NA	NA	NA	NA	NA
sec-Butylbenzene	4.48 U	4.18 U	NA	NA	NA	NA	NA	NA	NA	NA	NA

Table 4
Surface Soil Sample Analytical Results (0-2 Feet)
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	MIS-17	MIS-18	RC-3	RC-5	RC-14	RC-19	RC-73	RC-78	RC-84	RC-98	RC-109
Sample Depth (Feet):	1.5-2	1.5-2	2	2	2	2	2	2	1	2	1
Date Collected:	05/05/15	05/05/15	08/20/18	08/20/18	08/20/18	08/20/18	08/20/18	08/20/18	08/21/18	08/20/18	08/21/18
Styrene	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U
tert-Butylbenzene	4.48 U	4.18 U	NA								
Toluene	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U
trans-1,4-Dichloro-2-butene	22.4 U	20.9 U	NA								
Xylenes (total)	8.95 U	8.35 U	8.70 U	8.90 U	8.90 U	9.30 U	9.00 U	9.00 U	3,200	9.50 U	8.70 U
1,1,1-Trichloroethane	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U
1,1,2,2-Tetrachloroethane	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U
1,1,2-trichloro-1,2,2-trifluoroethane	NA	NA	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U
1,1,2-Trichloroethane	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U
1,1-Dichloroethane	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U
1,1-Dichloroethene	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U
1,2,4-Trichlorobenzene	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U
1,2-Dibromo-3-chloropropane	26.9 U	25.1 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U
1,2-Dichlorobenzene	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U
1,2-Dichloroethane	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U
1,2-Dichloropropane	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U
1,3-Dichlorobenzene	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U
1,4-Dichlorobenzene	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U
Bromodichloromethane	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U
Carbon Tetrachloride	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U
Chlorobenzene	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U
Chloroethane	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U
Chloroform	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U
Chloromethane	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U
cis-1,3-Dichloropropene	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U
Dibromochloromethane	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U
Dichlorodifluoromethane	19.0	7.64	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U
Methylene Chloride	17.9 U	16.7 U	13.0 U	13.0 U	13.0 U	14.0 U	13.0 U	13.0 U	760 U	14.0 U	13.0 U
trans-1,3-Dichloropropene	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U
Trichlorofluoromethane	4.48 U	4.18 U	4.40 U	4.40 U	11.0	5.80	4.50 U	4.50 U	250 U	4.80 U	4.30 U
cis-1,2-Dichloroethene	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U
Tetrachloroethene	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U
trans-1,2-Dichloroethene	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U
Trichloroethene	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U
Vinyl Chloride	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U	4.50 U	250 U	4.80 U	4.30 U
Total Petroleum Hydrocarbons (µg/kg)											
Ethylene Glycol Monobutyl Ether	NA										

Table 4
Surface Soil Sample Analytical Results (0-2 Feet)
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	RC-112	RC-112	RC-144	RC-149	RC-152	RC-154	RC-161	RC-166	RC-168	RC-174	RC-186
Sample Depth (Feet):	.5	2	2	2	1	2	2	0.6	2	0.2	2
Date Collected:	08/16/18	10/26/18	08/21/18	08/20/18	08/16/18	08/20/18	08/16/18	08/16/18	10/25/18	08/16/18	08/16/18
Volatile Organic Compounds (μg/kg)											
1,1,1,2-Tetrachloroethane	NA	NA	NA	NA							
1,1-Dichloropropene	NA	NA	NA	NA							
1,2,3-Trichlorobenzene	4.20 U	NA	4.20 U	5.00 U	1,000 U	4.20 U	4.40 U	120,000 U	210 U	210 U	4.00 U
1,2,3-Trichloropropane	NA	NA	NA	NA							
1,2,4-Trimethylbenzene	NA	NA	NA	NA							
1,2-Dibromoethane	4.20 U	NA	4.20 U	5.00 U	1,000 U	4.20 U	4.40 U	120,000 U	210 U	210 U	4.00 U
1,3,5-Trimethylbenzene	NA	NA	NA	NA							
1,3-Dichloropropane	NA	NA	NA	NA							
2,2-Dichloropropane	NA	NA	NA	NA							
2-Butanone	21.0 U	NA	21.0 U	25.0 U	5,100 U	21.0 U	22.0 U	610,000 U	1,000 U	1,100 U	20.0 U
2-Chlorotoluene	NA	NA	NA	NA							
2-Hexanone	21.0 U	NA	21.0 U	25.0 U	5,100 U	21.0 U	22.0 U	610,000 U	1,000 U	1,100 U	20.0 U
4-Chlorotoluene	NA	NA	NA	NA							
4-Methyl-2-pentanone	21.0 U	NA	21.0 U	25.0 U	5,100 U	21.0 U	22.0 U	610,000 U	1,000 U	1,100 U	20.0 U
Acetone	110	NA	21.0 U	25.0 U	5,100 U	21.0 U	38.0	610,000 U	1,000 U	1,100 U	52.0
Benzene	4.20 U	NA	4.20 U	5.00 U	1,000 U	4.20 U	4.40 U	120,000 U	210 U	210 U	4.00 U
Bromobenzene	NA	NA	NA	NA							
Bromochloromethane	4.20 U	NA	4.20 U	5.00 U	1,000 U	4.20 U	4.40 U	120,000 U	210 U	210 U	4.00 U
Bromoform	4.20 U	NA	4.20 U	5.00 U	1,000 U	4.20 U	4.40 U	120,000 U	210 U	210 U	4.00 U
Bromomethane	4.20 U	NA	4.20 U	5.00 U	1,000 U	4.20 U*	4.40 U	120,000 U	210 U	210 U	4.00 U
Carbon Disulfide	4.20 U	NA	4.20 U	5.00 U	1,000 U	4.20 U	4.40 U	120,000 U	210 U	210 U	4.00 U
Cyclohexane	4.20 U	NA	4.20 U	5.00 U	1,000 U	4.20 U	4.40 U	120,000 U	210 U	210 U	4.00 U
Dibromomethane	NA	NA	NA	NA							
Diisopropyl ether (DIPE)	NA	NA	NA	NA							
Ethylbenzene	4.20 U	NA	4.20 U	5.00 U	1,000 U	4.20 U	4.40 U	120,000 U	210 U	210 U	4.00 U
Hexachlorobutadiene	NA	NA	NA	NA							
lodomethane	NA	NA	NA	NA							
Isopropylbenzene	4.20 U	NA	4.20 U	5.00 U	1,000 U	4.20 U	4.40 U	120,000 U	210 U	210 U	4.00 U
m-,p-Xylene	NA	NA	NA	NA							
Methyl Acetate	4.20 U	NA	4.20 U	5.00 U	1,000 U	4.20 U	4.40 U	120,000 U	210 U	520	4.00 U
Methyl tert-butyl ether	4.20 U	NA	4.20 U	5.00 U	1,000 U	4.20 U	4.40 U	120,000 U	210 U	210 U	4.00 U
Methylcyclohexane	4.20 U	NA	4.20 U	5.00 U	1,000 U	4.20 U	4.40 U	120,000 U	210 U	210 U	4.00 U
Naphthalene	NA	NA	NA	NA							
n-Butylbenzene	NA	NA	NA	NA							
n-Propylbenzene	NA	NA	NA	NA							
o-Xylene	NA	NA	NA	NA							
p-Isopropyltoluene	NA	NA	NA	NA							
sec-Butylbenzene	NA	NA	NA	NA							

Table 4
Surface Soil Sample Analytical Results (0-2 Feet)
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	RC-112	RC-112	RC-144	RC-149	RC-152	RC-154	RC-161	RC-166	RC-168	RC-174	RC-186
Sample Depth (Feet):	.5	2	2	2	1	2	2	0.6	2	0.2	2
Date Collected:	08/16/18	10/26/18	08/21/18	08/20/18	08/16/18	08/20/18	08/16/18	08/16/18	10/25/18	08/16/18	08/16/18
tyrene	4.20 U	NA	4.20 U	5.00 U	1,000 U	4.20 U	4.40 U	120,000 U	210 U	210 U	4.00 U
ert-Butylbenzene	NA	NA	NA	NA							
oluene	9.70	NA	4.20 U	5.00 U	1,000 U	4.20 U	4.40 U	120,000 U	210 U	210 U	4.00 U
ans-1,4-Dichloro-2-butene	NA	NA	NA	NA							
ylenes (total)	27.0	NA	8.40 U	10.0 U	2,000 U	8.30 U	8.90 U	250,000 U	420 U	430 U	8.10 U
,1,1-Trichloroethane	4.20 U	NA	4.20 U	5.00 U	1,000 U	4.20 U	4.40 U	120,000 U	6,100	210 U	4.00 U
,1,2,2-Tetrachloroethane	4.20 U	NA	4.20 U	5.00 U	1,000 U	4.20 U	4.40 U	120,000 U	210 U	210 U	4.00 U
,1,2-trichloro-1,2,2-trifluoroethane	4.20 U	NA	4.20 U	5.00 U	1,000 U	4.20 U	4.40 U	120,000 U	210 U	210 U	4.00 U
,1,2-Trichloroethane	4.20 U	NA	4.20 U	5.00 U	1,000 U	4.20 U	4.40 U	120,000 U	210 U	210 U	4.00 U
1-Dichloroethane	4.20 U	NA	4.20 U	5.00 U	1,000 U	12.0	5.10	120,000 U	210	210 U	4.00 U
,1-Dichloroethene	4.20 U	NA	4.20 U	5.00 U	1,200	4.20 U	4.40 U	120,000 U	1,600	210 U	4.00 U
,2,4-Trichlorobenzene	4.20 U	NA	4.20 U	5.00 U	1,000 U	4.20 U	4.40 U	120,000 U	210 U	210 U	4.00 U
,2-Dibromo-3-chloropropane	4.20 U	NA	4.20 U	5.00 U	1,000 U	4.20 U	4.40 U	120,000 U	210 U	210 U	4.00 U
,2-Dichlorobenzene	4.20 U	NA	4.20 U	5.00 U	1,000 U	4.20 U	4.40 U	120,000 U	210 U	210 U	4.00 U
,2-Dichloroethane	4.20 U	NA	4.20 U	5.00 U	1,000 U	4.20 U	4.40 U	120,000 U	210 U	210 U	4.00 U
,2-Dichloropropane	4.20 U	NA	4.20 U	5.00 U	1,000 U	4.20 U	4.40 U	120,000 U	210 U	210 U	4.00 U
3-Dichlorobenzene	4.20 U	NA	4.20 U	5.00 U	1,000 U	4.20 U	4.40 U	120,000 U	210 U	210 U	4.00 U
,4-Dichlorobenzene	4.20 U	NA	4.20 U	5.00 U	1,000 U	4.20 U	4.40 U	120,000 U	210 U	210 U	4.00 U
romodichloromethane	4.20 U	NA	4.20 U	5.00 U	1,000 U	4.20 U	4.40 U	120,000 U	210 U	210 U	4.00 U
Carbon Tetrachloride	4.20 U	NA	4.20 U	5.00 U	1,000 U	4.20 U	4.40 U	120,000 U	210 U	210 U	4.00 U
Chlorobenzene	4.20 U	NA	4.20 U	5.00 U	1,000 U	4.20 U	4.40 U	120,000 U	210 U	210 U	4.00 U
Chloroethane	4.20 U	NA	4.20 U	5.00 U	1,000 U	4.20 U	4.40 U	120,000 U	210 U	210 U	4.00 U
hloroform	4.20 U	NA	4.20 U	5.00 U	1,000 U	4.20 U	4.40 U	120,000 U	210 U	210 U	4.00 U
Chloromethane	4.20 U	NA	4.20 U	5.00 U	1,000 U	4.20 U	4.40 U	120,000 U	210 U	210 U	4.00 U
is-1,3-Dichloropropene	4.20 U	NA	4.20 U	5.00 U	1,000 U	4.20 U	4.40 U	120,000 U	210 U	210 U	4.00 U
ibromochloromethane	4.20 U	NA	4.20 U	5.00 U	1,000 U	4.20 U	4.40 U	120,000 U	210 U	210 U	4.00 U
ichlorodifluoromethane	4.20 U	NA	4.20 U	5.00 U	1,000 U	4.20 U	4.40 U	120,000 U	210 U	210 U	4.00 U
1ethylene Chloride	12.0 U	NA	13.0 U	15.0 U	3,100 U	12.0 U	13.0 U	370,000 U	630 U	640 U	12.0 U
ans-1,3-Dichloropropene	4.20 U	NA	4.20 U	5.00 U	1,000 U	4.20 U	4.40 U	120,000 U	210 U	210 U	4.00 U
richlorofluoromethane	4.20 U	NA	4.20 U	5.00 U	1,000 U	4.20 U	4.40 U	120,000 U	210 U	210 U	4.00 U
is-1,2-Dichloroethene	4.20 U	NA	4.20 U	5.00 U	20,000	10.0	4.40 U	250,000	1,700	210 U	4.00 U
etrachloroethene	4.20 U	NA	4.20 U	5.00 U	22,000	4.20 U	4.40 U	120,000 U	210 U	210 U	4.00 U
ans-1,2-Dichloroethene	4.20 U	NA	4.20 U	5.00 U	1,000 U	4.20 U	4.40 U	120,000 U	210 U	210 U	4.00 U
richloroethene	4.20 U	NA	4.20 U	5.00 U	51,000	4.20 U	4.40 U	6,000,000	1,200	440	4.00 U
inyl Chloride	4.20 U	NA	4.20 U	5.00 U	1.000 U	6.30	4.40 U	120.000 U	210 U	210 U	4.00 U
otal Petroleum Hydrocarbons (µg/kg)			20	3.33 3	.,000	3.33		.20,000	2.00	2.00	
thylene Glycol Monobutyl Ether	NA	5.600 U	NA	NA	NA	NA	NA	NA	NA	NA	NA

Table 4
Surface Soil Sample Analytical Results (0-2 Feet)
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	RC-191	RC-213	RC-215	RC-220	RC-222	RC-223	RC-225	RC-227	RC-229	RC-231	RC-232
Sample Depth (Feet):	2	0.5	2	.5	2	1	1	1	2	2	2
Date Collected:	08/16/18	08/21/18	08/21/18	08/21/18	10/25/18	10/25/18	10/25/18	10/25/18	10/25/18	10/26/18	10/26/18
olatile Organic Compounds (μg/kg)											
,1,1,2-Tetrachloroethane	NA										
,1-Dichloropropene	NA										
.2.3-Trichlorobenzene	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA
,2,3-Trichloropropane	NA										
,2,4-Trimethylbenzene	NA										
.2-Dibromoethane	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA
,3,5-Trimethylbenzene	NA										
,3-Dichloropropane	NA										
,2-Dichloropropane	NA										
-Butanone	21.0 U	24.0 U	24.0 U	33.0 U	23.0 U	21.0 U	38.0 U	21.0 U	19.0 U	NA	NA
2-Chlorotoluene	NA										
-Hexanone	21.0 U	24.0 U	24.0 U	33.0 U	23.0 U	21.0 U	38.0 U	21.0 U	19.0 U	NA	NA
-Chlorotoluene	NA										
-Methyl-2-pentanone	21.0 U	24.0 U	24.0 U	33.0 U	23.0 U	21.0 U	38.0 U	21.0 U	19.0 U	NA	NA
cetone	29.0	28.0	27.0	33.0 U	32.0	40.0	38.0 U	29.0	19.0 U	NA	NA
Senzene	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA
Bromobenzene	NA										
Bromochloromethane	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA
Bromoform	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA
Bromomethane	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U*	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA
Carbon Disulfide	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA
Cyclohexane	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA
Dibromomethane	NA										
Diisopropyl ether (DIPE)	NA										
thylbenzene	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA
lexachlorobutadiene	NA										
odomethane	NA										
sopropylbenzene	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA
n-,p-Xylene	NA										
1ethyl Acetate	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA
lethyl tert-butyl ether	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA
lethylcyclohexane	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA
aphthalene	NA										
-Butylbenzene	NA										
-Propylbenzene	NA										
-Xylene	NA										
-Isopropyltoluene	NA										
ec-Butylbenzene	NA										

Table 4
Surface Soil Sample Analytical Results (0-2 Feet)
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	RC-191	RC-213	RC-215	RC-220	RC-222	RC-223	RC-225	RC-227	RC-229	RC-231	RC-232
Sample Depth (Feet):	2	0.5	2	.5	2	1	1	1	2	2	2
Date Collected:	08/16/18	08/21/18	08/21/18	08/21/18	10/25/18	10/25/18	10/25/18	10/25/18	10/25/18	10/26/18	10/26/18
Styrene	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA
ert-Butylbenzene	NA										
Toluene	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA
rans-1,4-Dichloro-2-butene	NA										
(ylenes (total)	8.20 U	9.70 U	9.50 U	13.0 U	9.20 U	8.40 U	15.0 U	8.40 U	7.50 U	NA	NA
,1,1-Trichloroethane	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA
I,1,2,2-Tetrachloroethane	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA
,1,2-trichloro-1,2,2-trifluoroethane	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA
1,1,2-Trichloroethane	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA
I,1-Dichloroethane	19.0	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	13.0	3.80 U	NA	NA
1,1-Dichloroethene	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA
1,2,4-Trichlorobenzene	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA
1,2-Dibromo-3-chloropropane	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA
1,2-Dichlorobenzene	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA
,2-Dichloroethane	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA
I,2-Dichloropropane	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA
I,3-Dichlorobenzene	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA
1,4-Dichlorobenzene	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA
Bromodichloromethane	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA
Carbon Tetrachloride	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA
Chlorobenzene	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA
Chloroethane	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA
Chloroform	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA
Chloromethane	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA
cis-1,3-Dichloropropene	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA
Dibromochloromethane	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA
Dichlorodifluoromethane	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA
Methylene Chloride	12.0 U	15.0 U	14.0 U	20.0 U	14.0 U	13.0 U	23.0 U	13.0 U	11.0 U	NA	NA
rans-1,3-Dichloropropene	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA
- Frichlorofluoromethane	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA
sis-1,2-Dichloroethene	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA
Tetrachloroethene	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA
rans-1,2-Dichloroethene	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA
Trichloroethene	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	19.0	4.20 U	3.80 U	NA	NA
/inyl Chloride	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA
otal Petroleum Hydrocarbons (µg/kg)											
thylene Glycol Monobutyl Ether	NA	5,900 U	5,400 U								

Table 4
Surface Soil Sample Analytical Results (0-2 Feet)
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	RC-233	RC-234	RMM-35	RMM-40	RMM-44	RMM-48	RMM-106	RMM-134	RMM-138	RMM-143	RMM-147
Sample Depth (Feet):	2	2	2	1	1	2	1.5	1	2	1	1
Date Collected:	10/26/18	10/26/18	08/21/18	08/21/18	08/21/18	08/21/18	08/21/18	08/22/18	08/22/18	08/22/18	08/22/18
olatile Organic Compounds (μg/kg)											
,1,1,2-Tetrachloroethane	NA										
,1-Dichloropropene	NA										
.2.3-Trichlorobenzene	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U*
,2,3-Trichloropropane	NA										
,2,4-Trimethylbenzene	NA										
,2-Dibromoethane	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
,3,5-Trimethylbenzene	NA										
,3-Dichloropropane	NA										
,2-Dichloropropane	NA										
-Butanone	NA	NA	2,300 U	22.0 U	21.0 U	24.0 U	22.0 U	21.0 U	24.0 U	24.0 U	24.0 U
-Chlorotoluene	NA										
-Hexanone	NA	NA	2,300 U	22.0 U	21.0 U	24.0 U	22.0 U	21.0 U	24.0 U	24.0 U	24.0 U*
-Chlorotoluene	NA										
-Methyl-2-pentanone	NA	NA	2,300 U	22.0 U	21.0 U	24.0 U	22.0 U	21.0 U	24.0 U	24.0 U	24.0 U
cetone	NA	NA	2,300 U	28.0	24.0	66.0	27.0	57.0	50.0	69.0	160
enzene	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	8.60	46.0
romobenzene	NA										
Bromochloromethane	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
Bromoform	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U*
romomethane	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
Carbon Disulfide	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
Cyclohexane	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
Dibromomethane	NA										
iisopropyl ether (DIPE)	NA										
thylbenzene	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
lexachlorobutadiene	NA										
odomethane	NA										
sopropylbenzene	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
n-,p-Xylene	NA										
lethyl Acetate	NA	NA	610	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
lethyl tert-butyl ether	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
lethylcyclohexane	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	6.00
aphthalene	NA										
-Butylbenzene	NA										
-Propylbenzene	NA										
-Xylene	NA										
-Isopropyltoluene	NA										
ec-Butylbenzene	NA										

Table 4
Surface Soil Sample Analytical Results (0-2 Feet)
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	RC-233	RC-234	RMM-35	RMM-40	RMM-44	RMM-48	RMM-106	RMM-134	RMM-138	RMM-143	RMM-147
Sample Depth (Feet):	2	2	2	1	1	2	1.5	1	2	1	1
Date Collected:	10/26/18	10/26/18	08/21/18	08/21/18	08/21/18	08/21/18	08/21/18	08/22/18	08/22/18	08/22/18	08/22/18
Styrene	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
tert-Butylbenzene	NA										
Toluene	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
trans-1,4-Dichloro-2-butene	NA										
Xylenes (total)	NA	NA	910 U	9.00 U	8.50 U	9.80 U	8.90 U	8.20 U	9.70 U	9.80 U	12.0
1,1,1-Trichloroethane	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
1,1,2,2-Tetrachloroethane	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U*
1,1,2-trichloro-1,2,2-trifluoroethane	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
1,1,2-Trichloroethane	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
1,1-Dichloroethane	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
1,1-Dichloroethene	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
1,2,4-Trichlorobenzene	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U*
1,2-Dibromo-3-chloropropane	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U*
1,2-Dichlorobenzene	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U*
1,2-Dichloroethane	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
1,2-Dichloropropane	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
1,3-Dichlorobenzene	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U*
1,4-Dichlorobenzene	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U*
Bromodichloromethane	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
Carbon Tetrachloride	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
Chlorobenzene	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
Chloroethane	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
Chloroform	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
Chloromethane	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
cis-1,3-Dichloropropene	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
Dibromochloromethane	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
Dichlorodifluoromethane	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
Methylene Chloride	NA	NA	1,400 U	13.0 U	13.0 U	15.0 U	13.0 U	12.0 U	15.0 U	15.0 U	14.0 U
trans-1,3-Dichloropropene	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
Trichlorofluoromethane	NA	NA	460 U	4.50 U	4.30 U	4.90 U	7.70	4.10 U	4.90 U	4.90 U	4.80 U
cis-1,2-Dichloroethene	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
Tetrachloroethene	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
trans-1,2-Dichloroethene	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
Trichloroethene	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
Vinyl Chloride	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U	4.10 U	4.90 U	4.90 U	4.80 U
Total Petroleum Hydrocarbons (µg/kg)											
Ethylene Glycol Monobutyl Ether	5,600 U	5,600 U	NA								

Table 4
Surface Soil Sample Analytical Results (0-2 Feet)
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	RMM-152	RMM-204	RMM-230	RMM-240	RMM-243	RMM-248	RMM-263	RMM-279	RMM-298	RMM-310	RMM-314
Sample Depth (Feet):	2	1	1.5	1	1	2	1	1	2	2	2
Date Collected:	08/22/18	08/23/18	08/22/18	08/23/18	08/23/18	08/23/18	08/23/18	08/23/18	08/22/18	08/23/18	08/23/18
/olatile Organic Compounds (μg/kg)	00/22/10	00/20/10	00/22/10	00/20/10	00/20/10	00/20/10	00/20/10	00/20/10	00/22/10	00/20/10	00/20/10
1,1,1,2-Tetrachloroethane	NA										
1,1-Dichloropropene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3-Trichlorobenzene	5.50 U	4.50 U	4.60 U*	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U
1.2.3-Trichloropropane	NA										
1,2,4-Trimethylbenzene	NA NA	NA NA									
I,2-Dibromoethane	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U
1,3,5-Trimethylbenzene	NA	NA NA	NA	NA	NA						
1,3-Dichloropropane	NA NA	NA NA									
2,2-Dichloropropane	NA NA	NA									
2-Butanone	27.0 U	22.0 U	23.0 U	21.0 U	23.0 U	23.0 U	25.0 U	1,200 U	30.0 U	23.0 U	19.0 U
2-Chlorotoluene	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA
2-Hexanone	27.0 U	22.0 U	23.0 U*	21.0 U	23.0 U	23.0 U	25.0 U	1,200 U	30.0 U	23.0 U	19.0 U
4-Chlorotoluene	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA
4-Methyl-2-pentanone	27.0 U	22.0 U	23.0 U	21.0 U	23.0 U	23.0 U	25.0 U	2,900	30.0 U	23.0 U	19.0 U
Acetone	69.0	22.0 U	51.0	30.0	23.0 U	23.0 U	25.0 U	1,200 U	30.0 U	23.0 U	19.0 U
Benzene	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U
Bromobenzene	NA										
Bromochloromethane	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U
Bromoform	5.50 U	4.50 U	4.60 U*	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U
Bromomethane	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U
Carbon Disulfide	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U
Cyclohexane	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U
Dibromomethane	NA	NA NA	NA	NA	NA						
Diisopropyl ether (DIPE)	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA
Ethylbenzene	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U
Hexachlorobutadiene	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA
odomethane	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA
sopropylbenzene	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U
m-,p-Xylene	NA										
Methyl Acetate	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U
Methyl tert-butyl ether	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U
Methylcyclohexane	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U
Naphthalene	NA										
n-Butylbenzene	NA										
n-Propylbenzene	NA										
p-Xylene	NA										
o-Isopropyltoluene	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA
sec-Butylbenzene	NA										

Table 4
Surface Soil Sample Analytical Results (0-2 Feet)
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	RMM-152	RMM-204	RMM-230	RMM-240	RMM-243	RMM-248	RMM-263	RMM-279	RMM-298	RMM-310	RMM-314
Sample Depth (Feet):	2	1	1.5	1	1	2	1	1	2	2	2
Date Collected:	08/22/18	08/23/18	08/22/18	08/23/18	08/23/18	08/23/18	08/23/18	08/23/18	08/22/18	08/23/18	08/23/18
Styrene	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U
tert-Butylbenzene	NA										
Toluene	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U
trans-1,4-Dichloro-2-butene	NA										
Xylenes (total)	11.0 U	9.00 U	9.20 U	8.30 U	9.00 U	9.20 U	9.80 U	970	12.0 U	9.00 U	7.80 U
1,1,1-Trichloroethane	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U
1,1,2,2-Tetrachloroethane	5.50 U	4.50 U	4.60 U*	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U
1,1,2-trichloro-1,2,2-trifluoroethane	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U
1,1,2-Trichloroethane	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U
1,1-Dichloroethane	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U
1,1-Dichloroethene	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U
1,2,4-Trichlorobenzene	5.50 U	4.50 U	4.60 U*	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U
1,2-Dibromo-3-chloropropane	5.50 U	4.50 U	4.60 U*	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U
1,2-Dichlorobenzene	5.50 U	4.50 U	4.60 U*	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U
1,2-Dichloroethane	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U
1,2-Dichloropropane	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U
1,3-Dichlorobenzene	5.50 U	4.50 U	4.60 U*	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U
1,4-Dichlorobenzene	5.50 U	4.50 U	4.60 U*	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U
Bromodichloromethane	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U
Carbon Tetrachloride	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U
Chlorobenzene	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U
Chloroethane	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U
Chloroform	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U
Chloromethane	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U
cis-1,3-Dichloropropene	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U
Dibromochloromethane	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U
Dichlorodifluoromethane	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U
Methylene Chloride	16.0 U	13.0 U	14.0 U	12.0 U	14.0 U	14.0 U	15.0 U	740 U	18.0 U	14.0 U	12.0 U
trans-1,3-Dichloropropene	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U
Trichlorofluoromethane	5.50 U	4.50 U	4.60 U	4.30	4.50 U	4.60 U	4.90 U	2,400	6.00 U	4.50 U	3.90 U
cis-1,2-Dichloroethene	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U
Tetrachloroethene	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U
trans-1,2-Dichloroethene	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U
Trichloroethene	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U
Vinyl Chloride	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U
Total Petroleum Hydrocarbons (μg/kg)											
Ethylene Glycol Monobutyl Ether	NA										

Table 4
Surface Soil Sample Analytical Results (0-2 Feet)
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	RMM-318	RMM-333	RMM-355	RMM-359	RMM-363	RMM-374	RMM-379	RMM-396	SB-210	SB-307	SB-MB1-01
Sample Depth (Feet):	1	2	2	2	2	1	1	1	1.5	2	1.5 - 2
Date Collected:	08/23/18	08/23/18	08/23/18	08/23/18	08/23/18	08/22/18	08/22/18	08/22/18	09/02/15	09/03/15	03/12/12
Volatile Organic Compounds (μg/kg)	00/20/10	1 00.20, 10	1 00/20/10	00/20/10	00/20/10	00/22/10	00/22/10	00/22/10	00.02/10	00/00/10	00/12/12
1,1,1,2-Tetrachloroethane	NA	NA	NA	NA	NA	NA	NA	NA	197 U	4.38 U	5.33 U
1,1-Dichloropropene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	197 U	4.38 U	5.33 U
1,2,3-Trichlorobenzene	4.20 U	4.60 U	4.60 U	4.40 U	4.40 U	4.50 U*	4.70 U	4.10 U	197 U	4.38 U	5.33 U
1.2.3-Trichloropropane	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA	197 U	4.38 U	5.33 U
1,2,4-Trimethylbenzene	NA	NA	NA	NA	NA NA	NA	NA	NA	140 J	4.38 U	5.33 U
1,2-Dibromoethane	4.20 U	4.60 U	4.60 U	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	197 U	4.38 U	5.33 U
1,3,5-Trimethylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	197 U	4.38 U	5.33 U
1,3-Dichloropropane	NA	NA	NA	NA	NA	NA	NA	NA	197 U	4.38 U	5.33 U
2,2-Dichloropropane	NA	NA	NA	NA	NA	NA	NA	NA	197 U	4.38 U	5.33 U
2-Butanone	21.0 U	23.0 U	23.0 U	22.0 U	22.0 U	22.0 U	24.0 U	21.0 U	4,930 U	21.9 U	26.7 U
2-Chlorotoluene	NA	NA	NA	NA	NA	NA	NA	NA	197 U	4.38 U	5.33 U
2-Hexanone	21.0 U	23.0 U	23.0 U	22.0 U	22.0 U	22.0 U*	24.0 U	21.0 U	987 U	10.9 U	13.3 U
4-Chlorotoluene	NA	NA	NA	NA	NA	NA	NA	NA	197 U	4.38 U	5.33 U
4-Methyl-2-pentanone	21.0 U	23.0 U	23.0 U	22.0 U	22.0 U	22.0 U	24.0 U	21.0 U	987 U	10.9 U	13.3 U
Acetone	93.0	23.0 U	23.0 U	45.0	49.0	42.0	130	21.0 U	4,930 U	20.9 J	4.51 J
Benzene	4.20 U	4.60 U	4.60 U	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	197 U	4.38 U	5.33 U
Bromobenzene	NA	NA	NA	NA	NA	NA	NA	NA	197 U	4.38 U	5.33 U
Bromochloromethane	4.20 U	4.60 U	4.60 U	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	197 U	4.38 U	5.33 U
Bromoform	4.20 U	4.60 U	4.60 U	4.40 U	4.40 U	4.50 U*	4.70 U	4.10 U	197 U	4.38 U	5.33 U
Bromomethane	4.20 U	4.60 U	4.60 U	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	197 U	4.38 U	5.33 U
Carbon Disulfide	4.20 U	4.60 U	4.60 U	4.40 U	4.40 U	4.50 U	5.50	4.10 U	197 U	4.38 U	5.33 U
Cyclohexane	4.20 U	4.60 U	4.60 U	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	NA	NA	NA
Dibromomethane	NA	NA	NA	NA	NA	NA	NA	NA	197 U	4.38 U	5.33 U
Diisopropyl ether (DIPE)	NA	NA	NA	NA	NA	NA	NA	NA	197 U	4.38 U	5.33 U
Ethylbenzene	4.20 U	4.60 U	4.60 U	4.40 U	4.40 U	4.50 U	23.0	4.10 U	197 U	4.38 U	5.33 U
Hexachlorobutadiene	NA	NA	NA	NA	NA	NA	NA	NA	197 U	4.38 U	5.33 U
lodomethane	NA	NA	NA	NA	NA	NA	NA	NA	197 U	4.38 U	5.33 U
Isopropylbenzene	4.20 U	4.60 U	4.60 U	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	45.4 J	4.38 U	5.33 U
m-,p-Xylene	NA	NA	NA	NA	NA	NA	NA	NA	355 J	8.75 U	10.7 U
Methyl Acetate	4.20 U	4.60 U	4.60 U	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	NA	NA	NA
Methyl tert-butyl ether	4.20 U	4.60 U	4.60 U	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	197 U	4.38 U	5.33 U
Methylcyclohexane	4.20 U	4.60 U	4.60 U	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	NA	NA	NA
Naphthalene	NA	NA	NA	NA	NA	NA	NA	NA	136 J	4.38 U	5.33 U
n-Butylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	94.8 J	4.38 U	5.33 U
n-Propylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	43.4 J	4.38 U	5.33 U
o-Xylene	NA	NA	NA	NA	NA	NA	NA	NA	197 U	4.38 U	5.33 U
p-Isopropyltoluene	NA	NA	NA	NA	NA	NA	NA	NA	146 J	4.38 U	5.33 U
sec-Butylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	197 U	4.38 U	5.33 U

Table 4
Surface Soil Sample Analytical Results (0-2 Feet)
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	RMM-318	RMM-333	RMM-355	RMM-359	RMM-363	RMM-374	RMM-379	RMM-396	SB-210	SB-307	SB-MB1-01
Sample Depth (Feet):	1	2	2	2	2	1	1	1	1.5	2	1.5 - 2
Date Collected:	08/23/18	08/23/18	08/23/18	08/23/18	08/23/18	08/22/18	08/22/18	08/22/18	09/02/15	09/03/15	03/12/12
Styrene	4.20 U	4.60 U	4.60 U	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	197 U	4.38 U	5.33 U
tert-Butylbenzene	NA	197 U	4.38 U	5.33 U							
Toluene	4.20 U	4.60 U	4.60 U	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	197 U	4.38 U	5.33 U
trans-1,4-Dichloro-2-butene	NA	987 U	21.9 U	26.7 U							
Xylenes (total)	8.40 U	9.20 U	9.10 U	8.80 U	8.80 U	9.00 U	9.40 U	8.20 U	355 J	8.75 U	NA
1,1,1-Trichloroethane	4.20 U	4.60 U	4.60 U	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	197 U	4.38 U	5.33 U
1,1,2,2-Tetrachloroethane	4.20 U	4.60 U	4.60 U	4.40 U	4.40 U	4.50 U*	4.70 U	4.10 U	197 U	4.38 U	5.33 U
1,1,2-trichloro-1,2,2-trifluoroethane	4.20 U	4.60 U	4.60 U	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	NA	NA	NA
1,1,2-Trichloroethane	4.20 U	4.60 U	4.60 U	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	197 U	4.38 U	5.33 U
1,1-Dichloroethane	4.20 U	4.60 U	4.60 U	4.40 U	4.40 U	4.50 U	13.0	4.10 U	989	4.38 U	5.33 U
1,1-Dichloroethene	4.20 U	4.60 U	4.60 U	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	88.8 J	4.38 U	5.33 U
1,2,4-Trichlorobenzene	4.20 U	4.60 U	4.60 U	4.40 U	4.40 U	4.50 U*	4.70 U	4.10 U	197 U	4.38 U	5.33 U
1,2-Dibromo-3-chloropropane	4.20 U	4.60 U	4.60 U	4.40 U	4.40 U	4.50 U*	4.70 U	4.10 U	987 U	26.3 U	32.0 U
1,2-Dichlorobenzene	4.20 U	4.60 U	4.60 U	4.40 U	4.40 U	4.50 U*	4.70 U	4.10 U	197 U	4.38 U	5.33 U
1,2-Dichloroethane	4.20 U	4.60 U	4.60 U	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	197 U	4.38 U	5.33 U
1,2-Dichloropropane	4.20 U	4.60 U	4.60 U	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	197 U	4.38 U	5.33 U
1,3-Dichlorobenzene	4.20 U	4.60 U	4.60 U	4.40 U	4.40 U	4.50 U*	4.70 U	4.10 U	197 U	4.38 U	5.33 U
1,4-Dichlorobenzene	4.20 U	4.60 U	4.60 U	4.40 U	4.40 U	4.50 U*	4.70 U	4.10 U	197 U	4.38 U	5.33 U
Bromodichloromethane	4.20 U	4.60 U	4.60 U	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	197 U	4.38 U	5.33 U
Carbon Tetrachloride	4.20 U	4.60 U	4.60 U	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	197 U	4.38 U	5.33 U
Chlorobenzene	4.20 U	4.60 U	4.60 U	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	197 U	4.38 U	5.33 U
Chloroethane	4.20 U	4.60 U	4.60 U	4.40 U	4.40 U	6.50	35.0	4.10 U	197 U	4.38 U	5.33 U
Chloroform	4.20 U	4.60 U	4.60 U	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	197 U	4.38 U	5.33 U
Chloromethane	4.20 U	4.60 U	4.60 U	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	197 U	4.38 U	5.33 U
cis-1,3-Dichloropropene	4.20 U	4.60 U	4.60 U	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	197 U	4.38 U	5.33 U
Dibromochloromethane	4.20 U	4.60 U	4.60 U	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	197 U	4.38 U	5.33 U
Dichlorodifluoromethane	4.20 U	4.60 U	4.60 U	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	987 U	4.38 U	5.33 U
Methylene Chloride	13.0 U	14.0 U	14.0 U	13.0 U	13.0 U	13.0 U	14.0 U	12.0 U	987 U	17.5 U	4.03 J
trans-1,3-Dichloropropene	4.20 U	4.60 U	4.60 U	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	197 U	4.38 U	5.33 U
Trichlorofluoromethane	4.20 U	4.60 U	4.60 U	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	197 U	4.38 U	5.33 U
cis-1,2-Dichloroethene	4.20 U	4.60 U	4.60 U	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	4,410	1.47 J	5.33 U
Tetrachloroethene	4.20 U	4.60 U	4.60 U	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	197 U	4.38 U	5.33 U
trans-1,2-Dichloroethene	4.20 U	4.60 U	4.60 U	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	197 U	4.38 U	5.33 U
Trichloroethene	4.20 U	4.60 U	4.60 U	4.40 U	4.40 U	4.50 U	4.70 U	12.0	197 U	5.91	5.33 U
Vinyl Chloride	4.20 U	4.60 U	4.60 U	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	288	4.38 U	5.33 U
Total Petroleum Hydrocarbons (μg/kg)											
Ethylene Glycol Monobutyl Ether	NA										

Table 4
Surface Soil Sample Analytical Results (0-2 Feet)
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	SB-MB1-02	SB-MB1-03	SB-MB1-04	SB-MB1-05	SB-MB1-06	SB-MB1-07	SB-MB1-08	SB-MB1-09	SB-MB1-10	SB-MB1-11	SB-MB1-12
Sample Depth (Feet):	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	0 - 0.5
Date Collected:	03/12/12	03/12/12	03/13/12	03/13/12	03/13/12	03/13/12	03/13/12	03/13/12	03/13/12	03/13/12	03/13/12
Volatile Organic Compounds (μg/kg)											
1,1,1,2-Tetrachloroethane	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
1,1-Dichloropropene	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
1,2,3-Trichlorobenzene	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
1,2,3-Trichloropropane	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
1,2,4-Trimethylbenzene	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
1,2-Dibromoethane	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
1,3,5-Trimethylbenzene	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
1,3-Dichloropropane	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
2,2-Dichloropropane	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
2-Butanone	27.7 U	33.0 U	20.1 U	19.3 U	20.0 U	20.0 U	20.9 U	18.9 U	20.8 U	19.7 U	26.2 U
2-Chlorotoluene	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
2-Hexanone	13.9 U	16.5 U	10.1 U	9.66 U	9.99 U	10.0 U	10.4 U	9.47 U	10.4 U	9.84 U	13.1 U
4-Chlorotoluene	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
4-Methyl-2-pentanone	13.9 U	16.5 U	10.1 U	9.66 U	9.99 U	10.0 U	10.4 U	9.47 U	10.4 U	9.84 U	13.1 U
Acetone	55.4 U	8.82 J	40.3 U	3.02 J	39.9 U	40.1 U	41.8 U	2.77 J	41.6 U	39.4 U	52.4 U
Benzene	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
Bromobenzene	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
Bromochloromethane	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
Bromoform	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
Bromomethane	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
Carbon Disulfide	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
Cyclohexane	NA										
Dibromomethane	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
Diisopropyl ether (DIPE)	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
Ethylbenzene	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
Hexachlorobutadiene	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
lodomethane	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
Isopropylbenzene	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
m-,p-Xylene	11.1 U	13.2 U	8.05 U	7.73 U	7.99 U	8.01 U	8.36 U	7.58 U	8.31 U	7.87 U	10.5 U
Methyl Acetate	NA										
Methyl tert-butyl ether	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
Methylcyclohexane	NA										
Naphthalene	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
n-Butylbenzene	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
n-Propylbenzene	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
o-Xylene	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
p-Isopropyltoluene	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
sec-Butylbenzene	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U

Table 4
Surface Soil Sample Analytical Results (0-2 Feet)
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	SB-MB1-02	SB-MB1-03	SB-MB1-04	SB-MB1-05	SB-MB1-06	SB-MB1-07	SB-MB1-08	SB-MB1-09	SB-MB1-10	SB-MB1-11	SB-MB1-12
Sample Depth (Feet):	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	0 - 0.5
Date Collected:	03/12/12	03/12/12	03/13/12	03/13/12	03/13/12	03/13/12	03/13/12	03/13/12	03/13/12	03/13/12	03/13/12
Styrene	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
tert-Butylbenzene	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
Toluene	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
trans-1,4-Dichloro-2-butene	27.7 U	33.0 U	20.1 U	19.3 U	20.0 U	20.0 U	20.9 U	18.9 U	20.8 U	19.7 U	26.2 U
Xylenes (total)	NA										
1,1,1-Trichloroethane	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
1,1,2,2-Tetrachloroethane	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
1,1,2-trichloro-1,2,2-trifluoroethane	NA										
1,1,2-Trichloroethane	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
1,1-Dichloroethane	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
1,1-Dichloroethene	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
1,2,4-Trichlorobenzene	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
1,2-Dibromo-3-chloropropane	33.3 U	39.6 U	24.2 U	23.2 U	24.0 U	24.0 U	25.1 U	22.7 U	24.9 U	23.6 U	31.4 U
1,2-Dichlorobenzene	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
1,2-Dichloroethane	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
1,2-Dichloropropane	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
1,3-Dichlorobenzene	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
1,4-Dichlorobenzene	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
Bromodichloromethane	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
Carbon Tetrachloride	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
Chlorobenzene	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
Chloroethane	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
Chloroform	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
Chloromethane	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
cis-1,3-Dichloropropene	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
Dibromochloromethane	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
Dichlorodifluoromethane	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
Methylene Chloride	1.18 J	2.44 J	1.82 J	1.04 J	1.76 J	0.937 J	1.51 J	1.04 J	1.71 J	1.03 J	1.40 J
trans-1,3-Dichloropropene	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
Trichlorofluoromethane	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	2.63 J	3.79 U	4.16 U	1.05 J	5.24 U
cis-1,2-Dichloroethene	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
Tetrachloroethene	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
trans-1,2-Dichloroethene	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
Trichloroethene	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
Vinyl Chloride	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U
Total Petroleum Hydrocarbons (μg/kg)											
Ethylene Glycol Monobutyl Ether	NA										

Table 4
Surface Soil Sample Analytical Results (0-2 Feet)
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	SB-MB1-13	SB-MB1-14	SB-MB1-15	SB-MB1-16	SB-MB1-17	SB-MB1-18	SB-MB1-19	SB-MB1-20	SB-MB1-21	SB-MB1-22	SB-MB1-23
Sample Depth (Feet):	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	1.5 - 2
Date Collected:	03/14/12	03/14/12	03/14/12	03/14/12	03/14/12	03/14/12	03/14/12	03/14/12	03/14/12	03/14/12	03/14/12
Volatile Organic Compounds (µg/kg)	00/14/12	00/14/12	00/14/12	00/14/12	00/14/12	00/14/12	00/14/12	00/14/12	00/14/12	00/14/12	00/14/12
1,1,1,2-Tetrachloroethane	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U
1,1-Dichloropropene	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U
1,2,3-Trichlorobenzene	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U
1,2,3-Trichloropropane	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U
1,2,4-Trimethylbenzene	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U
1,2-Dibromoethane	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U
1,3,5-Trimethylbenzene	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U
1,3-Dichloropropane	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U
2,2-Dichloropropane	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U
2-Butanone	27.3 U	28.6 U	23.3 U	27.1 U	27.8 U	28.6 U	27.0 U	27.7 U	23.7 U	26.9 U	28.0 U
2-Chlorotoluene	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U
2-Hexanone	13.7 U	14.3 U	11.6 U	13.5 U	13.9 U	14.3 U	13.5 U	13.8 U	11.8 U	13.4 U	14.0 U
4-Chlorotoluene	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U
4-Methyl-2-pentanone	13.7 U	14.3 U	11.6 U	13.5 U	13.9 U	14.3 U	13.5 U	13.8 U	11.8 U	13.4 U	14.0 U
Acetone	4.15 J	57.2 U	46.5 U	54.1 U	4.12 J	57.1 U	54.0 U	55.4 U	47.3 U	53.7 U	56.0 U
Benzene	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U
Bromobenzene	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U
Bromochloromethane	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U
Bromoform	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U
Bromomethane	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U
Carbon Disulfide	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U
	5.46 U	NA	4.65 U NA	NA	NA	NA	0.40 U	NA	4.73 U NA	NA	0.60 U
Cyclohexane Dibromomethane	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U
	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U
Diisopropyl ether (DIPE)	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U		4.73 U	5.37 U	
Ethylbenzene Hexachlorobutadiene	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U 5.71 U	5.40 U	5.54 U 5.54 U	4.73 U	5.37 U	5.60 U 5.60 U
	5.46 U	5.72 U	4.65 U		5.56 U	5.71 U	5.40 U		4.73 U		
lodomethane				5.41 U				5.54 U		5.37 U	5.60 U
Isopropylbenzene	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U
m-,p-Xylene	10.9 U	11.4 U	9.30 U	10.8 U	11.1 U	11.4 U	10.8 U	11.1 U	9.46 U	10.7 U	11.2 U
Methyl Acetate	NA 5.40.11	NA 5.70.11	NA 1.05.11	NA 5.44.11	NA 5.50.11	NA 5.74.11	NA 5.40.11	NA 5.54.11	NA 4.70.11	NA 5.07.11	NA 5.00.11
Methyl tert-butyl ether	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U
Methylcyclohexane	NA 5.46.11	NA 5.70.11	NA 1.05.11	NA 5 44 H	NA 5.50.11	NA 5.74.11	NA 5.40.11	NA 5.54.11	NA 4.72.11	NA 5.27.11	NA 5 CO LL
Naphthalene	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U
n-Butylbenzene	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U
n-Propylbenzene	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U
o-Xylene	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U
p-Isopropyltoluene	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U
sec-Butylbenzene	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U

Table 4
Surface Soil Sample Analytical Results (0-2 Feet)
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	SB-MB1-13	SB-MB1-14	SB-MB1-15	SB-MB1-16	SB-MB1-17	SB-MB1-18	SB-MB1-19	SB-MB1-20	SB-MB1-21	SB-MB1-22	SB-MB1-23
Sample Depth (Feet):	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	1.5 - 2
Date Collected:	03/14/12	03/14/12	03/14/12	03/14/12	03/14/12	03/14/12	03/14/12	03/14/12	03/14/12	03/14/12	03/14/12
Styrene	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U
tert-Butylbenzene	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U
Toluene	1.92 J	0.984 J	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U
trans-1,4-Dichloro-2-butene	27.3 U	28.6 U	23.3 U	27.1 U	27.8 U	28.6 U	27.0 U	27.7 U	23.7 U	26.9 U	28.0 U
Xylenes (total)	NA										
1,1,1-Trichloroethane	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	7.84
1,1,2,2-Tetrachloroethane	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U
1,1,2-trichloro-1,2,2-trifluoroethane	NA										
1,1,2-Trichloroethane	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U
1,1-Dichloroethane	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U
1,1-Dichloroethene	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U
1,2,4-Trichlorobenzene	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U
1,2-Dibromo-3-chloropropane	32.8 U	34.3 U	27.9 U	32.5 U	33.4 U	34.3 U	32.4 U	33.2 U	28.4 U	32.2 U	33.6 U
1,2-Dichlorobenzene	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U
1,2-Dichloroethane	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U
1,2-Dichloropropane	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U
1,3-Dichlorobenzene	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U
1,4-Dichlorobenzene	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U
Bromodichloromethane	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U
Carbon Tetrachloride	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U
Chlorobenzene	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U
Chloroethane	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U
Chloroform	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U
Chloromethane	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U
cis-1,3-Dichloropropene	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U
Dibromochloromethane	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U
Dichlorodifluoromethane	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U
Methylene Chloride	14.5 J	6.16 J	3.34 J	4.33 J	2.62 J	2.46 J	6.11 J	4.17 J	3.67 J	3.01 J	4.45 J
trans-1,3-Dichloropropene	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U
Trichlorofluoromethane	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U
cis-1,2-Dichloroethene	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U
Tetrachloroethene	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U
trans-1,2-Dichloroethene	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U
Trichloroethene	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	0.908 J	1.05 J	10.4
Vinyl Chloride	5.46 U	5.72 U	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U
Total Petroleum Hydrocarbons (µg/kg)											
Ethylene Glycol Monobutyl Ether	NA										

Table 4
Surface Soil Sample Analytical Results (0-2 Feet)
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	SB-MB1-29	SB-MB1-30	SB-MB1-31	SB-MB1-32	SB-MB1-33	SB-MB1-34	SB-MB1-36	SB-MB1-37	SB-MB1-38	SB-MB1-39	SB-MB1-40
Sample Depth (Feet):	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2
Date Collected:	03/14/12	03/14/12	03/15/12	03/15/12	03/15/12	03/15/12	03/15/12	03/15/12	03/16/12	03/16/12	03/16/12
/olatile Organic Compounds (μg/kg)			00/10/11	1 00.107.12	00.10.12		00/10/12		00/10/12		00/10/12
1,1,1,2-Tetrachloroethane	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U	5.07 U	5.23 U	43.3 U	5.21 U
1,1-Dichloropropene	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U	5.07 U	5.23 U	43.3 U	5.21 U
1,2,3-Trichlorobenzene	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U	5.07 U	5.23 U	43.3 U	5.21 U
1,2,3-Trichloropropane	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U	5.07 U	5.23 U	43.3 U	5.21 U
1,2,4-Trimethylbenzene	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U	5.07 U	5.23 U	43.3 U	5.21 U
1,2-Dibromoethane	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U	5.07 U	5.23 U	43.3 U	5.21 U
1,3,5-Trimethylbenzene	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U	5.07 U	5.23 U	43.3 U	5.21 U
1,3-Dichloropropane	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U	5.07 U	5.23 U	43.3 U	5.21 U
2,2-Dichloropropane	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U	5.07 U	5.23 U	43.3 U	5.21 U
2-Butanone	2,320 U	1,160 U	28.4 U	25.7 U	1,210 U	25.2 U	27.3 U	25.3 U	26.1 U	1,080 U	26.1 U
2-Chlorotoluene	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U	5.07 U	5.23 U	43.3 U	5.21 U
2-Hexanone	464 U	232 U	14.2 U	12.9 U	241 U	12.6 U	13.6 U	12.7 U	13.1 U	217 U	13.0 U
4-Chlorotoluene	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U	5.07 U	5.23 U	43.3 U	5.21 U
4-Methyl-2-pentanone	464 U	232 U	14.2 U	12.9 U	241 U	12.6 U	13.6 U	12.7 U	13.1 U	217 U	13.0 U
Acetone	2,320 U	1,160 U	3.02 J	51.4 U	1,210 U	50.5 U	54.6 U	50.7 U	52.3 U	1,080 U	52.1 U
Benzene	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U	5.07 U	5.23 U	43.3 U	5.21 U
Bromobenzene	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U	5.07 U	5.23 U	43.3 U	5.21 U
Bromochloromethane	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U	5.07 U	5.23 U	43.3 U	5.21 U
Bromoform	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U	5.07 U	5.23 U	43.3 U	5.21 U
Bromomethane	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U	5.07 U	5.23 U	43.3 U	5.21 U
Carbon Disulfide	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U	5.07 U	5.23 U	43.3 U	5.21 U
Cyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibromomethane	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U	5.07 U	5.23 U	43.3 U	5.21 U
Diisopropyl ether (DIPE)	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U	5.07 U	5.23 U	43.3 U	5.21 U
Ethylbenzene	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U	5.07 U	5.23 U	43.3 U	5.21 U
Hexachlorobutadiene	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U	5.07 U	5.23 U	43.3 U	5.21 U
lodomethane	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U	5.07 U	5.23 U	43.3 U	5.21 U
Isopropylbenzene	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U	5.07 U	5.23 U	43.3 U	5.21 U
m-,p-Xylene	186 U	92.8 U	11.4 U	10.3 U	96.6 U	10.1 U	10.9 U	10.1 U	10.5 U	86.6 U	10.4 U
Methyl Acetate	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methyl tert-butyl ether	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U	5.07 U	5.23 U	43.3 U	5.21 U
Methylcyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U	5.07 U	5.23 U	43.3 U	5.21 U
n-Butylbenzene	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U	5.07 U	5.23 U	43.3 U	5.21 U
n-Propylbenzene	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U	5.07 U	5.23 U	43.3 U	5.21 U
o-Xylene	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U	5.07 U	5.23 U	43.3 U	5.21 U
o-Isopropyltoluene	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U	5.07 U	5.23 U	43.3 U	5.21 U
sec-Butylbenzene	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U	5.07 U	5.23 U	43.3 U	5.21 U

Table 4
Surface Soil Sample Analytical Results (0-2 Feet)
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	SB-MB1-29	SB-MB1-30	SB-MB1-31	SB-MB1-32	SB-MB1-33	SB-MB1-34	SB-MB1-36	SB-MB1-37	SB-MB1-38	SB-MB1-39	SB-MB1-40
Sample Depth (Feet):	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2
Date Collected:	03/14/12	03/14/12	03/15/12	03/15/12	03/15/12	03/15/12	03/15/12	03/15/12	03/16/12	03/16/12	03/16/12
Styrene	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U	5.07 U	5.23 U	43.3 U	5.21 U
tert-Butylbenzene	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U	5.07 U	5.23 U	43.3 U	5.21 U
Toluene	92.8 U	46.4 U	1.37 J	5.14 U	48.3 U	5.05 U	1.03 J	5.07 U	5.23 U	43.3 U	5.21 U
trans-1,4-Dichloro-2-butene	464 U	232 U	28.4 U	25.7 U	241 U	25.2 U	27.3 U	25.3 U	26.1 U	217 U	26.1 U
Xylenes (total)	NA										
1,1,1-Trichloroethane	136	146	5.69 U	5.14 U	142	5.05 U	5.46 U	5.07 U	5.23 U	43.3 U	5.21 U
1,1,2,2-Tetrachloroethane	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U	5.07 U	5.23 U	43.3 U	5.21 U
1,1,2-trichloro-1,2,2-trifluoroethane	NA										
1,1,2-Trichloroethane	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U	5.07 U	5.23 U	43.3 U	5.21 U
1,1-Dichloroethane	92.8 U	53.4	5.69 U	5.14 U	86.4	5.05 U	5.46 U	5.07 U	5.23 U	43.3 U	5.21 U
1,1-Dichloroethene	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U	5.07 U	5.23 U	43.3 U	5.21 U
1,2,4-Trichlorobenzene	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U	5.07 U	5.23 U	43.3 U	5.21 U
1,2-Dibromo-3-chloropropane	464 U	232 U	34.1 U	30.9 U	241 U	30.3 U	32.7 U	30.4 U	31.4 U	217 U	31.3 U
1,2-Dichlorobenzene	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U	5.07 U	5.23 U	43.3 U	5.21 U
1,2-Dichloroethane	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U	5.07 U	5.23 U	43.3 U	5.21 U
1,2-Dichloropropane	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U	5.07 U	5.23 U	43.3 U	5.21 U
1,3-Dichlorobenzene	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U	5.07 U	5.23 U	43.3 U	5.21 U
1,4-Dichlorobenzene	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U	5.07 U	5.23 U	43.3 U	5.21 U
Bromodichloromethane	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U	5.07 U	5.23 U	43.3 U	5.21 U
Carbon Tetrachloride	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U	5.07 U	5.23 U	43.3 U	5.21 U
Chlorobenzene	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U	5.07 U	5.23 U	43.3 U	5.21 U
Chloroethane	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U	5.07 U	5.23 U	43.3 U	5.21 U
Chloroform	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U	5.07 U	5.23 U	43.3 U	5.21 U
Chloromethane	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U	5.07 U	5.23 U	43.3 U	5.21 U
cis-1,3-Dichloropropene	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U	5.07 U	5.23 U	43.3 U	5.21 U
Dibromochloromethane	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U	5.07 U	5.23 U	43.3 U	5.21 U
Dichlorodifluoromethane	464 U	232 U	5.69 U	5.14 U	241 U	5.05 U	5.46 U	5.07 U	5.23 U	217 U	5.21 U
Methylene Chloride	75.2 J	19.0 J	2.83 J	2.54 J	16.4 J	2.49 J	2.01 J	1.88 J	2.53 J	217 U	2.58 J
trans-1,3-Dichloropropene	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U	5.07 U	5.23 U	43.3 U	5.21 U
Trichlorofluoromethane	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U	5.07 U	5.23 U	43.3 U	5.21 U
cis-1,2-Dichloroethene	92.8 U	160	5.69 U	5.14 U	954	5.05 U	5.46 U	5.07 U	5.23 U	90.1	5.21 U
Tetrachloroethene	92.8 U	36.2 J	5.69 U	5.14 U	24.1 J	5.05 U	5.46 U	5.07 U	5.23 U	43.3 U	5.21 U
trans-1,2-Dichloroethene	92.8 U	46.4 U	5.69 U	5.14 U	47.8 J	5.05 U	5.46 U	5.07 U	5.23 U	43.3 U	5.21 U
Trichloroethene	1,650	723	5.69 U	5.14 U	614	5.05 U	5.06 J	5.07 U	5.23 U	268	5.21 U
Vinyl Chloride	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U	5.07 U	5.23 U	43.3 U	5.21 U
Total Petroleum Hydrocarbons (μg/kg)											
Ethylene Glycol Monobutyl Ether	NA										

Table 4
Surface Soil Sample Analytical Results (0-2 Feet)
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	SB-MB1-41	SB-MB1-42	SB-MB1-43	SB-MB1-44	SB-MB1-45	SB-MB1-46	SB-MB1-47	SB-MB1-48	SB-MB1-49	SB-MB1-50	SB-MB1-51
Sample Depth (Feet):	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2
Date Collected:	03/16/12	03/16/12	03/16/12	03/22/12	03/22/12	03/22/12	03/22/12	03/22/12	03/22/12	03/22/12	03/22/12
Volatile Organic Compounds (µg/kg)	00/10/12	00/10/12	00/10/12	00/22/12	00/22/12	00/22/12	00/22/12	00/22/12	00/22/12	00/22/12	00/22/12
1,1,1,2-Tetrachloroethane	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
1,1-Dichloropropene	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
1,2,3-Trichlorobenzene	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
1,2,3-Trichloropropane	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
1,2,4-Trimethylbenzene	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
1,2-Dibromoethane	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
1,3,5-Trimethylbenzene	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
1,3-Dichloropropane	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
2,2-Dichloropropane	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
2-Butanone	1,120 U	1,120 U	28.1 U	25.7 U	26.4 U	1,360 U	28.1 U	25.8 U	28.9 U	26.8 U	26.9 U
2-Chlorotoluene	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
2-Hexanone	223 U	224 U	14.1 U	12.8 U	13.2 U	273 U	14.1 U	12.9 U	14.4 U	13.4 U	13.4 U
4-Chlorotoluene	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
4-Methyl-2-pentanone	223 U	224 U	14.1 U	12.8 U	13.2 U	273 U	14.1 U	12.9 U	14.4 U	13.4 U	13.4 U
Acetone	1,120 U	1,120 U	56.2 U	757	3.99 J	1,360 U	56.2 U	22.0 J	10.9 J	53.7 U	53.8 U
Benzene	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
Bromobenzene	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
Bromochloromethane	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
Bromoform	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
Bromomethane	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
Carbon Disulfide	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
Cyclohexane	44.7 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibromomethane	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
Diisopropyl ether (DIPE)	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
Ethylbenzene	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
Hexachlorobutadiene	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
lodomethane	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
Isopropylbenzene	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
	89.3 U	89.5 U	11.2 U	10.3 U	10.6 U	109 U	11.2 U	10.3 U	11.6 U	10.7 U	10.8 U
m-,p-Xylene Methyl Acetate	NA	NA	NA	10.3 U NA	NA	NA	NA	NA	NA	NA	NA
	44.7 U					54.6 U			5.78 U		
Methyl tert-butyl ether		44.8 U	5.62 U	5.13 U	5.28 U NA		5.62 U	5.16 U		5.37 U	5.38 U
Methylcyclohexane	NA 44.7.1.1	NA 44.8.11	NA 5 62 H	NA 5.42.11		NA 54.6.U	NA 5 62 H	NA 5 46 H	NA 5 70 H	NA 5.27 LL	NA 5 20 H
Naphthalene	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
n-Butylbenzene	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
n-Propylbenzene	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
o-Xylene	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
p-Isopropyltoluene	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
sec-Butylbenzene	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U

Table 4
Surface Soil Sample Analytical Results (0-2 Feet)
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	SB-MB1-41	SB-MB1-42	SB-MB1-43	SB-MB1-44	SB-MB1-45	SB-MB1-46	SB-MB1-47	SB-MB1-48	SB-MB1-49	SB-MB1-50	SB-MB1-51
Sample Depth (Feet):	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2
Date Collected:	03/16/12	03/16/12	03/16/12	03/22/12	03/22/12	03/22/12	03/22/12	03/22/12	03/22/12	03/22/12	03/22/12
Styrene	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
tert-Butylbenzene	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
Toluene	44.7 U	44.8 U	3.69 J	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
trans-1,4-Dichloro-2-butene	223 U	224 U	28.1 U	25.7 U	26.4 U	273 U	28.1 U	25.8 U	28.9 U	26.8 U	26.9 U
Xylenes (total)	NA										
1,1,1-Trichloroethane	567	72.1	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
1,1,2,2-Tetrachloroethane	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
1,1,2-trichloro-1,2,2-trifluoroethane	NA										
1,1,2-Trichloroethane	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
1,1-Dichloroethane	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
1,1-Dichloroethene	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	535	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
1,2,4-Trichlorobenzene	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
1,2-Dibromo-3-chloropropane	223 U	224 U	33.7 U	30.8 U	31.7 U	273 U	33.7 U	30.9 U	34.7 U	32.2 U	32.3 U
1,2-Dichlorobenzene	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
1,2-Dichloroethane	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
1,2-Dichloropropane	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
1,3-Dichlorobenzene	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
1,4-Dichlorobenzene	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
Bromodichloromethane	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
Carbon Tetrachloride	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
Chlorobenzene	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
Chloroethane	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
Chloroform	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
Chloromethane	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
cis-1,3-Dichloropropene	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
Dibromochloromethane	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
Dichlorodifluoromethane	223 U	224 U	5.62 U	5.13 U	5.28 U	273 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
Methylene Chloride	223 U	224 U	2.69 J	4.14 J	3.65 J	273 U	6.01 J	4.27 J	2.21 J	21.5 U	21.5 U
trans-1,3-Dichloropropene	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
Trichlorofluoromethane	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
cis-1,2-Dichloroethene	130	49.2	5.62 U	5.13 U	5.28 U	16.9 J	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
Tetrachloroethene	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
trans-1,2-Dichloroethene	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
Trichloroethene	1,080	408	4.09 J	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
Vinyl Chloride	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	60.0	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U
Total Petroleum Hydrocarbons (μg/kg)											
Ethylene Glycol Monobutyl Ether	NA										

Table 4
Surface Soil Sample Analytical Results (0-2 Feet)
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	SB-MB1-52	SB-MB1-53	SB-MB1-54	SB-PDG-1	SB-PDG-2	SB-PDG-3	SB-PDG-4	SB-PDG-5	SB-PDG-6	SB-PDG-7	SB-PDG-8
Sample Depth (Feet):	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1 - 1.5	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2
Date Collected:	03/22/12	03/22/12	03/27/12	06/02/09	06/02/09	06/02/09	06/02/09	06/02/09	06/02/09	06/02/09	06/02/09
/olatile Organic Compounds (μg/kg)	00/22/12	00/22/12	00/2//12	00/02/00	00.02.00	00/02/00	00/02/00	00/02/00	00/02/00	00.02.00	
1,1,1,2-Tetrachloroethane	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
1,1-Dichloropropene	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
1,2,3-Trichlorobenzene	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
I,2,3-Trichloropropane	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
1,2,4-Trimethylbenzene	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
I.2-Dibromoethane	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
1,3,5-Trimethylbenzene	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
I,3-Dichloropropane	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
2,2-Dichloropropane	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
2-Butanone	25.0 U	27.0 U	29.3 U	22.0 U	22.6 U	22.6 U	22.0 U	22.1 U	21.2 U	22.2 U	20.8 U
2-Chlorotoluene	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
2-Hexanone	12.5 U	13.5 U	14.7 U	11.0 U	11.3 U	11.3 U	11.0 U	11.0 U	10.6 U	11.1 U	10.4 U
1-Chlorotoluene	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
1-Methyl-2-pentanone	12.5 U	13.5 U	14.7 U	11.0 U	11.3 U	11.3 U	11.0 U	11.0 U	10.6 U	11.1 U	10.4 U
Acetone	12.9 J	54.0 U	58.7 U	12.6 J	7.14 J	18.8 J	24.4 J	26.0 J	11.3 J	24.5 J	14.7 J
Benzene	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
Bromobenzene	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
Bromochloromethane	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
Bromoform	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
Bromomethane	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
Carbon Disulfide	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
Cyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibromomethane	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
Diisopropyl ether (DIPE)	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
Ethylbenzene	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
Hexachlorobutadiene	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
odomethane	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
sopropylbenzene	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
n-,p-Xylene	9.98 U	10.8 U	11.7 U	8.80 U	9.03 U	9.05 U	8.80 U	8.83 U	8.50 U	8.89 U	8.31 U
Methyl Acetate	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methyl tert-butyl ether	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
Methylcyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
a-Butylbenzene	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
-Propylbenzene	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
o-Xylene	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
o-Isopropyltoluene	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
sec-Butylbenzene	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U

Table 4
Surface Soil Sample Analytical Results (0-2 Feet)
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	SB-MB1-52	SB-MB1-53	SB-MB1-54	SB-PDG-1	SB-PDG-2	SB-PDG-3	SB-PDG-4	SB-PDG-5	SB-PDG-6	SB-PDG-7	SB-PDG-8
Sample Depth (Feet):	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1 - 1.5	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2
Date Collected:	03/22/12	03/22/12	03/27/12	06/02/09	06/02/09	06/02/09	06/02/09	06/02/09	06/02/09	06/02/09	06/02/09
Styrene	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
tert-Butylbenzene	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
Toluene	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
trans-1,4-Dichloro-2-butene	25.0 U	27.0 U	29.3 U	22.0 U	22.6 U	22.6 U	22.0 U	22.1 U	21.2 U	22.2 U	20.8 U
Xylenes (total)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,1-Trichloroethane	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
1,1,2,2-Tetrachloroethane	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
1,1,2-trichloro-1,2,2-trifluoroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,2-Trichloroethane	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
1,1-Dichloroethane	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
1,1-Dichloroethene	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	27.4	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
1,2,4-Trichlorobenzene	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
1,2-Dibromo-3-chloropropane	30.0 U	32.4 U	35.2 U	22.0 U	22.6 U	22.6 U	22.0 U	22.1 U	21.2 U	22.2 U	20.8 U
1,2-Dichlorobenzene	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
1,2-Dichloroethane	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
1,2-Dichloropropane	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
1,3-Dichlorobenzene	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
1,4-Dichlorobenzene	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
Bromodichloromethane	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
Carbon Tetrachloride	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
Chlorobenzene	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
Chloroethane	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
Chloroform	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
Chloromethane	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
cis-1,3-Dichloropropene	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
Dibromochloromethane	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
Dichlorodifluoromethane	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
Methylene Chloride	1.42 J	4.02 J	23.5 U	17.6 U	18.1 U	18.1 U	17.6 U	17.7 U	17.0 U	17.8 U	16.6 U
trans-1,3-Dichloropropene	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
Trichlorofluoromethane	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
cis-1,2-Dichloroethene	4.99 U	5.40 U	2.44 J	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
Tetrachloroethene	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
trans-1,2-Dichloroethene	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
Trichloroethene	4.99 U	2.42 J	9.75	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
Vinyl Chloride	4.99 U	5.40 U	5.87 U	4.40 U	4.52 U	7.74	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U
Total Petroleum Hydrocarbons (μg/kg)											
Ethylene Glycol Monobutyl Ether	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Table 4
Surface Soil Sample Analytical Results (0-2 Feet)
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	SB-PDG-9	SB-PDG-10	SB-PDG-11	SB-PDG-12	SB-PDG-13	SB-PDG-14	SB-PDG-15	SB-PDG-16	SB-PDG-17	SB-PDG-18	SB-PDG-19
Sample Depth (Feet):	1.5 - 2	1.5 - 2	1.5 - 2	2	2	2	2	2	2	2	2
Date Collected:	06/02/09	06/02/09	06/02/09	01/14/10	01/14/10	01/15/10	01/15/10	01/15/10	01/19/10	01/19/10	01/19/10
Volatile Organic Compounds (μg/kg)											
1,1,1,2-Tetrachloroethane	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
1,1-Dichloropropene	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
1,2,3-Trichlorobenzene	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
1,2,3-Trichloropropane	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
1,2,4-Trimethylbenzene	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
1,2-Dibromoethane	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
1,3,5-Trimethylbenzene	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
1,3-Dichloropropane	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
2,2-Dichloropropane	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
2-Butanone	23.1 U	22.7 U	23.4 U	12.8 J	21.1 U	21.2 U	19.4 U	26.1 U	33.7 U	36.2 U	35.4 U
2-Chlorotoluene	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
2-Hexanone	11.6 U	11.3 U	11.7 U	11.0 U	10.6 U	10.6 U	9.68 U	13.1 U	16.9 U	18.1 U	17.7 U
4-Chlorotoluene	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
4-Methyl-2-pentanone	11.6 U	11.3 U	11.7 U	11.0 U	10.6 U	10.6 U	9.68 U	13.1 U	16.9 U	18.1 U	17.7 U
Acetone	46.3 U	45.4 U	46.9 U	73.7	14.0 J	16.2 J	23.2 J	10.8 J	16.5 J	21.3 J	70.7 U
Benzene	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
Bromobenzene	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
Bromochloromethane	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
Bromoform	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
Bromomethane	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
Carbon Disulfide	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
Cyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibromomethane	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
Diisopropyl ether (DIPE)	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
Ethylbenzene	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
Hexachlorobutadiene	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
lodomethane	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
Isopropylbenzene	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
m-,p-Xylene	9.26 U	9.08 U	9.37 U	8.80 U	8.45 U	8.46 U	7.75 U	10.5 U	13.5 U	14.5 U	14.1 U
Methyl Acetate	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methyl tert-butyl ether	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
Methylcyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
n-Butylbenzene	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
n-Propylbenzene	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
o-Xylene	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
p-Isopropyltoluene	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
sec-Butylbenzene	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U

Table 4
Surface Soil Sample Analytical Results (0-2 Feet)
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	SB-PDG-9	SB-PDG-10	SB-PDG-11	SB-PDG-12	SB-PDG-13	SB-PDG-14	SB-PDG-15	SB-PDG-16	SB-PDG-17	SB-PDG-18	SB-PDG-19
Sample Depth (Feet):	1.5 - 2	1.5 - 2	1.5 - 2	2	2	2	2	2	2	2	2
Date Collected:	06/02/09	06/02/09	06/02/09	01/14/10	01/14/10	01/15/10	01/15/10	01/15/10	01/19/10	01/19/10	01/19/10
Styrene	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
tert-Butylbenzene	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
Toluene	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
trans-1,4-Dichloro-2-butene	23.1 U	22.7 U	23.4 U	22.0 U	21.1 U	21.2 U	19.4 U	26.1 U	33.7 U	36.2 U	35.4 U
Xylenes (total)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,1-Trichloroethane	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
1,1,2,2-Tetrachloroethane	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
1,1,2-trichloro-1,2,2-trifluoroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,2-Trichloroethane	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
1,1-Dichloroethane	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
1,1-Dichloroethene	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
1,2,4-Trichlorobenzene	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
1,2-Dibromo-3-chloropropane	23.1 U	22.7 U	23.4 U	22.0 U	21.1 U	21.2 U	19.4 U	26.1 U	33.7 U	36.2 U	35.4 U
1,2-Dichlorobenzene	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
1,2-Dichloroethane	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
1,2-Dichloropropane	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
1,3-Dichlorobenzene	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
1,4-Dichlorobenzene	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
Bromodichloromethane	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
Carbon Tetrachloride	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
Chlorobenzene	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
Chloroethane	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
Chloroform	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
Chloromethane	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
cis-1,3-Dichloropropene	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
Dibromochloromethane	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
Dichlorodifluoromethane	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
Methylene Chloride	18.5 U	18.2 U	18.7 U	17.6 U	16.9 U	1.69 JB	3.01 J	2.31 JB	27.0 U	28.9 U	2.23 J
trans-1,3-Dichloropropene	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
Trichlorofluoromethane	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
cis-1,2-Dichloroethene	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
Tetrachloroethene	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
trans-1,2-Dichloroethene	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
Trichloroethene	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
Vinyl Chloride	4.63 U	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U
Total Petroleum Hydrocarbons (µg/kg)											
Ethylene Glycol Monobutyl Ether	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Table 4
Surface Soil Sample Analytical Results (0-2 Feet)
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	SB-PDG-20	SB-PDG-21	SB-PDG-22	SB-PDG-23	SB-PDG-24	SB-PDG-25	SB-PDG-26	SB-PDG-27	SB-PDG-28	SB-PDG-29	SB-PDG-RW
Sample Depth (Feet):	2	2	2	2	2	2	2	2	2	2	0-0.5
Date Collected:	01/19/10	01/20/10	01/20/10	01/20/10	01/20/10	01/20/10	01/20/10	01/20/10	01/20/10	01/20/10	01/20/10
/olatile Organic Compounds (μg/kg)											
1,1,1,2-Tetrachloroethane	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
1,1-Dichloropropene	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
1,2,3-Trichlorobenzene	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
1,2,3-Trichloropropane	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
1,2,4-Trimethylbenzene	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
1,2-Dibromoethane	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
1,3,5-Trimethylbenzene	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
1,3-Dichloropropane	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
2,2-Dichloropropane	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
2-Butanone	36.5 U	58.8 U	36.4 U	35.3 U	34.1 U	32.2 U	37.2 U	39.0 U	44.1 U	45.3 U	43.2 U
2-Chlorotoluene	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
2-Hexanone	18.2 U	29.4 U	18.2 U	17.6 U	17.1 U	16.1 U	18.6 U	19.5 U	22.0 U	22.6 U	21.6 U
4-Chlorotoluene	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
4-Methyl-2-pentanone	18.2 U	29.4 U	18.2 U	17.6 U	17.1 U	16.1 U	18.6 U	19.5 U	22.0 U	22.6 U	21.6 U
Acetone	18.4 J	118 U	24.6 J	30.3 J	27.0 J	23.5 J	14.5 J	38.6 J	44.1 J	21.9 J	18.0 J
Benzene	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
Bromobenzene	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
Bromochloromethane	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
Bromoform	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
Bromomethane	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
Carbon Disulfide	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
Cyclohexane	NA										
Dibromomethane	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
Diisopropyl ether (DIPE)	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
Ethylbenzene	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
Hexachlorobutadiene	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
lodomethane	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
Isopropylbenzene	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
m-,p-Xylene	14.6 U	23.5 U	14.5 U	14.1 U	13.7 U	12.9 U	14.9 U	15.6 U	17.6 U	18.1 U	17.3 U
Methyl Acetate	NA										
Methyl tert-butyl ether	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
Methylcyclohexane	NA										
Naphthalene	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
n-Butylbenzene	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
n-Propylbenzene	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
o-Xylene	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
p-Isopropyltoluene	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
sec-Butylbenzene	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U

Table 4
Surface Soil Sample Analytical Results (0-2 Feet)
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	SB-PDG-20	SB-PDG-21	SB-PDG-22	SB-PDG-23	SB-PDG-24	SB-PDG-25	SB-PDG-26	SB-PDG-27	SB-PDG-28	SB-PDG-29	SB-PDG-RW
Sample Depth (Feet):	2	2	2	2	2	2	2	2	2	2	0-0.5
Date Collected:	01/19/10	01/20/10	01/20/10	01/20/10	01/20/10	01/20/10	01/20/10	01/20/10	01/20/10	01/20/10	01/20/10
Styrene	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
tert-Butylbenzene	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
Toluene	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
trans-1,4-Dichloro-2-butene	36.5 U	58.8 U	36.4 U	35.3 U	34.1 U	32.2 U	37.2 U	39.0 U	44.1 U	45.3 U	43.2 U
Xylenes (total)	NA										
1,1,1-Trichloroethane	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
1,1,2,2-Tetrachloroethane	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
1,1,2-trichloro-1,2,2-trifluoroethane	NA										
1,1,2-Trichloroethane	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
1,1-Dichloroethane	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
1,1-Dichloroethene	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	4.88 J	7.80 U	8.82 U	9.06 U	8.64 U
1,2,4-Trichlorobenzene	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
1,2-Dibromo-3-chloropropane	36.5 U	58.8 U	36.4 U	35.3 U	34.1 U	32.2 U	37.2 U	39.0 U	44.1 U	45.3 U	43.2 U
1,2-Dichlorobenzene	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
1,2-Dichloroethane	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
1,2-Dichloropropane	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
1,3-Dichlorobenzene	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
1,4-Dichlorobenzene	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
Bromodichloromethane	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
Carbon Tetrachloride	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
Chlorobenzene	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
Chloroethane	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
Chloroform	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
Chloromethane	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
cis-1,3-Dichloropropene	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
Dibromochloromethane	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
Dichlorodifluoromethane	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
Methylene Chloride	29.2 U	47.0 U	29.1 U	28.2 U	27.3 U	25.8 U	29.7 U	31.2 U	35.3 U	36.2 U	34.6 U
trans-1,3-Dichloropropene	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
Trichlorofluoromethane	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
cis-1,2-Dichloroethene	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
Tetrachloroethene	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
trans-1,2-Dichloroethene	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
Trichloroethene	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
Vinyl Chloride	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U
Total Petroleum Hydrocarbons (μg/kg)											
Ethylene Glycol Monobutyl Ether	NA										

Table 4
Surface Soil Sample Analytical Results (0-2 Feet)
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	WCSS-1	WP-Com-Base	WP-Com-East	WP-Com-North	WP-Com-South	WP-Com-West	WP-SB-01	WP-SB-03	WP-SB-04	WP-SB-05	WP-SB-06
Sample Depth (Feet):	2	1.5	0.75	0.75	0.75	0.75	0.5 - 1.5	1 - 2	0.5 - 1.5	0.5 - 1.5	0.5 - 1.5
Date Collected:	10/26/15	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08
Volatile Organic Compounds (μg/kg)	10/20/10	00/20/00	00/20/00	00/20/00	00/20/00	00/20/00	00/20/00	00/20/00	00/20/00	00/20/00	00/20/00
1,1,1,2-Tetrachloroethane	103 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	4.87 U	5.28 U	4.31 U	126 U
1,1-Dichloropropene	103 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	4.87 U	5.28 U	4.31 U	126 U
1,2,3-Trichlorobenzene	103 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	4.87 U	5.28 U	4.31 U	126 U
1,2,3-Trichloropropane	103 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	4.87 U	5.28 U	4.31 U	126 U
1,2,4-Trimethylbenzene	103 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	4.87 U	5.37	4.31 U	126 U
1,2-Dibromoethane	103 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	4.87 U	5.28 U	4.31 U	126 U
1,3,5-Trimethylbenzene	103 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	4.87 U	3.66 J	4.31 U	126 U
1,3-Dichloropropane	103 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	4.87 U	5.28 U	4.31 U	126 U
2,2-Dichloropropane	103 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	4.87 U	5.28 U	4.31 U	126 U
2-Butanone	445 J	17,600 U	21,700 U	27,300 U	1,170 U	2,620 U	2,060 U	24.4 U	26.4 U	21.6 U	3,160 U
2-Chlorotoluene	103 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	4.87 U	5.28 U	4.31 U	126 U
2-Hexanone	515 U	3,530 U	4,340 U	5,460 U	233 U	525 U	413 U	12.2 U	13.2 U	10.8 U	632 U
4-Chlorotoluene	103 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	4.87 U	5.28 U	4.31 U	126 U
4-Methyl-2-pentanone	515 U	3,530 U	4,340 U	5,460 U	233 U	525 U	413 U	12.2 U	13.2 U	10.8 U	632 U
Acetone	2,580 U	17,600 U	21,700 U	27,300 U	1,170 U	2,620 U	2,060 U	54.5	44.8 J	34.7 J	3,160 U
Benzene	103 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	4.87 U	5.28 U	4.31 U	126 U
Bromobenzene	103 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	4.87 U	5.28 U	4.31 U	126 U
Bromochloromethane	103 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	4.87 U	5.28 U	4.31 U	126 U
Bromoform	103 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	4.87 U	5.28 U	4.31 U	126 U
Bromomethane	103 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	4.87 U	5.28 U	4.31 U	126 U
Carbon Disulfide	103 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	4.87 U	5.28 U	4.31 U	126 U
Cyclohexane	NA	NA	NA	1,090 U	NA	NA	NA	NA	NA	4.31 U	NA
Dibromomethane	103 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	4.87 U	5.28 U	4.31 U	126 U
Disopropyl ether (DIPE)	103 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	4.87 U	5.28 U	4.31 U	126 U
Ethylbenzene	105 0	2,300	3,520	3,810	301	959	1,070	1.50 J	21.6	5.42	911
Hexachlorobutadiene	103 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	4.87 U	5.28 U	4.31 U	126 U
lodomethane	103 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	4.87 U	5.28 U	4.31 U	126 U
Isopropylbenzene	103 U	705 U	868 U	1,090 U	46.6 U	105 U	60.3 J	4.87 U	1.07 J	4.31 U	126 U
m-,p-Xylene	206 U	9,020	13,700	15,400	803	3,190	6,200	9.75 U	48.4	7.99 J	7.060
Methyl Acetate	NA	9,020 NA	NA	NA	NA	NA	0,200 NA	9.75 U	NA	NA	7,000 NA
Methyl tert-butyl ether	103 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	4.87 U	5.28 U	4.31 U	126 U
Methylcyclohexane	NA	NA	NA	1,090 U NA	NA	NA	82.6 U NA	4.87 U NA	0.28 U NA	4.31 U NA	126 U NA
Naphthalene	103 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	4.87 U	5.28 U	4.31 U	126 U
n-Butylbenzene	103 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	4.87 U	5.28 U	4.31 U	126 U
n-Propylbenzene	103 U	705 U	868 U	1,090 U	46.6 U	30.4 J	28.1 J	2.37 J	5.28 U	4.31 U	126 U
	103 U	818	677 J	1,090 U	46.6 U	30.4 J 105 U	28.1 J 408	4.87 U	13.7	4.31 U	150 126 U
o-Xylene	103 U			· · · · · · · · · · · · · · · · · · ·		33.6 J		4.87 U 4.87 U			97.3 J
p-Isopropyltoluene		705 U	868 U 868 U	1,090 U	46.6 U		97.4		2.61 J 5.28 U	4.31 U	
sec-Butylbenzene	103 U	705 U	808 U	1,090 U	46.6 U	105 U	82.6 U	4.87 U	5.28 U	4.31 U	126 U

Table 4
Surface Soil Sample Analytical Results (0-2 Feet)
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	WCSS-1	WP-Com-Base	WP-Com-East	WP-Com-North	WP-Com-South	WP-Com-West	WP-SB-01	WP-SB-03	WP-SB-04	WP-SB-05	WP-SB-06
Sample Depth (Feet):	2	1.5	0.75	0.75	0.75	0.75	0.5 - 1.5	1 - 2	0.5 - 1.5	0.5 - 1.5	0.5 - 1.5
Date Collected:	10/26/15	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08
Styrene	103 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	4.87 U	5.28 U	4.31 U	126 U
tert-Butylbenzene	103 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	4.87 U	5.28 U	4.31 U	126 U
Toluene	55.7 J	63.5 J	868 U	1,090 U	46.6 U	16.8 J	21.5 J	1.60 J	8.65	4.31 U	32.8 J
trans-1,4-Dichloro-2-butene	515 U	3,530 U	4,340 U	5,460 U	233 U	525 U	413 U	24.4 U	26.4 U	21.6 U	632 U
Xylenes (total)	206 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,1-Trichloroethane	2,730	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	4.87 U	5.28 U	4.31 U	126 U
1,1,2,2-Tetrachloroethane	103 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	4.87 U	5.28 U	4.31 U	126 U
1,1,2-trichloro-1,2,2-trifluoroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,2-Trichloroethane	103 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	4.87 U	5.28 U	4.31 U	126 U
1,1-Dichloroethane	405	705 U	868 U	1,090 U	46.6 U	33.6 J	82.6 U	7.32	24.1	4.35	20.2 J
1,1-Dichloroethene	165	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	4.87 U	5.28 U	4.31 U	126 U
1,2,4-Trichlorobenzene	103 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	4.87 U	5.28 U	4.31 U	126 U
1,2-Dibromo-3-chloropropane	515 U	3,530 U	4,340 U	5,460 U	233 U	525 U	413 U	24.4 U	26.4 U	21.6 U	632 U
1,2-Dichlorobenzene	103 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	4.87 U	5.28 U	4.31 U	126 U
1,2-Dichloroethane	103 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	4.87 U	5.28 U	4.31 U	126 U
1,2-Dichloropropane	103 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	4.87 U	5.28 U	4.31 U	126 U
1,3-Dichlorobenzene	103 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	4.87 U	5.28 U	4.31 U	126 U
1,4-Dichlorobenzene	103 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	4.87 U	5.28 U	4.31 U	126 U
Bromodichloromethane	103 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	4.87 U	5.28 U	4.31 U	126 U
Carbon Tetrachloride	103 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	4.87 U	5.28 U	4.31 U	126 U
Chlorobenzene	103 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	4.87 U	5.28 U	4.31 U	126 U
Chloroethane	103 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	4.87 U	5.28 U	4.31 U	126 U
Chloroform	103 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	4.87 U	5.28 U	4.31 U	126 U
Chloromethane	103 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	4.87 U	5.28 U	4.31 U	126 U
cis-1,3-Dichloropropene	103 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	4.87 U	5.28 U	4.31 U	126 U
Dibromochloromethane	103 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	4.87 U	5.28 U	4.31 U	126 U
Dichlorodifluoromethane	515 U	3,530 U	4,340 U	5,460 U	233 U	525 U	413 U	4.87 U	5.28 U	4.31 U	632 U
Methylene Chloride	515 U	233 J	304 J	1,460 J	114 J	73.4 J	152 J	19.5 U	2.09 J	1.56 J	225 J
trans-1,3-Dichloropropene	103 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	4.87 U	5.28 U	4.31 U	126 U
Trichlorofluoromethane	103 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	4.87 U	5.28 U	4.31 U	126 U
cis-1,2-Dichloroethene	1,660	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	4.87 U	5.28 U	4.31 U	126 U
Tetrachloroethene	103 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	4.87 U	5.28 U	4.31 U	126 U
trans-1,2-Dichloroethene	103 U	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	4.87 U	3.97 J	4.31 U	126 U
Trichloroethene	458	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	4.87 U	5.28 U	4.31 U	80.9 J
Vinyl Chloride	87.6 J	705 U	868 U	1,090 U	46.6 U	105 U	82.6 U	4.87 U	5.28 U	4.31 U	126 U
Total Petroleum Hydrocarbons (µg/kg)											
Ethylene Glycol Monobutyl Ether	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Table 4
Surface Soil Sample Analytical Results (0-2 Feet)
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	WP-SB-07	WP-SB-08	WP-SB-09	WP-SB-10	WP-SB-11	WP-SB-12	WP-SB-13	WP-SB-14
Sample Depth (Feet):	0.5 - 1.5	0.5 - 1.5	0.5 - 1.5	0.5 - 1.5	0.5 - 1.5	0.5 - 1.5	0.5 - 1.5	0.5 - 1.5
Date Collected:	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08
Volatile Organic Compounds (μg/kg)								
1,1,1,2-Tetrachloroethane	7.28 U	193 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
1,1-Dichloropropene	7.28 U	193 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
1,2,3-Trichlorobenzene	7.28 U	193 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
1,2,3-Trichloropropane	7.28 U	193 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
1,2,4-Trimethylbenzene	7.28 U	193 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
1,2-Dibromoethane	7.28 U	193 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
1,3,5-Trimethylbenzene	7.28 U	193 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
1,3-Dichloropropane	7.28 U	193 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
2,2-Dichloropropane	7.28 U	193 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
2-Butanone	36.4 U	4,840 U	23.5 U	25.1 U	22.1 U	19.2 U	26.1 U	22.6 U
2-Chlorotoluene	7.28 U	193 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
2-Hexanone	18.2 U	967 U	11.7 U	12.5 U	11.0 U	9.62 U	13.1 U	11.3 U
4-Chlorotoluene	7.28 U	193 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
4-Methyl-2-pentanone	18.2 U	967 U	11.7 U	12.5 U	11.0 U	9.62 U	13.1 U	11.3 U
Acetone	84.6	4,840 U	27.0 J	28.2 J	30.6 J	21.3 J	24.6 J	18.0 J
Benzene	7.28 U	193 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Bromobenzene	7.28 U	193 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Bromochloromethane	7.28 U	193 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Bromoform	7.28 U	193 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Bromomethane	7.28 U	193 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Carbon Disulfide	7.28 U	193 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Cyclohexane	NA							
Dibromomethane	7.28 U	193 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Diisopropyl ether (DIPE)	7.28 U	193 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Ethylbenzene	7.28 U	867	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Hexachlorobutadiene	7.28 U	193 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
lodomethane	7.28 U	193 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Isopropylbenzene	7.28 U	193 U	0.958 J	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
m-,p-Xylene	14.6 U	6,680	9.39 U	10.0 U	8.83 U	7.69 U	10.5 U	9.05 U
Methyl Acetate	NA							
Methyl tert-butyl ether	7.28 U	193 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Methylcyclohexane	NA							
Naphthalene	7.28 U	193 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
n-Butylbenzene	7.28 U	193 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
n-Propylbenzene	7.28 U	193 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
o-Xylene	7.28 U	193 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
p-Isopropyltoluene	7.28 U	193 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
sec-Butylbenzene	7.28 U	193 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U

Table 4
Surface Soil Sample Analytical Results (0-2 Feet)
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	WP-SB-07	WP-SB-08	WP-SB-09	WP-SB-10	WP-SB-11	WP-SB-12	WP-SB-13	WP-SB-14
Sample Depth (Feet):	0.5 - 1.5	0.5 - 1.5	0.5 - 1.5	0.5 - 1.5	0.5 - 1.5	0.5 - 1.5	0.5 - 1.5	0.5 - 1.5
Date Collected:	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08
Styrene	7.28 U	193 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
tert-Butylbenzene	7.28 U	193 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Toluene	7.28 U	193 U	4.70 U	5.02 U	4.42 U	1.15 J	5.23 U	4.52 U
trans-1,4-Dichloro-2-butene	36.4 U	967 U	23.5 U	25.1 U	22.1 U	19.2 U	26.1 U	22.6 U
Xylenes (total)	NA							
1,1,1-Trichloroethane	7.28 U	193 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
1,1,2,2-Tetrachloroethane	7.28 U	193 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
1,1,2-trichloro-1,2,2-trifluoroethane	NA							
1,1,2-Trichloroethane	7.28 U	193 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
1,1-Dichloroethane	6.16 J	54.2 J	4.70 U	5.02 U	4.42 U	2.57 J	1.41 J	4.52 U
1,1-Dichloroethene	7.28 U	193 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
1,2,4-Trichlorobenzene	7.28 U	193 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
1,2-Dibromo-3-chloropropane	36.4 U	967 U	23.5 U	25.1 U	22.1 U	19.2 U	26.1 U	22.6 U
1,2-Dichlorobenzene	7.28 U	193 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
1,2-Dichloroethane	7.28 U	193 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
1,2-Dichloropropane	7.28 U	193 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
1,3-Dichlorobenzene	7.28 U	193 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
1,4-Dichlorobenzene	7.28 U	193 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Bromodichloromethane	7.28 U	193 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Carbon Tetrachloride	7.28 U	193 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Chlorobenzene	7.28 U	193 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Chloroethane	7.28 U	193 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Chloroform	7.28 U	193 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Chloromethane	7.28 U	193 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
cis-1,3-Dichloropropene	7.28 U	193 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Dibromochloromethane	7.28 U	193 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Dichlorodifluoromethane	7.28 U	967 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Methylene Chloride	29.1 U	230 J	1.62 J	1.73 J	1.85 J	15.4 U	20.9 U	18.1 U
trans-1,3-Dichloropropene	7.28 U	193 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Trichlorofluoromethane	7.28 U	193 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
cis-1,2-Dichloroethene	7.28 U	193 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Tetrachloroethene	7.28 U	193 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
trans-1,2-Dichloroethene	7.28 U	193 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Trichloroethene	7.28 U	193 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Vinyl Chloride	7.28 U	193 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Total Petroleum Hydrocarbons (µg/kg)								
Ethylene Glycol Monobutyl Ether	NA							

Table 4 Surface Soil Sample

Surface Soil Sample Analytical Results (0-2 Feet) Human Health Risk Assessment AVX Corporation Myrtle Beach, South Carolina

Notes:

NA = not applicable μg/kg = micrograms per kilogram

Laboratory Qualifiers:

B = Analyte was found in the associated blank, as well as in the sample.

J = Indicates an estimated value.

ND = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

Data Tables for Report 1-25-19 49/49

Location Identification:	Corp-01	Corp-02	Corp-03	Corp-04	Corp-05	Corp-06	CPT-02	CPT-08	MB1-01	MB1-02	MB1-03	MB1-04	MB1-05	MB1-06	MB1-07	MB1-08	MB1-09	MB1-10	MB1-11	MB1-12	MB1-13	MB1-14
Sample Depth (Feet):	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	8 - 10	6 - 8	0.5 - 1.0	1.0 - 1.5	1.5 - 2.0	1.0 - 1.5	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.0 - 1.5	1.5 - 2.0	1.5 - 2.0
Date Collected:	05/06/15	05/06/15	05/06/15	05/06/15	05/06/15	05/06/15	10/03/08	10/03/08	07/14/15	07/14/15	07/14/15	07/14/15	07/14/15	07/14/15	07/14/15	07/14/15	07/14/15	07/14/15	07/14/15	07/14/15	07/14/15	07/14/15
Volatile Organic Compounds (µg/kg)		1																				
1.1.1.2-Tetrachloroethane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	4,960 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U
1,1-Dichloropropene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	4,960 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U
1,2,3-Trichlorobenzene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	4,960 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U
1,2,3-Trichloropropane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	4,960 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U
1,2,4-Trimethylbenzene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	4,960 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U
1,2-Dibromoethane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	4,960 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U
1,3,5-Trimethylbenzene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	4,960 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U
1,3-Dichloropropane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	4,960 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U
2,2-Dichloropropane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	4,960 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U
2-Butanone	1.88 J	14.2 J	21.0 U	23.3 U	4.54 J	23.8 U	207,000 U	124,000 U	2.55 J	1.82 J	2.64 J	3.14 J	24.1 U	24.3 U	23.7 U	23.3 U	22.6 U	26.0 U	24.3 U	24.7 U	23.4 U	23.7 U
2-Chlorotoluene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	4,960 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U
2-Hexanone	11.0 U	10.8 U	10.5 U	11.7 U	10.3 U	11.9 U	41,400 U	24,800 U	12.0 U	11.6 U	11.2 U	12.6 U	12.1 U	12.2 U	11.9 U	11.6 U	11.3 U	13.0 U	12.1 U	12.4 U	11.7 U	11.9 U
4-Chlorotoluene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	4,960 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U
4-Methyl-2-pentanone	11.0 U	10.8 U	10.5 U	11.7 U	10.3 U	11.9 U	41,400 U	24,800 U	12.0 U	11.6 U	11.2 U	12.6 U	12.1 U	12.2 U	11.9 U	11.6 U	11.3 U	13.0 U	12.1 U	12.4 U	11.7 U	11.9 U
Acetone	15.0 J	60.0	7.30 J	5.67 J	44.7	6.90 J	207,000 U	124,000 U	18.9 J	14.4 J	17.9 J	17.9 J	8.97 J	6.66 J	6.45 J	10.8 J	9.43 J	51.9 U	11.2 J	10.6 J	15.7 J	18.1 J
Benzene	4.41 U	4.34 U	4.21 U	2.35 J	4.12 U	2.31 J	8,280 U	4,960 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U
Bromobenzene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	4,960 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U
Bromochloromethane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	4,960 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U
Bromoform	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	4,960 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U
Bromomethane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	4,960 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U
Carbon Disulfide	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	4,960 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U
Cyclohexane	NA																					
Dibromomethane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	4,960 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U
Diisopropyl ether (DIPE)	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	4,960 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U
Ethylbenzene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	4,960 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U
Hexachlorobutadiene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	4,960 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U
lodomethane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	4,960 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U
Isopropylbenzene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	4,960 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U
m-,p-Xylene	8.83 U	8.67 U	8.41 U	9.34 U	8.24 U	9.51 U	16,600 U	9,920 U	9.58 U	9.28 U	8.98 U	10.0 U	9.65 U	9.73 U	9.49 U	9.30 U	9.03 U	10.4 U	9.71 U	9.90 U	9.38 U	9.48 U
Methyl Acetate	NA																					
Methyl tert-butyl ether	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	4,960 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U
Methylcyclohexane	NA																					
Naphthalene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	4,960 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U
n-Butylbenzene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	4,960 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U
n-Propylbenzene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	4,960 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U
o-Xylene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	4,960 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U

Location Identification:	Corp-01	Corp-02	Corp-03	Corp-04	Corp-05	Corp-06	CPT-02	CPT-08	MB1-01	MB1-02	MB1-03	MB1-04	MB1-05	MB1-06	MB1-07	MB1-08	MB1-09	MB1-10	MB1-11	MB1-12	MB1-13	MB1-14
Sample Depth (Feet):	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	8 - 10	6 - 8	0.5 - 1.0	1.0 - 1.5	1.5 - 2.0	1.0 - 1.5	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.0 - 1.5	1.5 - 2.0	1.5 - 2.0
Date Collected:	05/06/15	05/06/15	05/06/15	05/06/15	05/06/15	05/06/15	10/03/08	10/03/08	07/14/15	07/14/15	07/14/15	07/14/15	07/14/15	07/14/15	07/14/15	07/14/15	07/14/15	07/14/15	07/14/15	07/14/15	07/14/15	07/14/15
p-Isopropyltoluene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	4,960 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U
sec-Butylbenzene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	4,960 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U
Styrene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	4,960 U	1.42 J	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U
tert-Butylbenzene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	4,960 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U
Toluene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	4,960 U	4.79 U	4.64 U	0.925 J	5.02 U	0.974 J	1.27 J	4.75 U	4.65 U	0.966 J	1.17 J	1.20 J	1.19 J	1.15 J	4.74 U
trans-1,4-Dichloro-2-butene	22.1 U	21.7 U	21.0 U	23.3 U	20.6 U	23.8 U	41,400 U	24,800 U	23.9 U	23.2 U	22.4 U	25.1 U	24.1 U	24.3 U	23.7 U	23.3 U	22.6 U	26.0 U	24.3 U	24.7 U	23.4 U	23.7 U
Xylenes (total)	8.83 U	8.67 U	8.41 U	9.34 U	8.24 U	9.51 U	NA	NA	9.58 U	9.28 U	8.98 U	10.0 U	9.65 U	9.73 U	9.49 U	9.30 U	9.03 U	10.4 U	9.71 U	9.90 U	9.38 U	9.48 U
1,1,1-Trichloroethane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	4,960 U	15.0	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	1.67 J	32.2	12.9	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U
1,1,2,2-Tetrachloroethane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	4,960 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U
1,1,2-trichloro-1,2,2-trifluoroethane	NA																					
1,1,2-Trichloroethane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	4,960 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U
1,1-Dichloroethane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	4,960 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.72	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U
1,1-Dichloroethene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	4,960 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U
1,2,4-Trichlorobenzene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	4,960 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U
1,2-Dibromo-3-chloropropane	26.5 U	26.0 U	25.2 U	28.0 U	24.7 U	28.5 U	41,400 U	24,800 U	28.7 U	27.8 U	26.9 U	30.1 U	28.9 U	29.2 U	28.5 U	27.9 U	27.1 U	31.1 U	29.1 U	29.7 U	28.1 U	28.4 U
1,2-Dichlorobenzene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	4,960 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U
1,2-Dichloroethane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	4,960 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U
1,2-Dichloropropane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	4,960 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U
1,3-Dichlorobenzene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	4,960 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U
1,4-Dichlorobenzene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	4,960 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U
Bromodichloromethane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	4,960 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U
Carbon Tetrachloride	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	4,960 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U
Chlorobenzene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	4,960 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U
Chloroethane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	4,960 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U
Chloroform	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	4,960 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U
Chloromethane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	4,960 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U
cis-1,3-Dichloropropene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	4,960 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U
Dibromochloromethane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	4,960 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U
Dichlorodifluoromethane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	41,400 U	24,800 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U
Methylene Chloride	17.7 U	17.3 U	16.8 U	18.7 U	16.5 U	19.0 U	41,400 U	24,800 U	19.2 U	18.6 U	18.0 U	20.1 U	19.3 U	19.5 U	19.0 U	18.6 U	18.1 U	20.8 U	19.4 U	19.8 U	18.8 U	19.0 U
trans-1,3-Dichloropropene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	4,960 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U
Trichlorofluoromethane	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	4,960 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U
cis-1,2-Dichloroethene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	59,400	46,100	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	1.99 J	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U
Tetrachloroethene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	4,960 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	1.52 J	1.18 J	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U
trans-1,2-Dichloroethene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	8,280 U	4,960 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U
Trichloroethene	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	219,000	217,000	4.17 J	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	8.11	1.26 J	5.19 U	4.86 U	1.04 J	4.69 U	4.74 U
Vinyl Chloride	4.41 U	4.34 U	4.21 U	4.67 U	4.12 U	4.75 U	4,390 J	4,960 U	4.79 U	4.64 U	4.49 U	5.02 U	4.82 U	4.86 U	4.75 U	4.65 U	4.51 U	5.19 U	4.86 U	4.95 U	4.69 U	4.74 U
Total Petroleum Hydrocarbons (μg/kg)																						
Ethylene Glycol Monobutyl Ether	NA																					

Location Identification:	MB1-15	MB1-16	MB1-17	MB1-18	MB1-19	MB1-20	MB1-21	MB1-22	MB1-22A	MB1-23	MB1-24	MB1-25	MB1-26	MB1-27	MB1-28	MB1-29	MB1-30	MB1-31	MB1-32	MB1-33	MB1-34	MB1-35	MB1-36
Sample Depth (Feet):	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	0.5 - 1.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	3.0 - 3.5	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	0.5 - 1.0	1.5 - 2.0	1.0 - 1.5	1.0 - 1.5	1.5 - 2.0	1.5 - 2.0
Date Collected:									07/16/15										07/15/15				
Volatile Organic Compounds (μg/kg)	01/14/13	01/14/15	01/14/13	01/14/13	01/13/13	07713713	01/13/13	01/13/13	07/10/13	01/13/13	01/13/13	01/13/13	01/13/13	01/13/13	01/13/13	01/10/10	07713/13	07713/13	07713/13	01/13/13	01/13/13	07713/13	01/15/15
1.1.1.2-Tetrachloroethane	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1.080 U	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1.160 U	4.38 U	49.3 U
1,1-Dichloropropene	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U
1.2.3-Trichlorobenzene	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1.080 U	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U
1,2,3-Trichloropropane	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1.080 U	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U		49.3 U
1,2,4-Trimethylbenzene	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	170	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	210
1,2-Dibromoethane	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U
1,3,5-Trimethylbenzene	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	41.2 J	0.974 J	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U		1,100
1,3-Dichloropropane	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U
2,2-Dichloropropane	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U
2-Butanone	26.5 U	25.3 U	21.8 U	3.71 J	21.8 U	22.6 U	27.0 U	28.7 U	1,250 U	22.9 U	4.52 J	26.9 U	26.3 U	26,900 U	73.0 J	24.6 U	24.7 U	22.9 J	22.7 U	24.2 U	28,900 U	21.7 J	38.0 J
2-Chlorotoluene	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U
2-Hexanone	13.3 U	12.6 U	10.9 U	12.6 U	10.9 U	11.3 U	13.5 U	14.3 U	250 U	11.5 U	13.0 U	13.4 U	13.1 U	5,380 U	312 U	12.3 U	12.3 U	14.2 U	11.3 U	12.1 U	5,790 U	11.0 U	247 U
4-Chlorotoluene	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U
4-Methyl-2-pentanone	13.3 U	12.6 U	10.9 U	12.6 U	10.9 U	11.3 U	13.5 U	14.3 U	250 U	11.5 U	13.0 U	13.4 U	13.1 U	5,380 U	312 U	12.3 U	12.3 U	5.13 J	2.25 J	12.1 U	5,790 U	11.0 U	247 U
Acetone	17.8 J	15.0 J	13.7 J	35.2 J	14.4 J	20.2 J	17.2 J	15.7 J	1,250 U	9.01 J	40.7 J	30.9 J	14.0 J	26,900 U	1,560 U	11.1 J	23.2 J	119	7.76 J	6.33 J	28,900 U	87.3	1,230 U
Benzene	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	1.26 J	1.34 J	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U
Bromobenzene	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U
Bromochloromethane	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U
Bromoform	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U
Bromomethane	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U
Carbon Disulfide	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U
Cyclohexane	NA																						
Dibromomethane	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U
Diisopropyl ether (DIPE)	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U
Ethylbenzene	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	48.7 J	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	1.56 J	6.90 J
Hexachlorobutadiene	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U
lodomethane	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U
Isopropylbenzene	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	23.7 J	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	401
m-,p-Xylene	10.6 U	10.1 U	8.71 U	10.1 U	8.74 U	9.06 U	10.8 U	11.5 U	100 U	9.18 U	10.4 U	10.7 U	10.5 U	2,150 U	287	9.84 U	9.87 U	1.75 J	9.07 U	9.69 U	2,320 U	3.64 J	11.8 J
Methyl Acetate	NA																						
Methyl tert-butyl ether	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U
Methylcyclohexane	NA																						
Naphthalene	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	187	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	68.0
n-Butylbenzene	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U
n-Propylbenzene	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	31.2 J	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	165
o-Xylene	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	137	4.92 U	4.94 U	0.978 J	4.53 U	4.84 U	1,160 U	1.66 J	15.3 J

Location Identification:	MB1-15	MB1-16	MB1-17	MB1-18	MB1-19	MB1-20	MB1-21	MB1-22	MB1-22A	MB1-23	MB1-24	MB1-25	MB1-26	MB1-27	MB1-28	MB1-29	MB1-30	MB1-31	MB1-32	MB1-33	MB1-34	MB1-35	MB1-36
Sample Depth (Feet):	1.5 - 2.0	1.5 - 2.0		0.5 - 1.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	3.0 - 3.5	1.5 - 2.0		1.5 - 2.0	1.5 - 2.0		1.5 - 2.0	1.5 - 2.0		0.5 - 1.0	1.5 - 2.0	1.0 - 1.5	1.0 - 1.5	1.5 - 2.0	
Date Collected:	07/14/15		07/14/15	07/14/15	07/15/15	07/15/15	07/15/15		07/16/15		07/15/15	07/15/15		07/15/15	07/15/15	07/15/15		07/15/15	07/15/15			07/15/15	
p-Isopropyltoluene	5.30 U	5.06 U	1.35 J	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	118	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,370	2.28 J	106
sec-Butylbenzene	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	33.7 J	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	105
Styrene	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U
tert-Butylbenzene	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U
Toluene	5.30 U	5.06 U	4.36 U	1.23 J	1.18 J	1.23 J	1.40 J	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	497	4.92 U	1.05 J	3.19 J	5.66	11.4	8,280	36.1	49.3 U
trans-1,4-Dichloro-2-butene	26.5 U	25.3 U	21.8 U	25.2 U	21.8 U	22.6 U	27.0 U	28.7 U	250 U	22.9 U	26.1 U	26.9 U	26.3 U	5,380 U	312 U	24.6 U	24.7 U	28.4 U	22.7 U	24.2 U	5,790 U	21.9 U	247 U
Xylenes (total)	10.6 U	10.1 U	8.71 U	10.1 U	8.74 U	9.06 U	10.8 U	11.5 U	100 U	9.18 U	10.4 U	10.7 U	10.5 U	2,150 U	424	9.84 U	9.87 U	2.73 J	9.07 U	9.69 U	2,320 U	5.30 J	27.1 J
1,1,1-Trichloroethane	5.30 U	1.36 J	4.36 U	1.08 J	4.37 U	4.53 U	5.39 U	11.6	31.5 J	2.32 J	5.22 U	5.37 U	5.25 U	1,080 U	691	16.6	28.0	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U
1,1,2,2-Tetrachloroethane	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U
1,1,2-trichloro-1,2,2-trifluoroethane	NA	NA	NA	NA	NA	NA	NA 5 00 11	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,2-Trichloroethane	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U
1,1-Dichloroethane	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	7.61	18.0 J	1.94 J	5.22 U	5.37 U	5.25 U	1,080 U	12.5 J	7.78	18.5	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U
1,1-Dichloroethene	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U
1,2,4-Trichlorobenzene	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U
1,2-Dibromo-3-chloropropane	31.8 U	30.3 U	26.1 U	30.2 U	26.2 U	27.2 U	32.3 U	34.4 U	250 U	27.5 U	31.3 U	32.2 U	31.5 U	5,380 U	312 U	29.5 U	29.6 U	34.1 U	27.2 U	29.1 U	5,790 U	26.3 U	247 U
1,2-Dichlorobenzene	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U
1,2-Dichloroethane	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U
1,2-Dichloropropane	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U
1,3-Dichlorobenzene	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U
1,4-Dichlorobenzene	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	1.02 J	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U
Bromodichloromethane	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U
Carbon Tetrachloride	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	2.33 J	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U
Chlorobenzene	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U
Chloroethane	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	13.4	49.3 U
Chloroform	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U
Chloromethane	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U
cis-1,3-Dichloropropene	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U
Dibromochloromethane	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U
Dichlorodifluoromethane	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	250 U	4.59 U	5.22 U	5.37 U	5.25 U	5,380 U	312 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	5,790 U	4.38 U	247 U
Methylene Chloride	21.2 U	20.2 U	17.4 U	20.1 U	17.5 U	18.1 U	21.6 U	23.0 U	250 U	18.4 U	20.9 U	21.5 U	21.0 U	5,380 U	312 U	19.7 U	19.7 U	22.7 U	18.1 U	19.4 U	5,790 U	17.5 U	247 U
trans-1,3-Dichloropropene	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U
Trichlorofluoromethane	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U
cis-1,2-Dichloroethene	5.30 U	5.06 U	4.36 U	5.04 U	27.1	4.53 U	5.39 U	5.74 U	18.0 J	4.59 U	5.22 U	5.37 U	5.25 U	7,210	9.98 J	3.75 J	7.23	1.84 J	4.53 U	4.84 U	1,160 U	2.66 J	178
Tetrachloroethene	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U
trans-1,2-Dichloroethene	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,230	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U
Trichloroethene	3.43 J	14.9	1.14 J	4.97 J	43.9	1.38 J	5.39 U	21.8	235	13.7	5.22 U	1.21 J	2.51 J	30,100	150	41.4	34.5	6.33	3.84 J	3.30 J	1,160 U	1.70 J	35.5 J
Vinyl Chloride	5.30 U	5.06 U	4.36 U	5.04 U	4.37 U	4.53 U	5.39 U	5.74 U	50.0 U	4.59 U	5.22 U	5.37 U	5.25 U	1,080 U	62.4 U	4.92 U	4.94 U	5.68 U	4.53 U	4.84 U	1,160 U	4.38 U	49.3 U
Total Petroleum Hydrocarbons (µg/kg)																							
Ethylene Glycol Monobutyl Ether	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Location Identification:	MB1-37A	MB1-37B	MB1-37C	MB1-37D	MB1-37E	MB1-38	MB1-38A	MB1-39	MB1-40	MB1-41	MB1-42	MB1-43	MB1-44	MB1-45	MB1-46	MB1-47	MB1-48	MB1-49	MB1-50	MB1-51	MB1-52	MB1-53
Sample Depth (Feet):	0.0 - 0.5	0.5 - 1.0	1.0 - 1.5	1.5 - 2.0	2.5 - 3.0	1.5 - 2.0	2.0 - 2.5	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0
Date Collected:	07/15/15	07/15/15	07/15/15	07/15/15	07/16/15	07/15/15	07/16/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15
Volatile Organic Compounds (μg/kg)			01110110	00								01110110					00					
1.1.1.2-Tetrachloroethane	57.2 U	989 U	47.5 U	50.2 U	77.700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U
1,1-Dichloropropene	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U
1.2.3-Trichlorobenzene	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U
1,2,3-Trichloropropane	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U
1,2,4-Trimethylbenzene	57.2 U	989 U	329	318	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U
1,2-Dibromoethane	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U
1,3,5-Trimethylbenzene	57.2 U	989 U	170	145	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U
1,3-Dichloropropane	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U
2,2-Dichloropropane	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U
2-Butanone	1,430 U	24,700 U	1,190 U	37.1 J	1,940,000 U	1,160 U	4,730 U	2,850 U	22.5 U	23.0 U	22.5 U	21.8 U	23.4 U	25.0 U	7.74 J	23.5 U	6.23 J	25.1 U	22.7 U	26.2 U	23.5 U	1,410 U
2-Chlorotoluene	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U
2-Hexanone	286 U	4,940 U	238 U	251 U	389,000 U	231 U	946 U	570 U	11.2 U	11.5 U	11.2 U	10.9 U	11.7 U	12.5 U	11.2 U	11.8 U	10.6 U	12.6 U	11.3 U	13.1 U	11.7 U	282 U
4-Chlorotoluene	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U
4-Methyl-2-pentanone	286 U	4,940 U	238 U	251 U	389,000 U	231 U	946 U	570 U	11.2 U	11.5 U	11.2 U	10.9 U	11.7 U	12.5 U	11.2 U	11.8 U	10.6 U	12.6 U	11.3 U	13.1 U	11.7 U	282 U
Acetone	1,430 U	24,700 U	1,190 U	54.7 J	1,940,000 U	1,160 U	4,730 U	2,850 U	10.8 J	14.6 J	8.05 J	15.7 J	9.76 J	12.1 J	49.2	23.6 J	32.0 J	7.83 J	9.88 J	12.8 J	14.8 J	1,410 U
Benzene	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U
Bromobenzene	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U
Bromochloromethane	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U
Bromoform	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U
Bromomethane	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U
Carbon Disulfide	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	2.27 J	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U
Cyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibromomethane	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U
Diisopropyl ether (DIPE)	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U
Ethylbenzene	57.2 U	989 U	10.9 J	33.1 J	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	0.767 J	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U
Hexachlorobutadiene	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U
Iodomethane	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U
Isopropylbenzene	57.2 U	989 U	9.51 J	12.0 J	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U
m-,p-Xylene	114 U	1,980 U	23.8 J	37.6 J	155,000 U	92.5 U	378 U	228 U	9.00 U	9.21 U	8.99 U	8.71 U	9.35 U	10.0 U	8.93 U	9.41 U	8.52 U	10.0 U	9.08 U	10.5 U	9.39 U	113 U
Methyl Acetate	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methyl tert-butyl ether	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U
Methylcyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	57.2 U	989 U	17.1 J	80.8	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U
n-Butylbenzene	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U
n-Propylbenzene	57.2 U	989 U	47.1 J	64.2	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U
o-Xylene	57.2 U	989 U	18.1 J	25.1 J	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U

Location Identification:	MB1-37A	MB1-37B	MB1-37C	MB1-37D	MB1-37E	MB1-38	MB1-38A	MB1-39	MB1-40	MB1-41	MB1-42	MB1-43	MB1-44	MB1-45	MB1-46	MB1-47	MB1-48	MB1-49	MB1-50	MB1-51	MB1-52	MB1-53
Sample Depth (Feet):	0.0 - 0.5	0.5 - 1.0	1.0 - 1.5	1.5 - 2.0	2.5 - 3.0	1.5 - 2.0	2.0 - 2.5	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0
Date Collected:	07/15/15	07/15/15	07/15/15	07/15/15	07/16/15	07/15/15	07/16/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15
p-Isopropyltoluene	57.2 U	989 U	43.3 J	161	71,500 J	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U
sec-Butylbenzene	57.2 U	989 U	47.5 U	29.1 J	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U
Styrene	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U
tert-Butylbenzene	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U
Toluene	57.2 U	989 U	16.6 J	132	77,700 U	46.3 U	189 U	114 U	0.828 J	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	1.01 J	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U
trans-1,4-Dichloro-2-butene	286 U	4,940 U	238 U	251 U	389,000 U	231 U	946 U	570 U	22.5 U	23.0 U	22.5 U	21.8 U	23.4 U	25.0 U	22.3 U	23.5 U	21.3 U	25.1 U	22.7 U	26.2 U	23.5 U	282 U
Xylenes (total)	114 U	1,980 U	41.8 J	62.7 J	155,000 U	92.5 U	378 U	228 U	9.00 U	9.21 U	8.99 U	8.71 U	9.35 U	10.0 U	8.93 U	9.41 U	8.52 U	10.0 U	9.08 U	10.5 U	9.39 U	113 U
1,1,1-Trichloroethane	191	41,600	526	152	159,000	219	1,710	156	3.39 J	4.61 U	4.49 U	4.36 U	59.7	21.8	4.47 U	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U
1,1,2,2-Tetrachloroethane	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U
1,1,2-trichloro-1,2,2-trifluoroethane	NA																					
1,1,2-Trichloroethane	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U
1,1-Dichloroethane	57.2 U	989 U	47.5 U	130	77,700 U	35.2 J	410	22.8 J	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.81	4.47 U	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U
1,1-Dichloroethene	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	134 J	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	1.15 J	4.47 U	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U
1,2,4-Trichlorobenzene	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U
1,2-Dibromo-3-chloropropane	286 U	4,940 U	238 U	251 U	389,000 U	231 U	946 U	570 U	27.0 U	27.6 U	27.0 U	26.1 U	28.1 U	30.0 U	26.8 U	28.2 U	25.6 U	30.1 U	27.2 U	31.4 U	28.2 U	282 U
1,2-Dichlorobenzene	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U
1,2-Dichloroethane	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U
1,2-Dichloropropane	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U
1,3-Dichlorobenzene	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U
1,4-Dichlorobenzene	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U
Bromodichloromethane	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U
Carbon Tetrachloride	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	8.41	5.00 U	4.47 U	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U
Chlorobenzene	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U
Chloroethane	57.2 U	989 U	47.5 U	52.2	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U
Chloroform	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U
Chloromethane	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U
cis-1,3-Dichloropropene	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U
Dibromochloromethane	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U
Dichlorodifluoromethane	286 U	4,940 U	238 U	251 U	389,000 U	231 U	946 U	570 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	282 U
Methylene Chloride	286 U	4,940 U	238 U	251 U	389,000 U	231 U	946 U	570 U	18.0 U	18.4 U	18.0 U	17.4 U	18.7 U	20.0 U	17.9 U	18.8 U	0.869 J	1.11 J	18.2 U	1.08 J	0.929 J	282 U
trans-1,3-Dichloropropene	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U
Trichlorofluoromethane	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U
cis-1,2-Dichloroethene	57.2 U	326 J	16.6 J	58.7	252,000	124	594	216	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	8.02	4.47 U	1.03 J	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U
Tetrachloroethene	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	1.99 J	56.3 U
trans-1,2-Dichloroethene	57.2 U	989 U	47.5 U	50.2 U	77,700 U	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U
Trichloroethene	449	16,400	418	178	557,000	201	518	823	16.6	4.61 U	4.49 U	4.36 U	19.8	21.5	4.47 U	7.32	1.71 J	8.79	9.85	5.23 U	4.69 U	157
Vinyl Chloride	57.2 U	989 U	47.5 U	12.5 J	10,100 J	46.3 U	189 U	114 U	4.50 U	4.61 U	4.49 U	4.36 U	4.68 U	5.00 U	4.47 U	4.70 U	4.26 U	5.02 U	4.54 U	5.23 U	4.69 U	56.3 U
Total Petroleum Hydrocarbons (μg/kg)																						
Ethylene Glycol Monobutyl Ether	NA																					

Location Identification:	MB1-54	MB1-55	MB1-56	MB1-57	MB1-58	MB1-59	MB1-60	MB1-61	MB1-62	MB1-63	MB1-64	MB1-65A	MB1-65B	ME-01	ME-02	ME-03	ME-04	ME-05	ME-06	ME-07	ME-08	ME-09	ME-10
Sample Depth (Feet):	1.5 - 2.0	1.0 - 1.5	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	0.5 - 1.0	0.5 - 1.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	2.5 - 3.0	3.0 - 3.5	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2
Date Collected:	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/16/15	07/16/15	05/06/15	05/06/15	05/06/15	05/06/15	05/06/15	05/06/15	05/06/15	05/06/15	05/06/15	05/06/15
Volatile Organic Compounds (μg/kg)																							
1.1.1.2-Tetrachloroethane	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
1,1-Dichloropropene	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
1,2,3-Trichlorobenzene	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
1,2,3-Trichloropropane	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
1,2,4-Trimethylbenzene	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	42.3 J	45.4 U	4.26 U	77.1 J	4.44 U	4.37 U	101 U	109 U	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
1,2-Dibromoethane	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
1,3,5-Trimethylbenzene	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
1,3-Dichloropropane	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
2,2-Dichloropropane	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
2-Butanone	23.8 U	21.5 U	21.8 U	2.98 J	21.4 U	49.2 J	1,130 U	21.3 U	2,380 U	22.2 U	21.9 U	2,510 U	2,720 U	5.46 J	22.9 U	21.7 U	21.7 U	22.2 U	22.2 U	21.9 U	22.5 U	21.7 U	1.37 J
2-Chlorotoluene	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
2-Hexanone	11.9 U	10.8 U	10.9 U	12.2 U	10.7 U	265 U	227 U	10.6 U	476 U	11.1 U	10.9 U	503 U	544 U	10.7 U	11.4 U	10.9 U	10.8 U	11.1 U	11.1 U	10.9 U	11.2 U	10.9 U	10.8 U
4-Chlorotoluene	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
4-Methyl-2-pentanone	11.9 U	10.8 U	10.9 U	12.2 U	10.7 U	265 U	227 U	10.6 U	476 U	11.1 U	10.9 U	503 U	544 U	10.7 U	11.4 U	10.9 U	10.8 U	11.1 U	11.1 U	10.9 U	11.2 U	10.9 U	10.8 U
Acetone	15.6 J	9.71 J	14.5 J	19.6 J	11.4 J	1,320 U	1,130 U	9.71 J	148 J	14.3 J	8.75 J	2,510 U	2,720 U	48.3	7.03 J	5.52 J	4.15 J	7.83 J	4.96 J	3.93 J	4.80 J	8.77 J	12.4 J
Benzene	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	12.2 J	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
Bromobenzene	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
Bromochloromethane	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
Bromoform	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
Bromomethane	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
Carbon Disulfide	4.76 U	4.31 U	4.35 U	1.65 J	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
Cyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA												
Dibromomethane	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
Diisopropyl ether (DIPE)	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
Ethylbenzene	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	95.3	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
Hexachlorobutadiene	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
lodomethane	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
Isopropylbenzene	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
m-,p-Xylene	9.52 U	8.62 U	8.70 U	9.75 U	8.56 U	106 U	90.7 U	8.52 U	190 U	8.89 U	8.74 U	201 U	218 U	8.52 U	9.15 U	8.69 U	8.67 U	8.87 U	8.90 U	8.74 U	8.98 U	8.69 U	8.67 U
Methyl Acetate	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA												
Methyl tert-butyl ether	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
Methylcyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA												
Naphthalene	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
n-Butylbenzene	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
n-Propylbenzene	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	9.00 J	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
o-Xylene	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U

Location Identification:	MB1-54	MB1-55	MB1-56	MB1-57	MB1-58	MB1-59	MB1-60	MB1-61	MB1-62	MB1-63	MB1-64	MB1-65A	MB1-65B	ME-01	ME-02	ME-03	ME-04	ME-05	ME-06	ME-07	ME-08	ME-09	ME-10
Sample Depth (Feet):	1.5 - 2.0	1.0 - 1.5	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	0.5 - 1.0	0.5 - 1.0	1.5 - 2.0	1.5 - 2.0	1.5 - 2.0	2.5 - 3.0	3.0 - 3.5	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2
Date Collected:	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/15/15	07/16/15	07/16/15	05/06/15	05/06/15	05/06/15	05/06/15	05/06/15	05/06/15	05/06/15	05/06/15	05/06/15	05/06/15
p-Isopropyltoluene	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	88.9	45.4 U	4.26 U	89.5 J	4.44 U	4.37 U	101 U	109 U	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
sec-Butylbenzene	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
Styrene	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
tert-Butylbenzene	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
Toluene	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	175	45.4 U	4.26 U	13.3 J	1.08 J	4.37 U	101 U	109 U	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
trans-1,4-Dichloro-2-butene	23.8 U	21.5 U	21.8 U	24.4 U	21.4 U	265 U	227 U	21.3 U	476 U	22.2 U	21.9 U	503 U	544 U	21.3 U	22.9 U	21.7 U	21.7 U	22.2 U	22.2 U	21.9 U	22.5 U	21.7 U	21.7 U
Xylenes (total)	9.52 U	8.62 U	8.70 U	9.75 U	8.56 U	106 U	90.7 U	8.52 U	190 U	8.89 U	8.74 U	201 U	218 U	8.52 U	9.15 U	8.69 U	8.67 U	8.87 U	8.90 U	8.74 U	8.98 U	8.69 U	8.67 U
1,1,1-Trichloroethane	4.76 U	4.31 U	0.940 J	4.87 U	4.28 U	52.9 U	9.07 J	4.26 U	95.2 U	4.44 U	4.37 U	1,120	558	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
1,1,2,2-Tetrachloroethane	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
1,1,2-trichloro-1,2,2-trifluoroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA												
1,1,2-Trichloroethane	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
1,1-Dichloroethane	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	875	609	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
1,1-Dichloroethene	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	99.5 J	109 U	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
1,2,4-Trichlorobenzene	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
1,2-Dibromo-3-chloropropane	28.6 U	25.9 U	26.1 U	29.2 U	25.7 U	265 U	227 U	25.6 U	476 U	26.7 U	26.2 U	503 U	544 U	25.6 U	27.4 U	26.1 U	26.0 U	26.6 U	26.7 U	26.2 U	26.9 U	26.1 U	26.0 U
1,2-Dichlorobenzene	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
1,2-Dichloroethane	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
1,2-Dichloropropane	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
1,3-Dichlorobenzene	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
1,4-Dichlorobenzene	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
Bromodichloromethane	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
Carbon Tetrachloride	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
Chlorobenzene	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
Chloroethane	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
Chloroform	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
Chloromethane	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
cis-1,3-Dichloropropene	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
Dibromochloromethane	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
Dichlorodifluoromethane	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	265 U	227 U	4.26 U	476 U	4.44 U	4.37 U	503 U	544 U	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
Methylene Chloride	19.0 U	17.2 U	17.4 U	19.5 U	17.1 U	265 U	227 U	17.0 U	476 U	17.8 U	17.5 U	503 U	544 U	17.0 U	18.3 U	17.4 U	17.3 U	17.7 U	17.8 U	17.5 U	18.0 U	17.4 U	17.3 U
trans-1,3-Dichloropropene	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
Trichlorofluoromethane	4.76 U	4.31 U	1.16 J	4.87 U	4.28 U	52.9 U	33.6 J	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
cis-1,2-Dichloroethene	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	3.02 J	95.2 U	4.44 U	4.37 U	438	278	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
Tetrachloroethene	4.76 U	4.31 U	1.04 J	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	18.1 J	4.44 U	4.37 U	101 U	109 U	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
trans-1,2-Dichloroethene	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
Trichloroethene	4.16 J	4.31 U	6.53	4.10 J	2.82 J	52.9 U	45.4 U	10.9	1,010	4.44 U	4.37 U	385	145	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
Vinyl Chloride	4.76 U	4.31 U	4.35 U	4.87 U	4.28 U	52.9 U	45.4 U	4.26 U	95.2 U	4.44 U	4.37 U	101 U	109 U	4.26 U	4.57 U	4.34 U	4.34 U	4.44 U	4.45 U	4.37 U	4.49 U	4.34 U	4.33 U
Total Petroleum Hydrocarbons (µg/kg)																							
Ethylene Glycol Monobutyl Ether	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA												

Location Identification:	MIS-01	MIS-02	MIS-03	MIS-04	MIS-05	MIS-06	MIS-07	MIS-08	MIS-09	MIS-10	MIS-11	MIS-12	MIS-13	MIS-14	MIS-15	MIS-16	MIS-17	MIS-18	RC-3	RC-5	RC-14	RC-19	RC-73
Sample Depth (Feet):	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2					
Date Collected:	05/04/15	05/04/15	05/04/15	05/04/15	05/04/15	05/04/15	05/05/15	05/05/15	05/05/15	05/05/15	05/05/15	05/05/15	05/05/15	05/05/15	05/05/15	05/05/15	05/05/15	05/05/15	08/20/18	08/20/18	08/20/18	08/20/18	08/20/18
Volatile Organic Compounds (μg/kg)		<u> </u>			<u>'</u>									<u>'</u>									
1.1.1.2-Tetrachloroethane	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	NA	NA	NA	NA	NA
1,1-Dichloropropene	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	NA	NA	NA	NA	NA
1,2,3-Trichlorobenzene	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U
1,2,3-Trichloropropane	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	NA	NA	NA	NA	NA
1,2,4-Trimethylbenzene	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	NA	NA	NA	NA	NA
1,2-Dibromoethane	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U
1,3,5-Trimethylbenzene	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	NA	NA	NA	NA	NA
1,3-Dichloropropane	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	NA	NA	NA	NA	NA
2,2-Dichloropropane	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	NA	NA	NA	NA	NA
2-Butanone	20.9 U	21.7 U	22.1 U	21.3 U	21.5 U	21.2 U	2.44 J	3.99 J	20.7 U	22.4 U	21.1 U	2.09 J	2.24 J	21.3 U	22.1 U	22.1 U	22.4 U	20.9 U	22.0 U	22.0 U	22.0 U	23.0 U	22.0 U
2-Chlorotoluene	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	NA	NA	NA	NA	NA
2-Hexanone	10.5 U	10.8 U	11.1 U	10.6 U	10.8 U	10.6 U	11.2 U	11.4 U	10.3 U	11.2 U	10.6 U	10.8 U	10.3 U	10.7 U	11.1 U	11.0 U	11.2 U	10.4 U	22.0 U	22.0 U	22.0 U	23.0 U	22.0 U
4-Chlorotoluene	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	NA	NA	NA	NA	NA
4-Methyl-2-pentanone	10.5 U	10.8 U	11.1 U	10.6 U	10.8 U	10.6 U	11.2 U	11.4 U	10.3 U	11.2 U	10.6 U	10.8 U	10.3 U	10.7 U	11.1 U	11.0 U	11.2 U	10.4 U	22.0 U	22.0 U	22.0 U	23.0 U	22.0 U
Acetone	3.17 J	4.18 J	5.87 J	3.88 J	4.05 J	6.45 J	11.2 J	29.5 J	5.34 J	4.22 J	4.92 J	19.2 J	19.3 J	4.78 J	7.04 J	4.56 J	12.3 J	6.53 J	22.0 U	25.0	22.0 U	23.0 U	26.0
Benzene	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U
Bromobenzene	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	NA	NA	NA	NA	NA
Bromochloromethane	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U
Bromoform	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U
Bromomethane	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U
Carbon Disulfide	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U
Cyclohexane	NA	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U																	
Dibromomethane	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	NA	NA	NA	NA	NA
Diisopropyl ether (DIPE)	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	NA	NA	NA	NA	NA
Ethylbenzene	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	1.02 J	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U
Hexachlorobutadiene	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	NA	NA	NA	NA	NA
lodomethane	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	NA	NA	NA	NA	NA
Isopropylbenzene	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U
m-,p-Xylene	8.37 U	8.66 U	8.85 U	8.52 U	8.61 U	8.48 U	8.93 U	9.15 U	8.26 U	8.96 U	8.44 U	8.66 U	8.26 U	8.54 U	8.85 U	8.82 U	8.95 U	8.35 U	NA	NA	NA	NA	NA
Methyl Acetate	NA	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U																	
Methyl tert-butyl ether	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U
Methylcyclohexane	NA	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U																	
Naphthalene	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	NA	NA	NA	NA	NA
n-Butylbenzene	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	NA	NA	NA	NA	NA
n-Propylbenzene	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	NA	NA	NA	NA	NA
o-Xylene	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	NA	NA	NA	NA	NA

Location Identification:	MIS-01	MIS-02	MIS-03	MIS-04	MIS-05	MIS-06	MIS-07	MIS-08	MIS-09	MIS-10	MIS-11	MIS-12	MIS-13	MIS-14	MIS-15	MIS-16	MIS-17	MIS-18	RC-3	RC-5	RC-14	RC-19	RC-73
Sample Depth (Feet):	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2					ł
Date Collected:	05/04/15	05/04/15	05/04/15	05/04/15	05/04/15	05/04/15	05/05/15	05/05/15	05/05/15	05/05/15	05/05/15	05/05/15	05/05/15	05/05/15	05/05/15	05/05/15	05/05/15	05/05/15	08/20/18	08/20/18	08/20/18	08/20/18	08/20/18
p-Isopropyltoluene	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	NA	NA	NA	NA	NA
sec-Butylbenzene	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	NA	NA	NA	NA	NA
Styrene	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U
tert-Butylbenzene	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	NA	NA	NA	NA	NA
Toluene	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	1.09 J	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U
trans-1,4-Dichloro-2-butene	20.9 U	21.7 U	22.1 U	21.3 U	21.5 U	21.2 U	22.3 U	22.9 U	20.7 U	22.4 U	21.1 U	21.7 U	20.6 U	21.3 U	22.1 U	22.1 U	22.4 U	20.9 U	NA	NA	NA	NA	NA
Xylenes (total)	8.37 U	8.66 U	8.85 U	8.52 U	8.61 U	8.48 U	8.93 U	9.15 U	8.26 U	8.96 U	8.44 U	8.66 U	8.26 U	8.54 U	8.85 U	8.82 U	8.95 U	8.35 U	8.70 U	8.90 U	8.90 U	9.30 U	9.00 U
1,1,1-Trichloroethane	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U
1,1,2,2-Tetrachloroethane	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U
1,1,2-trichloro-1,2,2-trifluoroethane	NA	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U																	
1,1,2-Trichloroethane	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U
1,1-Dichloroethane	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U
1,1-Dichloroethene	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U
1,2,4-Trichlorobenzene	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U
1,2-Dibromo-3-chloropropane	25.1 U	26.0 U	26.5 U	25.6 U	25.8 U	25.4 U	26.8 U	27.5 U	24.8 U	26.9 U	25.3 U	26.0 U	24.8 U	25.6 U	26.5 U	26.5 U	26.9 U	25.1 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U
1,2-Dichlorobenzene	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U
1,2-Dichloroethane	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U
1,2-Dichloropropane	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U
1,3-Dichlorobenzene	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U
1,4-Dichlorobenzene	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U
Bromodichloromethane	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U
Carbon Tetrachloride	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U
Chlorobenzene	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U
Chloroethane	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U
Chloroform	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U
Chloromethane	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U
cis-1,3-Dichloropropene	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U
Dibromochloromethane	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U
Dichlorodifluoromethane	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	9.52	4.58 U	1.00 J	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	1.88 J	19.0	7.64	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U
Methylene Chloride	16.7 U	17.3 U	17.7 U	17.0 U	17.2 U	17.0 U	17.9 U	18.3 U	16.5 U	17.9 U	16.9 U	17.3 U	16.5 U	17.1 U	17.7 U	17.6 U	17.9 U	16.7 U	13.0 U	13.0 U	13.0 U	14.0 U	13.0 U
trans-1,3-Dichloropropene	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U
Trichlorofluoromethane	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	1.45 J	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	4.40 U	4.40 U	11.0	5.80	4.50 U
cis-1,2-Dichloroethene	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U
Tetrachloroethene	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U
trans-1,2-Dichloroethene	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U
Trichloroethene	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U
Vinyl Chloride	4.18 U	4.33 U	4.42 U	4.26 U	4.30 U	4.24 U	4.47 U	4.58 U	4.13 U	4.48 U	4.22 U	4.33 U	4.13 U	4.27 U	4.42 U	4.41 U	4.48 U	4.18 U	4.40 U	4.40 U	4.40 U	4.70 U	4.50 U
Total Petroleum Hydrocarbons (µg/kg)																							
Ethylene Glycol Monobutyl Ether	NA																						

Location Identification:	RC-78	RC-84	RC-98	RC-109	RC-112	RC-112	RC-144	RC-149	RC-152	RC-152	RC-152	RC-152	RC-154	RC-161	RC-166	RC-166	RC-166	RC-166	RC-166	RC-168
Sample Depth (Feet):																				
Date Collected:	08/20/18	08/21/18	08/20/18	08/21/18	08/16/18	10/26/18	08/21/18	08/20/18	08/16/18	10/25/18	10/25/18	10/25/18	08/20/18	08/16/18	08/16/18	10/26/18	10/26/18	10/26/18	10/26/18	10/25/18
Volatile Organic Compounds (μg/kg)	<u> </u>					<u> </u>	<u>. </u>				<u> </u>			<u>.</u>						
1,1,1,2-Tetrachloroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
1,1-Dichloropropene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
1,2,3-Trichlorobenzene	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U
1,2,3-Trichloropropane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
1,2,4-Trimethylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
1,2-Dibromoethane	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U
1,3,5-Trimethylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
1,3-Dichloropropane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
2,2-Dichloropropane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
2-Butanone	22.0 U	1,300 U	24.0 U	22.0 U	21.0 U	NA	21.0 U	25.0 U	5,100 U	2,000 U	21,000 U	4,600 U	21.0 U	22.0 U	610,000 U	660,000 U	440,000 U	25,000 U	15,000 U	1,000 U
2-Chlorotoluene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
2-Hexanone	22.0 U	1,300 U	24.0 U	22.0 U	21.0 U	NA	21.0 U	25.0 U	5,100 U	2,000 U	21,000 U	4,600 U	21.0 U	22.0 U	610,000 U	660,000 U	440,000 U	25,000 U	15,000 U	1,000 U
4-Chlorotoluene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
4-Methyl-2-pentanone	22.0 U	1,300 U	24.0 U	22.0 U	21.0 U	NA	21.0 U	25.0 U	5,100 U	,	21,000 U	4,600 U	21.0 U	22.0 U	610,000 U	660,000 U	440,000 U	25,000 U	15,000 U	1,000 U
Acetone	22.0 U	1,300 U	28.0	22.0 U	110	NA	21.0 U	25.0 U	5,100 U	2,000 U	21,000 U	4,600 U	21.0 U	38.0	610,000 U	660,000 U	440,000 U	25,000 U	15,000 U	1,000 U
Benzene	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U
Bromobenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
Bromochloromethane	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U	4.20 U	4.40 U	120,000 U	130,000 U	<u> </u>	4,900 U	3,000 U	210 U
Bromoform	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U
Bromomethane	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U	4.20 U*	4.40 U	120,000 U	130,000 U	,	4,900 U	3,000 U	210 U
Carbon Disulfide	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U	4.20 U	4.40 U	120,000 U	130,000 U		4,900 U	3,000 U	210 U
Cyclohexane	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U	4.20 U	4.40 U	120,000 U	130,000 U		4,900 U	3,000 U	210 U
Dibromomethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
Diisopropyl ether (DIPE)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
Ethylbenzene	4.50 U	320	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U
Hexachlorobutadiene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
Iodomethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
Isopropylbenzene	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U
m-,p-Xylene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
Methyl Acetate	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U	4.20 U	4.40 U	120,000 U	130,000 U		4,900 U	3,000 U	210 U
Methyl tert-butyl ether	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U	4.20 U	4.40 U	120,000 U	130,000 U		4,900 U	3,000 U	210 U
Methylcyclohexane	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U	4.20 U	4.40 U	120,000 U	130,000 U		4,900 U	3,000 U	210 U
Naphthalene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
n-Butylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
n-Propylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
o-Xylene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						

	RC-78	RC-84	RC-98	RC-109	RC-112	RC-112	RC-144	RC-149	RC-152	RC-152	RC-152	RC-152	RC-154	RC-161	RC-166	RC-166	RC-166	RC-166	RC-166	RC-168
Sample Depth (Feet):																				,
• • • • • •	08/20/18	08/21/18	08/20/18	08/21/18	08/16/18	10/26/18	08/21/18	08/20/18	08/16/18	10/25/18	10/25/18	10/25/18	08/20/18	08/16/18	08/16/18	10/26/18	10/26/18	10/26/18	10/26/18	10/25/18
p-Isopropyltoluene	NA	NA	NA	NA	NA	NA														
sec-Butylbenzene	NA	NA	NA	NA	NA NA	NA														
,	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	1.000 U	410 U	4.200 U	920 U	4.20 U	4.40 U	120.000 U	130.000 U	88.000 U	4.900 U	3,000 U	210 U
tert-Butylbenzene	NA	NA	NA	NA	NA	NA														
	4.50 U	250 U	4.80 U	4.30 U	9.70	NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U
trans-1,4-Dichloro-2-butene	NA	NA	NA	NA	NA	NA														
Xylenes (total)	9.00 U	3,200	9.50 U	8.70 U	27.0	NA	8.40 U	10.0 U	2,000 U	820 U	8,400 U	1,800 U	8.30 U	8.90 U	250,000 U	270,000 U	180,000 U	9,800 U	6,000 U	420 U
· , ,	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	2,000	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	6,100
1,1,2,2-Tetrachloroethane	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U
1,1,2-trichloro-1,2,2-trifluoroethane	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U
1,1,2-Trichloroethane	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U	4.20 U	4.40 U	120,000 U	130,000 U		4,900 U	3,000 U	210 U
1,1-Dichloroethane	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U	12.0	5.10	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210
1,1-Dichloroethene	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	1,200	610	4,200	1,200	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	1,600
-	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U	4.20 U	4.40 U	120.000 U	130.000 U	-	4.900 U	3.000 U	210 U
1,2-Dibromo-3-chloropropane	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U	4.20 U	4.40 U	120.000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U
·	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U	4.20 U	4.40 U	120,000 U	130,000 U		4,900 U	3,000 U	210 U
1,2-Dichloroethane	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U
1,2-Dichloropropane	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U
	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U
1,4-Dichlorobenzene	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U
Bromodichloromethane	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U
Carbon Tetrachloride	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U
Chlorobenzene	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U
Chloroethane	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U
Chloroform	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U
Chloromethane	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U
cis-1,3-Dichloropropene	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U
Dibromochloromethane	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U
Dichlorodifluoromethane	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U
Methylene Chloride	13.0 U	760 U	14.0 U	13.0 U	12.0 U	NA	13.0 U	15.0 U	3,100 U	1,200 U	13,000 U	2,800 U	12.0 U	13.0 U	370,000 U	400,000 U	260,000 U	15,000 U	9,000 U	630 U
trans-1,3-Dichloropropene	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U
Trichlorofluoromethane	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U
cis-1,2-Dichloroethene	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	20,000	15,000	96,000	19,000	10.0	4.40 U	250,000	130,000 U	220,000	85,000	160,000	1,700
Tetrachloroethene	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	22,000	2,200	16,000	920 U	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U
trans-1,2-Dichloroethene	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U	4.20 U	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U
Trichloroethene	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	51,000	4,800	18,000	920 U	4.20 U	4.40 U	6,000,000	2,900,000	3,200,000	180,000	3,000 U	1,200
Vinyl Chloride	4.50 U	250 U	4.80 U	4.30 U	4.20 U	NA	4.20 U	5.00 U	1,000 U	410 U	4,200 U	920 U	6.30	4.40 U	120,000 U	130,000 U	88,000 U	4,900 U	3,000 U	210 U
Total Petroleum Hydrocarbons (µg/kg)																				
Ethylene Glycol Monobutyl Ether	NA	NA	NA	NA	NA	5,600 U	NA	NA	NA	NA	NA	NA								

Location Identification:	RC-174	RC-186	RC-191	RC-213	RC-215	RC-220	RC-222	RC-223	RC-225	RC-227	RC-229	RC-231	RC-232	RC-233	RC-234	RMM-35	RMM-40	RMM-44	RMM-48	RMM-106
Sample Depth (Feet):																				
Date Collected:	08/16/18	08/16/18	08/16/18	08/21/18	08/21/18	08/21/18	10/25/18	10/25/18	10/25/18	10/25/18	10/25/18	10/26/18	10/26/18	10/26/18	10/26/18	08/21/18	08/21/18	08/21/18	08/21/18	08/21/18
Volatile Organic Compounds (μg/kg)					•									•						
1,1,1,2-Tetrachloroethane	NA																			
1,1-Dichloropropene	NA																			
1,2,3-Trichlorobenzene	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U
1,2,3-Trichloropropane	NA																			
1,2,4-Trimethylbenzene	NA																			
1,2-Dibromoethane	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U
1,3,5-Trimethylbenzene	NA																			
1,3-Dichloropropane	NA																			
2,2-Dichloropropane	NA																			
2-Butanone	1,100 U	20.0 U	21.0 U	24.0 U	24.0 U	33.0 U	23.0 U	21.0 U	38.0 U	21.0 U	19.0 U	NA	NA	NA	NA	2,300 U	22.0 U	21.0 U	24.0 U	22.0 U
2-Chlorotoluene	NA																			
2-Hexanone	1,100 U	20.0 U	21.0 U	24.0 U	24.0 U	33.0 U	23.0 U	21.0 U	38.0 U	21.0 U	19.0 U	NA	NA	NA	NA	2,300 U	22.0 U	21.0 U	24.0 U	22.0 U
4-Chlorotoluene	NA																			
4-Methyl-2-pentanone	1,100 U	20.0 U	21.0 U	24.0 U	24.0 U	33.0 U	23.0 U	21.0 U	38.0 U	21.0 U	19.0 U	NA	NA	NA	NA	2,300 U	22.0 U	21.0 U	24.0 U	22.0 U
Acetone	1,100 U	52.0	29.0	28.0	27.0	33.0 U	32.0	40.0	38.0 U	29.0	19.0 U	NA	NA	NA	NA	2,300 U	28.0	24.0	66.0	27.0
Benzene	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U
Bromobenzene	NA																			
Bromochloromethane	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U
Bromoform	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U
Bromomethane	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U*	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U
Carbon Disulfide	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U
Cyclohexane	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U
Dibromomethane	NA																			
Diisopropyl ether (DIPE)	NA																			
Ethylbenzene	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U
Hexachlorobutadiene	NA																			
lodomethane	NA																			
Isopropylbenzene	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U
m-,p-Xylene	NA																			
Methyl Acetate	520	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	610	4.50 U	4.30 U	4.90 U	4.50 U
Methyl tert-butyl ether	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U
Methylcyclohexane	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U
Naphthalene	NA																			
n-Butylbenzene	NA																			
n-Propylbenzene	NA																			
o-Xylene	NA																			

Location Identification:	RC-174	RC-186	RC-191	RC-213	RC-215	RC-220	RC-222	RC-223	RC-225	RC-227	RC-229	RC-231	RC-232	RC-233	RC-234	RMM-35	RMM-40	RMM-44	RMM-48	RMM-106
Sample Depth (Feet):		20/10/10	20110110	00/04/40	00/04/40	20/24/40	40/05/40	40/07/40	40/05/40	40/05/40	40/05/40	40/00/40	40/00/40	40/00/40	40/00/40	00/04/40	20/04/40	00/04/40	00/04/40	00/04/40
Date Collected:	08/16/18	08/16/18	08/16/18	08/21/18	08/21/18	08/21/18	10/25/18	10/25/18	10/25/18	10/25/18	10/25/18	10/26/18	10/26/18	10/26/18	10/26/18	08/21/18	08/21/18	08/21/18	08/21/18	08/21/18
p-Isopropyltoluene sec-Butvlbenzene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
y	210 U	4.00 U	NA 4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	NA 3.80 U	NA NA	NA NA	NA NA	NA NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U
Styrene tort Butulbanzana			4.10 U					4.20 U						NA NA	NA NA			4.30 U NA	4.90 U	
tert-Butylbenzene	NA 210 U	4.00 U	4.10 U	NA 4.80 U	NA 4.70 U	NA 6 60 LL	NA 4 60 LL		NA 75011	NA 4 20 LL	NA 2 90 11	NA NA	NA NA	NA NA	NA NA	NA 460 U	4.50 U	4.30 U	4.90 U	NA 4.50 LL
Toluene trans-1.4-Dichloro-2-butene	NA NA	4.00 U	4.10 U	4.60 U	4.70 U	6.60 U NA	4.60 U NA	4.20 U NA	7.50 U NA	4.20 U NA	3.80 U NA	NA NA	NA NA	NA NA	NA NA	NA	4.50 U	4.30 U NA	4.90 U	4.50 U NA
	430 U	8.10 U	8.20 U	9.70 U	9.50 U	13.0 U	9.20 U	8.40 U	15.0 U	8.40 U	7.50 U	NA NA	NA NA	NA NA	NA NA	910 U	9.00 U	8.50 U	9.80 U	8.90 U
Xylenes (total)	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA NA	NA NA	NA NA	NA NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U
1,1,1-Trichloroethane			4.10 U															4.30 U		
1,1,2,2-Tetrachloroethane	210 U	4.00 U		4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U		4.90 U	4.50 U
1,1,2-trichloro-1,2,2-trifluoroethane	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U
1,1,2-Trichloroethane	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U
1,1-Dichloroethane	210 U	4.00 U	19.0	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	13.0	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U
1,1-Dichloroethene	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U
1,2,4-Trichlorobenzene	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U
1,2-Dibromo-3-chloropropane	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U
1,2-Dichlorobenzene	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U
1,2-Dichloroethane	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U
1,2-Dichloropropane	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U
1,3-Dichlorobenzene	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U
1,4-Dichlorobenzene	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U
Bromodichloromethane	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U
Carbon Tetrachloride	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U
Chlorobenzene	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U
Chloroethane	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U
Chloroform	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U
Chloromethane	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U
cis-1,3-Dichloropropene	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U
Dibromochloromethane	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U
Dichlorodifluoromethane	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U
Methylene Chloride	640 U	12.0 U	12.0 U	15.0 U	14.0 U	20.0 U	14.0 U	13.0 U	23.0 U	13.0 U	11.0 U	NA	NA	NA	NA	1,400 U	13.0 U	13.0 U	15.0 U	13.0 U
trans-1,3-Dichloropropene	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U
Trichlorofluoromethane	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	7.70
cis-1,2-Dichloroethene	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U
Tetrachloroethene	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U
trans-1,2-Dichloroethene	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U
Trichloroethene	440	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	19.0	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U
Vinyl Chloride	210 U	4.00 U	4.10 U	4.80 U	4.70 U	6.60 U	4.60 U	4.20 U	7.50 U	4.20 U	3.80 U	NA	NA	NA	NA	460 U	4.50 U	4.30 U	4.90 U	4.50 U
Total Petroleum Hydrocarbons (µg/kg)																				
Ethylene Glycol Monobutyl Ether	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	5,900 U	5,400 U	5,600 U	5,600 U	NA	NA	NA	NA	NA

Location Identification:	RMM-134	RMM-138	RMM-143	RMM-147	RMM-152	RMM-204	RMM-230	RMM-240	RMM-243	RMM-248	RMM-263	RMM-279	RMM-298	RMM-310	RMM-314	RMM-318	RMM-333	RMM-355
Sample Depth (Feet):																		
Date Collected:	08/22/18	08/22/18	08/22/18	08/22/18	08/22/18	08/23/18	08/22/18	08/23/18	08/23/18	08/23/18	08/23/18	08/23/18	08/22/18	08/23/18	08/23/18	08/23/18	08/23/18	08/23/18
Volatile Organic Compounds (μg/kg)																		
1,1,1,2-Tetrachloroethane	NA																	
1,1-Dichloropropene	NA																	
1,2,3-Trichlorobenzene	4.10 U	4.90 U	4.90 U	4.80 U*	5.50 U	4.50 U	4.60 U*	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U
1,2,3-Trichloropropane	NA																	
1,2,4-Trimethylbenzene	NA																	
1,2-Dibromoethane	4.10 U	4.90 U	4.90 U	4.80 U	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U
1,3,5-Trimethylbenzene	NA																	
1,3-Dichloropropane	NA																	
2,2-Dichloropropane	NA																	
2-Butanone	21.0 U	24.0 U	24.0 U	24.0 U	27.0 U	22.0 U	23.0 U	21.0 U	23.0 U	23.0 U	25.0 U	1,200 U	30.0 U	23.0 U	19.0 U	21.0 U	23.0 U	23.0 U
2-Chlorotoluene	NA																	
2-Hexanone	21.0 U	24.0 U	24.0 U	24.0 U*	27.0 U	22.0 U	23.0 U*	21.0 U	23.0 U	23.0 U	25.0 U	1,200 U	30.0 U	23.0 U	19.0 U	21.0 U	23.0 U	23.0 U
4-Chlorotoluene	NA																	
4-Methyl-2-pentanone	21.0 U	24.0 U	24.0 U	24.0 U	27.0 U	22.0 U	23.0 U	21.0 U	23.0 U	23.0 U	25.0 U	2,900	30.0 U	23.0 U	19.0 U	21.0 U	23.0 U	23.0 U
Acetone	57.0	50.0	69.0	160	69.0	22.0 U	51.0	30.0	23.0 U	23.0 U	25.0 U	1,200 U	30.0 U	23.0 U	19.0 U	93.0	23.0 U	23.0 U
Benzene	4.10 U	4.90 U	8.60	46.0	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U
Bromobenzene	NA																	
Bromochloromethane	4.10 U	4.90 U	4.90 U	4.80 U	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U
Bromoform	4.10 U	4.90 U	4.90 U	4.80 U*	5.50 U	4.50 U	4.60 U*	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U
Bromomethane	4.10 U	4.90 U	4.90 U	4.80 U	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U
Carbon Disulfide	4.10 U	4.90 U	4.90 U	4.80 U	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U
Cyclohexane	4.10 U	4.90 U	4.90 U	4.80 U	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U
Dibromomethane	NA																	
Diisopropyl ether (DIPE)	NA																	
Ethylbenzene	4.10 U	4.90 U	4.90 U	4.80 U	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U
Hexachlorobutadiene	NA																	
Iodomethane	NA																	
Isopropylbenzene	4.10 U	4.90 U	4.90 U	4.80 U	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U
m-,p-Xylene	NA																	
Methyl Acetate	4.10 U	4.90 U	4.90 U	4.80 U	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U
Methyl tert-butyl ether	4.10 U	4.90 U	4.90 U	4.80 U	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U
Methylcyclohexane	4.10 U	4.90 U	4.90 U	6.00	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U
Naphthalene	NA																	
n-Butylbenzene	NA																	
n-Propylbenzene	NA																	
o-Xylene	NA																	

Location Identification:	RMM-134	RMM-138	RMM-143	RMM-147	RMM-152	RMM-204	RMM-230	RMM-240	RMM-243	RMM-248	RMM-263	RMM-279	RMM-298	RMM-310	RMM-314	RMM-318	RMM-333	RMM-355
Sample Depth (Feet):																		
Date Collected:	08/22/18	08/22/18	08/22/18	08/22/18	08/22/18	08/23/18	08/22/18	08/23/18	08/23/18	08/23/18	08/23/18	08/23/18	08/22/18	08/23/18	08/23/18	08/23/18	08/23/18	08/23/18
p-Isopropyltoluene	NA																	
sec-Butylbenzene	NA																	
Styrene	4.10 U	4.90 U	4.90 U	4.80 U	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U
tert-Butylbenzene	NA																	
Toluene	4.10 U	4.90 U	4.90 U	4.80 U	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U
trans-1,4-Dichloro-2-butene	NA																	
Xylenes (total)	8.20 U	9.70 U	9.80 U	12.0	11.0 U	9.00 U	9.20 U	8.30 U	9.00 U	9.20 U	9.80 U	970	12.0 U	9.00 U	7.80 U	8.40 U	9.20 U	9.10 U
1,1,1-Trichloroethane	4.10 U	4.90 U	4.90 U	4.80 U	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U
1,1,2,2-Tetrachloroethane	4.10 U	4.90 U	4.90 U	4.80 U*	5.50 U	4.50 U	4.60 U*	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U
1,1,2-trichloro-1,2,2-trifluoroethane	4.10 U	4.90 U	4.90 U	4.80 U	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U
1,1,2-Trichloroethane	4.10 U	4.90 U	4.90 U	4.80 U	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U
1,1-Dichloroethane	4.10 U	4.90 U	4.90 U	4.80 U	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U
1,1-Dichloroethene	4.10 U	4.90 U	4.90 U	4.80 U	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U
1,2,4-Trichlorobenzene	4.10 U	4.90 U	4.90 U	4.80 U*	5.50 U	4.50 U	4.60 U*	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U
1,2-Dibromo-3-chloropropane	4.10 U	4.90 U	4.90 U	4.80 U*	5.50 U	4.50 U	4.60 U*	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U
1,2-Dichlorobenzene	4.10 U	4.90 U	4.90 U	4.80 U*	5.50 U	4.50 U	4.60 U*	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U
1,2-Dichloroethane	4.10 U	4.90 U	4.90 U	4.80 U	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U
1,2-Dichloropropane	4.10 U	4.90 U	4.90 U	4.80 U	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U
1,3-Dichlorobenzene	4.10 U	4.90 U	4.90 U	4.80 U*	5.50 U	4.50 U	4.60 U*	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U
1,4-Dichlorobenzene	4.10 U	4.90 U	4.90 U	4.80 U*	5.50 U	4.50 U	4.60 U*	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U
Bromodichloromethane	4.10 U	4.90 U	4.90 U	4.80 U	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U
Carbon Tetrachloride	4.10 U	4.90 U	4.90 U	4.80 U	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U
Chlorobenzene	4.10 U	4.90 U	4.90 U	4.80 U	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U
Chloroethane	4.10 U	4.90 U	4.90 U	4.80 U	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U
Chloroform	4.10 U	4.90 U	4.90 U	4.80 U	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U
Chloromethane	4.10 U	4.90 U	4.90 U	4.80 U	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U
cis-1,3-Dichloropropene	4.10 U	4.90 U	4.90 U	4.80 U	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U
Dibromochloromethane	4.10 U	4.90 U	4.90 U	4.80 U	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U
Dichlorodifluoromethane	4.10 U	4.90 U	4.90 U	4.80 U	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U
Methylene Chloride	12.0 U	15.0 U	15.0 U	14.0 U	16.0 U	13.0 U	14.0 U	12.0 U	14.0 U	14.0 U	15.0 U	740 U	18.0 U	14.0 U	12.0 U	13.0 U	14.0 U	14.0 U
trans-1,3-Dichloropropene	4.10 U	4.90 U	4.90 U	4.80 U	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U
Trichlorofluoromethane	4.10 U	4.90 U	4.90 U	4.80 U	5.50 U	4.50 U	4.60 U	4.30	4.50 U	4.60 U	4.90 U	2,400	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U
cis-1,2-Dichloroethene	4.10 U	4.90 U	4.90 U	4.80 U	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U
Tetrachloroethene	4.10 U	4.90 U	4.90 U	4.80 U	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U
trans-1,2-Dichloroethene	4.10 U	4.90 U	4.90 U	4.80 U	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U
Trichloroethene	4.10 U	4.90 U	4.90 U	4.80 U	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U
Vinyl Chloride	4.10 U	4.90 U	4.90 U	4.80 U	5.50 U	4.50 U	4.60 U	4.20 U	4.50 U	4.60 U	4.90 U	250 U	6.00 U	4.50 U	3.90 U	4.20 U	4.60 U	4.60 U
Total Petroleum Hydrocarbons (μg/kg)																		
Ethylene Glycol Monobutyl Ether	NA																	

Location Identification:	RMM-359	RMM-363	RMM-374	RMM-379	RMM-396	SB-100	SB-100	SB-101	SB-102	SB-102	SB-103	SB-103	SB-104	SB-104	SB-105	SB-105	SB-106
Sample Depth (Feet):						5	7	4.5	4	6	4	7	4	6	4	6	4
Date Collected:	08/23/18	08/23/18	08/22/18	08/22/18	08/22/18	08/31/15	08/31/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15
Volatile Organic Compounds (μg/kg)																	
1,1,1,2-Tetrachloroethane	NA	NA	NA	NA	NA	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
1,1-Dichloropropene	NA	NA	NA	NA	NA	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
1,2,3-Trichlorobenzene	4.40 U	4.40 U	4.50 U*	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
1,2,3-Trichloropropane	NA	NA	NA	NA	NA	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
1,2,4-Trimethylbenzene	NA	NA	NA	NA	NA	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	15.3 J
1,2-Dibromoethane	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
1,3,5-Trimethylbenzene	NA	NA	NA	NA	NA	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
1,3-Dichloropropane	NA	NA	NA	NA	NA	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
2,2-Dichloropropane	NA	NA	NA	NA	NA	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
2-Butanone	22.0 U	22.0 U	22.0 U	24.0 U	21.0 U	23.6 U	24.9 U	1,070 U	968 U	1,060 U	1,210 U	1,330 U	11,100 U	1,070 U	5,360 U	22.8 U	1,270 U
2-Chlorotoluene	NA	NA	NA	NA	NA	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
2-Hexanone	22.0 U	22.0 U	22.0 U*	24.0 U	21.0 U	11.8 U	12.5 U	215 U	194 U	212 U	241 U	266 U	2,220 U	215 U	1,070 U	11.4 U	255 U
4-Chlorotoluene	NA	NA	NA	NA	NA	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
4-Methyl-2-pentanone	22.0 U	22.0 U	22.0 U	24.0 U	21.0 U	11.8 U	12.5 U	215 U	194 U	212 U	241 U	266 U	2,220 U	215 U	1,070 U	11.4 U	255 U
Acetone	45.0	49.0	42.0	130	21.0 U	47.1 U	49.9 U	1,070 U	968 U	1,060 U	1,210 U	1,330 U	11,100 U	1,070 U	5,360 U	45.6 U	1,270 U
Benzene	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	38.2 J
Bromobenzene	NA	NA	NA	NA	NA	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
Bromochloromethane	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
Bromoform	4.40 U	4.40 U	4.50 U*	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
Bromomethane	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
Carbon Disulfide	4.40 U	4.40 U	4.50 U	5.50	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
Cyclohexane	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	NA											
Dibromomethane	NA	NA	NA	NA	NA	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
Diisopropyl ether (DIPE)	NA	NA	NA	NA	NA	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
Ethylbenzene	4.40 U	4.40 U	4.50 U	23.0	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
Hexachlorobutadiene	NA	NA	NA	NA	NA	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
Iodomethane	NA	NA	NA	NA	NA	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
Isopropylbenzene	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	11.2 J
m-,p-Xylene	NA	NA	NA	NA	NA	9.42 U	9.98 U	85.9 U	77.5 U	84.9 U	96.5 U	107 U	889 U	85.8 U	429 U	9.13 U	102 U
Methyl Acetate	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	NA											
Methyl tert-butyl ether	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
Methylcyclohexane	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	NA											
Naphthalene	NA	NA	NA	NA	NA	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
n-Butylbenzene	NA	NA	NA	NA	NA	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
n-Propylbenzene	NA	NA	NA	NA	NA	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
o-Xylene	NA	NA	NA	NA	NA	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U

Location Identification:	RMM-359	RMM-363	RMM-374	RMM-379	RMM-396	SB-100	SB-100	SB-101	SB-102	SB-102	SB-103	SB-103	SB-104	SB-104	SB-105	SB-105	SB-106
Sample Depth (Feet):						5	7	4.5	4	6	4	7	4	6	4	6	4
Date Collected:	08/23/18	08/23/18	08/22/18	08/22/18	08/22/18	08/31/15	08/31/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15
p-Isopropyltoluene	NA	NA	NA	NA	NA	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
sec-Butylbenzene	NA	NA	NA	NA	NA	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
Styrene	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
tert-Butylbenzene	NA	NA	NA	NA	NA	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
Toluene	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	21.4 J
trans-1,4-Dichloro-2-butene	NA	NA	NA	NA	NA	23.6 U	24.9 U	215 U	194 U	212 U	241 U	266 U	2,220 U	215 U	1,070 U	22.8 U	255 U
Xylenes (total)	8.80 U	8.80 U	9.00 U	9.40 U	8.20 U	9.42 U	9.98 U	85.9 U	77.5 U	84.9 U	96.5 U	107 U	889 U	85.8 U	429 U	9.13 U	102 U
1,1,1-Trichloroethane	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
1,1,2,2-Tetrachloroethane	4.40 U	4.40 U	4.50 U*	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
1,1,2-trichloro-1,2,2-trifluoroethane	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	NA											
1,1,2-Trichloroethane	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
1,1-Dichloroethane	4.40 U	4.40 U	4.50 U	13.0	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
1,1-Dichloroethene	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
1,2,4-Trichlorobenzene	4.40 U	4.40 U	4.50 U*	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
1,2-Dibromo-3-chloropropane	4.40 U	4.40 U	4.50 U*	4.70 U	4.10 U	28.3 U	29.9 U	215 U	194 U	212 U	241 U	266 U	2,220 U	215 U	1,070 U	27.4 U	255 U
1,2-Dichlorobenzene	4.40 U	4.40 U	4.50 U*	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
1,2-Dichloroethane	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
1,2-Dichloropropane	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
1,3-Dichlorobenzene	4.40 U	4.40 U	4.50 U*	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
1,4-Dichlorobenzene	4.40 U	4.40 U	4.50 U*	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
Bromodichloromethane	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
Carbon Tetrachloride	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
Chlorobenzene	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
Chloroethane	4.40 U	4.40 U	6.50	35.0	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
Chloroform	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
Chloromethane	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
cis-1,3-Dichloropropene	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
Dibromochloromethane	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
Dichlorodifluoromethane	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	4.71 U	4.99 U	215 U	194 U	212 U	241 U	266 U	2,220 U	215 U	1,070 U	4.56 U	255 U
Methylene Chloride	13.0 U	13.0 U	13.0 U	14.0 U	12.0 U	18.8 U	20.0 U	215 U	194 U	212 U	241 U	266 U	2,220 U	215 U	1,070 U	18.3 U	14.3 J
trans-1,3-Dichloropropene	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
Trichlorofluoromethane	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
cis-1,2-Dichloroethene	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	1.23 J	9.11	44.7	29.0 J	56.9	112	73.5	1,180	42.5 J	603	32.5	967
Tetrachloroethene	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	9.65 J	53.3 U	444 U	42.9 U	214 U	4.56 U	50.9 U
trans-1,2-Dichloroethene	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	83.6 J	4.56 U	73.3
Trichloroethene	4.40 U	4.40 U	4.50 U	4.70 U	12.0	27.1	57.8	266	238	394	844	428	8,050	278	3,920	24.8	1,230
Vinyl Chloride	4.40 U	4.40 U	4.50 U	4.70 U	4.10 U	4.71 U	4.99 U	43.0 U	38.7 U	42.4 U	48.3 U	53.3 U	444 U	42.9 U	214 U	9.08	108
Total Petroleum Hydrocarbons (μg/kg)																	
Ethylene Glycol Monobutyl Ether	NA																

Location Identification:	SB-106	SB-107	SB-107	SB-108	SB-108	SB-111	SB-111	SB-112	SB-112	SB-114	SB-114	SB-116	SB-116	SB-117	SB-117	SB-118	SB-118	SB-119
Sample Depth (Feet):	6	4	6	4	6	4	6	4	6	3	5	3	6	3	6	3	6	3
Date Collected:	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15
Volatile Organic Compounds (μg/kg)																		
1,1,1,2-Tetrachloroethane	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	51.1 U	4.53 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U
1,1-Dichloropropene	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	51.1 U	4.53 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U
1,2,3-Trichlorobenzene	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	51.1 U	4.53 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U
1,2,3-Trichloropropane	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	51.1 U	4.53 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U
1,2,4-Trimethylbenzene	4.59 U	0.569 J	9.13	379	61.2 J	1,380	5.98	4.86 U	2.12 J [6.11 U]	1,140	15.3	189 U	2.01 J	399 U	4.30 U	2,430 U	363 U	81.1 U
1,2-Dibromoethane	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	51.1 U	4.53 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U
1,3,5-Trimethylbenzene	4.59 U	0.984 J	4.34 U	469	943	498	4.26 J	4.86 U	0.935 J [6.11 U]	313	10.3	189 U	0.760 J	399 U	4.30 U	2,430 U	363 U	81.1 U
1,3-Dichloropropane	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	51.1 U	4.53 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U
2,2-Dichloropropane	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	51.1 U	4.53 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U
2-Butanone	23.0 U	19.2 U	21.7 U	2,310 U	1,560 U	3,190 U	24.1 U	24.3 U	29.6 U [30.5 U]	1,280 U	22.7 U	4,720 U	23.8 U	9,980 U	21.5 U	60,700 U	9,080 U	2,030 U
2-Chlorotoluene	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	51.1 U	4.53 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U
2-Hexanone	11.5 U	9.61 U	10.9 U	463 U	312 U	638 U	12.0 U	12.2 U	14.8 U [15.3 U]	255 U	11.3 U	944 U	11.9 U	2,000 U	10.8 U	12,100 U	1,820 U	406 U
4-Chlorotoluene	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	51.1 U	4.53 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U
4-Methyl-2-pentanone	11.5 U	9.61 U	10.9 U	463 U	312 U	638 U	12.0 U	12.2 U	14.8 U [15.3 U]	255 U	11.3 U	944 U	11.9 U	2,000 U	10.8 U	12,100 U	1,820 U	406 U
Acetone	45.9 U	10.2 J	10.1 J	2,310 U	1,560 U	3,190 U	13.7 J	17.6 J	13.4 J [13.1 J]	1,280 U	16.8 J	4,720 U	8.08 J	9,980 U	14.5 J	60,700 U	9,080 U	2,030 U
Benzene	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	51.1 U	4.53 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U
Bromobenzene	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	51.1 U	4.53 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U
Bromochloromethane	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	51.1 U	4.53 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U
Bromoform	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	51.1 U	4.53 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U
Bromomethane	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	51.1 U	4.53 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U
Carbon Disulfide	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	51.1 U	4.53 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U
Cyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA								
Dibromomethane	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	51.1 U	4.53 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U
Diisopropyl ether (DIPE)	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	51.1 U	4.53 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U
Ethylbenzene	4.59 U	3.84 U	4.34 U	92.6 U	13.1 J	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	51.1 U	4.53 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U
Hexachlorobutadiene	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	51.1 U	4.53 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U
Iodomethane	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	51.1 U	4.53 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U
Isopropylbenzene	4.59 U	3.84 U	4.34 U	119	259	347	2.69 J	4.86 U	5.92 U [6.11 U]	67.9	4.52 J	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U
m-,p-Xylene	9.18 U	7.69 U	8.69 U	185 U	125 U	255 U	9.63 U	9.72 U	11.8 U [12.2 U]	102 U	9.07 U	378 U	9.50 U	798 U	8.61 U	4,860 U	727 U	162 U
Methyl Acetate	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA								
Methyl tert-butyl ether	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	51.1 U	4.53 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U
Methylcyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA								
Naphthalene	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	17.4 J	0.780 J	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U
n-Butylbenzene	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	51.1 U	4.53 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U
n-Propylbenzene	4.59 U	3.84 U	4.34 U	408	639	795	1.51 J	4.86 U	5.92 U [6.11 U]	152	7.48	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U
o-Xylene	4.59 U	3.84 U	4.34 U	92.6 U	20.0 J	154	1.59 J	4.86 U	5.92 U [6.11 U]	17.4 J	4.53 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U

Assert A	Location Identification:	SB-106	SB-107	SB-107	SB-108	SB-108	SB-111	SB-111	SB-112	SB-112	SB-114	SB-114	SB-116	SB-116	SB-117	SB-117	SB-118	SB-118	SB-119
Date Collected Design De	Sample Depth (Feet):	6	4	6	4	6	4	6	4	6	3	5	3	6	3	6	3	6	3
Age	Date Collected:	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/01/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15
Syspen S	p-Isopropyltoluene	4.59 U	3.84 U	4.34 U	19.4 J	62.5 U	44.7 J	0.732 J	4.86 U	5.92 U [6.11 U]	32.2 J	0.707 J	189 U	4.75 U	399 U	4.30 U	2,430 U	6,210	81.1 U
arie Burghersenee 4.59 U 3.84 U 4.34 U 92.6 U 62.5 U 128 U 4.86 U 5.97 U 61.1 U 5.11 U 4.53 U 188 U 4.75 U 3.99 U 4.30 U 2.48 U 3.63 U 81.1 U 1.1 U 1.	sec-Butylbenzene	4.59 U	1.65 J	4.34 U	92.6 U	62.5 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	61.3	0.916 J	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U
Tollame 4.99 3.84 4.54 92.6 0.25 0.25 0.25 0.22 0.25	Styrene	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	51.1 U	4.53 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U
rames-I_A-Dichlorido-2-butlene	tert-Butylbenzene	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	51.1 U	4.53 U	189 U	4.75 U	399 U	4.30 U	2,430 U		81.1 U
Symbol (Symbol (State) 918	Toluene	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	51.1 U	1.11 J	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U
1,1-1-Trichroreshane	trans-1,4-Dichloro-2-butene	23.0 U	19.2 U		463 U	312 U	638 U	24.1 U	24.3 U	29.6 U [30.5 U]	255 U	22.7 U	944 U	23.8 U	2,000 U	21.5 U	12,100 U	1,820 U	406 U
1,1,2,2-fetrachcroethane	Xylenes (total)	9.18 U		8.69 U	185 U		154 J	9.63 U	9.72 U	11.8 U [12.2 U]	17.4 J		378 U	9.50 U		8.61 U		727 U	162 U
1.1.2-Linchioro-charce 1.5.2 milliono-1.2.2-Infiliono-thane 1.5.2 milliono-1.2.2-Infiliono-thane 1.5.2 milliono-thane 1.5.2 milliono-tha	1,1,1-Trichloroethane	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	51.1 U	4.53 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U
1,1,2-Thichforethane	1,1,2,2-Tetrachloroethane	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	51.1 U	4.53 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U
1.1-Dehforoethane	1,1,2-trichloro-1,2,2-trifluoroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA								
1.5-Dichlorochene	1,1,2-Trichloroethane	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	51.1 U	4.53 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U
1.2.4-Tichichrobenzene	1,1-Dichloroethane	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	51.1 U	4.53 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U
12-Dibromo-S-chloropropage	1,1-Dichloroethene	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	51.1 U	4.53 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U
1,2-Dichlorobenzene	1,2,4-Trichlorobenzene	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	51.1 U	4.53 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U
1,2-Dichloroptemene	1,2-Dibromo-3-chloropropane	27.5 U	23.1 U	26.1 U	463 U	312 U	638 U	28.9 U	29.2 U	35.5 U [36.7 U]	255 U	27.2 U	944 U	28.5 U	2,000 U	25.8 U	12,100 U	1,820 U	406 U
1.2-Dichloropropane	1,2-Dichlorobenzene	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	51.1 U	4.53 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U
1.3-Dichlorobenzene 4.59 U 3.84 U 4.34 U 92.6 U 62.5 U 128 U 4.82 U 4.86 U 5.92 U [6.11 U] 51.1 U 4.53 U 189 U 4.75 U 399 U 4.30 U 2.430 U 363 U 81.1 U 4.50 U 3.84 U 4.34 U 92.6 U 62.5 U 128 U 4.82 U 4.86 U 5.92 U [6.11 U] 51.1 U 4.53 U 189 U 4.75 U 399 U 4.30 U 2.430 U 363 U 81.1 U 4.50 U 3.60 U 3.6	1,2-Dichloroethane	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	51.1 U	4.53 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U
	1,2-Dichloropropane	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	51.1 U	4.53 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U
Stromoticinor 4.59 3.84 4.34 9.2 0 62.5 128 4.82 4.86 5.92 6.11 51.1 4.53 189 4.75 399 4.30 2.430 363 81.1 3.2	1,3-Dichlorobenzene	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	51.1 U	4.53 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U
Carbon Tetrachloride	1,4-Dichlorobenzene	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	51.1 U	4.53 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U
Chlorobenzene 4.59 U 3.84 U 4.34 U 92.6 U 62.5 U 128 U 4.82 U 4.86 U 5.92 U 6.11 U 51.1 U 4.53 U 189 U 4.75 U 399 U 4.30 U 2.430 U 363 U 81.1 U 4.50 U 3.84 U 4.34 U 92.6 U 62.5 U 128 U 4.82 U 4.86 U 5.92 U 6.11 U 51.1 U 4.53 U 189 U 4.75 U 399 U 4.30 U 2.430 U 363 U 81.1 U 6.10 U 6.10 U 6.2 U 6.1 U 6.2 U	Bromodichloromethane	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	51.1 U	4.53 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U
Chloroethane 4.59 U 3.84 U 4.34 U 92.6 U 62.5 U 128 U 4.82 U 4.86 U 5.92 U [6.11 U] 51.1 U 4.53 U 189 U 4.75 U 399 U 4.30 U 2.430 U 363 U 81.1 U 4.85 U 3.84 U 4.34 U 92.6 U 62.5 U 128 U 4.82 U 4.86 U 5.92 U [6.11 U] 51.1 U 4.53 U 189 U 4.75 U 399 U 4.30 U 2.430 U 363 U 81.1 U 4.55 U 3.5 U 3.5 U 3.5 U 3.5 U 4.34 U 92.6 U 62.5 U 128 U 4.82 U 4.86 U 5.92 U [6.11 U] 51.1 U 4.53 U 189 U 4.75 U 399 U 4.30 U 2.430 U 363 U 81.1 U 4.55 U 3.5 U 3.5 U 3.5 U 4.34 U 92.6 U 62.5 U 128 U 4.82 U 4.86 U 5.92 U [6.11 U] 51.1 U 4.53 U 189 U 4.75 U 399 U 4.30 U 2.430 U 363 U 81.1 U 4.55 U 3.5 U	Carbon Tetrachloride	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	51.1 U		189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U
Chloroform 4.59 U 3.84 U 4.34 U 92.6 U 62.5 U 128 U 4.82 U 4.86 U 5.92 U 6.11 U 51.1 U 4.53 U 189 U 4.75 U 399 U 4.30 U 2,430 U 363 U 81.1 U 4.51 U 4.51 U 4.52 U 4.55 U 189 U 4.75 U 399 U 4.30 U 2,430 U 363 U 81.1 U 3.1 U 4.51 U 4.52 U 4.55 U 189 U 4.75 U 399 U 4.30 U 2,430 U 363 U 81.1 U 3.1 U 4.51 U 4.52 U 4.55 U 4.55 U 189 U 4.75 U 399 U 4.30 U 2,430 U 363 U 81.1 U 3.1 U 4.55	Chlorobenzene	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	51.1 U	4.53 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U
Chloromethane 4.59 U 3.84 U 4.34 U 92.6 U 62.5 U 128 U 4.82 U 4.86 U 5.92 U [6.11 U] 51.1 U 4.53 U 189 U 4.75 U 399 U 4.30 U 2,430 U 363 U 81.1 U 4.55 U 189 U 4.75 U 399 U 4.30 U 2,430 U 363 U 81.1 U 4.55 U 189 U 4.75 U 399 U 4.30 U 2,430 U 363 U 81.1 U 4.55 U 189 U 4.75 U 399 U 4.30 U 2,430 U 363 U 81.1 U 1.54 U 1.55 U 1.	Chloroethane	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	51.1 U	4.53 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U
21. 1 2 3 3 3 4 U 3 4 U 3 4 U 3 2 C 2 U 3 C 2	Chloroform	4.59 U	3.84 U	4.34 U	92.6 U		128 U	4.82 U	4.86 U	5.92 U [6.11 U]	51.1 U		189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U
Dibromochloromethane 4.59 U 3.84 U 4.34 U 92.6 U 62.5 U 128 U 4.82 U 4.86 U 5.92 U [6.11 U] 51.1 U 4.53 U 189 U 4.75 U 399 U 4.30 U 2,430 U 363 U 81.1 U 0.00	Chloromethane	4.59 U	3.84 U		92.6 U		128 U	4.82 U	4.86 U	5.92 U [6.11 U]	51.1 U		189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U
Dichlorodifluoromethane 4.59 U 3.84 U 4.34 U 463 U 312 U 638 U 4.82 U 4.86 U 5.92 U 6.11 U 255 U 4.53 U 944 U 4.75 U 2,000 U 4.30 U 12,100 U 1,820 U 406 U 18.4 U 15.4 U 17.4 U 463 U 312 U 638 U 19.3 U 2.28 J 23.7 U [24.4 U] 255 U 3.80 J 944 U 19.0 U 2,000 U 17.2 U 12,100 U 1,820 U 406 U 17.3 U 17.4 U 463 U 312 U 638 U 19.3 U 2.28 J 23.7 U [24.4 U] 255 U 3.80 J 944 U 19.0 U 2,000 U 17.2 U 12,100 U 1,820 U 406 U 17.3 U 17.4 U 463 U 3.84 U 4.34 U 92.6 U 62.5 U 128 U 4.82 U 4.86 U 5.92 U [6.11 U] 51.1 U 4.53 U 189 U 4.75 U 399 U 4.30 U 2,430 U 363 U 81.1 U 18.5 U 18.5 U 18.5 U 4.85 U 4.85 U 4.85 U 5.92 U [6.11 U] 51.1 U 4.53 U 18.9 U 4.75 U 39.9 U 4.30 U 2,430 U 363 U 81.1 U 18.5 U 18.5 U 18.5 U 18.5 U 4.85 U 4.85 U 5.92 U [6.11 U] 51.1 U 4.53 U 18.9 U 4.75 U 39.9 U 4.30 U 2,430 U 363 U 81.1 U 18.5	cis-1,3-Dichloropropene		3.84 U				128 U		4.86 U	5.92 U [6.11 U]	51.1 U		189 U					363 U	81.1 U
Methylene Chloride 18.4 U 15.4 U 17.4 U 463 U 312 U 638 U 19.3 U 2.28 J 23.7 U [24.4 U] 255 U 3.80 J 944 U 19.0 U 2,000 U 17.2 U 12,100 U 1,820 U 406 U 4.59 U 3.84 U 4.34 U 92.6 U 62.5 U 128 U 4.82 U 4.86 U 5.92 U [6.11 U] 51.1 U 4.53 U 189 U 4.75 U 399 U 4.30 U 2,430 U 363 U 81.1 U 7.61 Displaymenthane 4.59 U 3.84 U 4.28 J 92.6 U 62.5 U 128 U 4.82 U 4.86 U 5.92 U [6.11 U] 50.1 U 4.53 U 189 U 4.75 U 399 U 4.30 U 2,430 U 363 U 81.1 U 8	Dibromochloromethane	4.59 U		4.34 U	92.6 U	62.5 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]			189 U				2,430 U		81.1 U
Trichlorofluoromethane 4.59 U 3.84 U 4.34 U 92.6 U 62.5 U 128 U 4.82 U 4.86 U 5.92 U 6.11 U 51.1 U 4.53 U 189 U 4.75 U 399 U 4.30 U 2,430 U 363 U 81.1 U 4.55 U 3.84 U 4.34 U 92.6 U 62.5 U 128 U 4.82 U 4.86 U 5.92 U 6.11 U 51.1 U 4.53 U 189 U 4.75 U 399 U 4.30 U 2,430 U 363 U 81.1 U 4.55 U 189 U 4.55 U 3.84 U 4.34 U 92.6 U 62.5 U 568 4.82 U 4.86 U 5.92 U 6.11 U 50.1 U 4.53 U 189 U 4.75 U 399 U 4.30 U 2,430 U 363 U 81.1 U 4.55 U 189 U 1.47 U 189	Dichlorodifluoromethane	4.59 U	3.84 U	4.34 U	463 U		638 U	4.82 U		5.92 U [6.11 U]		4.53 U	944 U						
Trichlorofluoromethane 4.59 U 3.84 U 4.34 U 92.6 U 62.5 U 128 U 4.86 U 5.92 U [6.11 U] 51.1 U 4.53 U 189 U 4.75 U 399 U 4.30 U 2,430 U 363 U 81.1 U dis-1,2-Dichloroethene 11.8 3.84 U 4.28 J 92.6 U 62.5 U 568 4.82 U 4.86 U 5.92 U [6.11 U] 501 4.53 U 871 22.8 1,960 32.6 7,140 182 J 200 Tetrachloroethene 4.59 U 3.84 U 4.34 U 92.6 U 62.5 U 128 U 4.82 U 4.86 U 5.92 U [6.11 U] 51.1 U 4.53 U 189 U 4.75 U 399 U 4.30 U 2,430 U 363 U 81.1 U 4.75 U 399 U 4.30 U 2,430 U 363 U 81.1 U 4.75 U 399 U 4.30 U 2,430 U 363 U 81.1 U 4.75 U 399 U 4.30 U 2,430 U 363 U 20.3 U 363 U	Methylene Chloride	18.4 U	15.4 U	17.4 U	463 U	312 U	638 U	19.3 U	2.28 J	23.7 U [24.4 U]	255 U	3.80 J	944 U	19.0 U	2,000 U	17.2 U	12,100 U	1,820 U	406 U
cis-1,2-Dichloroethene 11.8 3.84 U 4.28 J 92.6 U 62.5 U 568 4.82 U 4.86 U 5.92 U [6.11 U] 501 4.53 U 871 22.8 1,960 32.6 7,140 182 J 200 Tetrachloroethene 4.59 U 3.84 U 4.34 U 92.6 U 62.5 U 128 U 4.82 U 4.86 U 5.92 U [6.11 U] 51.1 U 4.53 U 189 U 4.75 U 399 U 4.30 U 2,430 U 363 U 81.1 U 4.75 U 399 U 4.30 U 2,430 U 363 U 81.1 U 4.75 U 399 U 4.30 U 363 U 364 U	trans-1,3-Dichloropropene								4.86 U	5.92 U [6.11 U]			189 U				,		
Tetrachloroethene 4.59 U 3.84 U 4.34 U 92.6 U 62.5 U 128 U 4.82 U 4.86 U 5.92 U [6.11 U] 51.1 U 4.53 U 189 U 4.75 U 399 U 4.30 U 2,430 U 363 U 81.1 U 4.75 U 399 U 4.30 U 2,430 U 363 U 81.1 U 4.75 U 399 U 4.30 U 363 U 364 U 365	Trichlorofluoromethane												189 U						
rans-1,2-Dichloroethene 4.59 U 3.84 U 4.34 U 92.6 U 62.5 U 128 U 4.82 U 4.86 U 5.92 U [6.11 U] 26.6 J 4.53 U 104 J 4.75 U 295 J 1.87 J 2,430 U 363 U 20.3 J 7 I I I I I I I I I I I I I I I I I I	cis-1,2-Dichloroethene	11.8	3.84 U	4.28 J	92.6 U		568	4.82 U	4.86 U	5.92 U [6.11 U]	501		871	22.8	1,960	32.6	7,140	182 J	200
Trichloroethene 7.38 3.84 U 4.34 U 92.6 U 62.5 U 33.2 J 4.82 U 2.22 J 5.92 U [6.11 U] 15.8 J 4.53 U 6,610 73.6 7,770 95.3 43,100 363 U 2,010 Vinyl Chloride 5.14 3.84 U 10.9 92.6 U 62.5 U 38.3 J 3.84 J 0.992 J 2.82 J [3.31 J] 10.7 J 1.23 J 189 U 1.47 J 399 U 2.75 J 2,430 U 363 U 81.1 U Total Petroleum Hydrocarbons (μg/kg)	Tetrachloroethene	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	51.1 U	4.53 U	189 U	4.75 U	399 U	4.30 U	2,430 U	363 U	81.1 U
Vinyl Chloride 5.14 3.84 U 10.9 92.6 U 62.5 U 38.3 J 3.84 J 0.992 J 2.82 J [3.31 J] 10.7 J 1.23 J 189 U 1.47 J 399 U 2.75 J 2,430 U 363 U 81.1 U Total Petroleum Hydrocarbons (μg/kg)	trans-1,2-Dichloroethene	4.59 U	3.84 U	4.34 U	92.6 U	62.5 U	128 U	4.82 U	4.86 U	5.92 U [6.11 U]	26.6 J	4.53 U	104 J	4.75 U	295 J	1.87 J	2,430 U	363 U	20.3 J
Total Petroleum Hydrocarbons (μg/kg)	Trichloroethene	7.38	3.84 U	4.34 U	92.6 U	62.5 U	33.2 J	4.82 U	2.22 J	5.92 U [6.11 U]	15.8 J	4.53 U	6,610	73.6	7,770	95.3	43,100	363 U	2,010
Total Petroleum Hydrocarbons (μg/kg)	Vinyl Chloride	5.14	3.84 U	10.9	92.6 U	62.5 U	38.3 J	3.84 J	0.992 J	2.82 J [3.31 J]	10.7 J	1.23 J	189 U	1.47 J	399 U	2.75 J	2,430 U	363 U	81.1 U
	Total Petroleum Hydrocarbons (µg/kg)																		
	Ethylene Glycol Monobutyl Ether	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA								

Location Identification:	SB-119	SB-201	SB-201	SB-202	SB-202	SB-203	SB-203	SB-204	SB-204	SB-205	SB-205	SB-206	SB-206	SB-207	SB-207	SB-208	SB-208
Sample Depth (Feet):	5	4	6	3	4.5	3	6	4	6	4	6	3	7	3	6	3	5
Date Collected:	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15
Volatile Organic Compounds (μg/kg)																	
1,1,1,2-Tetrachloroethane	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U	4.96 U [4.58 U]	4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U
1,1-Dichloropropene	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U
1,2,3-Trichlorobenzene	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U
1,2,3-Trichloropropane	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U	4.96 U [4.58 U]	4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U
1,2,4-Trimethylbenzene	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U	4.96 U [4.58 U]	4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U
1,2-Dibromoethane	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U	4.96 U [4.58 U]	4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U
1,3,5-Trimethylbenzene	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U	4.96 U [4.58 U]	4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U
1,3-Dichloropropane	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U
2,2-Dichloropropane	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U
2-Butanone	21.6 U	21.4 U	24.5 U	20.0 U	3,640 U	21.3 U	21.6 U	1,120 U	24.8 U [22.9 U]	22.4 U [22.5 U]	25.2 U	21.3 U	20.7 U	5,420 U	140,000 U	29.1 U	4,320 U
2-Chlorotoluene	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U	4.96 U [4.58 U]	4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U
2-Hexanone	10.8 U	10.7 U	12.3 U	9.99 U	728 U	10.6 U	10.8 U	224 U	12.4 U [11.4 U]] 11.2 U [11.3 U]	12.6 U	10.7 U	10.3 U	1,080 U	28,000 U	14.5 U	865 U
4-Chlorotoluene	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U	4.96 U [4.58 U]	4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U
4-Methyl-2-pentanone	10.8 U	10.7 U	12.3 U	9.99 U	728 U	10.6 U	10.8 U	224 U	12.4 U [11.4 U]] 11.2 U [11.3 U]	12.6 U	10.7 U	10.3 U	1,080 U	28,000 U	14.5 U	865 U
Acetone	18.1 J	22.9 J	26.7 J	11.4 J	3,640 U	9.89 J	16.6 J	1,120 U	25.9 J [15.8 J]	9.47 J [11.0 J]	24.6 J	20.1 J	41.4 U	5,420 U	140,000 U	77.8	4,320 U
Benzene	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U	4.96 U [4.58 U]	4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	1.13 J	173 U
Bromobenzene	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U	4.96 U [4.58 U]	4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U
Bromochloromethane	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U
Bromoform	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U	4.96 U [4.58 U]	4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U
Bromomethane	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U	4.96 U [4.58 U]	4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U
Carbon Disulfide	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U	4.96 U [4.58 U]	4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U
Cyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA								
Dibromomethane	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U	4.96 U [4.58 U]	4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U
Diisopropyl ether (DIPE)	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U	4.96 U [4.58 U]	4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U
Ethylbenzene	4.31 U	4.27 U	4.91 U	4.00 U	470	4.25 U	4.31 U	44.9 U	4.96 U [4.58 U]	4.48 U [4.51 U]	5.04 U	1.19 J	1.01 J	217 U	5,600 U	1.44 J	173 U
Hexachlorobutadiene	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U	4.96 U [4.58 U]	4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U
lodomethane	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U	4.96 U [4.58 U]	4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U
Isopropylbenzene	4.31 U	4.27 U	4.91 U	4.00 U	189	4.25 U	4.31 U	44.9 U	4.96 U [4.58 U]	4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U
m-,p-Xylene	8.63 U	8.55 U	9.81 U	7.99 U	291 U	8.50 U	8.63 U	89.8 U	9.92 U [9.15 U]	8.96 U [9.02 U]	10.1 U	2.64 J	5.36 J	434 U	11,200 U	11.6 U	346 U
Methyl Acetate	NA	NA	NA	NA	NA	NA	NA	NA	NA								
Methyl tert-butyl ether	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U	4.96 U [4.58 U]	4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U
Methylcyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA								
Naphthalene	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U
n-Butylbenzene	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U	4.96 U [4.58 U]	4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U
n-Propylbenzene	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U
o-Xylene	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U	4.96 U [4.58 U]	4.48 U [4.51 U]	5.04 U	1.12 J	3.29 J	217 U	5,600 U	5.82 U	173 U

Location Identification:	SB-119	SB-201	SB-201	SB-202	SB-202	SB-203	SB-203	SB-204	SB-204	SB-205	SB-205	SB-206	SB-206	SB-207	SB-207	SB-208	SB-208
Sample Depth (Feet):	5	4	6	3	4.5	3	6	4	6	4	6	3	7	3	6	3	5
Date Collected:	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15
p-Isopropyltoluene	1.58 J	4.27 U	4.91 U	4.00 U	686	4.25 U	4.31 U	44.9 U	4.96 U [4.58 U]	4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	1.57 J	173 U
sec-Butylbenzene	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U	4.96 U [4.58 U]	4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U
Styrene	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U
tert-Butylbenzene	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U
Toluene	4.31 U	4.27 U	4.91 U	4.00 U	121 J	4.25 U	4.31 U	44.9 U	4.96 U [4.58 U]	4.48 U [4.51 U]	5.04 U	2.82 J	4.14 U	217 U	5,600 U	4.56 J	173 U
trans-1,4-Dichloro-2-butene	21.6 U	21.4 U	24.5 U	20.0 U	728 U	21.3 U	21.6 U	224 U		22.4 U [22.5 U]	25.2 U	21.3 U	20.7 U	1,080 U	28,000 U	29.1 U	865 U
Xylenes (total)	8.63 U	8.55 U	9.81 U	7.99 U	291 U	8.50 U	8.63 U	89.8 U		8.96 U [9.02 U]	10.1 U	3.76 J	8.66	434 U	11,200 U	11.6 U	346 U
1,1,1-Trichloroethane	4.31 U	4.27 U	4.91 U	29.1	146 U	27.5	4.31 U	556	4.96 U [4.58 U]		5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U
1,1,2,2-Tetrachloroethane	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U	4.96 U [4.58 U]	4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U
1,1,2-trichloro-1,2,2-trifluoroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA								
1,1,2-Trichloroethane	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U
1,1-Dichloroethane	4.31 U	4.27 U	4.91 U	27.7	146 U	21.3	58.0	74.5		2.05 J [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	2.70 J	173 U
1,1-Dichloroethene	4.31 U	4.27 U	4.91 U	1.19 J	146 U	4.25 U	4.31 U	23.8 J	1.13 J [4.58 U]	4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U
1,2,4-Trichlorobenzene	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U	4.96 U [4.58 U]	4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U
1,2-Dibromo-3-chloropropane	25.9 U	25.6 U	29.4 U	24.0 U	728 U	25.5 U	25.9 U	224 U	29.8 U [27.5 U]	26.9 U [27.0 U]	30.2 U	25.6 U	24.8 U	1,080 U	28,000 U	34.9 U	865 U
1,2-Dichlorobenzene	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U	4.96 U [4.58 U]	4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U
1,2-Dichloroethane	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U	4.96 U [4.58 U]	4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U
1,2-Dichloropropane	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U
1,3-Dichlorobenzene	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U	4.96 U [4.58 U]	4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U
1,4-Dichlorobenzene	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U	4.96 U [4.58 U]	4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U
Bromodichloromethane	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U
Carbon Tetrachloride	4.31 U	4.27 U	4.91 U	4.30	146 U	3.94 J	4.31 U	44.9 U		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U
Chlorobenzene	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U
Chloroethane	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	45.0	44.9 U		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U
Chloroform	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U
Chloromethane	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U
cis-1,3-Dichloropropene	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U
Dibromochloromethane	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U
Dichlorodifluoromethane	4.31 U	4.27 U	4.91 U	4.00 U	728 U	4.25 U	4.31 U	224 U		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	1,080 U	28,000 U	5.82 U	865 U
Methylene Chloride	17.3 U	17.1 U	19.6 U	16.0 U	728 U	17.0 U	17.3 U	224 U		17.9 U [18.0 U]	20.1 U	17.1 U	16.6 U	1,080 U	28,000 U	23.3 U	865 U
trans-1,3-Dichloropropene	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U
Trichlorofluoromethane	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U
cis-1,2-Dichloroethene	38.3	1.39 J	4.91 U	32.6	146 U	19.3	1.15 J	110		4.48 U [4.51 U]	5.04 U	1.95 J	4.14 U	3,540	40,300	1.50 J	34.6 J
Tetrachloroethene	4.31 U	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U
trans-1,2-Dichloroethene	1.52 J	4.27 U	4.91 U	4.00 U	146 U	4.25 U	4.31 U	44.9 U		4.48 U [4.51 U]	5.04 U	4.26 U	4.14 U	217 U	5,600 U	5.82 U	173 U
Trichloroethene	47.5	4.27 U	4.91 U	84.8	146 U	55.0	4.31 U	469	4.96 U [4.58 U]		5.04 U	7.71	1.28 J	547	166,000	2.96 J	3,110
Vinyl Chloride	18.7	4.27 U	4.91 U	4.00 U	146 U	4.25 U	3.67 J	44.9 U	10.4 [8.00]	4.48 U [4.51 U]	5.04 U	4.26 U	0.836 J	84.6 J	2,800 J	1.45 J	173 U
Total Petroleum Hydrocarbons (μg/kg)																	
Ethylene Glycol Monobutyl Ether	NA	NA	NA	NA	NA	NA	NA	NA	NA								

Location Identification:	SB-209	SB-209	SB-210	SB-210	SB-211	SB-211	SB-212	SB-212	SB-213	SB-214	SB-215	SB-215	SB-216	SB-216	SB-217	SB-217	SB-218
Sample Depth (Feet):	4	6	1.5	4	3	5	3	5	3	2.5	3	5	3	7	3	5	3
Date Collected:	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/03/15	09/03/15	09/03/15
Volatile Organic Compounds (μg/kg)																	
1,1,1,2-Tetrachloroethane	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U
1,1-Dichloropropene	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U
1,2,3-Trichlorobenzene	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U
1,2,3-Trichloropropane	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U
1,2,4-Trimethylbenzene	9,440 U	25,600 U	140 J	96.5 U	1,810 U	9,870	4.88 U	178 U	4.62 U	45.0 U	11.1 J	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	206
1,2-Dibromoethane	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U
1,3,5-Trimethylbenzene	9,440 U	25,600 U	197 U	96.5 U	1,810 U	3,540 J	4.88 U	178 U	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	49.1 J
1,3-Dichloropropane	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U
2,2-Dichloropropane	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U
2-Butanone	236,000 U	639,000 U	4,930 U	2,410 U	45,300 U	233,000 U	24.4 U	4,460 U	23.1 U	1,130 U	1,070 U	30.3 U	22.3 U	314,000 U	23.1 U	27.7 U	3,840 U
2-Chlorotoluene	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U
2-Hexanone	47,200 U	128,000 U	987 U	483 U	9,060 U	46,600 U	12.2 U	892 U	11.5 U	225 U	214 U	15.1 U	11.2 U	62,700 U	11.6 U	13.9 U	768 U
4-Chlorotoluene	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U
4-Methyl-2-pentanone	47,200 U	128,000 U	987 U	483 U	9,060 U	46,600 U	12.2 U	892 U	11.5 U	225 U	214 U	15.1 U	11.2 U	62,700 U	11.6 U	13.9 U	768 U
Acetone	236,000 U	639,000 U	4,930 U	2,410 U	45,300 U	233,000 U	9.26 J	4,460 U	17.3 J	1,130 U	1,070 U	28.0 J	18.6 J	314,000 U	23.0 J	18.0 J	3,840 U
Benzene	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U	4.62 U	45.0 U	42.8 U	1.28 J	4.46 U	12,500 U	4.62 U	5.55 U	154 U
Bromobenzene	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U
Bromochloromethane	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U
Bromoform	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U
Bromomethane	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U
Carbon Disulfide	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U
Cyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibromomethane	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U
Diisopropyl ether (DIPE)	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U
Ethylbenzene	9,440 U	25,600 U	197 U	96.5 U	1,180 J	10,100	4.88 U	178 U	4.62 U	45.0 U	121	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	32.2 J
Hexachlorobutadiene	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U
Iodomethane	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U
Isopropylbenzene	9,440 U	25,600 U	45.4 J	96.5 U	8,970	9,320 U	4.88 U	178 U	4.62 U	45.0 U	11.1 J	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	369
m-,p-Xylene	18,900 U	51,100 U	355 J	193 U	3,620 U	35,700	9.76 U	357 U	9.23 U	90.1 U	195	12.1 U	8.93 U	25,100 U	9.25 U	11.1 U	3,390
Methyl Acetate	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methyl tert-butyl ether	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U
Methylcyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	9,440 U	25,600 U	136 J	74.3 J	1,810 U	9,320 U	4.88 U	178 U	4.62 U	45.0 U	9.84 J	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U
n-Butylbenzene	9,440 U	25,600 U	94.8 J	96.5 U	1,230 J	9,320 U	4.88 U	178 U	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U
n-Propylbenzene	9,440 U	25,600 U	43.4 J	96.5 U	36,400	3,630 J	4.88 U	178 U	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	249
o-Xylene	9,440 U	25,600 U	197 U	96.5 U	1,810 U	11,700	4.88 U	178 U	4.62 U	45.0 U	206	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U

Location Identification:	SB-209	SB-209	SB-210	SB-210	SB-211	SB-211	SB-212	SB-212	SB-213	SB-214	SB-215	SB-215	SB-216	SB-216	SB-217	SB-217	SB-218
Sample Depth (Feet):	4	6	1.5	4	3	5	3	5	3	2.5	3	5	3	7	3	5	3
Date Collected:	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/02/15	09/03/15	09/03/15	09/03/15
p-Isopropyltoluene	9,440 U	25,600 U	146 J	96.5 U	1,810 U	9,320 U	4.88 U	178 U	4.62 U	45.0 U	10.3 J	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	44.5 J
sec-Butylbenzene	9,440 U	25,600 U	197 U	96.5 U	1,540 J	9,320 U	4.88 U	178 U	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U
Styrene	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U
tert-Butylbenzene	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U
Toluene	9,440 U	25,600 U	197 U	96.5 U	1,810 U	305,000	4.88 U	87.4 J	4.62 U	45.0 U	180	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U
trans-1,4-Dichloro-2-butene	47,200 U	128,000 U	987 U	483 U	9,060 U	46,600 U	24.4 U	892 U	23.1 U	225 U	214 U	30.3 U	22.3 U	62,700 U	23.1 U	27.7 U	768 U
Xylenes (total)	18,900 U	51,100 U	355 J	193 U	3,620 U	47,400	9.76 U	357 U	9.23 U	90.1 U	400	12.1 U	8.93 U	25,100 U	9.25 U	11.1 U	3,390
1,1,1-Trichloroethane	35,300	15,100 J	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U
1,1,2,2-Tetrachloroethane	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U
1,1,2-trichloro-1,2,2-trifluoroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,2-Trichloroethane	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U
1,1-Dichloroethane	4,820 J	9,710 J	989	96.5 U	1,810 U	9,320 U	4.88 U	178 U	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U
1,1-Dichloroethene	16,900	40,400	88.8 J	96.5 U	1,810 U	9,320 U	4.88 U	178 U	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U
1,2,4-Trichlorobenzene	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U
1,2-Dibromo-3-chloropropane	47,200 U	128,000 U	987 U	483 U	9,060 U	46,600 U	29.3 U	892 U	27.7 U	225 U	214 U	36.3 U	26.8 U	62,700 U	27.7 U	33.3 U	768 U
1,2-Dichlorobenzene	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U
1,2-Dichloroethane	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U
1,2-Dichloropropane	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U
1,3-Dichlorobenzene	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U
1,4-Dichlorobenzene	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U
Bromodichloromethane	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U
Carbon Tetrachloride	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U
Chlorobenzene	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U
Chloroethane	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U
Chloroform	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U
Chloromethane	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U
cis-1,3-Dichloropropene	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U
Dibromochloromethane	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U
Dichlorodifluoromethane	47,200 U	128,000 U	987 U	483 U	9,060 U	46,600 U	4.88 U	892 U	4.62 U	225 U	214 U	6.05 U	4.46 U	62,700 U	4.62 U	5.55 U	768 U
Methylene Chloride	47,200 U	128,000 U	987 U	483 U	9,060 U	46,600 U	19.5 U	892 U	18.5 U	225 U	214 U	24.2 U	17.9 U	62,700 U	3.80 J	4.97 J	768 U
trans-1,3-Dichloropropene	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U
Trichlorofluoromethane	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U
cis-1,2-Dichloroethene	54,400	124,000	4,410	96.5 U	1,810 U	85,000	111	5,220	11.8	172	42.8 U	6.05 U	2.15 J	77,100	3.66 J	5.55 U	154 U
Tetrachloroethene	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U
trans-1,2-Dichloroethene	9,440 U	25,600 U	197 U	96.5 U	1,810 U	9,320 U	4.88 U	178 U	4.62 U	45.0 U	42.8 U	6.05 U	4.46 U	12,500 U	4.62 U	5.55 U	154 U
Trichloroethene	213,000	407,000	197 U	147	1,810 U	9,320 U	81.2	178 U	59.4	334	42.8 U	6.05 U	3.84 J	234,000	8.22	4.37 J	154 U
Vinyl Chloride	2,360 J	5,110 J	288	96.5 U	1,810 U	10,200	4.88 U	6,200	4.62 U	45.0 U	42.8 U	6.05 U	0.661 J	4,520 J	4.62 U	5.55 U	154 U
Total Petroleum Hydrocarbons (µg/kg)																	
Ethylene Glycol Monobutyl Ether	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Location Identification:	SB-218	SB-219	SB-219	SB-301	SB-301	SB-302	SB-302	SB-303	SB-303	SB-304	SB-304	SB-305	SB-306	SB-307	SB-308	SB-308
Sample Depth (Feet):	5	4	6	3	4	3	5	4	6	3	5	3	6	2	3	5
Date Collected:	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15
Volatile Organic Compounds (μg/kg)																
1,1,1,2-Tetrachloroethane	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]
1,1-Dichloropropene	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]
1,2,3-Trichlorobenzene	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]
1,2,3-Trichloropropane	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]
1,2,4-Trimethylbenzene	169 U	4.12 U	5.27 U	4.76 U	5.61 U	105	5.17	8,930 U	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]
1,2-Dibromoethane	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]
1,3,5-Trimethylbenzene	169 U	4.12 U	5.27 U	4.76 U	5.61 U	107	2.52 J	8,930 U	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]
1,3-Dichloropropane	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]
2,2-Dichloropropane	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]
2-Butanone	4,230 U	20.6 U	26.4 U	23.8 U	28.0 U	2,280 U	22.4 U	223,000 U	5,490,000 U	1,180,000 U	1,420,000 U	1,250 U	1,600 U	21.9 U	23.1 U	6,420,000 U [1,010,000 U]
2-Chlorotoluene	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]
2-Hexanone	846 U	10.3 U	13.2 U	11.9 U	14.0 U	455 U	11.2 U	44,600 U	1,100,000 U	235,000 U	284,000 U	250 U	320 U	10.9 U	11.5 U	1,280,000 U [202,000 U]
4-Chlorotoluene	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]
4-Methyl-2-pentanone	846 U	10.3 U	13.2 U	11.9 U	14.0 U	455 U	11.2 U	44,600 U	1,100,000 U	235,000 U	284,000 U	250 U	320 U	10.9 U	11.5 U	1,280,000 U [202,000 U]
Acetone	4,230 U	22.9 J	8.74 J	32.6 J	37.1 J	2,280 U	18.5 J	223,000 U	5,490,000 U	1,180,000 U	1,420,000 U	1,250 U	1,600 U	20.9 J	9.94 J	6,420,000 U [1,010,000 U]
Benzene	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	0.850 J	8,930 U	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]
Bromobenzene	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]
Bromochloromethane	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]
Bromoform	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]
Bromomethane	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]
Carbon Disulfide	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]
Cyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA							
Dibromomethane	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]
Diisopropyl ether (DIPE)	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]
Ethylbenzene	129 J	5.21	3.36 J	4.76 U	5.61 U	132	12.7	8,930 U	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]
Hexachlorobutadiene	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]
lodomethane	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]
Isopropylbenzene	37.2 J	2.44 J	1.74 J	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]
m-,p-Xylene	4,210	151	10.5 U	9.51 U	11.2 U	1,270	20.7	17,900 U	440,000 U	94,100 U	114,000 U	99.9 U	128 U	8.75 U	9.22 U	513,000 U [80,700 U]
Methyl Acetate	NA	NA	NA	NA	NA	NA	NA	NA	NA							
Methyl tert-butyl ether	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]
Methylcyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA							
Naphthalene	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	2.21 J	8,930 U	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]
n-Butylbenzene	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]
n-Propylbenzene	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	0.859 J	8,930 U	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]
o-Xylene	345	4.12 U	5.27 U	4.76 U	5.61 U	477	1.61 J	8,930 U	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]

Location Identification:	SB-218	SB-219	SB-219	SB-301	SB-301	SB-302	SB-302	SB-303	SB-303	SB-304	SB-304	SB-305	SB-306	SB-307	SB-308	SB-308
Sample Depth (Feet):	5	4	6	3	4	3	5	4	6	3	5	3	6	2	3	5
Date Collected:	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15
p-Isopropyltoluene	169 U	4.12 U	5.27 U	4.76 U	5.61 U	394	1.67 J	8,930 U	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]
sec-Butylbenzene	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]
Styrene	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]
tert-Butylbenzene	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]
Toluene	169 U	4.12 U	5.27 U	1.04 J	5.61 U	334	2.09 J	8,930 U	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]
trans-1,4-Dichloro-2-butene	846 U	20.6 U	26.4 U	23.8 U	28.0 U	455 U	22.4 U	44,600 U	1,100,000 U	235,000 U	284,000 U	250 U	320 U	21.9 U	23.1 U	1,280,000 U [202,000 U]
Xylenes (total)	4,550	151	10.5 U	9.51 U	11.2 U	1,740	22.3	17,900 U	440,000 U	94,100 U	114,000 U	99.9 U	128 U	8.75 U	9.22 U	513,000 U [80,700 U]
1,1,1-Trichloroethane	169 U	4.12 U	5.27 U	4.76 U	5.61 U	29.1 J	4.48 U	222,000	796,000	488,000	674,000	1,100	63.9 U	4.38 U	145	1,840,000 [475,000]
1,1,2,2-Tetrachloroethane	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]
1,1,2-trichloro-1,2,2-trifluoroethane	NA	NA	NA	NA	NA	NA	NA	NA								
1,1,2-Trichloroethane	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]
1,1-Dichloroethane	169 U	4.12 U	7.82	4.76 U	5.61 U	61.9 J	2.43 J	4,020 J	220,000 U	12,200 J	11,900 J	212	27.5 J	4.38 U	124	257,000 U [10,900 J]
1,1-Dichloroethene	169 U	4.12 U	0.928 J	4.76 U	5.61 U	107	4.48 U	21,200	125,000 J	12,700 J	34,600 J	81.4	14.1 J	4.38 U	20.4	136,000 J [44,800]
1,2,4-Trichlorobenzene	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]
1,2-Dibromo-3-chloropropane	846 U	24.7 U	31.6 U	28.5 U	33.7 U	455 U	26.9 U	44,600 U	1,100,000 U	235,000 U	284,000 U	250 U	320 U	26.3 U	27.7 U	1,280,000 U [202,000 U]
1,2-Dichlorobenzene	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]
1,2-Dichloroethane	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]
1,2-Dichloropropane	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]
1,3-Dichlorobenzene	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]
1,4-Dichlorobenzene	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]
Bromodichloromethane	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]
Carbon Tetrachloride	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	21.2	257,000 U [40,400 U]
Chlorobenzene	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]
Chloroethane	169 U	4.12 U	5.27 U	4.76 U	3.32 J	91.0 U	6.53	8,930 U	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	17.3	257,000 U [40,400 U]
Chloroform	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]
Chloromethane	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]
cis-1,3-Dichloropropene	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]
Dibromochloromethane	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]
Dichlorodifluoromethane	846 U	4.12 U	5.27 U	4.76 U	5.61 U	455 U	4.48 U	44,600 U	1,100,000 U	235,000 U	284,000 U	250 U	320 U	4.38 U	4.61 U	1,280,000 U [202,000 U]
Methylene Chloride	846 U	16.5 U	21.1 U	3.46 J	4.15 J	455 U	17.9 U	44,600 U	1,100,000 U	235,000 U	284,000 U	250 U	320 U	17.5 U	4.26 J	1,280,000 U [202,000 U]
trans-1,3-Dichloropropene	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]
Trichlorofluoromethane	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]
cis-1,2-Dichloroethene	169 U	4.12 U	11.6	4.76 U	5.61 U	826	3.83 J	27,900	143,000 J	32,900 J	16,500 J	675	606	1.47 J	176	257,000 U [18,200 J]
Tetrachloroethene	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	4.61 U	257,000 U [40,400 U]
trans-1,2-Dichloroethene	169 U	4.12 U	5.27 U	4.76 U	5.61 U	91.0 U	4.48 U	8,930 U	220,000 U	47,000 U	56,800 U	50.0 U	63.9 U	4.38 U	2.86 J	257,000 U [40,400 U]
Trichloroethene	169 U	0.906 J	5.27 U	4.76 U	5.61 U	435	1.79 J	288,000	4,020,000	47,500	357,000	726	67.1	5.91	58.0	2,730,000 [735,000]
Vinyl Chloride	169 U	1.08 J	72.8	4.76 U	5.61 U	454	1.31 J	1,880 J	220,000 U	47,000 U	56,800 U	50.0 U	158	4.38 U	12.8	257,000 U [40,400 U]
Total Petroleum Hydrocarbons (µg/kg)																
Ethylene Glycol Monobutyl Ether	NA	NA	NA	NA	NA	NA	NA	NA								

Location Identification:	SB-309	SB-309	SB-310	SB-310	SB-311	SB-311	SB-312	SB-312	SB-313	SB-313	SB-314	SB-314	SB-315	SB-315	SB-316	SB-316	SB-317
Sample Depth (Feet):	3	5	3	5	3	5	3	5	3	6	3	6	3	5	3	6	3
Date Collected:	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/04/15	09/04/15	09/04/15	09/04/15	09/04/15	09/04/15	09/04/15
Volatile Organic Compounds (μg/kg)																	
1,1,1,2-Tetrachloroethane	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U
1,1-Dichloropropene	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U
1,2,3-Trichlorobenzene	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U
1,2,3-Trichloropropane	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U
1,2,4-Trimethylbenzene	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U	20,900	43.5 J	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U
1,2-Dibromoethane	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U
1,3,5-Trimethylbenzene	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U	5,770	35.7 J	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U
1,3-Dichloropropane	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U
2,2-Dichloropropane	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U
2-Butanone	1,100 U [1,110 U]	4,630 U	22.6 U	24.3 U	21.6 U	204,000 U	23.0 U	5.67 J	28,700 U	1,620 U	21.2 U	21.9 U	1,170 U	26,200 U	22.4 U	22.5 U	22.8 U
2-Chlorotoluene	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U
2-Hexanone	219 U [222 U]	925 U	11.3 U	12.1 U	10.8 U	40,900 U	11.5 U	10.6 U	5,740 U	325 U	10.6 U	11.0 U	233 U	5,240 U	11.2 U	11.2 U	11.4 U
4-Chlorotoluene	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U
4-Methyl-2-pentanone	219 U [222 U]	925 U	11.3 U	12.1 U	10.8 U	40,900 U	11.5 U	10.6 U	5,740 U	325 U	10.6 U	11.0 U	233 U	5,240 U	11.2 U	11.2 U	11.4 U
Acetone	1,100 U [1,110 U]	4,630 U	45.2 U	48.0 J	43.3 U	204,000 U	46.0 U	34.7 J	28,700 U	1,620 U	42.5 U	19.0 J	1,170 U	26,200 U	16.6 J	30.6 J	45.7 U
Benzene	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	1.06 J	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	0.683 J	4.57 U
Bromobenzene	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U
Bromochloromethane	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U
Bromoform	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U
Bromomethane	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U
Carbon Disulfide	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U
Cyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibromomethane	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U
Diisopropyl ether (DIPE)	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U
Ethylbenzene	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U	276 J	61.7 J	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U
Hexachlorobutadiene	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U
Iodomethane	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U
Isopropylbenzene	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U	1,680	425	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U
m-,p-Xylene	87.6 U [89.0 U]	370 U	9.03 U	9.71 U	8.66 U	16,400 U	9.21 U	8.47 U	540 J	130 U	8.50 U	8.77 U	93.3 U	2,100 U	8.95 U	8.98 U	9.14 U
Methyl Acetate	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methyl tert-butyl ether	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U
Methylcyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U	1,150 U	102	4.25 U	4.39 U	14.5 J	1,050 U	4.48 U	4.49 U	4.57 U
n-Butylbenzene	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U	425 J	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U
n-Propylbenzene	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U	5,890	1,450	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U
o-Xylene	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U	942 J	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U

Location Identification:	SB-309	SB-309	SB-310	SB-310	SB-311	SB-311	SB-312	SB-312	SB-313	SB-313	SB-314	SB-314	SB-315	SB-315	SB-316	SB-316	SB-317
Sample Depth (Feet):	3	5	3	5	3	5	3	5	3	6	3	6	3	5	3	6	3
Date Collected:	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/03/15	09/04/15	09/04/15	09/04/15	09/04/15	09/04/15	09/04/15	09/04/15
p-Isopropyltoluene	43.8 U [44.5 U]	157 J	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	0.728 J	529 J	59.8 J	4.25 U	4.39 U	41.0 J	1,050 U	4.48 U	4.49 U	4.57 U
sec-Butylbenzene	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U	1,150 U	24.7 J	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U
Styrene	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U
tert-Butylbenzene	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U
Toluene	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	1.23 J	8,180 U	4.60 U	1.30 J	1,150 U	65.0 U	4.25 U	4.39 U	28.9 J	1,050 U	4.48 U	0.943 J	4.57 U
trans-1,4-Dichloro-2-butene	219 U [222 U]	925 U	22.6 U	24.3 U	21.6 U	40,900 U	23.0 U	21.2 U	5,740 U	325 U	21.2 U	21.9 U	233 U	5,240 U	22.4 U	22.5 U	22.8 U
Xylenes (total)	87.6 U [89.0 U]	370 U	9.03 U	9.71 U	8.66 U	16,400 U	9.21 U	8.47 U	1,480 J	130 U	8.50 U	8.77 U	93.3 U	2,100 U	8.95 U	8.98 U	9.14 U
1,1,1-Trichloroethane	458 [402]	185 U	88.6	4.86 U	37.9	8,180 U	8.88	18.1	1,150 U	65.0 U	4.09 J	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	1.11 J
1,1,2,2-Tetrachloroethane	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U
1,1,2-trichloro-1,2,2-trifluoroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,2-Trichloroethane	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U
1,1-Dichloroethane	66.6 [57.8]	2,510	82.9	4.86 U	16.6	8,180 U	5.01	4.24 U	1,150 U	65.0 U	8.13	4.39 U	327	2,380	7.91	87.9	4.57 U
1,1-Dichloroethene	28.9 J [23.6 J]	1,100	7.38	4.86 U	3.20 J	8,180 U	4.60 U	4.24 U	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	2,620	4.48 U	4.49 U	4.57 U
1,2,4-Trichlorobenzene	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U
1,2-Dibromo-3-chloropropane	219 U [222 U]	925 U	27.1 U	29.1 U	26.0 U	40,900 U	27.6 U	25.4 U	5,740 U	325 U	25.5 U	26.3 U	233 U	5,240 U	26.9 U	27.0 U	27.4 U
1,2-Dichlorobenzene	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U
1,2-Dichloroethane	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U
1,2-Dichloropropane	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U
1,3-Dichlorobenzene	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U
1,4-Dichlorobenzene	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U
Bromodichloromethane	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U
Carbon Tetrachloride	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U
Chlorobenzene	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U
Chloroethane	43.8 U [44.5 U]	459	1.39 J	1.81 J	4.33 U	8,180 U	4.60 U	4.24 U	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	26.2	4.57 U
Chloroform	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U
Chloromethane	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U
cis-1,3-Dichloropropene	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U
Dibromochloromethane	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U
Dichlorodifluoromethane	219 U [222 U]	925 U	4.52 U	4.86 U	4.33 U	40,900 U	4.60 U	4.24 U	5,740 U	325 U	4.25 U	4.39 U	233 U	5,240 U	4.48 U	4.49 U	4.57 U
Methylene Chloride	219 U [222 U]	925 U	18.1 U	19.4 U	17.3 U	40,900 U	18.4 U	16.9 U	5,740 U	325 U	17.0 U	17.5 U	233 U	5,240 U	17.9 U	18.0 U	18.3 U
trans-1,3-Dichloropropene	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U
Trichlorofluoromethane	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U
cis-1,2-Dichloroethene	131 [122]	2,870	32.4	4.86 U	7.22	99,000	0.893 J	2.41 J	1,150 U	65.0 U	1.36 J	4.39 U	46.6 U	19,300	2.46 J	4.49 U	1.89 J
Tetrachloroethene	43.8 U [44.5 U]	185 U	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U	1,150 U	65.0 U	4.25 U	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	4.57 U
trans-1,2-Dichloroethene	43.8 U [44.5 U]	94.4 J	4.52 U	4.86 U	4.33 U	8,180 U	4.60 U	4.24 U	1,150 U	65.0 U	4.25 U	4.39 U	36.8 J	241 J	4.48 U	1.22 J	4.57 U
Trichloroethene	267 [250]	83.3 J	58.3	4.86 U	49.5	8,180 U	27.7	5.57	1,150 U	65.0 U	8.07	4.39 U	46.6 U	1,050 U	4.48 U	4.49 U	18.2
Vinyl Chloride	43.8 U [44.5 U]	801	4.52 U	4.86 U	4.33 U	5,560 J	4.60 U	4.24 U	1,150 U	65.0 U	4.25 U	4.39 U	513	7,240	1.07 J	16.3	4.57 U
Total Petroleum Hydrocarbons (µg/kg)																	
Ethylene Glycol Monobutyl Ether	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Location Identification:	SB-317	SB-318	SB-318	SB-MB1-01	SB-MB1-02	SB-MB1-03	SB-MB1-04	SB-MB1-05	SB-MB1-06	SB-MB1-07	SB-MB1-08	SB-MB1-09	SB-MB1-10	SB-MB1-11	SB-MB1-12	SB-MB1-13	SB-MB1-14
Sample Depth (Feet):	6	4	6	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	0 - 0.5	0 - 0.5	0 - 0.5
Date Collected:	09/04/15	09/04/15	09/04/15	03/12/12	03/12/12	03/12/12	03/13/12	03/13/12	03/13/12	03/13/12	03/13/12	03/13/12	03/13/12	03/13/12	03/13/12	03/14/12	03/14/12
Volatile Organic Compounds (μg/kg)																	
1,1,1,2-Tetrachloroethane	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U
1,1-Dichloropropene	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U
1,2,3-Trichlorobenzene	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U
1,2,3-Trichloropropane	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U
1,2,4-Trimethylbenzene	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U
1,2-Dibromoethane	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U
1,3,5-Trimethylbenzene	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U
1,3-Dichloropropane	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U
2,2-Dichloropropane	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U
2-Butanone	1,140 U	24.2 U	32.1 U	26.7 U	27.7 U	33.0 U	20.1 U	19.3 U	20.0 U	20.0 U	20.9 U	18.9 U	20.8 U	19.7 U	26.2 U	27.3 U	28.6 U
2-Chlorotoluene	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U
2-Hexanone	227 U	12.1 U	16.0 U	13.3 U	13.9 U	16.5 U	10.1 U	9.66 U	9.99 U	10.0 U	10.4 U	9.47 U	10.4 U	9.84 U	13.1 U	13.7 U	14.3 U
4-Chlorotoluene	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U
4-Methyl-2-pentanone	227 U	12.1 U	16.0 U	13.3 U	13.9 U	16.5 U	10.1 U	9.66 U	9.99 U	10.0 U	10.4 U	9.47 U	10.4 U	9.84 U	13.1 U	13.7 U	14.3 U
Acetone	1,140 U	15.3 J	13.7 J	4.51 J	55.4 U	8.82 J	40.3 U	3.02 J	39.9 U	40.1 U	41.8 U	2.77 J	41.6 U	39.4 U	52.4 U	4.15 J	57.2 U
Benzene	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U
Bromobenzene	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U
Bromochloromethane	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U
Bromoform	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U
Bromomethane	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U
Carbon Disulfide	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U
Cyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibromomethane	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U
Diisopropyl ether (DIPE)	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U
Ethylbenzene	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U
Hexachlorobutadiene	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U
Iodomethane	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U
Isopropylbenzene	45.4 U	2.97 J	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U
m-,p-Xylene	90.8 U	9.69 U	12.8 U	10.7 U	11.1 U	13.2 U	8.05 U	7.73 U	7.99 U	8.01 U	8.36 U	7.58 U	8.31 U	7.87 U	10.5 U	10.9 U	11.4 U
Methyl Acetate	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methyl tert-butyl ether	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U
Methylcyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U
n-Butylbenzene	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U
n-Propylbenzene	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U
o-Xylene	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U

Location Identification:	SB-317	SB-318	SB-318	SB-MB1-01	SB-MB1-02	SB-MB1-03	SB-MB1-04	SB-MB1-05	SB-MB1-06	SB-MB1-07	SB-MB1-08	SB-MB1-09	SB-MB1-10	SB-MB1-11	SB-MB1-12	SB-MB1-13	SB-MB1-14
Sample Depth (Feet):	6	4	6	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	0 - 0.5	0 - 0.5	0 - 0.5
Date Collected:	09/04/15	09/04/15	09/04/15	03/12/12	03/12/12	03/12/12	03/13/12	03/13/12	03/13/12	03/13/12	03/13/12	03/13/12	03/13/12	03/13/12	03/13/12	03/14/12	03/14/12
p-Isopropyltoluene	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U
sec-Butylbenzene	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U
Styrene	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U
tert-Butylbenzene	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U
Toluene	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	1.92 J	0.984 J
trans-1,4-Dichloro-2-butene	227 U	24.2 U	32.1 U	26.7 U	27.7 U	33.0 U	20.1 U	19.3 U	20.0 U	20.0 U	20.9 U	18.9 U	20.8 U	19.7 U	26.2 U	27.3 U	28.6 U
Xylenes (total)	90.8 U	9.69 U	12.8 U	NA													
1,1,1-Trichloroethane	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U
1,1,2,2-Tetrachloroethane	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U
1,1,2-trichloro-1,2,2-trifluoroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,2-Trichloroethane	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U
1,1-Dichloroethane	12.7 J	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U
1,1-Dichloroethene	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U
1,2,4-Trichlorobenzene	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U
1,2-Dibromo-3-chloropropane	227 U	29.1 U	38.5 U	32.0 U	33.3 U	39.6 U	24.2 U	23.2 U	24.0 U	24.0 U	25.1 U	22.7 U	24.9 U	23.6 U	31.4 U	32.8 U	34.3 U
1,2-Dichlorobenzene	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U
1,2-Dichloroethane	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U
1,2-Dichloropropane	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U
1,3-Dichlorobenzene	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U
1,4-Dichlorobenzene	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U
Bromodichloromethane	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U
Carbon Tetrachloride	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U
Chlorobenzene	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U
Chloroethane	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U
Chloroform	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U
Chloromethane	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U
cis-1,3-Dichloropropene	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U
Dibromochloromethane	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U
Dichlorodifluoromethane	227 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U
Methylene Chloride	227 U	19.4 U	25.7 U	4.03 J	1.18 J	2.44 J	1.82 J	1.04 J	1.76 J	0.937 J	1.51 J	1.04 J	1.71 J	1.03 J	1.40 J	14.5 J	6.16 J
trans-1,3-Dichloropropene	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U
Trichlorofluoromethane	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	2.63 J	3.79 U	4.16 U	1.05 J	5.24 U	5.46 U	5.72 U
cis-1,2-Dichloroethene	600	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U
Tetrachloroethene	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U
trans-1,2-Dichloroethene	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U
Trichloroethene	45.4 U	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U
Vinyl Chloride	62.7	4.85 U	6.41 U	5.33 U	5.54 U	6.60 U	4.03 U	3.87 U	3.99 U	4.01 U	4.18 U	3.79 U	4.16 U	3.94 U	5.24 U	5.46 U	5.72 U
Total Petroleum Hydrocarbons (µg/kg)																	
Ethylene Glycol Monobutyl Ether	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Location Identification:	SB-MB1-15	SB-MB1-16	SB-MB1-17	SB-MB1-18	SB-MB1-19	SB-MB1-20	SB-MB1-21	SB-MB1-22	SB-MB1-23	SB-MB1-29	SB-MB1-30	SB-MB1-31	SB-MB1-32	SB-MB1-33	SB-MB1-34	SB-MB1-36
Sample Depth (Feet):	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2
Date Collected:	03/14/12	03/14/12	03/14/12	03/14/12	03/14/12	03/14/12	03/14/12	03/14/12	03/14/12	03/14/12	03/14/12	03/15/12	03/15/12	03/15/12	03/15/12	03/15/12
Volatile Organic Compounds (μg/kg)					00.12		00.12	00.1				00.10.1	00.10.1	000	00,10,12	
1,1,1,2-Tetrachloroethane	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U
1,1-Dichloropropene	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U
1,2,3-Trichlorobenzene	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U
1,2,3-Trichloropropane	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U
1,2,4-Trimethylbenzene	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U
1,2-Dibromoethane	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U
1,3,5-Trimethylbenzene	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U
1,3-Dichloropropane	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U
2,2-Dichloropropane	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U
2-Butanone	23.3 U	27.1 U	27.8 U	28.6 U	27.0 U	27.7 U	23.7 U	26.9 U	28.0 U	2,320 U	1,160 U	28.4 U	25.7 U	1,210 U	25.2 U	27.3 U
2-Chlorotoluene	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U
2-Hexanone	11.6 U	13.5 U	13.9 U	14.3 U	13.5 U	13.8 U	11.8 U	13.4 U	14.0 U	464 U	232 U	14.2 U	12.9 U	241 U	12.6 U	13.6 U
4-Chlorotoluene	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U
4-Methyl-2-pentanone	11.6 U	13.5 U	13.9 U	14.3 U	13.5 U	13.8 U	11.8 U	13.4 U	14.0 U	464 U	232 U	14.2 U	12.9 U	241 U	12.6 U	13.6 U
Acetone	46.5 U	54.1 U	4.12 J	57.1 U	54.0 U	55.4 U	47.3 U	53.7 U	56.0 U	2,320 U	1,160 U	3.02 J	51.4 U	1,210 U	50.5 U	54.6 U
Benzene	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U
Bromobenzene	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U
Bromochloromethane	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U
Bromoform	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U
Bromomethane	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U
Carbon Disulfide	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U
Cyclohexane	NA															
Dibromomethane	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U
Diisopropyl ether (DIPE)	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U
Ethylbenzene	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U
Hexachlorobutadiene	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U
Iodomethane	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U
Isopropylbenzene	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U
m-,p-Xylene	9.30 U	10.8 U	11.1 U	11.4 U	10.8 U	11.1 U	9.46 U	10.7 U	11.2 U	186 U	92.8 U	11.4 U	10.3 U	96.6 U	10.1 U	10.9 U
Methyl Acetate	NA															
Methyl tert-butyl ether	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U
Methylcyclohexane	NA															
Naphthalene	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U
n-Butylbenzene	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U
n-Propylbenzene	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U
o-Xylene	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U

Location Identification:	SB-MB1-15	SB-MB1-16	SB-MB1-17	SB-MB1-18	SB-MB1-19	SB-MB1-20	SB-MB1-21	SB-MB1-22	SB-MB1-23	SB-MB1-29	SB-MB1-30	SB-MB1-31	SB-MB1-32	SB-MB1-33	SB-MB1-34	SB-MB1-36
Sample Depth (Feet):	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2
Date Collected:	03/14/12	03/14/12	03/14/12	03/14/12	03/14/12	03/14/12	03/14/12	03/14/12	03/14/12	03/14/12	03/14/12	03/15/12	03/15/12	03/15/12	03/15/12	03/15/12
p-Isopropyltoluene	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U
sec-Butylbenzene	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U
Styrene	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U
tert-Butylbenzene	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U
Toluene	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	92.8 U	46.4 U	1.37 J	5.14 U	48.3 U	5.05 U	1.03 J
trans-1,4-Dichloro-2-butene	23.3 U	27.1 U	27.8 U	28.6 U	27.0 U	27.7 U	23.7 U	26.9 U	28.0 U	464 U	232 U	28.4 U	25.7 U	241 U	25.2 U	27.3 U
Xylenes (total)	NA															
1,1,1-Trichloroethane	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	7.84	136	146	5.69 U	5.14 U	142	5.05 U	5.46 U
1,1,2,2-Tetrachloroethane	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U
1,1,2-trichloro-1,2,2-trifluoroethane	NA															
1,1,2-Trichloroethane	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U
1,1-Dichloroethane	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	92.8 U	53.4	5.69 U	5.14 U	86.4	5.05 U	5.46 U
1,1-Dichloroethene	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U
1,2,4-Trichlorobenzene	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U
1,2-Dibromo-3-chloropropane	27.9 U	32.5 U	33.4 U	34.3 U	32.4 U	33.2 U	28.4 U	32.2 U	33.6 U	464 U	232 U	34.1 U	30.9 U	241 U	30.3 U	32.7 U
1,2-Dichlorobenzene	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U
1,2-Dichloroethane	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U
1,2-Dichloropropane	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U
1,3-Dichlorobenzene	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U
1,4-Dichlorobenzene	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U
Bromodichloromethane	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U
Carbon Tetrachloride	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U
Chlorobenzene	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U
Chloroethane	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U
Chloroform	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U
Chloromethane	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U
cis-1,3-Dichloropropene	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U
Dibromochloromethane	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U
Dichlorodifluoromethane	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	464 U	232 U	5.69 U	5.14 U	241 U	5.05 U	5.46 U
Methylene Chloride	3.34 J	4.33 J	2.62 J	2.46 J	6.11 J	4.17 J	3.67 J	3.01 J	4.45 J	75.2 J	19.0 J	2.83 J	2.54 J	16.4 J	2.49 J	2.01 J
trans-1,3-Dichloropropene	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U
Trichlorofluoromethane	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U
cis-1,2-Dichloroethene	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	92.8 U	160	5.69 U	5.14 U	954	5.05 U	5.46 U
Tetrachloroethene	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	92.8 U	36.2 J	5.69 U	5.14 U	24.1 J	5.05 U	5.46 U
trans-1,2-Dichloroethene	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	92.8 U	46.4 U	5.69 U	5.14 U	47.8 J	5.05 U	5.46 U
Trichloroethene	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	0.908 J	1.05 J	10.4	1,650	723	5.69 U	5.14 U	614	5.05 U	5.06 J
Vinyl Chloride	4.65 U	5.41 U	5.56 U	5.71 U	5.40 U	5.54 U	4.73 U	5.37 U	5.60 U	92.8 U	46.4 U	5.69 U	5.14 U	48.3 U	5.05 U	5.46 U
Total Petroleum Hydrocarbons (μg/kg)																
Ethylene Glycol Monobutyl Ether	NA															

Location Identification:	SB-MB1-37	SB-MB1-38	SB-MB1-39	SB-MB1-40	SB-MB1-41	SB-MB1-42	SB-MB1-43	SB-MB1-44	SB-MB1-45	SB-MB1-46	SB-MB1-47	SB-MB1-48	SB-MB1-49	SB-MB1-50	SB-MB1-51	SB-MB1-52
Sample Depth (Feet):	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2
Date Collected:	03/15/12	03/16/12	03/16/12	03/16/12	03/16/12	03/16/12	03/16/12	03/22/12	03/22/12	03/22/12	03/22/12	03/22/12	03/22/12	03/22/12	03/22/12	03/22/12
Volatile Organic Compounds (μg/kg)																
1,1,1,2-Tetrachloroethane	5.07 U	5.23 U	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
1,1-Dichloropropene	5.07 U	5.23 U	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
1,2,3-Trichlorobenzene	5.07 U	5.23 U	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
1,2,3-Trichloropropane	5.07 U	5.23 U	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
1,2,4-Trimethylbenzene	5.07 U	5.23 U	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
1,2-Dibromoethane	5.07 U	5.23 U	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
1,3,5-Trimethylbenzene	5.07 U	5.23 U	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
1,3-Dichloropropane	5.07 U	5.23 U	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
2,2-Dichloropropane	5.07 U	5.23 U	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
2-Butanone	25.3 U	26.1 U	1,080 U	26.1 U	1,120 U	1,120 U	28.1 U	25.7 U	26.4 U	1,360 U	28.1 U	25.8 U	28.9 U	26.8 U	26.9 U	25.0 U
2-Chlorotoluene	5.07 U	5.23 U	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
2-Hexanone	12.7 U	13.1 U	217 U	13.0 U	223 U	224 U	14.1 U	12.8 U	13.2 U	273 U	14.1 U	12.9 U	14.4 U	13.4 U	13.4 U	12.5 U
4-Chlorotoluene	5.07 U	5.23 U	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
4-Methyl-2-pentanone	12.7 U	13.1 U	217 U	13.0 U	223 U	224 U	14.1 U	12.8 U	13.2 U	273 U	14.1 U	12.9 U	14.4 U	13.4 U	13.4 U	12.5 U
Acetone	50.7 U	52.3 U	1,080 U	52.1 U	1,120 U	1,120 U	56.2 U	757	3.99 J	1,360 U	56.2 U	22.0 J	10.9 J	53.7 U	53.8 U	12.9 J
Benzene	5.07 U	5.23 U	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
Bromobenzene	5.07 U	5.23 U	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
Bromochloromethane	5.07 U	5.23 U	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
Bromoform	5.07 U	5.23 U	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
Bromomethane	5.07 U	5.23 U	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
Carbon Disulfide	5.07 U	5.23 U	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
Cyclohexane	NA															
Dibromomethane	5.07 U	5.23 U	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
Diisopropyl ether (DIPE)	5.07 U	5.23 U	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
Ethylbenzene	5.07 U	5.23 U	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
Hexachlorobutadiene	5.07 U	5.23 U	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
Iodomethane	5.07 U	5.23 U	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
Isopropylbenzene	5.07 U	5.23 U	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
m-,p-Xylene	10.1 U	10.5 U	86.6 U	10.4 U	89.3 U	89.5 U	11.2 U	10.3 U	10.6 U	109 U	11.2 U	10.3 U	11.6 U	10.7 U	10.8 U	9.98 U
Methyl Acetate	NA															
Methyl tert-butyl ether	5.07 U	5.23 U	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
Methylcyclohexane	NA															
Naphthalene	5.07 U	5.23 U	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
n-Butylbenzene	5.07 U	5.23 U	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
n-Propylbenzene	5.07 U	5.23 U	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
o-Xylene	5.07 U	5.23 U	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U

Location Identification:	SB-MB1-37	SB-MB1-38	SB-MB1-39	SB-MB1-40	SB-MB1-41	SB-MB1-42	SB-MB1-43	SB-MB1-44	SB-MB1-45	SB-MB1-46	SB-MB1-47	SB-MB1-48	SB-MB1-49	SB-MB1-50	SB-MB1-51	SB-MB1-52
Sample Depth (Feet):	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2
Date Collected:	03/15/12	03/16/12	03/16/12	03/16/12	03/16/12	03/16/12	03/16/12	03/22/12	03/22/12	03/22/12	03/22/12	03/22/12	03/22/12	03/22/12	03/22/12	03/22/12
p-Isopropyltoluene	5.07 U	5.23 U	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
sec-Butylbenzene	5.07 U	5.23 U	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
Styrene	5.07 U	5.23 U	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
tert-Butylbenzene	5.07 U	5.23 U	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
Toluene	5.07 U	5.23 U	43.3 U	5.21 U	44.7 U	44.8 U	3.69 J	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
trans-1,4-Dichloro-2-butene	25.3 U	26.1 U	217 U	26.1 U	223 U	224 U	28.1 U	25.7 U	26.4 U	273 U	28.1 U	25.8 U	28.9 U	26.8 U	26.9 U	25.0 U
Xylenes (total)	NA															
1,1,1-Trichloroethane	5.07 U	5.23 U	43.3 U	5.21 U	567	72.1	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
1,1,2,2-Tetrachloroethane	5.07 U	5.23 U	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
1,1,2-trichloro-1,2,2-trifluoroethane	NA															
1,1,2-Trichloroethane	5.07 U	5.23 U	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
1,1-Dichloroethane	5.07 U	5.23 U	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
1,1-Dichloroethene	5.07 U	5.23 U	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	535	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
1,2,4-Trichlorobenzene	5.07 U	5.23 U	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
1,2-Dibromo-3-chloropropane	30.4 U	31.4 U	217 U	31.3 U	223 U	224 U	33.7 U	30.8 U	31.7 U	273 U	33.7 U	30.9 U	34.7 U	32.2 U	32.3 U	30.0 U
1,2-Dichlorobenzene	5.07 U	5.23 U	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
1,2-Dichloroethane	5.07 U	5.23 U	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
1,2-Dichloropropane	5.07 U	5.23 U	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
1,3-Dichlorobenzene	5.07 U	5.23 U	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
1,4-Dichlorobenzene	5.07 U	5.23 U	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
Bromodichloromethane	5.07 U	5.23 U	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
Carbon Tetrachloride	5.07 U	5.23 U	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
Chlorobenzene	5.07 U	5.23 U	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
Chloroethane	5.07 U	5.23 U	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
Chloroform	5.07 U	5.23 U	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
Chloromethane	5.07 U	5.23 U	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
cis-1,3-Dichloropropene	5.07 U	5.23 U	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
Dibromochloromethane	5.07 U	5.23 U	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
Dichlorodifluoromethane	5.07 U	5.23 U	217 U	5.21 U	223 U	224 U	5.62 U	5.13 U	5.28 U	273 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
Methylene Chloride	1.88 J	2.53 J	217 U	2.58 J	223 U	224 U	2.69 J	4.14 J	3.65 J	273 U	6.01 J	4.27 J	2.21 J	21.5 U	21.5 U	1.42 J
trans-1,3-Dichloropropene	5.07 U	5.23 U	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
Trichlorofluoromethane	5.07 U	5.23 U	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
cis-1,2-Dichloroethene	5.07 U	5.23 U	90.1	5.21 U	130	49.2	5.62 U	5.13 U	5.28 U	16.9 J	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
Tetrachloroethene	5.07 U	5.23 U	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
trans-1,2-Dichloroethene	5.07 U	5.23 U	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
Trichloroethene	5.07 U	5.23 U	268	5.21 U	1,080	408	4.09 J	5.13 U	5.28 U	54.6 U	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
Vinyl Chloride	5.07 U	5.23 U	43.3 U	5.21 U	44.7 U	44.8 U	5.62 U	5.13 U	5.28 U	60.0	5.62 U	5.16 U	5.78 U	5.37 U	5.38 U	4.99 U
Total Petroleum Hydrocarbons (μg/kg)																
Ethylene Glycol Monobutyl Ether	NA															

Table 5
Combined Surface and Subsurface Soil Sample Analytical Results (0-10 Feet)
Human Health Risk Assessment
AVX Corporation

Myrtle Beach, South Carolina

Location Identification:	SB-MB1-53	SB-MB1-54	SB-PDG-1	SB-PDG-2	SB-PDG-3	SB-PDG-4	SB-PDG-5	SB-PDG-6	SB-PDG-7	SB-PDG-8	SB-PDG-9
Sample Depth (Feet):	1.5 - 2	1.5 - 2	1.5 - 2	1 - 1.5	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2
Date Collected:	03/22/12	03/27/12	06/02/09	06/02/09	06/02/09	06/02/09	06/02/09	06/02/09	06/02/09	06/02/09	06/02/09
Volatile Organic Compounds (μg/kg)											
1,1,1,2-Tetrachloroethane	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
1,1-Dichloropropene	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
1,2,3-Trichlorobenzene	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
1,2,3-Trichloropropane	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
1,2,4-Trimethylbenzene	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
1,2-Dibromoethane	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
1,3,5-Trimethylbenzene	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
1,3-Dichloropropane	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
2,2-Dichloropropane	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
2-Butanone	27.0 U	29.3 U	22.0 U	22.6 U	22.6 U	22.0 U	22.1 U	21.2 U	22.2 U	20.8 U	23.1 U
2-Chlorotoluene	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
2-Hexanone	13.5 U	14.7 U	11.0 U	11.3 U	11.3 U	11.0 U	11.0 U	10.6 U	11.1 U	10.4 U	11.6 U
4-Chlorotoluene	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
4-Methyl-2-pentanone	13.5 U	14.7 U	11.0 U	11.3 U	11.3 U	11.0 U	11.0 U	10.6 U	11.1 U	10.4 U	11.6 U
Acetone	54.0 U	58.7 U	12.6 J	7.14 J	18.8 J	24.4 J	26.0 J	11.3 J	24.5 J	14.7 J	46.3 U
Benzene	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
Bromobenzene	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
Bromochloromethane	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
Bromoform	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
Bromomethane	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
Carbon Disulfide	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
Cyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibromomethane	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
Diisopropyl ether (DIPE)	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
Ethylbenzene	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
Hexachlorobutadiene	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
lodomethane	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
Isopropylbenzene	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
m-,p-Xylene	10.8 U	11.7 U	8.80 U	9.03 U	9.05 U	8.80 U	8.83 U	8.50 U	8.89 U	8.31 U	9.26 U
Methyl Acetate	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methyl tert-butyl ether	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
Methylcyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
n-Butylbenzene	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
n-Propylbenzene	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
o-Xylene	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U

Table 5
Combined Surface and Subsurface Soil Sample Analytical Results (0-10 Feet)
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Location Identification:	SB-MB1-53	SB-MB1-54	SB-PDG-1	SB-PDG-2	SB-PDG-3	SB-PDG-4	SB-PDG-5	SB-PDG-6	SB-PDG-7	SB-PDG-8	SB-PDG-9
Sample Depth (Feet):	1.5 - 2	1.5 - 2	1.5 - 2	1 - 1.5	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2	1.5 - 2
Date Collected:	03/22/12	03/27/12	06/02/09	06/02/09	06/02/09	06/02/09	06/02/09	06/02/09	06/02/09	06/02/09	06/02/09
p-Isopropyltoluene	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
sec-Butylbenzene	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
Styrene	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
tert-Butylbenzene	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
Toluene	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
trans-1,4-Dichloro-2-butene	27.0 U	29.3 U	22.0 U	22.6 U	22.6 U	22.0 U	22.1 U	21.2 U	22.2 U	20.8 U	23.1 U
Xylenes (total)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,1-Trichloroethane	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
1,1,2,2-Tetrachloroethane	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
1,1,2-trichloro-1,2,2-trifluoroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,2-Trichloroethane	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
1,1-Dichloroethane	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
1,1-Dichloroethene	5.40 U	5.87 U	4.40 U	4.52 U	27.4	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
1,2,4-Trichlorobenzene	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
1,2-Dibromo-3-chloropropane	32.4 U	35.2 U	22.0 U	22.6 U	22.6 U	22.0 U	22.1 U	21.2 U	22.2 U	20.8 U	23.1 U
1,2-Dichlorobenzene	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
1,2-Dichloroethane	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
1,2-Dichloropropane	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
1,3-Dichlorobenzene	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
1,4-Dichlorobenzene	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
Bromodichloromethane	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
Carbon Tetrachloride	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
Chlorobenzene	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
Chloroethane	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
Chloroform	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
Chloromethane	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
cis-1,3-Dichloropropene	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
Dibromochloromethane	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
Dichlorodifluoromethane	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
Methylene Chloride	4.02 J	23.5 U	17.6 U	18.1 U	18.1 U	17.6 U	17.7 U	17.0 U	17.8 U	16.6 U	18.5 U
trans-1,3-Dichloropropene	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
Trichlorofluoromethane	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
cis-1,2-Dichloroethene	5.40 U	2.44 J	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
Tetrachloroethene	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
trans-1,2-Dichloroethene	5.40 U	5.87 U	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
Trichloroethene	2.42 J	9.75	4.40 U	4.52 U	4.53 U	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
Vinyl Chloride	5.40 U	5.87 U	4.40 U	4.52 U	7.74	4.40 U	4.41 U	4.25 U	4.44 U	4.15 U	4.63 U
Total Petroleum Hydrocarbons (µg/kg)											
Ethylene Glycol Monobutyl Ether	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
_ · · · · ·					<u> </u>		<u> </u>	<u> </u>		<u> </u>	

Myrtle Beach, South Carolina

Location Identification:	SB-PDG-10	SB-PDG-11	SB-PDG-12	SB-PDG-13	SB-PDG-14	SB-PDG-15	SB-PDG-16	SB-PDG-17	SB-PDG-18	SB-PDG-19	SB-PDG-20	SB-PDG-21	SB-PDG-22	SB-PDG-23	SB-PDG-24
Sample Depth (Feet):	1.5 - 2	1.5 - 2	2	2	2	2	2	2	2	2	2	2	2	2	2
Date Collected:	06/02/09	06/02/09	01/14/10	01/14/10	01/15/10	01/15/10	01/15/10	01/19/10	01/19/10	01/19/10	01/19/10	01/20/10	01/20/10	01/20/10	01/20/10
Volatile Organic Compounds (μg/kg)															
1,1,1,2-Tetrachloroethane	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
1,1-Dichloropropene	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
1,2,3-Trichlorobenzene	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
1,2,3-Trichloropropane	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
1,2,4-Trimethylbenzene	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
1,2-Dibromoethane	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
1,3,5-Trimethylbenzene	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
1,3-Dichloropropane	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
2,2-Dichloropropane	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
2-Butanone	22.7 U	23.4 U	12.8 J	21.1 U	21.2 U	19.4 U	26.1 U	33.7 U	36.2 U	35.4 U	36.5 U	58.8 U	36.4 U	35.3 U	34.1 U
2-Chlorotoluene	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
2-Hexanone	11.3 U	11.7 U	11.0 U	10.6 U	10.6 U	9.68 U	13.1 U	16.9 U	18.1 U	17.7 U	18.2 U	29.4 U	18.2 U	17.6 U	17.1 U
4-Chlorotoluene	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
4-Methyl-2-pentanone	11.3 U	11.7 U	11.0 U	10.6 U	10.6 U	9.68 U	13.1 U	16.9 U	18.1 U	17.7 U	18.2 U	29.4 U	18.2 U	17.6 U	17.1 U
Acetone	45.4 U	46.9 U	73.7	14.0 J	16.2 J	23.2 J	10.8 J	16.5 J	21.3 J	70.7 U	18.4 J	118 U	24.6 J	30.3 J	27.0 J
Benzene	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
Bromobenzene	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
Bromochloromethane	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
Bromoform	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
Bromomethane	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
Carbon Disulfide	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
Cyclohexane	NA														
Dibromomethane	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
Diisopropyl ether (DIPE)	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
Ethylbenzene	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
Hexachlorobutadiene	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
Iodomethane	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
Isopropylbenzene	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
m-,p-Xylene	9.08 U	9.37 U	8.80 U	8.45 U	8.46 U	7.75 U	10.5 U	13.5 U	14.5 U	14.1 U	14.6 U	23.5 U	14.5 U	14.1 U	13.7 U
Methyl Acetate	NA														
Methyl tert-butyl ether	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
Methylcyclohexane	NA														
Naphthalene	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
n-Butylbenzene	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
n-Propylbenzene	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
o-Xylene	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U

Location Identification:	SB-PDG-10	SB-PDG-11	SB-PDG-12	SB-PDG-13	SB-PDG-14	SB-PDG-15	SB-PDG-16	SB-PDG-17	SB-PDG-18	SB-PDG-19	SB-PDG-20	SB-PDG-21	SB-PDG-22	SB-PDG-23	SB-PDG-24
Sample Depth (Feet):	1.5 - 2	1.5 - 2	2	2	2	2	2	2	2	2	2	2	2	2	2
Date Collected:	06/02/09	06/02/09	01/14/10	01/14/10	01/15/10	01/15/10	01/15/10	01/19/10	01/19/10	01/19/10	01/19/10	01/20/10	01/20/10	01/20/10	01/20/10
p-Isopropyltoluene	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
sec-Butylbenzene	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
Styrene	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
tert-Butylbenzene	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
Toluene	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
trans-1,4-Dichloro-2-butene	22.7 U	23.4 U	22.0 U	21.1 U	21.2 U	19.4 U	26.1 U	33.7 U	36.2 U	35.4 U	36.5 U	58.8 U	36.4 U	35.3 U	34.1 U
Xylenes (total)	NA														
1,1,1-Trichloroethane	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
1,1,2,2-Tetrachloroethane	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
1,1,2-trichloro-1,2,2-trifluoroethane	NA														
1,1,2-Trichloroethane	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
1,1-Dichloroethane	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
1,1-Dichloroethene	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
1,2,4-Trichlorobenzene	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
1,2-Dibromo-3-chloropropane	22.7 U	23.4 U	22.0 U	21.1 U	21.2 U	19.4 U	26.1 U	33.7 U	36.2 U	35.4 U	36.5 U	58.8 U	36.4 U	35.3 U	34.1 U
1,2-Dichlorobenzene	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
1,2-Dichloroethane	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
1,2-Dichloropropane	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
1,3-Dichlorobenzene	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
1,4-Dichlorobenzene	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
Bromodichloromethane	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
Carbon Tetrachloride	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
Chlorobenzene	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
Chloroethane	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
Chloroform	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
Chloromethane	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
cis-1,3-Dichloropropene	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
Dibromochloromethane	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
Dichlorodifluoromethane	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
Methylene Chloride	18.2 U	18.7 U	17.6 U	16.9 U	1.69 JB	3.01 J	2.31 JB	27.0 U	28.9 U	2.23 J	29.2 U	47.0 U	29.1 U	28.2 U	27.3 U
trans-1,3-Dichloropropene	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
Trichlorofluoromethane	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
cis-1,2-Dichloroethene	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
Tetrachloroethene	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
trans-1,2-Dichloroethene	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
Trichloroethene	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
Vinyl Chloride	4.54 U	4.69 U	4.40 U	4.22 U	4.23 U	3.87 U	5.23 U	6.74 U	7.23 U	7.07 U	7.29 U	11.8 U	7.27 U	7.06 U	6.83 U
Total Petroleum Hydrocarbons (µg/kg)															
Ethylene Glycol Monobutyl Ether	NA														

Location Identification:	SB-PDG-25	SB-PDG-26	SB-PDG-27	SB-PDG-28	SB-PDG-29	SB-PDG-RW	WCCS-3	WCCS-6	WCCS-8	WCCS-8	WCCS-10	WCSS-1	WCSS-1	WP-Com-Base	WP-Com-East
Sample Depth (Feet):	2	2	2	2	2	0-0.5	8	10	8	10	9	2	10	1.5	0.75
Date Collected:	01/20/10	01/20/10	01/20/10	01/20/10	01/20/10	01/20/10	10/27/15	10/27/15	10/28/15	10/28/15	10/28/15	10/26/15	10/26/15	09/23/08	09/23/08
Volatile Organic Compounds (μg/kg)															
1,1,1,2-Tetrachloroethane	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	4,000 U	89,300 U	235,000 U	101,000 U	47.6 U	103 U	25,600 U	705 U	868 U
1,1-Dichloropropene	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	4,000 U	89,300 U	235,000 U	101,000 U	47.6 U	103 U	25,600 U	705 U	868 U
1,2,3-Trichlorobenzene	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	4,000 U	89,300 U	235,000 U	101,000 U	47.6 U	103 U	25,600 U	705 U	868 U
1,2,3-Trichloropropane	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	4,000 U	89,300 U	235,000 U	101,000 U	47.6 U	103 U	25,600 U	705 U	868 U
1,2,4-Trimethylbenzene	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	4,000 U	89,300 U	235,000 U	101,000 U	47.6 U	103 U	25,600 U	705 U	868 U
1,2-Dibromoethane	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	4,000 U	89,300 U	235,000 U	101,000 U	47.6 U	103 U	25,600 U	705 U	868 U
1,3,5-Trimethylbenzene	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	4,000 U	89,300 U	235,000 U	101,000 U	47.6 U	103 U	25,600 U	705 U	868 U
1,3-Dichloropropane	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	4,000 U	89,300 U	235,000 U	101,000 U	47.6 U	103 U	25,600 U	705 U	868 U
2,2-Dichloropropane	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	4,000 U	89,300 U	235,000 U	101,000 U	47.6 U	103 U	25,600 U	705 U	868 U
2-Butanone	32.2 U	37.2 U	39.0 U	44.1 U	45.3 U	43.2 U	100,000 U	2,230,000 U	5,880,000 U	2,530,000 U	439 J	445 J	641,000 U	17,600 U	21,700 U
2-Chlorotoluene	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	4,000 U	89,300 U	235,000 U	101,000 U	47.6 U	103 U	25,600 U	705 U	868 U
2-Hexanone	16.1 U	18.6 U	19.5 U	22.0 U	22.6 U	21.6 U	20,000 U	446,000 U	1,180,000 U	505,000 U	238 U	515 U	128,000 U	3,530 U	4,340 U
4-Chlorotoluene	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	4,000 U	89,300 U	235,000 U	101,000 U	47.6 U	103 U	25,600 U	705 U	868 U
4-Methyl-2-pentanone	16.1 U	18.6 U	19.5 U	22.0 U	22.6 U	21.6 U	20,000 U	446,000 U	1,180,000 U	505,000 U	238 U	515 U	128,000 U	3,530 U	4,340 U
Acetone	23.5 J	14.5 J	38.6 J	44.1 J	21.9 J	18.0 J	100,000 U	2,230,000 U	5,880,000 U	2,530,000 U	1,190 U	2,580 U	641,000 U	17,600 U	21,700 U
Benzene	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	4,000 U	89,300 U	235,000 U	101,000 U	47.6 U	103 U	25,600 U	705 U	868 U
Bromobenzene	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	4,000 U	89,300 U	235,000 U	101,000 U	47.6 U	103 U	25,600 U	705 U	868 U
Bromochloromethane	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	4,000 U	89,300 U	235,000 U	101,000 U	47.6 U	103 U	25,600 U	705 U	868 U
Bromoform	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	4,000 U	89,300 U	235,000 U	101,000 U	47.6 U	103 U	25,600 U	705 U	868 U
Bromomethane	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	4,000 U	89,300 U	235,000 U	101,000 U	47.6 U	103 U	25,600 U	705 U	868 U
Carbon Disulfide	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	4,000 U	89,300 U	235,000 U	101,000 U	47.6 U	103 U	25,600 U	705 U	868 U
Cyclohexane	NA	NA	NA	NA	NA	NA	NA	NA							
Dibromomethane	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	4,000 U	89,300 U	235,000 U	101,000 U	47.6 U	103 U	25,600 U	705 U	868 U
Diisopropyl ether (DIPE)	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	4,000 U	89,300 U	235,000 U	101,000 U	47.6 U	103 U	25,600 U	705 U	868 U
Ethylbenzene	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	4,000 U	89,300 U	235,000 U	101,000 U	99.5	105	25,600 U	2,300	3,520
Hexachlorobutadiene	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	4,000 U	89,300 U	235,000 U	101,000 U	47.6 U	103 U	25,600 U	705 U	868 U
Iodomethane	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	4,000 U	89,300 U	235,000 U	101,000 U	47.6 U	103 U	25,600 U	705 U	868 U
Isopropylbenzene	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	4,000 U	89,300 U	235,000 U	101,000 U	47.6 U	103 U	25,600 U	705 U	868 U
m-,p-Xylene	12.9 U	14.9 U	15.6 U	17.6 U	18.1 U	17.3 U	8,000 U	179,000 U	471,000 U	202,000 U	10.0 J	206 U	51,300 U	9,020	13,700
Methyl Acetate	NA	NA	NA	NA	NA	NA	NA	NA							
Methyl tert-butyl ether	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	4,000 U	89,300 U	235,000 U	101,000 U	47.6 U	103 U	25,600 U	705 U	868 U
Methylcyclohexane	NA	NA	NA	NA	NA	NA	NA	NA							
Naphthalene	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	4,000 U	89,300 U	235,000 U	101,000 U	47.6 U	103 U	25,600 U	705 U	868 U
n-Butylbenzene	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	4,000 U	89,300 U	235,000 U	101,000 U	47.6 U	103 U	25,600 U	705 U	868 U
n-Propylbenzene	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	4,000 U	89,300 U	235,000 U	101,000 U	47.6 U	103 U	25,600 U	705 U	868 U
o-Xylene	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	4,000 U	89,300 U	235,000 U	101,000 U	47.6 U	103 U	25,600 U	818	677 J

Location Identification:	SB-PDG-25	SB-PDG-26	SB-PDG-27	SB-PDG-28	SB-PDG-29	SB-PDG-RW	WCCS-3	WCCS-6	WCCS-8	WCCS-8	WCCS-10	WCSS-1	WCSS-1	WP-Com-Base	WP-Com-East
Sample Depth (Feet):	2	2	2	2	2	0-0.5	8	10	8	10	9	2	10	1.5	0.75
Date Collected:	01/20/10	01/20/10	01/20/10	01/20/10	01/20/10	01/20/10	10/27/15	10/27/15	10/28/15	10/28/15	10/28/15	10/26/15	10/26/15	09/23/08	09/23/08
p-Isopropyltoluene	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	4,000 U	89,300 U	235,000 U	101,000 U	47.6 U	103 U	25,600 U	705 U	868 U
sec-Butylbenzene	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	4,000 U	89,300 U	235,000 U	101,000 U	47.6 U	103 U	25,600 U	705 U	868 U
Styrene	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	4,000 U	89,300 U	235,000 U	101,000 U	47.6 U	103 U	25,600 U	705 U	868 U
tert-Butylbenzene	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	4,000 U	89,300 U	235,000 U	101,000 U	47.6 U	103 U	25,600 U	705 U	868 U
Toluene	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	1,040 J	89,300 U	235,000 U	101,000 U	51.9	55.7 J	25,600 U	63.5 J	868 U
trans-1,4-Dichloro-2-butene	32.2 U	37.2 U	39.0 U	44.1 U	45.3 U	43.2 U	20,000 U	446,000 U	1,180,000 U	505,000 U	238 U	515 U	128,000 U	3,530 U	4,340 U
Xylenes (total)	NA	NA	NA	NA	NA	NA	8,000 U	179,000 U	471,000 U	202,000 U	10.0 J	206 U	51,300 U	NA	NA
1,1,1-Trichloroethane	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	4,000 U	89,300 U	235,000 U	101,000 U	47.6 U	2,730	66,900	705 U	868 U
1,1,2,2-Tetrachloroethane	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	4,000 U	89,300 U	235,000 U	101,000 U	47.6 U	103 U	25,600 U	705 U	868 U
1,1,2-trichloro-1,2,2-trifluoroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,2-Trichloroethane	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	4,000 U	89,300 U	235,000 U	101,000 U	47.6 U	103 U	25,600 U	705 U	868 U
1,1-Dichloroethane	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	4,000 U	89,300 U	235,000 U	101,000 U	10.5 J	405	25,600 U	705 U	868 U
1,1-Dichloroethene	6.44 U	4.88 J	7.80 U	8.82 U	9.06 U	8.64 U	4,000 U	89,300 U	235,000 U	101,000 U	47.6 U	165	31,300	705 U	868 U
1,2,4-Trichlorobenzene	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	4,000 U	89,300 U	235,000 U	101,000 U	47.6 U	103 U	25,600 U	705 U	868 U
1,2-Dibromo-3-chloropropane	32.2 U	37.2 U	39.0 U	44.1 U	45.3 U	43.2 U	20,000 U	446,000 U	1,180,000 U	505,000 U	238 U	515 U	128,000 U	3,530 U	4,340 U
1,2-Dichlorobenzene	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	4,000 U	89,300 U	235,000 U	101,000 U	47.6 U	103 U	25,600 U	705 U	868 U
1,2-Dichloroethane	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	4,000 U	89,300 U	235,000 U	101,000 U	47.6 U	103 U	25,600 U	705 U	868 U
1,2-Dichloropropane	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	4,000 U	89,300 U	235,000 U	101,000 U	47.6 U	103 U	25,600 U	705 U	868 U
1,3-Dichlorobenzene	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	4,000 U	89,300 U	235,000 U	101,000 U	47.6 U	103 U	25,600 U	705 U	868 U
1,4-Dichlorobenzene	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	4,000 U	89,300 U	235,000 U	101,000 U	47.6 U	103 U	25,600 U	705 U	868 U
Bromodichloromethane	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	4,000 U	89,300 U	235,000 U	101,000 U	47.6 U	103 U	25,600 U	705 U	868 U
Carbon Tetrachloride	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	4,000 U	89,300 U	235,000 U	101,000 U	47.6 U	103 U	25,600 U	705 U	868 U
Chlorobenzene	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	4,000 U	89,300 U	235,000 U	101,000 U	47.6 U	103 U	25,600 U	705 U	868 U
Chloroethane	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	4,000 U	89,300 U	235,000 U	101,000 U	47.6 U	103 U	25,600 U	705 U	868 U
Chloroform	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	4,000 U	89,300 U	235,000 U	101,000 U	47.6 U	103 U	25,600 U	705 U	868 U
Chloromethane	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	4,000 U	89,300 U	235,000 U	101,000 U	47.6 U	103 U	25,600 U	705 U	868 U
cis-1,3-Dichloropropene	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	4,000 U	89,300 U	235,000 U	101,000 U	47.6 U	103 U	25,600 U	705 U	868 U
Dibromochloromethane	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	4,000 U	89,300 U	235,000 U	101,000 U	47.6 U	103 U	25,600 U	705 U	868 U
Dichlorodifluoromethane	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	20,000 U	446,000 U	1,180,000 U	505,000 U	238 U	515 U	128,000 U	3,530 U	4,340 U
Methylene Chloride	25.8 U	29.7 U	31.2 U	35.3 U	36.2 U	34.6 U	20,000 U	446,000 U	1,180,000 U	505,000 U	238 U	515 U	128,000 U	233 J	304 J
trans-1,3-Dichloropropene	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	4,000 U	89,300 U	235,000 U	101,000 U	47.6 U	103 U	25,600 U	705 U	868 U
Trichlorofluoromethane	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	4,000 U	89,300 U	235,000 U	101,000 U	47.6 U	103 U	25,600 U	705 U	868 U
cis-1,2-Dichloroethene	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	69,700	89,300 U	148,000 J	62,600 J	482	1,660	58,500	705 U	868 U
Tetrachloroethene	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	4,000 U	89,300 U	235,000 U	101,000 U	47.6 U	103 U	25,600 U	705 U	868 U
trans-1,2-Dichloroethene	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	4,000 U	89,300 U	235,000 U	101,000 U	47.6 U	103 U	25,600 U	705 U	868 U
Trichloroethene	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	24,000	2,790,000	4,380,000	2,430,000	192	458	617,000	705 U	868 U
Vinyl Chloride	6.44 U	7.44 U	7.80 U	8.82 U	9.06 U	8.64 U	1,320 J	89,300 U	235,000 U	101,000 U	64.3	87.6 J	25,600 U	705 U	868 U
Total Petroleum Hydrocarbons (µg/kg)															
Ethylene Glycol Monobutyl Ether	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Myrtle Beach, South Carolina

Location Identification:	WP-Com-North	WP-Com-South	WP-Com-West	WP-SB-01	WP-SB-01	WP-SB-02	WP-SB-02	WP-SB-03	WP-SB-03	WP-SB-04	WP-SB-04	WP-SB-05	WP-SB-05
Sample Depth (Feet):	0.75	0.75	0.75	0.5 - 1.5	5 - 6	2 - 3	5 - 6	1 - 2	5 - 6	0.5 - 1.5	3 - 4	0.5 - 1.5	3 - 4
Date Collected:	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08
Volatile Organic Compounds (μg/kg)													
1,1,1,2-Tetrachloroethane	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U	5.28 U	49.5 U	4.31 U	5.10 U
1,1-Dichloropropene	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U	5.28 U	49.5 U	4.31 U	5.10 U
1,2,3-Trichlorobenzene	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U	5.28 U	49.5 U	4.31 U	5.10 U
1,2,3-Trichloropropane	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U	5.28 U	49.5 U	4.31 U	5.10 U
1,2,4-Trimethylbenzene	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U	5.37	6.44 J	4.31 U	5.10 U
1,2-Dibromoethane	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U	5.28 U	49.5 U	4.31 U	5.10 U
1,3,5-Trimethylbenzene	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U	3.66 J	49.5 U	4.31 U	5.10 U
1,3-Dichloropropane	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U	5.28 U	49.5 U	4.31 U	5.10 U
2,2-Dichloropropane	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U	5.28 U	49.5 U	4.31 U	5.10 U
2-Butanone	27,300 U	1,170 U	2,620 U	2,060 U	3,140 U	4,800 U	1,800 U	24.4 U	24.9 U	26.4 U	1,240 U	21.6 U	25.5 U
2-Chlorotoluene	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U	5.28 U	49.5 U	4.31 U	5.10 U
2-Hexanone	5,460 U	233 U	525 U	413 U	628 U	960 U	360 U	12.2 U	12.4 U	13.2 U	248 U	10.8 U	12.7 U
4-Chlorotoluene	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U	5.28 U	49.5 U	4.31 U	5.10 U
4-Methyl-2-pentanone	5,460 U	233 U	525 U	413 U	628 U	960 U	360 U	12.2 U	12.4 U	13.2 U	248 U	10.8 U	12.7 U
Acetone	27,300 U	1,170 U	2,620 U	2,060 U	3,140 U	4,800 U	1,800 U	54.5	49.8 U	44.8 J	1,240 U	34.7 J	44.1 J
Benzene	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U	5.28 U	49.5 U	4.31 U	5.10 U
Bromobenzene	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U	5.28 U	49.5 U	4.31 U	5.10 U
Bromochloromethane	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U	5.28 U	49.5 U	4.31 U	5.10 U
Bromoform	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U	5.28 U	49.5 U	4.31 U	5.10 U
Bromomethane	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U	5.28 U	49.5 U	4.31 U	5.10 U
Carbon Disulfide	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U	5.28 U	49.5 U	4.31 U	5.10 U
Cyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibromomethane	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U	5.28 U	49.5 U	4.31 U	5.10 U
Diisopropyl ether (DIPE)	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U	5.28 U	49.5 U	4.31 U	5.10 U
Ethylbenzene	3,810	301	959	1,070	126 U	2,880	941	1.50 J	4.98 U	21.6	1,280	5.42	3.98 J
Hexachlorobutadiene	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U	5.28 U	49.5 U	4.31 U	5.10 U
lodomethane	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U	5.28 U	49.5 U	4.31 U	5.10 U
Isopropylbenzene	1,090 U	46.6 U	105 U	60.3 J	126 U	57.6 J	55.5 J	4.87 U	4.98 U	1.07 J	15.4 J	4.31 U	5.10 U
m-,p-Xylene	15,400	803	3,190	6,200	251 U	9,820	789	9.75 U	4.12 J	48.4	54.0 J	7.99 J	4.75 J
Methyl Acetate	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methyl tert-butyl ether	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U	5.28 U	49.5 U	4.31 U	5.10 U
Methylcyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U	5.28 U	49.5 U	4.31 U	5.10 U
n-Butylbenzene	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U	5.28 U	49.5 U	4.31 U	5.10 U
n-Propylbenzene	1,090 U	46.6 U	30.4 J	28.1 J	126 U	192 U	72.1 U	2.37 J	4.98 U	5.28 U	49.5 U	4.31 U	5.10 U
o-Xylene	1,090 U	46.6 U	105 U	408	126 U	1,090	259	4.87 U	1.53 J	13.7	91.1	4.31 U	5.10 U

Location Identification:	WP-Com-North	WP-Com-South	WP-Com-West	WP-SB-01	WP-SB-01	WP-SB-02	WP-SB-02	WP-SB-03	WP-SB-03	WP-SB-04	WP-SB-04	WP-SB-05	WP-SB-05
Sample Depth (Feet):	0.75	0.75	0.75	0.5 - 1.5	5 - 6	2 - 3	5 - 6	1 - 2	5 - 6	0.5 - 1.5	3 - 4	0.5 - 1.5	3 - 4
Date Collected:	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08
p-Isopropyltoluene	1,090 U	46.6 U	33.6 J	97.4	126 U	192 U	72.1 U	4.87 U	4.98 U	2.61 J	14.9 J	4.31 U	5.10 U
sec-Butylbenzene	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U	5.28 U	49.5 U	4.31 U	5.10 U
Styrene	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U	5.28 U	49.5 U	4.31 U	5.10 U
tert-Butylbenzene	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U	5.28 U	49.5 U	4.31 U	5.10 U
Toluene	1,090 U	46.6 U	16.8 J	21.5 J	126 U	61.5 J	12.3 J	1.60 J	4.98 U	8.65	17.3 J	4.31 U	5.10 U
trans-1,4-Dichloro-2-butene	5,460 U	233 U	525 U	413 U	628 U	960 U	360 U	24.4 U	24.9 U	26.4 U	248 U	21.6 U	25.5 U
Xylenes (total)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,1-Trichloroethane	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U	5.28 U	49.5 U	4.31 U	5.10 U
1,1,2,2-Tetrachloroethane	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U	5.28 U	49.5 U	4.31 U	5.10 U
1,1,2-trichloro-1,2,2-trifluoroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,2-Trichloroethane	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U	5.28 U	49.5 U	4.31 U	5.10 U
1,1-Dichloroethane	1,090 U	46.6 U	33.6 J	82.6 U	215	192 U	118	7.32	4.98 U	24.1	311	4.35	7.87
1,1-Dichloroethene	1,090 U	46.6 U	105 U	82.6 U	124 J	192 U	72.1 U	4.87 U	4.98 U	5.28 U	49.5 U	4.31 U	5.10 U
1,2,4-Trichlorobenzene	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U	5.28 U	49.5 U	4.31 U	5.10 U
1,2-Dibromo-3-chloropropane	5,460 U	233 U	525 U	413 U	628 U	960 U	360 U	24.4 U	24.9 U	26.4 U	248 U	21.6 U	25.5 U
1,2-Dichlorobenzene	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U	5.28 U	49.5 U	4.31 U	5.10 U
1,2-Dichloroethane	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U	5.28 U	49.5 U	4.31 U	5.10 U
1,2-Dichloropropane	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U	5.28 U	49.5 U	4.31 U	5.10 U
1,3-Dichlorobenzene	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U	5.28 U	49.5 U	4.31 U	5.10 U
1,4-Dichlorobenzene	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U	5.28 U	49.5 U	4.31 U	5.10 U
Bromodichloromethane	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U	5.28 U	49.5 U	4.31 U	5.10 U
Carbon Tetrachloride	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U	5.28 U	49.5 U	4.31 U	5.10 U
Chlorobenzene	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U	5.28 U	49.5 U	4.31 U	5.10 U
Chloroethane	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U	5.28 U	73.8	4.31 U	5.10 U
Chloroform	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U	5.28 U	49.5 U	4.31 U	5.10 U
Chloromethane	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U	5.28 U	49.5 U	4.31 U	5.10 U
cis-1,3-Dichloropropene	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U	5.28 U	49.5 U	4.31 U	5.10 U
Dibromochloromethane	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U	5.28 U	49.5 U	4.31 U	5.10 U
Dichlorodifluoromethane	5,460 U	233 U	525 U	413 U	628 U	960 U	360 U	4.87 U	4.98 U	5.28 U	248 U	4.31 U	5.10 U
Methylene Chloride	1,460 J	114 J	73.4 J	152 J	230 J	334 J	143 J	19.5 U	1.70 J	2.09 J	98.6 J	1.56 J	20.4 U
trans-1,3-Dichloropropene	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U	5.28 U	49.5 U	4.31 U	5.10 U
Trichlorofluoromethane	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U	5.28 U	49.5 U	4.31 U	5.10 U
cis-1,2-Dichloroethene	1,090 U	46.6 U	105 U	82.6 U	2,200	192 U	393	4.87 U	4.98 U	5.28 U	21.3 J	4.31 U	5.10 U
Tetrachloroethene	1,090 U	46.6 U	105 U	82.6 U	126 U	192 U	72.1 U	4.87 U	4.98 U	5.28 U	49.5 U	4.31 U	5.10 U
trans-1,2-Dichloroethene	1,090 U	46.6 U	105 U	82.6 U	33.9 J	192 U	72.1 U	4.87 U	4.98 U	3.97 J	49.5 U	4.31 U	5.10 U
Trichloroethene	1,090 U	46.6 U	105 U	82.6 U	22.6 J	192 U	72.1 U	4.87 U	4.98 U	5.28 U	49.5 U	4.31 U	5.10 U
Vinyl Chloride	1,090 U	46.6 U	105 U	82.6 U	476	192 U	518	4.87 U	4.98 U	5.28 U	111	4.31 U	5.10 U
Total Petroleum Hydrocarbons (µg/kg)													
Ethylene Glycol Monobutyl Ether	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Location Identification:	WP-SB-06	WP-SB-06	WP-SB-07	WP-SB-07	WP-SB-08	WP-SB-08	WP-SB-09	WP-SB-10	WP-SB-11	WP-SB-12	WP-SB-13	WP-SB-14
Sample Depth (Feet):	0.5 - 1.5	3 - 4	0.5 - 1.5	3 - 4	0.5 - 1.5	4 - 5	0.5 - 1.5	0.5 - 1.5	0.5 - 1.5	0.5 - 1.5	0.5 - 1.5	0.5 - 1.5
Date Collected:	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08
Volatile Organic Compounds (μg/kg)												
1,1,1,2-Tetrachloroethane	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
1,1-Dichloropropene	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
1,2,3-Trichlorobenzene	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
1,2,3-Trichloropropane	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
1,2,4-Trimethylbenzene	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
1,2-Dibromoethane	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
1,3,5-Trimethylbenzene	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
1,3-Dichloropropane	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
2,2-Dichloropropane	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
2-Butanone	3,160 U	22.8 U	36.4 U	26.4 U	4,840 U	28.8 U	23.5 U	25.1 U	22.1 U	19.2 U	26.1 U	22.6 U
2-Chlorotoluene	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
2-Hexanone	632 U	11.4 U	18.2 U	13.2 U	967 U	14.4 U	11.7 U	12.5 U	11.0 U	9.62 U	13.1 U	11.3 U
4-Chlorotoluene	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
4-Methyl-2-pentanone	632 U	11.4 U	18.2 U	13.2 U	967 U	14.4 U	11.7 U	12.5 U	11.0 U	9.62 U	13.1 U	11.3 U
Acetone	3,160 U	45.6 U	84.6	33.0 J	4,840 U	57.7 U	27.0 J	28.2 J	30.6 J	21.3 J	24.6 J	18.0 J
Benzene	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Bromobenzene	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Bromochloromethane	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Bromoform	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Bromomethane	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Carbon Disulfide	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Cyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibromomethane	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Diisopropyl ether (DIPE)	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Ethylbenzene	911	1.59 J	7.28 U	5.28 U	867	9.00	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Hexachlorobutadiene	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Iodomethane	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Isopropylbenzene	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U	0.958 J	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
m-,p-Xylene	7,060	3.09 J	14.6 U	10.6 U	6,680	35.3	9.39 U	10.0 U	8.83 U	7.69 U	10.5 U	9.05 U
Methyl Acetate	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methyl tert-butyl ether	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Methylcyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
n-Butylbenzene	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
n-Propylbenzene	150	4.56 U	7.28 U	5.28 U	193 U	5.77 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
o-Xylene	126 U	4.56 U	7.28 U	5.28 U	193 U	2.33 J	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U

Location Identification:	WP-SB-06	WP-SB-06	WP-SB-07	WP-SB-07	WP-SB-08	WP-SB-08	WP-SB-09	WP-SB-10	WP-SB-11	WP-SB-12	WP-SB-13	WP-SB-14
Sample Depth (Feet):	0.5 - 1.5	3 - 4	0.5 - 1.5	3 - 4	0.5 - 1.5	4 - 5	0.5 - 1.5	0.5 - 1.5	0.5 - 1.5	0.5 - 1.5	0.5 - 1.5	0.5 - 1.5
Date Collected:	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08	09/23/08
p-Isopropyltoluene	97.3 J	4.56 U	7.28 U	5.28 U	193 U	5.77 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
sec-Butylbenzene	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Styrene	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
tert-Butylbenzene	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Toluene	32.8 J	4.56 U	7.28 U	5.28 U	193 U	5.77 U	4.70 U	5.02 U	4.42 U	1.15 J	5.23 U	4.52 U
trans-1,4-Dichloro-2-butene	632 U	22.8 U	36.4 U	26.4 U	967 U	28.8 U	23.5 U	25.1 U	22.1 U	19.2 U	26.1 U	22.6 U
Xylenes (total)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,1-Trichloroethane	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
1,1,2,2-Tetrachloroethane	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
1,1,2-trichloro-1,2,2-trifluoroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,2-Trichloroethane	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
1,1-Dichloroethane	20.2 J	7.10	6.16 J	5.56	54.2 J	76.3	4.70 U	5.02 U	4.42 U	2.57 J	1.41 J	4.52 U
1,1-Dichloroethene	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
1,2,4-Trichlorobenzene	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
1,2-Dibromo-3-chloropropane	632 U	22.8 U	36.4 U	26.4 U	967 U	28.8 U	23.5 U	25.1 U	22.1 U	19.2 U	26.1 U	22.6 U
1,2-Dichlorobenzene	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
1,2-Dichloroethane	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
1,2-Dichloropropane	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
1,3-Dichlorobenzene	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
1,4-Dichlorobenzene	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Bromodichloromethane	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Carbon Tetrachloride	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Chlorobenzene	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Chloroethane	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Chloroform	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Chloromethane	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
cis-1,3-Dichloropropene	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Dibromochloromethane	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Dichlorodifluoromethane	632 U	4.56 U	7.28 U	5.28 U	967 U	5.77 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Methylene Chloride	225 J	18.2 U	29.1 U	21.1 U	230 J	23.1 U	1.62 J	1.73 J	1.85 J	15.4 U	20.9 U	18.1 U
trans-1,3-Dichloropropene	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Trichlorofluoromethane	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
cis-1,2-Dichloroethene	126 U	4.56 U	7.28 U	5.28 U	193 U	15.4	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Tetrachloroethene	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
trans-1,2-Dichloroethene	126 U	4.56 U	7.28 U	5.28 U	193 U	5.77 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Trichloroethene	80.9 J	4.56 U	7.28 U	5.28 U	193 U	5.77 U	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Vinyl Chloride	126 U	4.56 U	7.28 U	5.28 U	193 U	21.2	4.70 U	5.02 U	4.42 U	3.85 U	5.23 U	4.52 U
Total Petroleum Hydrocarbons (µg/kg)												
Ethylene Glycol Monobutyl Ether	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Table 5

Combined Surface and Subsurface Soil Sample Analytical Results (0-10 Feet)
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Notes:

NA = not applicable μg/kg = micrograms per kilogram

Laboratory Qualifiers:

B = Analyte was found in the associated blank, as well as in the sample.

J = Indicates an estimated value.

ND = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

Data Tables for Report 1-25-19 45/45

Myrtle Beach, South Carolina

Location Identification:	MW-2S	MW-2S	MW-2S	MW-2S MW-2S	MW-2S N	/IW-14S	MW-14S	MW-14S	MW-14S MW-14S MW-1		MW-19S	MW-19S	MW-19S MW-19S	MW-19S	MW-105S
Sample Depth (Feet):	10 - 15	10 - 15	10 - 15	10 - 15 10 - 15	10 - 15	10 - 15	10 - 15	10 - 15	10 - 15 10 - 15 10 - 1	5 10 - 20	10 - 20	10 - 20	10 - 20 10 - 20	10 - 20	13.5 - 23.5
Date Collected:	04/02/13	04/29/14	04/27/15	04/12/16 04/11/17	04/18/18 0	4/02/13	04/29/14	04/27/15	04/12/16 04/11/17 04/18/	18 04/02/13	04/29/14	04/27/15	04/12/16 04/11/17	04/18/18	01/06/13
Volatile Organic Compounds (μg/L)															
1,1,1,2-Tetrachloroethane	20.0 U	20.0 U	50.0 U	10.0 U 20.0 U	5.00 U	10.0 U	50.0 U	10.0 U	1.00 U 1.00 U 1.00	U 1.00 U	1.00 U	1.00 U	1.00 U 1.00 U	1.00 U	1.00 U
1,1-Dichloropropene	20.0 U	20.0 U	50.0 U	10.0 U 20.0 U	5.00 U	10.0 U	50.0 U	10.0 U	1.00 U 1.00 U 1.00	U 1.00 U	1.00 U	1.00 U	1.00 U 1.00 U	1.00 U	1.00 U
1,2,3-Trichlorobenzene	20.0 U	20.0 U	50.0 U	10.0 U 40.0 U	10.0 U	10.0 U	50.0 U	10.0 U	1.00 U 2.00 U 2.00	U 1.00 U	1.00 U	1.00 U	1.00 U 2.00 U	2.00 U	1.00 U
1,2,3-Trichloropropane	20.0 U	20.0 U	50.0 U	10.0 U 40.0 U	10.0 U	10.0 U	50.0 U	10.0 U	1.00 U 2.00 U 2.00	U 1.00 U	1.00 U	1.00 U	1.00 U 2.00 U	2.00 U	1.00 U
1,2,4-Trimethylbenzene	20.0 U	20.0 U	50.0 U	10.0 U 20.0 U	5.00 U	10.0 U	50.0 U	10.0 U	1.00 U 1.00 U 1.00	U 1.00 U	1.00 U	1.19	1.00 U 1.00 U	1.00 U	1.00 U
1,2-Dibromoethane	20.0 U	20.0 U	50.0 U	10.0 U 40.0 U	10.0 U	10.0 U	50.0 U	10.0 U	1.00 U 2.00 U 2.00	U 1.00 U	1.00 U	1.00 U	1.00 U 2.00 U	2.00 U	1.00 U
1,3,5-Trimethylbenzene	20.0 U	20.0 U	50.0 U	10.0 U 20.0 U		10.0 U	50.0 U	10.0 U	1.00 U 1.00 U 1.00		1.00 U	1.00 U	1.00 U 1.00 U	1.00 U	1.00 U
1,3-Dichloropropane	20.0 U	20.0 U	50.0 U	10.0 U 20.0 U	5.00 U	10.0 U	50.0 U	10.0 U	1.00 U 1.00 U 1.00	U 1.00 U	1.00 U	1.00 U	1.00 U 1.00 U	1.00 U	1.00 U
2,2-Dichloropropane	20.0 U	20.0 U	50.0 U			10.0 U	50.0 U	10.0 U	1.00 U 1.00 U 1.00	U 1.00 U	1.00 U	1.00 U	1.00 U 1.00 U	1.00 U	1.00 U
2-Butanone	500 U	500 U	1,250 U	250 U 100 U		250 U	1,250 U	250 U	25.0 U 5.00 U 5.00		25.0 U	25.0 U	25.0 U 5.00 U	5.00 U	25.0 U
2-Chlorotoluene	20.0 U	20.0 U	50.0 U	10.0 U 20.0 U	5.00 U	10.0 U	50.0 U	10.0 U	1.00 U 1.00 U 1.00	U 1.00 U	1.00 U	1.00 U	1.00 U 1.00 U	1.00 U	1.00 U
2-Hexanone	100 U	100 U	250 U			50.0 U	250 U	50.0 U	5.00 U 10.0 U 10.0		5.00 U	5.00 U	5.00 U 10.0 U	10.0 U	5.00 U
4-Chlorotoluene	20.0 U	20.0 U	50.0 U			10.0 U	50.0 U	10.0 U	1.00 U 1.00 U 1.00		1.00 U	1.00 U	1.00 U 1.00 U	1.00 U	1.00 U
4-Methyl-2-pentanone	100 U	100 U	250 U	50.0 U 100 U		50.0 U	250 U	50.0 U	5.00 U 5.00 U 5.00		5.00 U	5.00 U	5.00 U 5.00 U		5.00 U
Acetone	500 U	500 U	1,250 U	250 U 500 U	130 U	250 U	1,250 U	250 U	25.0 U 25.0 U 25.0		3.30 J	25.0 U	25.0 U 25.0 U		25.0 U
Benzene	20.0 U	20.0 U	50.0 U			10.0 U	50.0 U	10.0 U	1.00 U 1.00 U 1.00		0.770 J	1.53	2.06 0.860 J	1.00 U	1.00 U
Bromobenzene	20.0 U	20.0 U	50.0 U	10.0 U 20.0 U	5.00 U	10.0 U	50.0 U	10.0 U	1.00 U 1.00 U 1.00	U 1.00 U	1.00 U	1.00 U	1.00 U 1.00 U	1.00 U	1.00 U
Bromochloromethane	20.0 U	20.0 U	50.0 U			10.0 U	50.0 U	10.0 U	1.00 U 1.00 U 1.00	U 1.00 U	1.00 U	1.00 U	1.00 U 1.00 U	1.00 U	1.00 U
Bromoform	20.0 U	20.0 U	50.0 U			10.0 U	50.0 U	10.0 U	1.00 U 1.00 U 1.00		1.00 U	1.00 U	1.00 U 1.00 U	1.00 U	1.00 U
Bromomethane	20.0 U	20.0 U	50.0 U	10.0 U 40.0 U		10.0 U	50.0 U	10.0 U	1.00 U 2.00 U 2.00		1.00 U	1.00 U	1.00 U 2.00 U	2.00 U	1.00 U
Carbon Disulfide	2.80 J	20.0 U	50.0 U	10.0 U NA		1.50 J	50.0 U	10.0 U	1.00 U NA 2.00		1.00 U	1.00 U	1.00 U NA	2.00 U	1.00 U
Dibromomethane	20.0 U	20.0 U	50.0 U	10.0 U NA		10.0 U	50.0 U	10.0 U	1.00 U NA 2.00		1.00 U	1.00 U	1.00 U NA	2.00 U	1.00 U
Diisopropyl ether (DIPE)	20.0 U	20.0 U	50.0 U			10.0 U	50.0 U	10.0 U	1.00 U 1.00 U 1.00	U 1.00 U	1.00 U	1.00 U	1.00 U 1.00 U	1.00 U	1.00 U
Ethyl Alcohol	NA	NA	NA	NA 4,000 U	NA	NA	NA	NA	NA 200 U NA		NA	NA	NA 200 U	NA	NA
Ethylbenzene	20.0 U	20.0 U	50.0 U			10.0 U	50.0 U	10.0 U	1.00 U 1.00 U 1.00		1.00 U	1.79	0.410 J 1.00 U	1.00 U	1.00 U
Hexachlorobutadiene	20.0 U	20.0 U	50.0 U	10.0 U NA		10.0 U	50.0 U	10.0 U	1.00 U NA 2.00		1.00 U	1.00 U	1.00 U NA	2.00 U	1.00 U
Iodomethane	20.0 U	20.0 U	50.0 U			10.0 U	50.0 U	10.0 U	1.00 U NA 1.00		1.00 U	1.00 U	1.00 U NA	1.00 U	1.00 U
Isopropylbenzene	20.0 U	20.0 U	50.0 U			10.0 U	50.0 U	10.0 U	1.00 U 1.00 U 1.00		1.00 U	1.00 U	1.00 U 1.00 U	1.00 U	1.00 U
m-,p-Xylene	40.0 U	40.0 U	100 U			20.0 U	100 U	20.0 U	2.00 U 2.00 U 2.00		2.00 U	2.42	2.00 U 2.00 U		2.00 U
Methyl tert-butyl ether	20.0 U	20.0 U	50.0 U			10.0 U	50.0 U	10.0 U	1.00 U 1.00 U 1.00		1.00 U	1.00 U	1.00 U 1.00 U	1.00 U	1.00 U
Naphthalene	20.0 U	20.0 U	50.0 U			10.0 U	50.0 U	10.0 U	1.00 U 5.00 U 5.00		9.50	43.3	39.8 5.00 U		1.00 U
n-Butylbenzene	20.0 U	20.0 U	50.0 U			10.0 U	50.0 U	10.0 U	1.00 U 1.00 U 1.00		1.00 U	1.00 U	1.00 U 1.00 U		1.00 U
n-Propylbenzene	20.0 U	20.0 U	50.0 U			10.0 U	50.0 U	10.0 U	1.00 U 1.00 U 1.00		1.00 U	1.00 U	1.00 U 1.00 U	1.00 U	1.00 U
o-Xylene	20.0 U	20.0 U	50.0 U			10.0 U	50.0 U	10.0 U	1.00 U 1.00 U 1.00		0.210 J	2.17	0.660 J 1.00 U	1.00 U	1.00 U
p-Isopropyltoluene	20.0 U	20.0 U	50.0 U			10.0 U	50.0 U	10.0 U	0.450 J 1.00 U 1.00		1.00 U	1.00 U	1.00 U 1.00 U	1.00 U	1.00 U
sec-Butylbenzene	20.0 U	20.0 U	50.0 U			10.0 U	50.0 U	10.0 U	1.00 U 1.00 U 1.00		1.00 U	1.00 U	1.00 U 1.00 U	1.00 U	1.00 U
Styrene	20.0 U	20.0 U	50.0 U			10.0 U	50.0 U	10.0 U	1.00 U 1.00 U 1.00		1.00 U	1.00 U	1.00 U 1.00 U	1.00 U	1.00 U
tert-Butylbenzene	20.0 U	20.0 U	50.0 U	10.0 U 20.0 U		10.0 U	50.0 U	10.0 U	0.450 J 0.480 J 1.00	U 1.00 U	1.00 U	1.00 U	1.00 U 1.00 U	1.00 U	1.00 U
Toluene	20.0 U	20.0 U	50.0 U	10.0 U 20.0 U	5.00 U	10.0 U	50.0 U	10.0 U	1.00 U 1.00 U 1.00	U 1.00 U	0.230 J	0.700 J	1.00 UB 1.00 U	1.00 U	1.00 U

Location Identification:	MW-2S	MW-2S	MW-2S	MW-2S	MW-2S	MW-2S	MW-14S	MW-14S	MW-14S	MW-14S	MW-14S	MW-14S	MW-19S	MW-19S	MW-19S	MW-19S	MW-19S	MW-19S	MW-105S
Sample Depth (Feet):	10 - 15	10 - 15	10 - 15	10 - 15	10 - 15	10 - 15	10 - 15	10 - 15	10 - 15	10 - 15	10 - 15	10 - 15	10 - 20	10 - 20	10 - 20	10 - 20	10 - 20	10 - 20	13.5 - 23.5
Date Collected:	04/02/13	04/29/14	04/27/15	04/12/16	04/11/17	04/18/18	04/02/13	04/29/14	04/27/15	04/12/16	04/11/17	04/18/18	04/02/13	04/29/14	04/27/15	04/12/16	04/11/17	04/18/18	01/06/13
trans-1,4-Dichloro-2-butene	100 U	100 U	250 U	50.0 U	NA	NA	50.0 U	250 U	50.0 U	5.00 U	NA	NA	5.00 U	5.00 U	5.00 U	5.00 U	NA	NA	5.00 U
Vinyl Acetate	NA	NA	NA	NA	200 U	50.0 U	NA	NA	NA	NA	10.0 U	10.0 U	NA	NA	NA	NA	10.0 U	10.0 U	NA
Xylenes (total)	NA	NA	NA	NA	60.0 U	NA	NA	NA	NA	NA	3.00 U	NA	NA	NA	NA	NA	3.00 U	NA	NA
1,1,1-Trichloroethane	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	10.0 U	50.0 U	10.0 U	1.00 U									
1,1,2,2-Tetrachloroethane	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	10.0 U	50.0 U	10.0 U	1.00 U									
1,1,2-Trichloroethane	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	10.0 U	50.0 U	10.0 U	1.00 U									
1,1-Dichloroethane	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	10.0 U	50.0 U	10.0 U	0.240 J	0.520 J	1.00 U	0.220 J	0.330 J	0.120 J	1.00 U			1.00 U
1,1-Dichloroethene	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	2.40 J	8.10 J	50.0 U	10.0 U	1.00 U									
1,2,4-Trichlorobenzene	20.0 U	20.0 U	50.0 U	10.0 U	40.0 U	10.0 U	10.0 U	50.0 U	10.0 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	1.00 U
1,2-Dibromo-3-chloropropane	100 U	100 U	250 U	50.0 U	NA	25.0 U	50.0 U	250 U	50.0 U	5.00 U	NA	5.00 U	NA	5.00 U	5.00 U				
1,2-Dichlorobenzene	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	10.0 U	50.0 U	10.0 U	1.00 U									
1,2-Dichloroethane	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	10.0 U	50.0 U	10.0 U	1.00 U									
1,2-Dichloropropane	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	10.0 U	50.0 U	10.0 U	1.00 U									
1,3-Dichlorobenzene	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	10.0 U	50.0 U	10.0 U	1.00 U									
1,4-Dichlorobenzene	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	10.0 U	50.0 U	10.0 U	1.00 U									
Bromodichloromethane	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	10.0 U	50.0 U	10.0 U	1.00 U									
Carbon Tetrachloride	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	10.0 U	50.0 U	10.0 U	1.00 U									
Chlorobenzene	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	10.0 U	50.0 U	10.0 U	1.00 U									
Chloroethane	20.0 U	20.0 U	50.0 U	10.0 U	40.0 U	10.0 U	10.0 U	50.0 U	10.0 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	1.00 U
Chloroform	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	10.0 U	50.0 U	10.0 U	1.00 U									
Chloromethane	20.0 U	20.0 U	50.0 U	10.0 U	40.0 U	10.0 U	10.0 U	50.0 U	10.0 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	1.00 U
cis-1,3-Dichloropropene	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	10.0 U	50.0 U	10.0 U	1.00 U									
Dibromochloromethane	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	10.0 U	50.0 U	10.0 U	1.00 U									
Dichlorodifluoromethane	100 U	100 U	250 U	50.0 U	40.0 U	10.0 U	50.0 U	250 U	50.0 U	5.00 U	2.00 U	2.00 U	5.00 U	5.00 U	5.00 U	5.00 U	2.00 U	2.00 U	5.00 U
Methylene Chloride	100 U	100 U	250 U	50.0 U	100 U	25.0 U	50.0 U	250 U	50.0 U	5.00 U	0.580 J	5.00 U		5.00 U					
trans-1,3-Dichloropropene	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	10.0 U	50.0 U	10.0 U	1.00 U		1.00 U							
Trichlorofluoromethane	20.0 U	20.0 U	50.0 U	10.0 U	40.0 U	10.0 U	10.0 U	50.0 U	10.0 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	1.00 U
cis-1,2-Dichloroethene	1,030	354	1,020	266	1,080	659	512	1,060	198	17.3	7.30	2.80	0.220 J	1.96	2.35	3.54	5.70	0.610 J	1.00 U
Tetrachloroethene	20.0 U	20.0 U	50.0 U	10.0 U	20.0 U	5.00 U	10.0 U	50.0 U	10.0 U	1.00 U									
trans-1,2-Dichloroethene	5.80 J	20.0 U	50.0 U	10.0 U	8.40 J	4.20 J	1.50 J	50.0 U	10.0 U	1.00 U	0.350 J	1.00 U	1.00 U	1.00 U					
Trichloroethene	473	149	407	159	527	275	63.7	50.0 U	10.0 U	1.00 U	1.00 U	1.00 U	1.00 U	0.450 J	1.45	2.35	0.360 J	1.00 U	1.00 U
Vinyl Chloride	20.0 U	4.60 J	50.0 U	10.0 U	20.0 U	3.50 J	79.9	85.5	15.8	5.37	3.50	4.50	1.00 U	0.480 J	0.300 J	1.52	0.700 J	1.00 U	1.00 U
Inorganics - Total (µg/L)																			
Iron	NA	5,100																	
Manganese	NA	21.0																	
Inorganics - Dissolved (µg/L)																			
Iron	NA	820																	
Manganese	NA	13.0 J																	
Total Organic Carbon (mg/L)																			
Total Organic Carbon	NA	6																	

Myrtle Beach, South Carolina

Location Identification:	HPT-02	HPT-03	HPT-24	HPT-25	HPT-26	HPT-27	HPT-28	HPT-29	HPT-30	HPT-31	HPT-32	HPT-33	HPT-33	HPT-34
Sample Depth (Feet):	10 - 12	9 - 11	12 - 14	13 - 15	14 - 16	12 - 14	13 - 15	13 - 15	13 - 15	12 - 14	9 - 11	8 - 10	14 - 16	11 - 13
Date Collected:	12/05/15	12/05/15	12/02/15	12/02/15	12/02/15	12/02/15	12/01/15	12/01/15	11/30/15	12/03/15	12/04/15	12/04/15	12/04/15	12/04/15
Volatile Organic Compounds (μg/L)														
1,1,1,2-Tetrachloroethane	1.00 U	5.00 U	5,000 U	40.0 U	1.00 U [1.00 U]	160 U	200 U	5,000 U	1.00 U					
1,1-Dichloropropene	1.00 U	5.00 U	5,000 U	40.0 U	1.00 U [1.00 U]	160 U	200 U	5,000 U	1.00 U					
1,2,3-Trichlorobenzene	1.00 U	5.00 U	5,000 U	40.0 U	1.00 U [1.00 U]	160 U	200 U	5,000 U	1.00 U					
1,2,3-Trichloropropane	1.00 U	5.00 U	5,000 U	40.0 U	1.00 U [1.00 U]	160 U	200 U	5,000 U	1.00 U					
1,2,4-Trimethylbenzene	1.00 U	5.00 U	5,000 U	40.0 U	1.00 U [1.00 U]	28.8 J	200 U	5,000 U	0.460 J					
1,2-Dibromoethane	1.00 U	5.00 U	5,000 U	40.0 U	1.00 U [1.00 U]	160 U	200 U	5,000 U	1.00 U					
1,3,5-Trimethylbenzene	1.00 U	5.00 U	5,000 U	40.0 U	1.00 U [1.00 U]	160 U	200 U	5,000 U	0.420 J					
1,3-Dichloropropane	1.00 U	5.00 U	5,000 U	40.0 U	1.00 U [1.00 U]	160 U	200 U	5,000 U	1.00 U					
2,2-Dichloropropane	1.00 U	5.00 U	5,000 U	40.0 U	1.00 U [1.00 U]	160 U	200 U	5,000 U	1.00 U					
2-Butanone	25.0 U	125 U	125,000 U	1,000 U	25.0 U	25.0 U	25.0 U	25.0 U	25.0 U	2.26 J [1.38 J]	4,000 U	5,000 U	125,000 U	25.0 U
2-Chlorotoluene	1.00 U	5.00 U	5,000 U	40.0 U	1.00 U [1.00 U]	160 U	200 U	5,000 U	1.00 U					
2-Hexanone	5.00 U	25.0 U	25,000 U	200 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U [5.00 U]	800 U	1,000 U	25,000 U	5.00 U
4-Chlorotoluene	1.00 U	5.00 U	5,000 U	40.0 U	1.00 U [1.00 U]	160 U	200 U	5,000 U	1.00 U					
4-Methyl-2-pentanone	5.00 U	25.0 U	25,000 U	200 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U [5.00 U]	800 U	1,000 U	25,000 U	5.00 U
Acetone	25.0 U	125 U	125,000 U	1,000 U	25.0 U	3.90 J	8.16 J	25.0 U	25.0 U	4.06 J [2.19 J]	4,000 U	5,000 U	125,000 U	25.0 U
Benzene	1.00 U	5.00 U	5,000 U	40.0 U	1.00 U [1.00 U]	160 U	200 U	5,000 U	0.280 J					
Bromobenzene	1.00 U	5.00 U	5,000 U	40.0 U	1.00 U [1.00 U]	160 U	200 U	5,000 U	1.00 U					
Bromochloromethane	1.00 U	5.00 U	5,000 U	40.0 U	1.00 U [1.00 U]	160 U	200 U	5,000 U	1.00 U					
Bromoform	1.00 U	5.00 U	5,000 U	40.0 U	1.00 U [1.00 U]	160 U	200 U	5,000 U	1.00 U					
Bromomethane	1.00 U	5.00 U	5,000 U	40.0 U	1.00 U [1.00 U]	160 U	200 U	5,000 U	1.00 U					
Carbon Disulfide	1.00 U	5.00 U	5,000 U	40.0 U	1.00 U	0.510 J [0.160 J]	160 U	200 U	5,000 U	0.700 J				
Dibromomethane	1.00 U	5.00 U	5,000 U	40.0 U	1.00 U [1.00 U]	160 U	200 U	5,000 U	1.00 U					
Diisopropyl ether (DIPE)	1.00 U	5.00 U	5,000 U	40.0 U	1.00 U [1.00 U]	160 U	200 U	5,000 U	1.00 U					
Ethyl Alcohol	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethylbenzene	1.00 U	5.00 U	5,000 U	40.0 U	1.00 U [1.00 U]	160 U	200 U	5,000 U	0.520 J					
Hexachlorobutadiene	1.00 U	5.00 U	5,000 U	40.0 U	1.00 U [1.00 U]	160 U	200 U	5,000 U	1.00 U					
lodomethane	1.00 U	5.00 U	5,000 U	40.0 U	1.00 U [1.00 U]	160 U	200 U	5,000 U	1.00 U					
Isopropylbenzene	1.00 U	5.00 U	5,000 U	40.0 U	1.00 U [1.00 U]	160 U	200 U	5,000 U	0.560 J					
m-,p-Xylene	2.00 U	10.0 U	10,000 U	80.0 U	2.00 U	2.00 U	0.550 J	2.00 U	2.00 U	2.00 U [2.00 U]	320 U	400 U	10,000 U	0.980 J
Methyl tert-butyl ether	1.00 U	5.00 U	5,000 U	40.0 U	1.00 U [1.00 U]	160 U	200 U	5,000 U	1.00 U					
Naphthalene	1.00 U	5.00 U	5,000 U	40.0 U	1.00 U [1.00 U]	1,140	200 U	5,000 U	1.00 U					
n-Butylbenzene	1.00 U	5.00 U	5,000 U	40.0 U	1.00 U [1.00 U]	160 U	200 U	5,000 U	1.00 U					
n-Propylbenzene	1.00 U	5.00 U	5,000 U	40.0 U	1.00 U [1.00 U]	160 U	200 U	5,000 U	0.240 J					
o-Xylene	1.00 U	5.00 U	5,000 U	40.0 U	1.00 U [1.00 U]	160 U	200 U	5,000 U	0.850 J					
p-Isopropyltoluene	1.00 U	5.00 U	5,000 U	40.0 U	1.00 U [1.00 U]	160 U	200 U	5,000 U	1.00 U					
sec-Butylbenzene	1.00 U	5.00 U	5,000 U	40.0 U	1.00 U [1.00 U]	160 U	200 U	5,000 U	1.00 U					
Styrene	1.00 U	5.00 U	5,000 U	40.0 U	1.00 U [1.00 U]	160 U	200 U	5,000 U	1.00 U					
tert-Butylbenzene	1.00 U	5.00 U	5,000 U	40.0 U	1.00 U [1.00 U]	160 U	200 U	5,000 U	1.00 U					
Toluene	0.260 J	5.00 U	5,000 U	40.0 U	1.00 U	1.00 U	0.150 J	1.00 U	1.00 U	0.330 J [0.250 J]	160 U	200 U	5,000 U	0.730 J

Location Identification:	HPT-02	HPT-03	HPT-24	HPT-25	HPT-26	HPT-27	HPT-28	HPT-29	HPT-30	HPT-31	HPT-32	HPT-33	HPT-33	HPT-34
Sample Depth (Feet):	10 - 12	9 - 11	12 - 14	13 - 15	14 - 16	12 - 14	13 - 15	13 - 15	13 - 15	12 - 14	9 - 11	8 - 10	14 - 16	11 - 13
Date Collected:	12/05/15	12/05/15	12/02/15	12/02/15	12/02/15	12/02/15	12/01/15	12/01/15	11/30/15	12/03/15	12/04/15	12/04/15	12/04/15	12/04/15
trans-1,4-Dichloro-2-butene	5.00 U	25.0 U	25,000 U	200 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U [5.00 U]	800 U	1,000 U	25,000 U	5.00 U
Vinyl Acetate	NA	NA	NA	NA	NA									
Xylenes (total)	NA	NA	NA	NA	NA									
1,1,1-Trichloroethane	1.00 U	5.00 U	5,000 U	40.0 U	1.00 U [1.00 U]	160 U	200 U	5,000 U	1.00 U					
1,1,2,2-Tetrachloroethane	1.00 U	5.00 U	5,000 U	40.0 U	1.00 U [1.00 U]	160 U	200 U	5,000 U	1.00 U					
1,1,2-Trichloroethane	1.00 U	5.00 U	5,000 U	40.0 U	1.00 U [1.00 U]	160 U	200 U	5,000 U	1.00 U					
1,1-Dichloroethane	1.00 U	5.00 U	2,100 J	11.2 J	1.00 U	1.00 U [1.00 U]	160 U	1,090	5,000 U	1.77				
1,1-Dichloroethene	1.00 U	5.00 U	1,950 J	40.0 U	1.00 U [1.00 U]	160 U	1,070	5,000 U	1.00 U					
1,2,4-Trichlorobenzene	1.00 U	5.00 U	5,000 U	40.0 U	1.00 U [1.00 U]	160 U	200 U	5,000 U	1.00 U					
1,2-Dibromo-3-chloropropane	5.00 U	25.0 U	25,000 U	200 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U [5.00 U]	800 U	1,000 U	25,000 U	5.00 U
1,2-Dichlorobenzene	1.00 U	5.00 U	5,000 U	40.0 U	1.00 U [1.00 U]	160 U	200 U	5,000 U	1.00 U					
1,2-Dichloroethane	1.00 U	5.00 U	5,000 U	40.0 U	1.00 U [1.00 U]	160 U	200 U	5,000 U	1.00 U					
1,2-Dichloropropane	1.00 U	5.00 U	5,000 U	40.0 U	1.00 U [1.00 U]	160 U	200 U	5,000 U	1.00 U					
1,3-Dichlorobenzene	1.00 U	5.00 U	5,000 U	40.0 U	1.00 U [1.00 U]	160 U	200 U	5,000 U	1.00 U					
1,4-Dichlorobenzene	1.00 U	5.00 U	5,000 U	40.0 U	1.00 U [1.00 U]	160 U	200 U	5,000 U	1.00 U					
Bromodichloromethane	1.00 U	5.00 U	5,000 U	40.0 U	1.00 U [1.00 U]	160 U	200 U	5,000 U	1.00 U					
Carbon Tetrachloride	1.00 U	5.00 U	5,000 U	40.0 U	1.00 U [1.00 U]	160 U	200 U	5,000 U	1.00 U					
Chlorobenzene	1.00 U	5.00 U	5,000 U	40.0 U	1.00 U [1.00 U]	160 U	200 U	5,000 U	1.00 U					
Chloroethane	1.00 U	5.00 U	5,000 U	40.0 U	1.00 U [1.00 U]	160 U	200 U	5,000 U	1.00 U					
Chloroform	1.00 U	5.00 U	5,000 U	40.0 U	1.00 U [1.00 U]	160 U	200 U	5,000 U	1.00 U					
Chloromethane	1.00 U	5.00 U	5,000 U	40.0 U	1.00 U [1.00 U]	160 U	200 U	5,000 U	1.00 U					
cis-1,3-Dichloropropene	1.00 U	5.00 U	5,000 U	40.0 U	1.00 U [1.00 U]	160 U	200 U	5,000 U	1.00 U					
Dibromochloromethane	1.00 U	5.00 U	5,000 U	40.0 U	1.00 U [1.00 U]	160 U	200 U	5,000 U	1.00 U					
Dichlorodifluoromethane	5.00 U	25.0 U	25,000 U	200 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U [5.00 U]	800 U	1,000 U	25,000 U	5.00 U
Methylene Chloride	5.00 U	25.0 U	25,000 U	200 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U [5.00 U]	800 U	1,000 U	25,000 U	5.00 U
trans-1,3-Dichloropropene	1.00 U	5.00 U	5,000 U	40.0 U	1.00 U [1.00 U]	160 U	200 U	5,000 U	1.00 U					
Trichlorofluoromethane	1.00 U	5.00 U	5,000 U	40.0 U	1.00 U [1.00 U]	160 U	200 U	5,000 U	1.00 U					
cis-1,2-Dichloroethene	1.00 U	124	11,600	770	1.00 U	1.00 U [1.00 U]	160 U	1,780	109,000	0.840 J				
Tetrachloroethene	1.00 U	5.00 U	5,000 U	40.0 U	1.00 U [1.00 U]	160 U	200 U	5,000 U	1.00 U					
trans-1,2-Dichloroethene	1.00 U	9.75	5,000 U	13.6 J	1.00 U	1.00 U [1.00 U]	160 U	200 U	5,000 U	1.00 U				
Trichloroethene	0.850 J	61.0	261,000	54.4	1.00 U	0.380 J [1.00 U]	160 U	200 U	164,000	1.00 U				
Vinyl Chloride	1.00 U	5.00 U	5,000 U	40.0 U	1.00 U [1.00 U]	160 U	4,620	3,200 J	6.69					
Inorganics - Total (µg/L)														
Iron	NA	NA	NA	NA	NA									
Manganese	NA	NA	NA	NA	NA									
Inorganics - Dissolved (µg/L)														
Iron	NA	NA	NA	NA	NA									
Manganese	NA	NA	NA	NA	NA									
Total Organic Carbon (mg/L)														
Total Organic Carbon	NA	NA	NA	NA	NA									

Table 6

Summary of Groundwater Sample Analytical Results to a Depth of Less than or Equal to 15 Feet Human Health Risk Assessment AVX Corporation

Myrtle Beach, South Carolina

Notes:

mg/L = milligrams per liter NA = not applicable $\mu g/L$ =micrograms per liter

Laboratory Qualifiers:

B = Analyte was found in the associated blank, as well as in the sample.

J = Indicates an estimated value.

ND = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

Data Tables for Report 1-25-19 5/5

Location Identification	DPW-3SD	DPW-3SD	DPW-3SD	DPW-3SD	DPW-3SD	DPW-3SD	DPW-4SD	DPW-4SD	DPW-4SD	DPW-4SD	DPW-4SD	DPW-4SD	DPW-5SD	DPW-5SD	DPW-5SD	DPW-5SD	DPW-5SD	MW-2S	MW-2S
0 15 11/5 11	20 - 30	20 - 30	20 - 30	20 - 30	20 - 30	20 - 30	19.5 - 29.5	19.5 - 29.5	19.5 - 29.5	19.5 - 29.5	19.5 - 29.5	19.5 - 29.5	19 - 24	19 - 24	19 - 24	19 - 24	19 - 24	40 45	10 11
Sample Depth (Feet)	40 - 45	40 - 45	40 - 45	40 - 45	40 - 45	40 - 45	29.6 - 44.5	29.6 - 44.5	29.6 - 44.5	29.6 - 44.5	29.6 - 44.5	29.6 - 44.5	31 - 41	31 - 41	31 - 41	31 - 41	31 - 41	10 - 15	10 - 15
Date Collected	04/02/13	04/29/14	04/27/15	04/12/16	04/11/17	04/18/18	04/02/13	04/29/14	04/27/15	04/12/16	04/11/17	04/18/18	04/29/14	04/27/15	04/12/16	04/11/17	04/18/18	04/02/13	04/29/1
latile Organic Compounds (µg/L)																			
1,1,2-Tetrachloroethane	1.00 U	250 U	200 U	200 U	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U					
1-Dichloropropene	1.00 U	250 U	200 U	200 U	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U					
2,3-Trichlorobenzene	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	250 U	200 U	200 U	160 U	200 U	200 UJ	800 U	800 U	800 U	200 U	200 UJ	20.0 U	20.0 U
2,3-Trichloropropane	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	250 U	200 U	200 U	160 U	200 U	200 UJ	800 U	800 U	800 U	200 U	200 UJ	20.0 U	20.0 U
2,4-Trimethylbenzene	1.00 U	250 U	200 U	200 U	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U					
2-Dibromoethane	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	250 U	200 U	200 U	160 U	200 U	200 UJ	800 U	800 U	800 U	200 U	200 UJ	20.0 U	20.0 U
3,5-Trimethylbenzene	1.00 U	250 U	200 U	200 U	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U					
3-Dichloropropane	1.00 U	250 U	200 U	200 U	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U					
2-Dichloropropane	1.00 U	250 U	200 U	200 U	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U					
Butanone	4.39 J	25.0 U	25.0 U	25.0 U	5.00 U	5.00 U	6,250 U	5,000 U	5,000 U	4,000 U	500 U	500 UJ	20,000 U	20,000 U	20,000 U	500 U	500 UJ	500 U	500 U
Chlorotoluene	1.00 U	250 U	200 U	200 U	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U					
Hexanone	5.00 U	5.00 U	5.00 U	5.00 U	10.0 U	10.0 U	1,250 U	1,000 U	1,000 U	800 U	1,000 U	1,000 UJ	4,000 U	4,000 U	4,000 U	1,000 U	1,000 UJ	100 U	100 U
Chlorotoluene	1.00 U	250 U	200 U	200 U	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U					
Methyl-2-pentanone	5.00 U	1,250 U	1,000 U	1,000 U	800 U	500 U	500 UJ	4,000 U	4,000 U	4,000 U	500 U	500 UJ	100 U	100 U					
cetone	32.0	7.94 J	2.30 J	25.0 U	25.0 U	25.0 U	6,250 U	5,000 U	5,000 U	4,000 U	2,500 U	2,500 UJ	20,000 U	20,000 U	20,000 U	2,500 U	2,500 UJ	500 U	500 U
enzene	0.120 J	1.00 U	250 U	200 U	200 U	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U				
romobenzene	1.00 U	250 U	200 U	200 U	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U					
romochloromethane	1.00 U	250 U	200 U	200 U	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U					
romoform	1.00 U	250 U	200 U	200 U	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U					
romomethane	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	250 U	200 U	200 U	160 U	200 U	200 UJ	800 U	800 U	800 UJ	200 U	200 UJ	20.0 U	20.0 U
arbon Disulfide	1.00 U	1.00 U	1.00 U	1.00 U	NA	2.00 U	35.0 J	200 U	200 U	160 U	NA	200 UJ	800 U	800 U	800 U	NA	200 UJ	2.80 J	20.0 U
bromomethane	1.00 U	1.00 U	1.00 U	1.00 U	NA	2.00 U	250 U	200 U	200 U	160 U	NA	200 UJ	800 U	800 U	800 U	NA	200 UJ	20.0 U	20.0 U
iisopropyl ether (DIPE)	1.00 U	250 U	200 U	200 U	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U					
thyl Alcohol	NA	NA	NA	NA	200 U	NA	NA	NA	NA	NA	20,000 U	NA	NA	NA	NA	20,000 U	NA	NA	NA
thylbenzene	1.00 U	250 U	200 U	200 U	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U					
exachlorobutadiene	1.00 U	1.00 U	1.00 U	1.00 U	NA	2.00 U	250 U	200 U	200 U	160 U	NA	200 UJ	800 U	800 U	800 U	NA	200 UJ	20.0 U	20.0 U
domethane	1.00 U	1.00 U	1.00 U	1.00 U	NA	1.00 U	250 U	200 U	200 U	160 U	NA	100 UJ	800 U	800 U	800 U	NA	100 UJ	20.0 U	20.0 U
opropylbenzene	1.00 U	250 U	200 U	200 U	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U					
-,p-Xylene	2.00 U	500 U	400 U	400 U	320 U	200 U	200 UJ	1,600 U	1,600 U	1,600 U	200 U	200 UJ	40.0 U	40.0 U					
ethyl tert-butyl ether	0.130 J	1.00 U	250 U	200 U	200 U	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U				
aphthalene	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	5.00 U	250 U	200 U	200 U	160 U	500 U	500 UJ	800 U	800 U	800 U	500 U	500 UJ	20.0 U	20.0 U
Butylbenzene	1.00 U	250 U	200 U	200 U	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U					
Propylbenzene	1.00 U	250 U	200 U	200 U	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U					
Xylene	1.00 U	250 U	200 U	200 U	160 U	100 U	100 UJ	800 U	800 U	800 UJ	100 U	100 UJ	20.0 U	20.0 U					
Isopropyltoluene	1.00 U	250 U	200 U	200 U	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U					
ec-Butylbenzene	1.00 U	250 U	200 U	200 U	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U					
yrene	1.00 U	250 U	200 U	200 U	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 L					
rt-Butylbenzene	1.00 U	250 U	200 U	200 U	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U					
bluene	0.150 J	1.00 U	250 U	200 U	200 U	160 U	100 U	100 UJ	800 U	800 U	800 U	33.3 J	100 UJ	20.0 U	20.0 U				

Location Identification:	DPW-3SD	DPW-3SD	DPW-3SD	DPW-3SD	DPW-3SD	DPW-3SD	DPW-4SD	DPW-4SD	DPW-4SD	DPW-4SD	DPW-4SD	DPW-4SD	DPW-5SD	DPW-5SD	DPW-5SD	DPW-5SD	DPW-5SD	MW-2S	MW-2S
Samula Danth (Frath	20 - 30	20 - 30	20 - 30	20 - 30	20 - 30	20 - 30	19.5 - 29.5	19.5 - 29.5	19.5 - 29.5	19.5 - 29.5	19.5 - 29.5	19.5 - 29.5	19 - 24	19 - 24	19 - 24	19 - 24	19 - 24	10 - 15	10 45
Sample Depth (Feet):	40 - 45	40 - 45	40 - 45	40 - 45	40 - 45	40 - 45	29.6 - 44.5	29.6 - 44.5	29.6 - 44.5	29.6 - 44.5	29.6 - 44.5	29.6 - 44.5	31 - 41	31 - 41	31 - 41	31 - 41	31 - 41	10 - 15	10 - 15
Date Collected:	04/02/13	04/29/14	04/27/15	04/12/16	04/11/17	04/18/18	04/02/13	04/29/14	04/27/15	04/12/16	04/11/17	04/18/18	04/29/14	04/27/15	04/12/16	04/11/17	04/18/18	04/02/13	04/29/14
ans-1,4-Dichloro-2-butene	5.00 U	5.00 U	5.00 U	5.00 U	NA	NA	1,250 U	1,000 U	1,000 U	800 U	NA	NA	4,000 U	4,000 U	4,000 U	NA	NA	100 U	100 U
inyl Acetate	NA	NA	NA	NA	10.0 U	10.0 U	NA	NA	NA	NA	1,000 U	1,000 UJ	NA	NA	NA	1,000 U	1,000 UJ	NA	NA
(ylenes (total)	NA	NA	NA	NA	3.00 U	NA	NA	NA	NA	NA	300 U	NA	NA	NA	NA	300 U	NA	NA	NA
,1,1-Trichloroethane	1.00 U	250 U	200 U	200 U	160 U	100 U	100 UJ	800 U	800 U	800 U	49.1 J	61.2 J	20.0 U	20.0 U					
,1,2,2-Tetrachloroethane	1.00 U	250 U	200 U	200 U	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U					
,1,2-Trichloroethane	1.00 U	250 U	200 U	200 U	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U					
,1-Dichloroethane	0.280 J	1.00 U	118 J	52.0 J	72.0 J	56.0 J	57.2 J	71.4 J	800 U	800 U	136 J	108	72.9 J	20.0 U	20.0 U				
,1-Dichloroethene	1.00 U	103 J	44.0 J	68.0 J	68.8 J	87.4 J	83.9 J	800 U	800 U	800 U	69.2 J	61.3 J	20.0 U	20.0 U					
,2,4-Trichlorobenzene	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	250 U	200 U	200 U	160 U	200 U	200 UJ	800 U	800 U	800 U	200 U	200 UJ	20.0 U	20.0 U
,2-Dibromo-3-chloropropane	5.00 U	5.00 U	5.00 U	5.00 U	NA	5.00 U	1,250 U	1,000 U	1,000 U	800 U	NA	500 UJ	4,000 U	4,000 U	4,000 U	NA	500 UJ	100 U	100 U
1,2-Dichlorobenzene	1.00 U	250 U	200 U	200 U	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U					
1,2-Dichloroethane	1.00 U	250 U	200 U	200 U	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U					
1,2-Dichloropropane	1.00 U	250 U	200 U	200 U	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U					
1,3-Dichlorobenzene	1.00 U	250 U	200 U	200 U	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U					
1,4-Dichlorobenzene	1.00 U	250 U	200 U	200 U	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U					
Bromodichloromethane	1.00 U	250 U	200 U	200 U	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U					
Carbon Tetrachloride	1.00 U	250 U	200 U	200 U	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U					
Chlorobenzene	1.00 U	250 U	200 U	200 U	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U					
Chloroethane	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	250 U	200 U	200 U	160 U	200 U	200 UJ	800 U	800 U	800 U	200 U	200 UJ	20.0 U	20.0 U
Chloroform	1.00 U	250 U	200 U	200 U	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U					
Chloromethane	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	250 U	200 U	200 U	160 U	200 U	200 UJ	800 U	800 U	800 U	200 U	200 UJ	20.0 U	20.0 U
cis-1,3-Dichloropropene	1.00 U	250 U	200 U	200 U	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U					
Dibromochloromethane	1.00 U	250 U	200 U	200 U	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U					
Dichlorodifluoromethane	5.00 U	5.00 U	5.00 U	5.00 U	2.00 U	2.00 U	1,250 U	1.000 U	1,000 U	800 U	200 U	200 UJ	4.000 U	4,000 U	4.000 U	200 U	200 UJ	100 U	100 U
Methylene Chloride	5.00 U	1,250 U	1.000 U	1.000 U	800 U	500 U	500 UJ	4.000 U	4.000 U	4.000 U	500 U	500 UJ	100 U	100 U					
rans-1.3-Dichloropropene	1.00 U	250 U	200 U	200 U	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U					
Frichlorofluoromethane	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	250 U	200 U	200 U	160 U	200 U	200 UJ	800 U	800 U	800 U	200 U	200 UJ	20.0 U	20.0 U
cis-1.2-Dichloroethene	0.790 J	0.390 J	0.730 J	0.580 J	0.880 J	1.20	10.400	3.300	3.180	2.760	5,040	5,760 J	13.600	12,100	13.900	8.800	8.040 J	1.030	354
etrachloroethene	1.00 U	250 U	200 U	200 U	160 U	100 U	100 UJ	800 U	800 U	800 U	100 U	100 UJ	20.0 U	20.0 U					
rans-1.2-Dichloroethene	1.00 U	90.0 J	200 U	200 U	160 U	34.9 J	100 UJ	800 U	800 U	800 U	27.6 J	100 UJ	5.80 J	20.0 U					
Frichloroethene	0.660 J	0.250 J	0.650 J	0.410 J	0.630 J	0.810 J	2.980	786	860	1.340	1,210	1,230 J	4.110	6.920	1.340	7.000	9.230 J	473	149
/invl Chloride	3.22	1.43	0.550 J	1.39	1.20	3.50	1.490	602	598	637	470	385 J	1.220	968	1,340	7,000	501 J	20.0 U	4.60 J
norganics - Total (ug/L)	5.22	1.70	0.000 0	1.00	1.20	3.30	1,700	002	330	007	710	3000	1,220	300	1,020	710	3013	20.00	4.00 0
ron	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
Manganese	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA												
norganics - Dissolved (ug/L)	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA						
	NΔ	NA	NΙΔ	NΔ	NΙΔ	NIA	NIA	NIA	NΙΔ	NΔ	NΙΔ	NIA	NΙΔ	NΙΔ	NIA	NΙΔ	NIA	NIA	NIA
ron Annanan	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
Manganese	NA	NA	INA .	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA
otal Organic Carbon (mg/L)		A14					NIC.	A1		40		NIA	NI.		10				
otal Organic Carbon	NA	NA	NA	16	NA	NA	NA	NA	13	NA	NA	NA	NA						

Location Identification:	MW-2S	MW-2S MW-2S MW-14S	MW-14S	MW-14S	MW-14S	MW-14S	MW-14S	/IW-19S	MW-19S	MW-19S	MW-198	MW-19S	MW-19S	PW-1S	PW-1S	PW-1S	PW-1S	PW-1S
Sample Depth (Feet):	10 - 15	10 - 15 10 - 15 10 - 15 10 - 15	10 - 15	10 - 15	10 - 15	10 - 15	10 - 15	10 - 20	10 - 20	10 - 20	10 - 20	10 - 20	10 - 20	Assume 15-25				
Date Collected:	04/27/15	04/12/16 04/11/17 04/18/18 04/02/13	04/29/14	04/27/15	04/12/16	04/11/17	04/18/18	04/02/13	04/29/14	04/27/15	04/12/16	04/11/17	04/18/18	04/02/13	04/29/14	04/27/15	04/12/16	04/11/17
Volatile Organic Compounds (µg/L)																		
1,1,1,2-Tetrachloroethane	50.0 U	10.0 U 20.0 U 5.00 U 10.0 U	50.0 U	10.0 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U									
1,1-Dichloropropene	50.0 U	10.0 U 20.0 U 5.00 U 10.0 U	50.0 U	10.0 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U									
1,2,3-Trichlorobenzene	50.0 U	10.0 U 40.0 U 10.0 U 10.0 U	50.0 U	10.0 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U
1,2,3-Trichloropropane	50.0 U	10.0 U 40.0 U 10.0 U 10.0 U	50.0 U	10.0 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U
1,2,4-Trimethylbenzene	50.0 U	10.0 U 20.0 U 5.00 U 10.0 U	50.0 U	10.0 U	1.00 U	1.19	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U				
1,2-Dibromoethane	50.0 U	10.0 U 40.0 U 10.0 U 10.0 U	50.0 U	10.0 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U
1,3,5-Trimethylbenzene	50.0 U	10.0 U 20.0 U 5.00 U 10.0 U	50.0 U	10.0 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U									
1,3-Dichloropropane	50.0 U	10.0 U 20.0 U 5.00 U 10.0 U	50.0 U	10.0 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U									
2,2-Dichloropropane	50.0 U	10.0 U 20.0 U 5.00 U 10.0 U	50.0 U	10.0 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U									
2-Butanone	1,250 U	250 U 100 U 25.0 U 250 U	1,250 U	250 U	25.0 U	5.00 U	5.00 U	25.0 U	25.0 U	25.0 U	25.0 U	5.00 U	5.00 U	25.0 U	25.0 U	25.0 U	25.0 U	5.00 U
2-Chlorotoluene	50.0 U	10.0 U 20.0 U 5.00 U 10.0 U	50.0 U	10.0 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U									
2-Hexanone	250 U	50.0 U 200 U 50.0 U 50.0 U	250 U	50.0 U	5.00 U	10.0 U	10.0 U	5.00 U	5.00 U	5.00 U	5.00 U	10.0 U	10.0 U	5.00 U	5.00 U	5.00 U	5.00 U	10.0 U
4-Chlorotoluene	50.0 U	10.0 U 20.0 U 5.00 U 10.0 U	50.0 U	10.0 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U									
4-Methyl-2-pentanone	250 U	50.0 U 100 U 25.0 U 50.0 U	250 U	50.0 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U									
Acetone	1,250 U	250 U 500 U 130 U 250 U	1,250 U	250 U	25.0 U	25.0 U	25.0 U	1.21 J	3.30 J	25.0 U	25.0 U	25.0 U	25.0 U	2.03 J	25.0 U	25.0 U	25.0 U	25.0 U
Benzene	50.0 U	10.0 U 20.0 U 5.00 U 10.0 U	50.0 U	10.0 U	1.00 U	1.00 U	1.00 U	1.00 U	0.770 J	1.53	2.06	0.860 J	1.00 U	0.200 J	0.550 J	0.360 J	0.260 J	1.00 U
Bromobenzene	50.0 U	10.0 U 20.0 U 5.00 U 10.0 U	50.0 U	10.0 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U									
Bromochloromethane	50.0 U	10.0 U 20.0 U 5.00 U 10.0 U	50.0 U	10.0 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U									
Bromoform	50.0 U	10.0 U 20.0 U 5.00 U 10.0 U	50.0 U	10.0 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U									
Bromomethane	50.0 U	10.0 U 40.0 U 10.0 U 10.0 U	50.0 U	10.0 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U
Carbon Disulfide	50.0 U	10.0 U NA 10.0 U 1.50 J	50.0 U	10.0 U	1.00 U	NA	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NA	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NA
Dibromomethane	50.0 U	10.0 U NA 10.0 U 10.0 U	50.0 U	10.0 U	1.00 U	NA	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NA	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NA
Diisopropyl ether (DIPE)	50.0 U	10.0 U 20.0 U 5.00 U 10.0 U	50.0 U	10.0 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U									
Ethyl Alcohol	NA	NA 4,000 U NA NA	NA	NA	NA	200 U	NA	NA	NA	NA	NA	200 U	NA	NA	NA	NA	NA	200 U
Ethylbenzene	50.0 U	10.0 U 20.0 U 5.00 U 10.0 U	50.0 U	10.0 U	1.00 U	1.79	0.410 J	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U				
Hexachlorobutadiene	50.0 U	10.0 U NA 10.0 U 10.0 U	50.0 U	10.0 U	1.00 U	NA	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NA	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NA
lodomethane	50.0 U	10.0 U NA 5.00 U 10.0 U	50.0 U	10.0 U	1.00 U	NA	1.00 U	NA	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NA				
Isopropylbenzene	50.0 U	10.0 U 20.0 U 5.00 U 10.0 U	50.0 U	10.0 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U									
m-,p-Xylene	100 U	20.0 U 40.0 U 10.0 U 20.0 U	100 U	20.0 U	2.00 U	2.42	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U				
Methyl tert-butyl ether	50.0 U	10.0 U 20.0 U 5.00 U 10.0 U	50.0 U	10.0 U	1.00 U			1.00 U	1.00 U	1.00 U	1.00 U		1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Naphthalene	50.0 U	10.0 U 100 U 25.0 U 10.0 U	50.0 U	10.0 U	1.00 U	5.00 U	5.00 U	0.530 J	9.50	43.3	39.8	5.00 U	5.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U
n-Butylbenzene	50.0 U	10.0 U 20.0 U 5.00 U 10.0 U	50.0 U	10.0 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U									
n-Propylbenzene	50.0 U	10.0 U 20.0 U 5.00 U 10.0 U	50.0 U	10.0 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U									
o-Xylene	50.0 U	10.0 U 20.0 U 5.00 U 10.0 U	50.0 U	10.0 U	1.00 U	1.00 U	1.00 U	1.00 U	0.210 J	2.17	0.660 J	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
p-Isopropyltoluene	50.0 U	10.0 U 20.0 U 5.00 U 10.0 U	50.0 U	10.0 U	0.450 J	1.00 U	1.00 U	1.00 U	0.160 J	1.00 U								
sec-Butylbenzene	50.0 U	10.0 U 20.0 U 5.00 U 10.0 U	50.0 U	10.0 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U									
Styrene	50.0 U	10.0 U 20.0 U 5.00 U 10.0 U	50.0 U	10.0 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U									
tert-Butylbenzene	50.0 U	10.0 U 20.0 U 5.00 U 10.0 U	50.0 U	10.0 U	0.450 J	0.480 J	1.00 U	1.00 U	1.52	0.160 J	1.00 U							
Toluene	50.0 U	10.0 U 20.0 U 5.00 U 10.0 U	50.0 U	10.0 U	1.00 U	1.00 U	1.00 U	1.00 U	0.230 J	0.700 J	1.00 UB	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U

Location Identification:	MW-2S	MW-2S	MW-2S	MW-2S	MW-14S	MW-14S	MW-14S	MW-148	MW-148	MW-14S	MW-19S	MW-19S	MW-19S	MW-19S	MW-19S	MW-19S	PW-1S	PW-1S	PW-1S	PW-1S	PW-1S
Sample Depth (Feet):	10 - 15	10 - 15	10 - 15	10 - 15	10 - 15	10 - 15	10 - 15	10 - 15	10 - 15	10 - 15	10 - 20	10 - 20	10 - 20	10 - 20	10 - 20	10 - 20	Assume 15-25				
Date Collected:	04/27/15	04/12/16	04/11/17	04/18/18	04/02/13	04/29/14	04/27/15	04/12/16	04/11/17	04/18/18	04/02/13	04/29/14	04/27/15	04/12/16	04/11/17	04/18/18	04/02/13	04/29/14	04/27/15	04/12/16	04/11/17
trans-1.4-Dichloro-2-butene	250 U	50.0 U	NA	NA	50.0 U	250 U	50.0 U	5.00 U	NA	NA	5.00 U	5.00 U	5.00 U	5.00 U	NA	NA	5.00 U	5.00 U	5.00 U	5.00 U	NA
Vinyl Acetate	NA	NA	200 U	50.0 U	NA	NA	NA	NA	10.0 U	10.0 U	NA	NA	NA	NA	10.0 U	10.0 U	NA	NA	NA	NA	10.0 U
Xylenes (total)	NA	NA	60.0 U	NA	NA	NA	NA	NA	3.00 U	NA	NA	NA	NA	NA	3.00 U	NA	NA	NA	NA	NA	3.00 U
1,1,1-Trichloroethane	50.0 U	10.0 U	20.0 U	5.00 U	10.0 U	50.0 U	10.0 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U									
1,1,2,2-Tetrachloroethane	50.0 U	10.0 U	20.0 U	5.00 U	10.0 U	50.0 U	10.0 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U									
1,1,2-Trichloroethane	50.0 U	10.0 U	20.0 U		10.0 U	50.0 U	10.0 U	1.00 U		1.00 U											
1.1-Dichloroethane	50.0 U	10.0 U	20.0 U	5.00 U	10.0 U	50.0 U	10.0 U	0.240 J	0.520 J	1.00 U	0.220 J	0.330 J	0.120 J	1.00 U	0.700 J	0.540 J	1.87	0.620 J	0.450 J	0.810 J	1.10
1.1-Dichloroethene	50.0 U	10.0 U	20.0 U	2.40 J	8.10 J	50.0 U	10.0 U	1.00 U	0.640 J	0.720 J	0.720 J	0.560 J	0.480 J								
1,2,4-Trichlorobenzene	50.0 U	10.0 U	40.0 U	10.0 U	10.0 U	50.0 U	10.0 U	1.00 U		2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U
1,2-Dibromo-3-chloropropane	250 U	50.0 U	NA	25.0 U	50.0 U	250 U	50.0 U	5.00 U	NA	5.00 U	NA	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	NA NA				
1,2-Dichlorobenzene	50.0 U	10.0 U	20.0 U		10.0 U	50.0 U	10.0 U	1.00 U		1.00 U											
1.2-Dichloroethane	50.0 U	10.0 U	20.0 U		10.0 U	50.0 U	10.0 U	1.00 U			1.00 U										
1,2-Dichloropropane	50.0 U	10.0 U			10.0 U	50.0 U	10.0 U	1.00 U			1.00 U										
1.3-Dichlorobenzene	50.0 U	10.0 U	20.0 U		10.0 U	50.0 U	10.0 U	1.00 U		1.00 U											
1.4-Dichlorobenzene	50.0 U	10.0 U	20.0 U		10.0 U	50.0 U	10.0 U		1.00 U	1100	1.00 U										
Bromodichloromethane	50.0 U	10.0 U	20.0 U		10.0 U	50.0 U	10.0 U	1.00 U			1.00 U										
Carbon Tetrachloride	50.0 U	10.0 U		5.00 U	10.0 U	50.0 U	10.0 U	1100	1.00 U	1100	1.00 U										
Chlorobenzene	50.0 U	10.0 U	20.0 U		10.0 U	50.0 U	10.0 U	1.00 U			1.00 U										
Chloroethane	50.0 U	10.0 U			10.0 U	50.0 U	10.0 U	1.00 U	11000		1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	2.27	0.460 J	1.00 U	1.00 U	2.00 U
Chloroform	50.0 U	10.0 U		10.0	10.0 U	50.0 U	10.0 U		1.00 U		1.00 U										
Chloromethane	50.0 U	10.0 U	40.0 U	10.0 U	10.0 U	50.0 U	10.0 U	1.00 U		2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U
cis-1,3-Dichloropropene	50.0 U	10.0 U		5.00 U	10.0 U	50.0 U	10.0 U	1.00 U			1.00 U										
Dibromochloromethane	50.0 U	10.0 U	20.0 U		10.0 U	50.0 U	10.0 U	1.00 U			1.00 U										
Dichlorodifluoromethane	250 U	50.0 U	40.0 U		50.0 U	250 U	50.0 U	5.00 U			5.00 U	5.00 U	5.00 U	5.00 U	2.00 U	2.00 U	5.00 U	5.00 U	5.00 U	5.00 U	2.00 U
Methylene Chloride	250 U	50.0 U	100 U		50.0 U	250 U	50.0 U	5.00 U			5.00 U	5.00 U	5.00 U	0.580 J	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
trans-1,3-Dichloropropene	50.0 U	10.0 U	20.0 U	5.00 U	10.0 U	50.0 U	10.0 U	1.00 U		1.00 U											
Trichlorofluoromethane	50.0 U	10.0 U	40.0 U		10.0 U	50.0 U	10.0 U	1.00 U			1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U
cis-1,2-Dichloroethene	1,020	266	1.080	659	512	1,060	198	17.3	7.30	2.80	0.220 J	1.96	2.35	3.54	5.70	0.610 J	29.7	31.7	31.3	27.3	33.9
Tetrachloroethene	50.0 U	10.0 U	20.0 U		10.0 U	50.0 U	10.0 U	1.00 U			1.00 U										
trans-1.2-Dichloroethene	50.0 U	10.0 U	8.40 J	4.20 J	1.50 J	50.0 U	10.0 U	1.00 U	1.00 U	1100	1.00 U	1.00 U	1.00 U	0.350 J	1.00 U	1.00 U	0.170 J	1.00 U	0.220 J	1.00 U	0.230 J
Trichloroethene	407	159	527	275	63.7	50.0 U	10.0 U	1.00 U		1.00 U	1.00 U	0.450 J	1.45	2.35	0.360 J	1.00 U	2.28	1.61	1.07	1.21	0.710 J
Vinyl Chloride	50.0 U	10.0 U	20.0 U		79.9	85.5	15.8	5.37	3.50	4.50	1.00 U	0.480 J	0.300 J	1.52	0.700 J	1.00 U	28.7	17.8	16.0	22.6	22.2
Inorganics - Total (µg/L)	30.0 0	10.0 0	20.00	3.30 3	19.9	00.0	13.0	3.37	3.30	4.50	1.00 0	0.400 3	0.300 3	1.52	0.700 3	1.00 0	20.7	17.0	10.0	22.0	22.2
Iron	NA	NA	NA	NA	NA																
Manganese	NA NA	NA NA	NA NA	NA NA	NA NA																
	INA	INA	INA	INA	INA																
Inorganics - Dissolved (µg/L)	NIA	NΙΔ	NΙΔ	NIA	NΑ	NΙΔ	NA	NIA	NIA	NIA	NΙΔ	NΙΔ	NIA	NA	NΙΔ	NΙΔ	NΙΔ	NΙΔ	NIA	NIA	NIA
Iron	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA	NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA
Manganese	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	INA	NA	NA	NA
Total Organic Carbon (mg/L)	A14	110				NIA.	1 110		110	1 110	110	NIA	110		110		N1.0	NIA	A14	N10	110
Total Organic Carbon	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Location Identification:	PW-1S	PW-7S	PW-7S	PW-7S	PW-7S	PW-7S	PW-7S	MW-105S	HPT-01	HPT-02	HPT-02	HPT-02	HPT-03	HPT-03	HPT-03	HPT-04	HPT-05	HPT-22	HPT-24
Sample Depth (Feet):	Assume 15-25	15 - 22	15 - 22	15 - 22	15 - 22	15 - 22	15 - 22	13.5 - 23.5	18 - 20	10 - 12	16 - 18	16 - 18	9 - 11	16 - 18	22 - 24	16 - 18	17 - 21	16 - 18	12 - 14
Date Collected:	04/18/18	04/02/13	04/29/14	04/27/15	04/12/16	04/11/17	04/18/18	01/06/13	10/26/15	12/05/15	10/27/15	12/05/15	12/05/15	12/05/15	10/27/15	10/28/15	10/28/15	12/03/15	12/02/15
Volatile Organic Compounds (µg/L)	1 0-4/10/10	0-1/02/10	0-7/2-5/1-4	0-7/21/10	104/12/10	0-4/11/11	104/10/10	01/00/10	10/20/10	12/00/10	10/21/10	12/00/10	12/00/10	12/00/10	10/21/10	10/20/10	10/20/10	12/00/10	12/02/10
1,1,1,2-Tetrachloroethane	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	200 U	40.0 U	1,000 U [1,000 U]	5,000 U
1,1-Dichloropropene	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U		1.00 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	200 U	40.0 U	1,000 U [1,000 U]	5,000 U
1.2.3-Trichlorobenzene	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U		1.00 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	200 U	40.0 U	1,000 U [1,000 U]	5.000 U
1,2,3-Trichloropropane	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	200 U	40.0 U	1,000 U [1,000 U]	5,000 U
1,2,4-Trimethylbenzene	1.00 U	0.110 J	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	200 U	40.0 U	1,000 U [1,000 U]	5,000 U
1,2-Dibromoethane	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	200 U	40.0 U	1,000 U [1,000 U]	5,000 U
1,3,5-Trimethylbenzene	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	200 U	40.0 U	1,000 U [1,000 U]	5,000 U
1,3-Dichloropropane	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	200 U	40.0 U	1,000 U [1,000 U]	5,000 U
2,2-Dichloropropane	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	200 U	40.0 U	1,000 U [1,000 U]	5,000 U
2-Butanone	5.00 U	25.0 U	25.0 U	25.0 U	25.0 U	5.00 U	5.00 U	25.0 U	25.0 U	25.0 U	125 U	400 U	125 U	2,000 U	2,500 U	5,000 U	1,000 U	25,000 U [25,000 U]	125,000 U
2-Chlorotoluene	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	200 U	40.0 U	1,000 U [1,000 U]	5,000 U
2-Hexanone	10.0 U	5.00 U	5.00 U	5.00 U	5.00 U	10.0 U	10.0 U	5.00 U	5.00 U	5.00 U	25.0 U	80.0 U	25.0 U	400 U	500 U	1,000 U	200 U	5,000 U [5,000 U]	25,000 U
1-Chlorotoluene	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	200 U	40.0 U	1,000 U [1,000 U]	5,000 U
1-Methyl-2-pentanone	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	25.0 U	80.0 U	25.0 U	400 U	500 U	1,000 U	200 U	5,000 U [5,000 U]	25,000 U
Acetone	25.0 U	25.0 U	25.0 U	25.0 U	25.0 U	25.0 U	25.0 U	25.0 U	25.0 U	25.0 U	125 U	400 U	125 U	2,000 U	2,500 U	5,000 U	1,000 U	25,000 U [25,000 U]	125,000 U
Benzene	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	200 U	40.0 U	1,000 U [1,000 U]	5,000 U
Bromobenzene	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	200 U	40.0 U	1,000 U [1,000 U]	5,000 U
Bromochloromethane	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	200 U	40.0 U	1,000 U [1,000 U]	5,000 U
Bromoform	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	200 U	40.0 U	1,000 U [1,000 U]	5,000 U
Bromomethane	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	200 U	40.0 U	1,000 U [1,000 U]	5,000 U
Carbon Disulfide	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NA	2.00 U	1.00 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	200 U	40.0 U	1,000 U [1,000 U]	5,000 U
Dibromomethane	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NA	2.00 U	1.00 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	200 U	40.0 U	1,000 U [1,000 U]	5,000 U
Diisopropyl ether (DIPE)	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	200 U	40.0 U	1,000 U [1,000 U]	5,000 U
Ethyl Alcohol	NA	NA	NA	NA	NA	200 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethylbenzene	1.00 U	0.220 J	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	200 U	40.0 U	1,000 U [1,000 U]	5,000 U
Hexachlorobutadiene	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NA	2.00 U	1.00 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	200 U	40.0 U	1,000 U [1,000 U]	5,000 U
odomethane	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	NA	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	200 U	40.0 U	1,000 U [1,000 U]	5,000 U
sopropylbenzene	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	200 U	40.0 U	1,000 U [1,000 U]	5,000 U
n-,p-Xylene	2.00 U	0.360 J	2.00 U	2.00 U	2.00 U	2.00 U		2.00 U	2.00 U	2.00 U	10.0 U	32.0 U	10.0 U	160 U	200 U	400 U	80.0 U	2,000 U [2,000 U]	10,000 U
Methyl tert-butyl ether	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	200 U	40.0 U	1,000 U [1,000 U]	5,000 U
Naphthalene	5.00 U	1.00 U	1.00 U	1.00 U		5.00 U		1.00 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	200 U	40.0 U	1,000 U [1,000 U]	5,000 U
n-Butylbenzene	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U			1.00 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	200 U	40.0 U	1,000 U [1,000 U]	5,000 U
n-Propylbenzene	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	200 U	40.0 U	1,000 U [1,000 U]	5,000 U
o-Xylene	1.00 U	0.110 J	1.00 U	1.00 U	1.00 U	1.00 U		1.00 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	200 U	40.0 U	1,000 U [1,000 U]	5,000 U
o-Isopropyltoluene	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	200 U	40.0 U	1,000 U [1,000 U]	5,000 U
sec-Butylbenzene	1.00 U	1.00 U	1.00 U	1.00 U		1.00 U		1.00 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	200 U	40.0 U	1,000 U [1,000 U]	5,000 U
Styrene	1.00 U	1.00 U	1.00 U	1.00 U		1.00 U		1.00 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	200 U	40.0 U	1,000 U [1,000 U]	5,000 U
ert-Butylbenzene	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	200 U	40.0 U	1,000 U [1,000 U]	5,000 U
Toluene	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	0.260 J	5.00 U	16.0 U	5.00 U	80.0 U	100 U	200 U	40.0 U	1,000 U [1,000 U]	5,000 U

Location Identification:	PW-1S	PW-7S	PW-7S	PW-7S	PW-7S	PW-7S	PW-7S	MW-105S	HPT-01	HPT-02	HPT-02	HPT-02	HPT-03	HPT-03	HPT-03	HPT-04	HPT-05	HPT-22	HPT-24
Sample Depth (Feet):	Assume 15-25	15 - 22	15 - 22	15 - 22	15 - 22	15 - 22	15 - 22	13.5 - 23.5	18 - 20	10 - 12	16 - 18	16 - 18	9 - 11	16 - 18	22 - 24	16 - 18	17 - 21	16 - 18	12 - 14
Date Collected:	04/18/18	04/02/13	04/29/14	04/27/15	04/12/16	04/11/17	04/18/18	01/06/13	10/26/15	12/05/15	10/27/15	12/05/15	12/05/15	12/05/15	10/27/15	10/28/15	10/28/15	12/03/15	12/02/15
rans-1,4-Dichloro-2-butene	NA	5.00 U	5.00 U	5.00 U	5.00 U	NA	NA	5.00 U	5.00 U	5.00 U	25.0 U	80.0 U	25.0 U	400 U	500 U	1,000 U	200 U	5,000 U [5,000 U]	25,000 U
Vinyl Acetate	10.0 U	NA	NA	NA	NA	10.0 U	10.0 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Xylenes (total)	NA	NA	NA	NA	NA	3.00 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,1-Trichloroethane	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	200 U	40.0 U	1,000 U [1,000 U]	5,000 U
1,1,2,2-Tetrachloroethane	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	200 U	40.0 U	1,000 U [1,000 U]	5,000 U
1,1,2-Trichloroethane	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	200 U	40.0 U	1,000 U [1,000 U]	5,000 U
1,1-Dichloroethane	0.420 J	0.260 J	1.00 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	200 U	40.0 U	800 J [810 J]	2,100 J					
1,1-Dichloroethene	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	42.0 J	200 U	40.0 U	920 J [1,030]	1,950 J
1,2,4-Trichlorobenzene	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	2.00 U	1.00 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	200 U	40.0 U	1,000 U [1,000 U]	5,000 U
1,2-Dibromo-3-chloropropane	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	NA	5.00 U	5.00 U	5.00 U	5.00 U	25.0 U	80.0 U	25.0 U	400 U	500 U	1,000 U	200 U	5,000 U [5,000 U]	25,000 U
1,2-Dichlorobenzene	1.00 U	1.00 U	1.00 U	1.00 U		1.00 U		1.00 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	200 U	40.0 U	1,000 U [1,000 U]	5,000 U
1,2-Dichloroethane	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	200 U	40.0 U	1,000 U [1,000 U]	5,000 U
1,2-Dichloropropane	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	200 U	40.0 U	1,000 U [1,000 U]	5,000 U
1,3-Dichlorobenzene	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	200 U	40.0 U	1,000 U [1,000 U]	5,000 U
1,4-Dichlorobenzene	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	200 U	40.0 U	1,000 U [1,000 U]	5,000 U
Bromodichloromethane	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	200 U	40.0 U	1,000 U [1,000 U]	5,000 U
Carbon Tetrachloride	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	200 U	40.0 U	1,000 U [1,000 U]	5.000 U
Chlorobenzene	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	200 U	40.0 U	1,000 U [1,000 U]	5,000 U
Chloroethane	2.00 U	1.00 U	1.00 U	1.00 U		2.00 U		1.00 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	200 U	40.0 U	1,000 U [1,000 U]	5,000 U
Chloroform	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U		1.00 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	200 U	40.0 U	1,000 U [1,000 U]	5.000 U
Chloromethane	2.00 U	1.00 U	1.00 U	1.00 U		2.00 U		1.00 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	200 U	40.0 U	1,000 U [1,000 U]	5,000 U
cis-1.3-Dichloropropene	1.00 U	1.00 U	1.00 U	1.00 U		1.00 U		1.00 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	200 U	40.0 U	1,000 U [1,000 U]	5.000 U
Dibromochloromethane	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U			1.00 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	200 U	40.0 U	1,000 U [1,000 U]	5.000 U
Dichlorodifluoromethane	2.00 U	5.00 U	5.00 U	5.00 U		2.00 U		5.00 U	5.00 U	5.00 U	25.0 U	80.0 U	25.0 U	400 U	500 U	1,000 U	200 U	5,000 U [5,000 U]	25,000 U
Methylene Chloride	5.00 U	5.00 U	5.00 U	5.00 U		5.00 U		5.00 U	5.00 U	5.00 U	25.0 U	80.0 U	25.0 U	400 U	500 U	1.000 U	200 U	5,000 U [5,000 U]	25.000 U
rans-1.3-Dichloropropene	1.00 U	1.00 U	1.00 U	1.00 U		1.00 U		1.00 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	200 U	40.0 U	1,000 U [1,000 U]	5.000 U
Trichlorofluoromethane	2.00 U	1.00 U	1.00 U	1.00 U	1.00 U		11000	1.00 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	200 U	40.0 U	1,000 U [1,000 U]	5,000 U
cis-1.2-Dichloroethene	32.7	3.06	1.74	0.910 J	_	1.00 U		1.00 U	26.2	1.00 U	33.0	331	124	1.560	1.190	4.150	40.0 U	4,910 [5,120]	11.600
Tetrachloroethene	1.00 U	1.00 U	1.00 U	1.00 U		1.00 U		1.00 U	1.00 U	1.00 U	5.00 U	16.0 U	5.00 U	80.0 U	100 U	200 U	40.0 U	1,000 U [1,000 U]	5,000 U
rans-1.2-Dichloroethene	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	0.620 J	1.00 U	1.55 J	30.9	9.75	43.2 J	100 U	142 J	40.0 U	1,000 U [1,000 U]	5,000 U
Trichloroethene	1.00 U	0.840 J	0.230 J	0.250 J		1.00 U		1.00 U	1.00 U	0.850 J	57.9	38.7	61.0	259	375	286	484	28,600 [34,600]	261,000
Vinyl Chloride	35.0	2.83	1.66	0.990 J		1.00 U		1.00 U	0.550 J	1.00 U	5.00 U	19.7	5.00 U	175	239	1.540	40.0 U	240 J [250 J]	5,000 U
norganics - Total (µg/L)	33.3	2.55		0.000					0.000		0.000		3.000			.,		2 .0 0 [200 0]	0,000
ron	NA	NA	NA	NA	NA	NA	NA	5.100	NA	NA									
Manganese	NA NA	NA	NA NA	NA NA	NA NA	NA	NA	21.0	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
norganics - Dissolved (µg/L)	14/1	14/1	1 4/ 1	14/1	14/1	14/1	14/1	21.0	1 4/ 1	14/1	19/3	14/1	14/1	14/1	1471	14/1	1471	14/7	14/1
ron	NA	NA	NA	NA	NA	NA	NA	820	NA	NA									
Manganese	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	13.0 J	NA NA	NA NA	NA NA								
Total Organic Carbon (mg/L)	11/7	INA	11/7	INA	INA	INA	INA	13.0 3	11/7	I N/A	INA	11/7	INA	INA	INA	INA	INA	INA	INA
Total Organic Carbon (mg/L) Total Organic Carbon	NA	NA	NA	NA	NA	NA	NA	6	NA	NA									
Total Organic Carbon	INA	INA	INA	INA	INA	INA	INA	0	INA	INA	į INA	INA	INA	NA NA	INA .	INA	INA INA	INA	INA

Location Identification:	HPT-24	HPT-24	HPT-25	HPT-25	HPT-25	HPT-26	HPT-26	HPT-26	HPT-27	HPT-27	HPT-27	HPT-28	HPT-28	HPT-28	HPT-29	HPT-29	HPT-30
Sample Depth (Feet):	18 - 20	24 - 26	13 - 15	20 - 22	24 - 26	14 - 16	19 - 21	24 - 26	12 - 14	18 - 20	22 - 24	13 - 15	18 - 20	24 - 26	13 - 15	19 - 21	13 - 15
Date Collected:	12/02/15	12/03/15	12/02/15	12/02/15	12/02/15	12/02/15	12/02/15	12/02/15	12/02/15	12/02/15	12/02/15	12/01/15	12/01/15	12/01/15	12/01/15	12/01/15	11/30/15
olatile Organic Compounds (µg/L)																	
1,1,2-Tetrachloroethane	200 U	5.00 U	40.0 U	20.0 U	1.00 U												
1-Dichloropropene	200 U	5.00 U	40.0 U	20.0 U	1.00 U												
2,3-Trichlorobenzene	200 U	5.00 U	40.0 U	20.0 U	1.00 U												
2,3-Trichloropropane	200 U	5.00 U	40.0 U	20.0 U	1.00 U												
2,4-Trimethylbenzene	200 U	5.00 U	40.0 U	20.0 U	1.00 U												
2-Dibromoethane	200 U	5.00 U	40.0 U	20.0 U	1.00 U												
3,5-Trimethylbenzene	200 U	5.00 U	40.0 U	20.0 U	1.00 U												
3-Dichloropropane	200 U	5.00 U	40.0 U	20.0 U	1.00 U												
2-Dichloropropane	200 U	5.00 U	40.0 U	20.0 U	1.00 U												
Butanone	5,000 U	125 U	1,000 U	500 U	25.0 U	25.0 U	25.0 U	0.940 J	25.0 U								
Chlorotoluene	200 U	5.00 U	40.0 U	20.0 U	1.00 U												
Hexanone	1,000 U	25.0 U	200 U	100 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Chlorotoluene	200 U	5.00 U	40.0 U	20.0 U	1.00 U												
Methyl-2-pentanone	1,000 U	25.0 U	200 U	100 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 L
cetone	5.000 U	125 U	1.000 U	500 U	3.40 J	25.0 U	2.62 J	2.13 J	3.90 J	2.49 J	25.0 U	8.16 J	3.59 J	25.0 U	25.0 U	25.0 U	25.0 U
enzene	200 U	5.00 U	40.0 U	20.0 U	0.210 J	1.00 U	1.00 U	0.270 J	1.00 U	0.620 J	1.00 U	1.00 U	1.00 U				
omobenzene	200 U	5.00 U	40.0 U	20.0 U	1.00 U												
omochloromethane	200 U	5.00 U	40.0 U	20.0 U	1.00 U												
omoform	200 U	5.00 U	40.0 U	20.0 U	1.00 U												
omomethane	200 U	5.00 U	40.0 U	20.0 U	1.00 L												
arbon Disulfide	200 U	3.75 J	40.0 U	20.0 U	0.630 J	1.00 U	1.14	2.92	1.00 U	1.00 U	0.450 J	1.00 U	1.00 U	2.00	1.00 U	1.00 U	1.00 L
bromomethane	200 U	5.00 U	40.0 U	20.0 U	1.00 L												
isopropyl ether (DIPE)	200 U	5.00 U	40.0 U	20.0 U	1.00 U												
hyl Alcohol	NA																
hylbenzene	200 U	5.00 U	40.0 U	20.0 U	1.00 U	0.430 J	1.00 U	1.00 U	1.00 L								
exachlorobutadiene	200 U	5.00 U	40.0 U	20.0 U	1.00 L												
domethane	200 U	5.00 U	40.0 U	20.0 U	1.00 L												
propylbenzene	200 U	5.00 U	40.0 U	20.0 U	1.00 L												
-,p-Xylene	400 U	10.0 U	80.0 U	40.0 U	2.00 U	2.00 U	0.150 J	0.130 J	2.00 U	2.00 U	2.00 U	0.550 J	2.00 U	2.00 U	2.00 U	0.620 J	2.00 U
ethyl tert-butyl ether	200 U	5.00 U	40.0 U	20.0 U	0.670 J	1.00 U	1.00 U	0.320 J	1.00 U	1.02	1.00 U	1.00 U	1.00 U				
aphthalene	200 U	5.00 U	40.0 U	20.0 U	1.00 U	1.00 U	1.00 U	1.04	1.00 U								
Butylbenzene	200 U	5.00 U	40.0 U	20.0 U	1.00 L												
Propylbenzene	200 U	5.00 U	40.0 U	20.0 U	1.00 U	0.290 J	1.00 U	1.00 U	1.00 U								
Xylene	200 U	5.00 U	40.0 U	20.0 U	1.00 U												
Isopropyltoluene	200 U	5.00 U	40.0 U	20.0 U	1.00 U												
c-Butylbenzene	200 U	5.00 U	40.0 U	20.0 U	1.00 U												
yrene	200 U	5.00 U	40.0 U	20.0 U	1.00 L												
rt-Butylbenzene	200 U	5.00 U	40.0 U	20.0 U	1.00 L												
bluene	200 U	0.550 J	40.0 U	20.0 U	0.210 J	1.00 U	0.340 J	0.450 J	1.00 U	0.220 J	1.00 U	0.150 J	1.00 U	0.650 J	1.00 U	0.190 J	1.00 L

Location Identification:	HPT-24	HPT-24	HPT-25	HPT-25	HPT-25	HPT-26	HPT-26	HPT-26	HPT-27	HPT-27	HPT-27	HPT-28	HPT-28	HPT-28	HPT-29	HPT-29	HPT-30
Sample Depth (Feet):	18 - 20	24 - 26	13 - 15	20 - 22	24 - 26	14 - 16	19 - 21	24 - 26	12 - 14	18 - 20	22 - 24	13 - 15	18 - 20	24 - 26	13 - 15	19 - 21	13 - 15
Date Collected:	12/02/15	12/03/15	12/02/15	12/02/15	12/02/15	12/02/15	12/02/15	12/02/15	12/02/15	12/02/15	12/02/15	12/01/15	12/01/15	12/01/15	12/01/15	12/01/15	11/30/15
trans-1,4-Dichloro-2-butene	1,000 U	25.0 U	200 U	100 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Vinyl Acetate	NA																
Xylenes (total)	NA																
1,1,1-Trichloroethane	200 U	5.00 U	40.0 U	20.0 U	1.00 U												
1,1,2,2-Tetrachloroethane	200 U	5.00 U	40.0 U	20.0 U	1.00 U												
1,1,2-Trichloroethane	200 U	5.00 U	40.0 U	20.0 U	1.00 U												
1,1-Dichloroethane	164 J	1.05 J	11.2 J	12.8 J	1.85	1.00 U	0.260 J	3.13	1.00 U	1.00 U	0.440 J	1.00 U	1.00 U	0.720 J	1.00 U	1.00 U	1.00 U
1,1-Dichloroethene	60.0 J	0.650 J	40.0 U	20.0 U	0.400 J	1.00 U	0.250 J	1.12	1.00 U	0.320 J	1.00 U						
1,2,4-Trichlorobenzene	200 U	5.00 U	40.0 U	20.0 U	1.00 U												
1,2-Dibromo-3-chloropropane	1,000 U	25.0 U	200 U	100 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
1,2-Dichlorobenzene	200 U	5.00 U	40.0 U	20.0 U	1.00 U												
1,2-Dichloroethane	200 U	5.00 U	40.0 U	20.0 U	1.00 U												
1,2-Dichloropropane	200 U	5.00 U	40.0 U	20.0 U	1.00 U												
1,3-Dichlorobenzene	200 U	5.00 U	40.0 U	20.0 U	1.00 U												
1,4-Dichlorobenzene	200 U	5.00 U	40.0 U	20.0 U	1.00 U												
Bromodichloromethane	200 U	5.00 U	40.0 U	20.0 U	1.00 U												
Carbon Tetrachloride	200 U	5.00 U	40.0 U	20.0 U	1.00 U												
Chlorobenzene	200 U	5.00 U	40.0 U	20.0 U	1.00 U												
Chloroethane	200 U	5.00 U	40.0 U	20.0 U	1.00 U												
Chloroform	200 U	5.00 U	40.0 U	20.0 U	1.00 U												
Chloromethane	200 U	5.00 U	40.0 U	20.0 U	1.00 U												
cis-1,3-Dichloropropene	200 U	5.00 U	40.0 U	20.0 U	1.00 U												
Dibromochloromethane	200 U	5.00 U	40.0 U	20.0 U	1.00 U												
Dichlorodifluoromethane	1,000 U	25.0 U	200 U	100 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Methylene Chloride	1,000 U	25.0 U	200 U	100 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
trans-1,3-Dichloropropene	200 U	5.00 U	40.0 U	20.0 U	1.00 U												
Trichlorofluoromethane	200 U	5.00 U	40.0 U	20.0 U	1.00 U												
cis-1,2-Dichloroethene	4,080	26.0	770	607	12.3	1.00 U	1.00 U	5.85	1.00 U	1.00 U	1.75	1.00 U					
Tetrachloroethene	200 U	5.00 U	40.0 U	20.0 U	1.00 U												
trans-1,2-Dichloroethene	200 U	0.850 J	13.6 J	9.00 J	0.910 J	1.00 U	1.00 U	0.460 J	1.00 U	1.00 U	0.140 J	1.00 U					
Trichloroethene	3,030	41.3	54.4	46.8	7.74	1.00 U	1.00 U	0.620 J	1.00 U	1.00 U	1.54	1.00 U	0.630 J	1.00 U	1.00 U	0.250 J	1.00 U
Vinyl Chloride	200 U	8.60	40.0 U	20.0 U	8.50	1.00 U	1.00 U	0.590 J	1.00 U	1.00 U	0.250 J	1.00 U	1.00 U	7.27	1.00 U	1.00 U	1.00 U
Inorganics - Total (µg/L)																	
Iron	NA																
Manganese	NA																
Inorganics - Dissolved (µg/L)																	
Iron	NA																
Manganese	NA																
Total Organic Carbon (mg/L)																	
Total Organic Carbon	NA																

Location Identification:	HPT-30	HPT-30	HPT-31	HPT-31	HPT-31	HPT-32	HPT-32	HPT-32	HPT-33	HPT-33	HPT-33	HPT-34	HPT-34	HPT-34
Sample Depth (Feet):	17 - 19	24 - 26	12 - 14	18 - 20	23 - 25	9 - 11	15 - 17	22 - 24	8 - 10	14 - 16	20 - 22	11 - 13	17 - 19	21 - 23
Date Collected:	11/30/15	12/01/15	12/03/15	12/03/15	12/03/15	12/04/15	12/04/15	12/04/15	12/04/15	12/04/15	12/04/15	12/04/15	12/04/15	12/04/15
Volatile Organic Compounds (µg/L)						<u> </u>								
1,1,1,2-Tetrachloroethane	1.00 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	160 U	200 U [250 U]	10.0 U	200 U	5,000 U	50.0 U	1.00 U	2,000 U	40.0 U
1,1-Dichloropropene	1.00 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	160 U	200 U [250 U]	10.0 U	200 U	5,000 U	50.0 U	1.00 U	2,000 U	40.0 U
1,2,3-Trichlorobenzene	1.00 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	160 U	200 U [250 U]	10.0 U	200 U	5,000 U	50.0 U	1.00 U	2,000 U	40.0 U
1,2,3-Trichloropropane	1.00 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	160 U	200 U [250 U]	10.0 U	200 U	5,000 U	50.0 U	1.00 U	2,000 U	40.0 U
1,2,4-Trimethylbenzene	1.00 U	0.420 J	1.00 U [1.00 U]	20.0 U	4.00 U	28.8 J	200 U [250 U]	10.0 U	200 U	5,000 U	50.0 U	0.460 J	2,000 U	40.0 U
1,2-Dibromoethane	1.00 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	160 U	200 U [250 U]	10.0 U	200 U	5,000 U	50.0 U	1.00 U	2,000 U	40.0 U
1,3,5-Trimethylbenzene	1.00 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	160 U	200 U [250 U]	10.0 U	200 U	5,000 U	50.0 U	0.420 J	2,000 U	40.0 U
1,3-Dichloropropane	1.00 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	160 U	200 U [250 U]	10.0 U	200 U	5,000 U	50.0 U	1.00 U	2,000 U	40.0 U
2,2-Dichloropropane	1.00 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	160 U	200 U [250 U]	10.0 U	200 U	5,000 U	50.0 U	1.00 U	2,000 U	40.0 U
2-Butanone	25.0 U	25.0 U	2.26 J [1.38 J]	500 U	100 U	4,000 U	5,000 U [6,250 U]	250 U	5,000 U	125,000 U	1,250 U	25.0 U	50,000 U	1,000 U
2-Chlorotoluene	1.00 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	160 U	200 U [250 U]	10.0 U	200 U	5,000 U	50.0 U	1.00 U	2,000 U	40.0 U
2-Hexanone	5.00 U	5.00 U	5.00 U [5.00 U]	100 U	20.0 U	800 U	1,000 U [1,250 U]	50.0 U	1,000 U	25,000 U	250 U	5.00 U	10,000 U	200 U
4-Chlorotoluene	1.00 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	160 U	200 U [250 U]	10.0 U	200 U	5,000 U	50.0 U	1.00 U	2,000 U	40.0 U
4-Methyl-2-pentanone	5.00 U	5.00 U	5.00 U [5.00 U]	100 U	20.0 U	800 U	1,000 U [1,250 U]	50.0 U	1,000 U	25,000 U	250 U	5.00 U	10,000 U	200 U
Acetone	25.0 U	25.0 U	4.06 J [2.19 J]	500 U	100 U	4,000 U	5,000 U [6,250 U]	250 U	5,000 U	125,000 U	1,250 U	25.0 U	50,000 U	1,000 U
Benzene	1.00 U	0.750 J	1.00 U [1.00 U]	20.0 U	4.00 U	160 U	200 U [250 U]	10.0 U	200 U	5,000 U	50.0 U	0.280 J	2,000 U	40.0 U
Bromobenzene	1.00 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	160 U	200 U [250 U]	10.0 U	200 U	5,000 U	50.0 U	1.00 U	2,000 U	40.0 U
Bromochloromethane	1.00 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	160 U	200 U [250 U]	10.0 U	200 U	5,000 U	50.0 U	1.00 U	2,000 U	40.0 U
Bromoform	1.00 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	160 U	200 U [250 U]	10.0 U	200 U	5,000 U	50.0 U	1.00 U	2,000 U	40.0 U
Bromomethane	1.00 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	160 U	200 U [250 U]	10.0 U	200 U	5,000 U	50.0 U	1.00 U	2,000 U	40.0 U
Carbon Disulfide	1.00 U	1.00 U	0.510 J [0.160 J]	20.0 U	4.00 U	160 U	200 U [250 U]	10.0 U	200 U	5,000 U	50.0 U	0.700 J	2,000 U	40.0 U
Dibromomethane	1.00 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	160 U	200 U [250 U]	10.0 U	200 U	5,000 U	50.0 U	1.00 U	2,000 U	40.0 U
Diisopropyl ether (DIPE)	1.00 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	160 U	200 U [250 U]	10.0 U	200 U	5,000 U	50.0 U	1.00 U	2,000 U	40.0 U
Ethyl Alcohol	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethylbenzene	1.00 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	160 U	200 U [250 U]	10.0 U	200 U	5,000 U	50.0 U	0.520 J	2,000 U	40.0 U
Hexachlorobutadiene	1.00 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	160 U	200 U [250 U]	10.0 U	200 U	5,000 U	50.0 U	1.00 U	2,000 U	40.0 U
lodomethane	1.00 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	160 U	200 U [250 U]	10.0 U	200 U	5,000 U	50.0 U	1.00 U	2,000 U	40.0 U
Isopropylbenzene	1.00 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	160 U	200 U [250 U]	10.0 U	200 U	5,000 U	50.0 U	0.560 J	2,000 U	40.0 U
m-,p-Xylene	2.00 U	0.670 J	2.00 U [2.00 U]	40.0 U	8.00 U	320 U	400 U [500 U]	20.0 U	400 U	10,000 U	100 U	0.980 J	4,000 U	80.0 U
Methyl tert-butyl ether	1.00 U 1.00 U	1.00 U 1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	160 U	200 U [250 U]	10.0 U	200 U 200 U	5,000 U	50.0 U 50.0 U	1.00 U	2,000 U	40.0 U
Naphthalene			1.00 U [1.00 U]	20.0 U	4.00 U	1,140	200 U [250 U]	10.0 U		5,000 U		1.00 U	2,000 U	40.0 U
n-Butylbenzene	1.00 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	160 U	200 U [250 U]	10.0 U	200 U	5,000 U	50.0 U	1.00 U	2,000 U	40.0 U
n-Propylbenzene	1.00 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	160 U	200 U [250 U]	10.0 U	200 U	5,000 U	50.0 U	0.240 J	2,000 U	40.0 U
o-Xylene	1.00 U	0.480 J	1.00 U [1.00 U]	20.0 U	4.00 U	160 U	200 U [250 U]	10.0 U	200 U	5,000 U	50.0 U	0.850 J	2,000 U	40.0 U
p-Isopropyltoluene	1.00 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	160 U	200 U [250 U]	10.0 U	200 U	5,000 U	50.0 U	1.00 U	2,000 U	40.0 U
sec-Butylbenzene	1.00 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	160 U	200 U [250 U]	10.0 U	200 U	5,000 U	50.0 U	1.00 U	2,000 U	40.0 U
Styrene	1.00 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	160 U	200 U [250 U]	10.0 U	200 U	5,000 U	50.0 U	1.00 U	2,000 U	40.0 U
tert-Butylbenzene	1.00 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	160 U	200 U [250 U]	10.0 U	200 U	5,000 U	50.0 U	1.00 U	2,000 U	40.0 U
Toluene	1.00 U	0.270 J	0.330 J [0.250 J]	20.0 U	4.00 U	160 U	200 U [250 U]	10.0 U	200 U	5,000 U	50.0 U	0.730 J	2,000 U	40.0 U

Location Identification:	HPT-30	HPT-30	HPT-31	HPT-31	HPT-31	HPT-32	HPT-32	HPT-32	HPT-33	HPT-33	HPT-33	HPT-34	HPT-34	HPT-34
Sample Depth (Feet):	17 - 19	24 - 26	12 - 14	18 - 20	23 - 25	9 - 11	15 - 17	22 - 24	8 - 10	14 - 16	20 - 22	11 - 13	17 - 19	21 - 23
Date Collected:	11/30/15	12/01/15	12/03/15	12/03/15	12/03/15	12/04/15	12/04/15	12/04/15	12/04/15	12/04/15	12/04/15	12/04/15	12/04/15	12/04/15
rans-1,4-Dichloro-2-butene	5.00 U	5.00 U	5.00 U [5.00 U]	100 U	20.0 U	800 U	1,000 U [1,250 U]	50.0 U	1,000 U	25,000 U	250 U	5.00 U	10,000 U	200 U
Vinyl Acetate	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Xylenes (total)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,1-Trichloroethane	1.00 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	160 U	200 U [250 U]	10.0 U	200 U	5,000 U	50.0 U	1.00 U	2,000 U	40.0 U
1,1,2,2-Tetrachloroethane	1.00 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	160 U	200 U [250 U]	10.0 U	200 U	5,000 U	50.0 U	1.00 U	2,000 U	40.0 U
1,1,2-Trichloroethane	1.00 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	160 U	200 U [250 U]	10.0 U	200 U	5,000 U	50.0 U	1.00 U	2,000 U	40.0 U
1,1-Dichloroethane	0.280 J	3.84	1.00 U [1.00 U]	471	7.24	160 U	78.0 J [95.0 J]	10.0 U	1,090	5,000 U	50.0 U	1.77	2,000 U	40.0 U
1,1-Dichloroethene	0.750 J	1.00 U	1.00 U [1.00 U]	41.6	11.2	160 U	200 U [250 U]	10.0 U	1,070	5,000 U	50.0 U	1.00 U	2,000 U	40.0 U
1,2,4-Trichlorobenzene	1.00 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	160 U	200 U [250 U]	10.0 U	200 U	5,000 U	50.0 U	1.00 U	2,000 U	40.0 U
1,2-Dibromo-3-chloropropane	5.00 U	5.00 U	5.00 U [5.00 U]	100 U	20.0 U	800 U	1,000 U [1,250 U]	50.0 U	1,000 U	25,000 U	250 U	5.00 U	10,000 U	200 U
1,2-Dichlorobenzene	1.00 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	160 U	200 U [250 U]	10.0 U	200 U	5,000 U	50.0 U	1.00 U	2,000 U	40.0 U
1,2-Dichloroethane	1.00 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	160 U	200 U [250 U]	10.0 U	200 U	5,000 U	50.0 U	1.00 U	2,000 U	40.0 U
1,2-Dichloropropane	1.00 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	160 U	200 U [250 U]	10.0 U	200 U	5,000 U	50.0 U	1.00 U	2,000 U	40.0 U
1,3-Dichlorobenzene	1.00 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	160 U	200 U [250 U]	10.0 U	200 U	5,000 U	50.0 U	1.00 U	2,000 U	40.0 U
1,4-Dichlorobenzene	1.00 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	160 U	200 U [250 U]	10.0 U	200 U	5,000 U	50.0 U	1.00 U	2,000 U	40.0 U
Bromodichloromethane	1.00 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	160 U	200 U [250 U]	10.0 U	200 U	5,000 U	50.0 U	1.00 U	2,000 U	40.0 U
Carbon Tetrachloride	1.00 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	160 U	200 U [250 U]	10.0 U	200 U	5,000 U	50.0 U	1.00 U	2,000 U	40.0 U
Chlorobenzene	1.00 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	160 U	200 U [250 U]	10.0 U	200 U	5,000 U	50.0 U	1.00 U	2,000 U	40.0 U
Chloroethane	1.00 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	160 U	200 U [250 U]	10.0 U	200 U	5,000 U	50.0 U	1.00 U	2,000 U	40.0 U
Chloroform	1.00 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	160 U	200 U [250 U]	10.0 U	200 U	5,000 U	50.0 U	1.00 U	2,000 U	40.0 U
Chloromethane	1.00 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	160 U	200 U [250 U]	10.0 U	200 U	5,000 U	50.0 U	1.00 U	2,000 U	40.0 U
cis-1,3-Dichloropropene	1.00 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	160 U	200 U [250 U]	10.0 U	200 U	5,000 U	50.0 U	1.00 U	2,000 U	40.0 U
Dibromochloromethane	1.00 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	160 U	200 U [250 U]	10.0 U	200 U	5,000 U	50.0 U	1.00 U	2,000 U	40.0 U
Dichlorodifluoromethane	5.00 U	5.00 U	5.00 U [5.00 U]	100 U	20.0 U	800 U	1,000 U [1,250 U]	50.0 U	1,000 U	25,000 U	250 U	5.00 U	10,000 U	200 U
Methylene Chloride	5.00 U	5.00 U	5.00 U [5.00 U]	100 U	20.0 U	800 U	1,000 U [1,250 U]	50.0 U	1,000 U	25,000 U	250 U	5.00 U	10,000 U	200 U
trans-1,3-Dichloropropene	1.00 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	160 U	200 U [250 U]	10.0 U	200 U	5,000 U	50.0 U	1.00 U	2,000 U	40.0 U
Trichlorofluoromethane	1.00 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	160 U	200 U [250 U]	10.0 U	200 U	5,000 U	50.0 U	1.00 U	2,000 U	40.0 U
cis-1,2-Dichloroethene	0.930 J	3.66	1.00 U [1.00 U]	15.2 J	82.6	160 U	4,650 [6,140]	217	1,780	109,000	1,090	0.840 J	52,700	1,080
Tetrachloroethene	1.00 U	1.00 U	1.00 U [1.00 U]	20.0 U	4.00 U	160 U	200 U [250 U]	10.0 U	200 U	5,000 U	50.0 U	1.00 U	2,000 U	40.0 U
trans-1,2-Dichloroethene	1.00 U	1.00 U	1.00 U [1.00 U]	20.0 U	2.16 J	160 U	200 U [250 U]	10.0 U	200 U	5,000 U	50.0 U	1.00 U	2,000 U	40.0 U
Trichloroethene	0.960 J	0.320 J	0.380 J [1.00 U]	20.0 U	18.0	160 U	268 [363]	5.20 J	200 U	164,000	473	1.00 U	64,200	114
Vinyl Chloride	1.00 U	2.54	1.00 U [1.00 U]	20.0 U	3.84 J	160 U	844 [1,130]	33.5	4,620	3,200 J	55.5	6.69	2,640	83.2
norganics - Total (µg/L)														
ron	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
norganics - Dissolved (µg/L)														
ron	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon (mg/L)														
Total Organic Carbon	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Table 7

Summary of Groundwater Sample Analytical Results to a Depth of Less than or Equal to 25 Feet Human Health Risk Assessment AVX Corporation
Myrtle Beach, South Carolina

Notes:

mg/L = milligrams per liter μg/L = microgram per liter

Laboratory Qualifiers:

B = Analyte was found in the associated blank, as well as in the sample.

J = Indicates an estimated value.

ND = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

Table 8
Selection of Constituents of Potential Concern for Surface Soil (0-2 Feet)
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

		Freque	ncy of	f Detectior	า	Detectio	n Limits	Detected C	oncentratio	S Location of Maximum	Exposure Point	Scree	ning Le	vels [c]		l:	s Constitue	nt a COPC [c	d]?
Constituent [a]		Number of	Nı	umber of	%	Minimum -	Maximum	Minimum	- Maximu	Concentration (Depth Interval in Feet)	Concentration	Residential S	oil l	Industria	al Soil	Resider	itial Soil	Indust	rial Soil
		Detections	s	Samples	FOD	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg		[b] (mg/kg)	(mg/kg) [bas	is] (n	ng/kg)	[basis]	(YES, no)	Rationale	(YES, no)	Rationale
Volatile Organic Compounds																			
Acetone		164	_	256	64	1.90E-02 -	6.10E+02	2.77E-03	- 7.57E-0	1 SB-MB1-44 (1.5 - 2)	2.61E-02 UCL	6.1E+03 n	6	.7E+04	n	no	BSL	no	BSL
Benzene		7	_	256	3	3.79E-03 -	1.20E+02	1.26E-03	- 4.60E-0	` ,	2.46E-03 UCL	1.2E+00 c*		.1E+00	c**	no	BSL	no	BSL
2-Butanone		, 26	_	256	10	1.89E-02 -	6.10E+02	1.37E-03	- 4.45E-0	()	1.74E-02 UCL	2.7E+03 n		.9E+04	n	no	BSL	no	BSL
n-Butvlbenzene		1	_	200	1	3.79E-03 -	1.16E+00	9.48E-02	- 9.48E-0	` ,	9.48E-02 max	3.9E+02 ns		.8E+03	ns	no	BSL	no	BSL
sec-Butylbenzene		3	_	200	2	3.79E-03 -	1.16E+00	2.91E-02	- 1.05E-0	` ,	1.05E-01 max			.2E+04	ns	no	BSL	no	BSL
Carbon Disulfide		3	_	256	1	3.79E-03 -	1.20E+02	1.65E-03	- 5.50E-0	,	5.50E-03 max			.5E+02	n	no	BSL	no	BSL
Carbon Tetrachloride		2	_	256	1	3.79E-03 -	1.20E+02	2.33E-03	- 8.41E-0	()	8.41E-03 max	6.5E-01 c		.9E+00	c*	no	BSL	no	BSL
Chloroethane		4	_	256	2	3.79E-03 -		6.50E-03	- 5.22E-0	,	5.22E-02 max	1.4E+03 n		.7E+03	ns	no	BSL	no	BSL
1.4-Dichlorobenzene		1	_	256	0.4	3.79E-03 -	1.20E+02	1.02E-03	- 1.02E-0	,	1.02E-03 max	2.6E+00 c		.1E+01	С	no	BSL	no	BSL
1.1-Dichloroethane		29	_	256	11	3.79E-03 -	1.20E+02	1.41E-03	- 9.89E-0	,	4.49E-03 UCL	3.6E+00 c		.6E+01	С	no	BSL	no	BSL
1,1-Dichloroethene		8	_	256	3	3.79E-03 -	1.20E+02	1.15E-03	- 1.60E+0	` ,	4.32E-02 UCL	2.3E+01 n		.0E+02	n	no	BSL	no	BSL
cis-1.2-Dichloroethene		31	_	256	12	3.79E-03 -	1.16E+00	1.03E-03	- 2.50E+0	、 /	1.49E-02 UCL	1.6E+01 n		.3E+02	n	YES	ASL	YES	ASL
trans-1.2-Dichloroethene		3	_	256	1	3.79E-03 -	1.20E+02	3.97E-03	- 1.23E+(1.23E+00 max	1.6E+02 n		.3E+03	ns	no	BSL	no	BSL
Dichlorodifluoromethane		5	_	256	2	3.79E-03 -	1.20E+02	1.00E-03	- 1.90E-0		2.18E-03 UCL	8.7E+00 n		.7E+01	n	no	BSL	no	BSL
Ethylbenzene		22	_	256	9	3.79E-03 -	1.20E+02	7.67E-04	- 3.81E+(1.25E-01 UCL	5.8E+00 c		.5E+01	c*	no	BSL	no	BSL
Isopropylbenzene		8	_	256	3	3.79E-03 -	1.20E+02	9.58E-04	- 4.01E-0		8.60E-03 UCL	1.9E+02 n		.9E+02	ns	no	BSL	no	BSL
p-Isopropyltoluene	[e]	14	_	200	7	3.79E-03 -	1.09E+00	1.35E-03	- 1.37E+0		4.56E-02 UCL	1.9E+02 n		.9E+02	ns	no	BSL	no	BSL
4-Methyl-2-pentanone	[-]	3	_	256	1	9.47E-03 -	6.10E+02	2.25E-03	- 2.90E+0	` ,	2.90E+00 max	3.3E+03 n		.4E+04	ns	no	BSL	no	BSL
Methyl Acetate		2	_	56	4	3.80E-03 -	1.20E+02	5.20E-01	- 6.10E-0	` ,	6.10E-01 max	7.8E+03 n		.2E+05	nms	no	BSL	no	BSL
Methylcyclohexane	[f]	1	_	56	2	3.80E-03 -	1.20E+02	6.00E-03	- 6.00E-0		6.00E-03 max	6.5E+02 ns		.7E+03	ns	no	BSL	no	BSL
Methylene Chloride	1.1	62	_	256	24	1.10E-02 -	3.70E+02	8.69E-04	- 1.46E+0	` ,	4.19E-02 UCL	3.5E+01 n		.2E+02	n	no	BSL	no	BSL
Naphthalene		5	_	200	3	3.79E-03 -	1.16E+00	1.71E-02	- 1.87E-0		8.62E-03 UCL	3.8E+00 c*		.7E+01	c**	no	BSL	no	BSL
n-Propylbenzene		10	_	200	5	3.79E-03 -	1.16E+00	2.37E-03	- 1.65E-0		8.03E-03 UCL	3.8E+02 ns		.4E+03	ns	no	BSL	no	BSL
Styrene		1	_	256	0.4	3.79E-03 -	1.20E+02	1.42E-03	- 1.42E-0		1.42E-03 max	6.0E+02 n		.5E+03	ns	no	BSL	no	BSL
Tetrachloroethene		8	_	256	3	3.79E-03 -	1.20E+02	1.04E-03	- 2.20E+(2.14E-03 UCL	8.1E+00 n		.9E+01	n	YES	ASL	no	BSL
Toluene		41	_	256	16	3.79E-03 -	1.20E+02	8.28E-04	- 8.28E+(1.82E-01 UCL	4.9E+02 n		.7E+03	ns	no	BSL	no	BSL
1.1.1-Trichloroethane		30	_	256	12	3.79E-03 -	1.20E+02	9.40E-04	- 4.16E+	` ,	9.62E-03 UCL	8.1E+02 ns		.6E+03	ns	no	BSL	no	BSL
Trichloroethene		65	_	256	25	3.79E-03 -	1.16E+00	9.08E-04	- 6.00E+0		1.27E+02 UCL	4.1E-01 n		.9E+00	n	YES	ASL	YES	ASL
Trichlorofluoromethane		10	_	256	4	3.79E-03 -	1.20E+02	1.05E-03	- 2.40E+0		2.16E-03 UCL	2.3E+03 ns		.5E+04	ns	no	BSL	no	BSL
1,2,4-Trimethylbenzene		8	_	200	4	3.79E-03 -	1.16E+00	5.37E-03	- 3.29E-0	()	1.53E-02 UCL	3.0E+01 n		.8E+02	n	no	BSL	no	BSL
1.3.5-Trimethylbenzene		6	_	200	3	3.79E-03 -	1.16E+00	9.74E-04	- 1.10E+(,	3.05E-02 UCL	2.7E+01 n		.5E+02	n	no	BSL	no	BSL
Vinyl Chloride		6	_	256	2	3.79E-03 -	1.20E+02	6.30E-03	- 2.88E-0	,	7.82E-03 UCL	5.9E-02		.7E+00	C*	YES	ASL	no	BSL
m-,p-Xylene		17	_	200	9	7.58E-03 -	2.32E+00	1.75E-03	- 1.54E+(` ,	6.78E-01 UCL	5.5E+01 n		.4E+02	n	no	BSL	no	BSL
o-Xylene		10	_	200	5	3.79E-03 -	1.16E+00	9.78E-04	- 8.18E-0	` ,	3.05E-02 UCL	6.5E+01 n		.4E+02	n	no	BSL	no	BSL
Xylenes (total)		11	_	160	7	7.50E-03 -	2.50E+02	2.73E-03	- 3.20E+(` ,	1.15E-01 UCL	5.8E+01 n		.5E+02	n	no	BSL	no	BSL
Aylones (total)		11		100	'	7.502-05	2.00L 102	Z.10L-00	- J.ZULT(110-04 (1)	1.13L-01 UCL	0.0L · 01 11	۷.	.02 102	11	110	DOL	110	DOL

- Not available or not applicable.
- % Percent.
- * Non-cancer screening values is less than 100× the cancer screening level.
- ** Non-cancer screening value is less than 10× the cancer screening level.
- c Cancer effect.

COPC Constituent of potential concern.

- FOD Frequency of detection.
- m Concentration may exceed ceiling limit.
- mg/kg Milligram per kilogram.
- n Non-cancer effect.
- s Concentration may exceed residual saturation (Csat) level.

- [a] Only detected constituents are presented.
- [b] The exposure point concentration (EPC) is the lower concentration of either the upper confidence level on the mean (UCL) or the maximum detected concentration (max), where the UCL was incalculable.

 The UCLs were calculated using ProUCL version 5.1.00 (USEPA 2016a). The UCL used is the one recommended by ProUCL, unless a greater than 95% UCL was recommended, in which case the 95% UCL was selected.
- [c] Screening levels are the United States Environmental Protection Agency (USEPA) residential and industrial soil Regional Screening Levels (RSLs) (USEPA 2018a).
 - All screening levels are based on a target cancer risk of 1×10⁻⁶ and a target non-cancer hazard of 0.1 (to account for potentially additive effects).
- [d] A constituent with a maximum detected concentration above the screening level (ASL) was identified as a COPC. A constituent with a maximum detected concentration below the screening level (BSL) was not identified as a COPC.
- e] The screening level for cumene was used as a surrogate.
- [f] The screening level for cyclohexane was used as a surrogate.

AVX MB_HHRA Tables

Constituent [a] /olatile Organic Compounds Acetone Benzene B-Butanone B-Butylbenzene Bec-Butylbenzene Carbon Disulfide	Number of Detections 204 13 28 3 8 3	- 383 - 383 - 383 - 320 - 320		Minimum (mg/kg) 1.90E-02 3.79E-03 1.89E-02	- Maximum (mg/kg) - 5.88E+03 - 2.35E+02	Minimum (mg/kg)	- Maximum (mg/kg)	Location of Maximum Concentration (Depth Interval in Feet)	Concentration [b] (mg/kg)	Residenti (mg/kg)	al Soil [basis]	Industria (mg/kg)	al Soil [basis]	Leach (mg/kg)	<u>.</u>	Resident (YES, no)		Industr	rial Soil Rationale	Lead (YES, no)	ching Rationale
Acetone Benzene P-Butanone n-Butylbenzene Bec-Butylbenzene Carbon Disulfide	13	- 383 - 383 - 320	53 3 7	3.79E-03			- 7.57F-01							(mg/ng/	[basis]	(120, 110)	Rationale	(123, 110)	Itationale	(. =0,)	rationale
Benzene P-Butanone n-Butylbenzene Bec-Butylbenzene Carbon Disulfide	13	- 383 - 383 - 320	53 3 7 1	3.79E-03			- 7.57F-01														
Butanone n-Butylbenzene nec-Butylbenzene Carbon Disulfide		- 383 - 320	3 7 1		- 2.35E+02			SB-MB1-44 (1.5 - 2)	2.49E-02 UCL	6.1E+03	n	6.7E+04	n	2.9E-01	n	no	BSL	no	BSL	YES	ASL
n-Butylbenzene dec-Butylbenzene Carbon Disulfide	28 3 8 3	- 320	7 1	1.89E-02		6.83E-04	- 4.60E-02	RMM-147 (1)	2.98E-03 UCL	1.2E+00	C**	5.1E+00	c**	2.6E-03	c**	no	BSL	no	BSL	YES	ASL
ec-Butylbenzene Carbon Disulfide	3 8 3		1		- 5.88E+03	1.37E-03	- 4.45E-01	WCSS-1 (2)	1.93E-02 UCL	2.7E+03	n	1.9E+04	n	1.2E-01	n	no	BSL	no	BSL	YES	ASL
Carbon Disulfide	8 3	- 320		3.79E-03	- 2.35E+02	9.48E-02	- 1.23E+00	SB-211 (3)	1.23E+00 max	3.9E+02	ns	5.8E+03	ns	3.2E-01	n	no	BSL	no	BSL	YES	ASL
	3		3	3.79E-03	- 2.35E+02	9.16E-04	- 1.54E+00	SB-211 (3)	2.83E-02 UCL	7.8E+02	ns	1.2E+04	ns	5.9E-01	n	no	BSL	no	BSL	YES	ASL
		- 383	1	3.79E-03	- 2.35E+02	1.65E-03	- 5.50E-03	RMM-379 (1)	5.50E-03 max	7.7E+01	n	3.5E+02	n	2.4E-02	n	no	BSL	no	BSL	no	BSL
Carbon Tetrachloride	5	- 383	1	3.79E-03	- 2.35E+02	2.33E-03	- 2.12E-02	SB-308 (3)	2.93E-03 UCL	6.5E-01	c*	2.9E+00	c*	1.9E-03	c*	no	BSL	no	BSL	YES	ASL
Chloroethane	14	- 383	4	3.79E-03	- 2.35E+02	1.39E-03	- 4.59E-01	SB-309 (5)	7.66E-03 UCL	1.4E+03	n	5.7E+03	ns	5.9E-01	n	no	BSL	no	BSL	no	BSL
,4-Dichlorobenzene	1	- 383	0.3	3.79E-03	- 2.35E+02	1.02E-03	- 1.02E-03	MB1-31 (0.5 - 1.0)	1.02E-03 max	2.6E+00	С	1.1E+01	С	7.2E-02	С	no	BSL	no	BSL	no	BSL
.1-Dichloroethane	71	- 383	19	3.79E-03	- 2.35E+02	1.41E-03	- 1.22E+01	SB-304 (3)	4.53E-01 UCL	3.6E+00	С	1.6E+01	С	7.8E-04	С	YES	ASL	no	BSL	YES	ASL
.1-Dichloroethene	35	- 383	9	3.79E-03	- 2.35E+02	9.28E-04	- 1.36E+02	SB-308 (5)	3.42E+00 UCL	2.3E+01	n	1.0E+02	n	2.5E-03	n	YES	ASL	YES	ASL	YES	ASL
sis-1.2-Dichloroethene	121	- 383	32	3.79E-03	- 1.30E+02	8.93E-04	- 2.52E+02	MB1-37E (2.5 - 3.0)	1.25E+01 UCL	1.6E+01	n	2.3E+02	n	2.1E-02	n	YES	ASL	YES	ASL	YES	ASL
rans-1.2-Dichloroethene	18	- 383	5	3.79E-03	- 2.35E+02	1.22E-03	- 1.23E+00	MB1-27 (1.5 - 2.0)	1.89E-02 UCL	1.6E+02	n	2.3E+03	ns	3.1E-02	n	no	BSL	no	BSL	YES	ASL
Dichlorodifluoromethane	5	- 383	1	3.79E-03	- 1.18E+03	1.00E-03	- 1.90E-02	MIS-17 (1.5-2)	2.14E-03 UCL	8.7E+00	n	3.7E+01	n	3.0E-02	n	no	BSL	no	BSL	no	BSL
Ethylbenzene	45	- 383	12	3.79E-03	2.35E+02	7.67E-04	- 1.01E+01	SB-211 (5)	1.10E-02 UCL	5.8E+00	C*	2.5E+01	c*	7.8E-01	C*	YES	ASL	no	BSL	YES	ASL
sopropylbenzene	28	- 383	7	3.79E-03	- 2.35E+02	9.58E-04	- 8.97E+00	SB-211 (3)	5.04E-03 UCL	1.9E+02	n	9.9E+02	ns	7.4E-02	n	no	BSL	no	BSL	YES	ASL
o-Isopropyltoluene [e]	34	- 320	11	3.79E-03	- 2.35E+02	7.07E-04	- 7.15E+01	MB1-37E (2.5 - 3.0)	7.49E-03 UCL	1.9E+02	n	9.9E+02	ns	7.4E-02	n	no	BSL	no	BSL	YES	ASL
-Methyl-2-pentanone	3	- 383	1	9.47E-03	1.18E+03	2.25E-03	- 2.90E+00	RMM-279 (1)	2.90E+00 max	3.3E+03	n	1.4E+04	ns	1.4E-01	n	no	BSL	no	BSL	YES	ASL
Methyl Acetate	2	- 63	3	3.80E-03	1.30E+02	5.20E-01	- 6.10E-01	RMM-35 (2)	6.10E-01 max	7.8E+03	n	1.2E+05	nms	4.1E-01	n	no	BSL	no	BSL	YES	ASL
Methylcyclohexane [f]	1 .	- 63	2	3.80E-03	- 1.30E+02	6.00E-03	- 6.00E-03	RMM-147 (1)	6.00E-03 max	6.5E+02	ns	2.7E+03	ns	1.3E+00	n	no	BSL	no	BSL	no	BSL
Methylene Chloride	75	- 383	20	1.10E-02	- 1.18E+03	8.69E-04	- 1.46E+00	WP-Com-North (0.75)	3.54E-02 UCL	3.5E+01	n	3.2E+02	n	1.3E-03	n	no	BSL	no	BSL	YES	ASL
Naphthalene	12	- 320	4	3.79E-03	- 2.35E+02	7.80E-04	- 1.87E-01	MB1-28 (1.5 - 2.0)	6.02E-03 UCL	3.8E+00	C**	1.7E+01	C**	5.4E-04	c**	no	BSL	no	BSL	YES	ASL
n-Propylbenzene	22	- 320	7	3.79E-03	- 2.35E+02	8.59E-04	- 3.64E+01	SB-211 (3)	6.51E-03 UCL	3.8E+02	ns	2.4E+03	ns	1.2E-01	n	no	BSL	no	BSL	YES	ASL
Styrene	1 .	- 383	0.3	3.79E-03	- 2.35E+02	1.42E-03	- 1.42E-03	MB1-01 (0.5 - 1.0)	1.42E-03 max	6.0E+02	n	3.5E+03	ns	1.1E-01	n	no	BSL	no	BSL	no	BSL
etrachloroethene	11	- 383	3	3.79E-03	2.35E+02	1.04E-03	- 2.20E+01	RC-152 (1)	4.47E-01 UCL	8.1E+00	n	3.9E+01	n	2.3E-03	n	YES	ASL	no	BSL	YES	ASL
oluene	61	- 383	16	3.79E-03	2.35E+02	8.28E-04	- 3.05E+02	SB-211 (5)	4.33E+00 UCL	4.9E+02	n	4.7E+03	ns	6.9E-01	n	no	BSL	no	BSL	YES	ASL
,1,1-Trichloroethane	58	- 383	15	3.79E-03	- 2.35E+02	9.40E-04	- 1.84E+03	SB-308 (5)	3.64E+01 UCL	8.1E+02	ns	3.6E+03	ns	7.0E-02	n	YES	ASL	no	BSL	YES	ASL
richloroethene	146	- 383	38	3.79E-03	9.32E+00	9.46E-04 9.06E-04	- 6.00E+03	RC-166 (0.6)	2.04E+02 UCL	4.1E-01	n	1.9E+00	n	1.8E-03	n	YES	ASL	YES	ASL	YES	ASL
richlorofluoromethane	10	- 383	30	3.79E-03	- 2.35E+02	1.05E-03	- 2.40E+00	RMM-279 (1)	2.00E-03 UCL	2.3E+03	ns	3.5E+04	ns	3.3E-01	n	no	BSL	no	BSL	YES	ASL
,2,4-Trimethylbenzene	27	- 303 - 320	0	3.79E-03	2.35E+02	5.69E-04	- 2.40E+00 - 2.09E+01	SB-313 (3)	6.96E-03 UCL	3.0E+01	r n	1.8E+02	n n	8.1E-03	n		BSL		BSL	YES	ASL
,3,5-Trimethylbenzene	21	- 320 - 320	0 7	3.79E-03 3.79E-03	- 2.35E+02 - 2.35E+02	5.69E-04 7.60E-04	- 2.09E+01 - 5.77E+00	SB-313 (3) SB-313 (3)	1.18E-01 UCL	3.0E+01 2.7E+01	II n	1.8E+02 1.5E+02	II n	8.7E-03	n n	no	BSL	no no	BSL	YES	ASL
,3,5-11methylbenzene /inyl Chloride	53	- 320 - 383	1/1	3.79E-03 3.79E-03	- 2.35E+02 - 2.35E+02	6.61E-04	- 5.77E+00 - 1.02E+01	` '	1.75E-02 UCL	5.9E-02	11	1.5E+02 1.7E+00	c*	6.9E-04	n C	no YES	ASL	YES	ASL	YES	ASL
n-,p-Xylene			14	3.79E-03 7.58E-03	- 2.35E+02 - 4.71E+02	1.75E-03	- 1.02E+01 - 3.57E+01	SB-211 (5)	3.19E-02 UCL	5.9E-02 5.5E+01	· ·	1.7E+00 2.4E+02	C n		•					YES	
71 2	35 27	- 320 - 320	 0	7.58E-03 3.79E-03	- 4.71E+02 - 2.35E+02	1.75E-03 9.78E-04		SB-211 (5)			n	2.4E+02 2.8E+02	n	1.9E-02	n	no	BSL	no	BSL		ASL
o-Xylene (ylenes (total)	27 25	- 320 - 276	ŏ	3.79E-03 7.50E-03	- 2.35E+02 - 4.71E+02	9.78E-04 2.73E-03	- 1.17E+01 - 4.74E+01	SB-211 (5) SB-211 (5)	2.10E-01 UCL 1.68E-02 UCL	6.5E+01 5.8E+01	n	2.8E+02 2.5E+02	n	1.9E-02 9.9E+00	n n	no no	BSL BSL	no no	BSL BSL	YES YES	ASL ASL

_	Not available or not applicable.
%	Percent.
*	Non-cancer screening values is less than 100× the cancer screening level.
**	Non-cancer screening value is less than 10× the cancer screening level.
С	Cancer effect.
COPC	Constituent of potential concern.

Frequency of detection.

Concentration may exceed ceiling limit. m

mg/kg Milligram per kilogram.

Non-cancer effect.

Concentration may exceed residual saturation (Csat) level.

[a] Only detected constituents are presented.

[b]

The exposure point concentration (EPC) was the lower concentration of either the upper confidence level on the mean (UCL) or the maximum detected concentration (max), where the UCL was incalculable.

The UCLs were calculated using ProUCL version 5.1.00 (USEPA 2016a). The UCL used is the one recommended by ProUCL, unless a greater than 95% UCL was recommended, in which case the 95% UCL was selected.

Screening levels are the United States Environmental Protection Agency (USEPA) residential and industrial soil Regional Screening Levels (RSLs) (USEPA 2018a). [c]

All screening levels are based on a target cancer risk of 1×10⁻⁶ and a target non-cancer hazard of 0.1 (to account for potentially additive effects).

A constituent with a maximum detected concentration above the screening level (ASL) was identified as a COPC. A constituent with a maximum detected concentration below the screening level (BSL) was not identified as a COPC.

The screening level for cumene was used as a surrogate.

[d] [e] [f] The screening level for cyclohexane was used as a surrogate.

AVX MB HHRA Tables 1/1

	Freque	ency (of Detection	1	Detec	tion	Limits	Detector	Con	centrations						Screening I	evels [c]					e Constituer	nt a COPC? [11	
	Trequ	ericy (or Detection	1	Detec	LIOII	Lillits	Detected	COII	centrations		Exposure	Point			Vapor Inti		Vapor Intr	usion -				trusion -	*	Intrusion -
	Number of	1	Number of	% FOD	Minimum		Maximum	Minimum		Maximum	Location of Maximum	Concentrat		Tany	vater	Reside		Indust		Tan	water		dential		ustrial
Constituent [a]	Detections		Samples	/6100	(mg/L)		(mg/L)	(mg/L)		(mg/L)	Concentration (Depth Interval in Feet)	(mg/L		(mg/L)	[basis]	(mg/L)	[hasis]	(mg/L)	[basis]		Rationale	(YES, no)	Rationale		
concutaont [a]					(9, =)		(1119/11)	(1119/=)		(9,=)	(Boptii interval in 1 det)		•	(1119/11)	[baolo]	(g/=/	[Duolo]	(g/=/	[buolo]	(120, 110)	rtationalo	(120, 110)	rtationalo	(120, 110)	rtationalo
Volatile Organic Compounds																									
Acetone	23	-	142	16	2.50E-02	-	1.25E+02	1.21E-03	-	5.72E-01	MW-17D (36 - 46)	4.12E-02	UCL	1.4E+00	n	2.25E+03	NC	9.45E+03	NC	no	BSL	no	BSL	no	BSL
Benzene	26	-	142	18	1.00E-03	-	5.00E+00	1.20E-04	-	2.06E-03	MW-19S (10 - 20)	5.03E-04	UCL	4.6E-04	C**	1.59E-03	CA	6.93E-03	CA	YES	ASL	YES	ASL	no	BSL
2-Butanone	7	-	142	5	5.00E-03	-	1.25E+02	9.40E-04	-	2.60E-01	DPW-1D (36 - 46)	1.31E-02	UCL	5.6E-01	n	2.24E+02	NC	9.41E+02	NC	no	BSL	no	BSL	no	BSL
tert-Butylbenzene	8	-	142	6	1.00E-03	-	5.00E+00	1.60E-04	-	1.89E-03	HPT-32 (32 - 34)	8.42E-04	UCL	6.9E-02	n	NA		NA		no	BSL	no	NSL	no	NSL
Carbon Disulfide	14	-	131	11	1.00E-03	-	5.00E+00	4.50E-04	-	3.50E-02	DPW-4SD (19.5 - 29.5 29.6 - 44.5)	9.09E-04	UCL	8.1E-02	n	1.24E-01	NC	5.21E-01	NC	no	BSL	no	BSL	no	BSL
Chloroethane	2	_	142	1	1.00E-03	_	5.00E+00	4.60E-04	_	2.27E-03	PW-1S (Assume 15-25)	2.27E-03	max	2.1E+00	n	2.30E+00	NC	9.65E+00	NC	no	BSL	no	BSL	no	BSL
1.1-Dichloroethane	51	_	142	36	1.00E-03	_	5.00E+00	1.20E-04	_	2.10E+00	HPT-24 (12 - 14)	1.20E-01	UCL	2.8E-03	С	7.64E-03	CA	3.34E-02	CA	YES	ASL	YES	ASL	YES	ASL
1.1-Dichloroethene	39	_	142	28	1.00E-03	_	5.00E+00	2.30E-04	_	1.95E+00	HPT-24 (12 - 14)	1.16E-01	UCL	2.8E-02	n	1.95E-02	NC	8.21E-02	NC	YES	ASL	YES	ASL	YES	ASL
cis-1,2-Dichloroethene	117	_	142	82	1.00E-03	_	5.00E-01	1.10E-04	_	1.09E+02	HPT-33 (14 - 16)	8.71E+01	UCL	3.6E-03	n	NA		NA		YES	ASL	no	NSL	no	NSL
trans-1.2-Dichloroethene	37	_	142	26	1.00E-03	_	5.00E+00	1.40E-04	_	1.42E-01	HPT-04 (16 - 18)	1.04E-02	UCL	3.6E-02	n	NA		NA		YES	ASL	no	NSL	no	NSL
Ethylbenzene	8	_	142	6	1.00E-03	_	5.00E+00	1.60E-04	_	1.79E-03	MW-19S (10 - 20)	4.43E-04	UCL	1.5E-03	c*	3.49E-03	CA	1.52E-02	CA	YES	ASL	no	BSL	no	BSL
Hexachlorobutadiene	1	_	131	1	1.00E-03	_	5.00E+00	7.70E-04	_	7.70E-04	DPW-1D (36 - 46)	7.70E-04	max	1.4E-04	C**	3.03E-04	CA	1.32E-03	CA	YES	ASL	YES	ASL	no	BSL
Isopropylbenzene	1	_	142	1	1.00E-03	_	5.00E+00	5.60E-04	_	5.60E-04	HPT-34 (11 - 13)	5.60E-04	max	4.5E-02	n	8.87E-02	NC	3.73E-01	NC	no	BSL	no	BSL	no	BSL
p-Isopropyltoluene [e]	2	_	142	1	1.00E-03	_	5.00E+00	1.60E-04	_	4.50E-04	MW-14S (10 - 15)	4.50E-04	max	4.5E-02	n	8.87E-02	NC	3.73E-01	NC	no	BSL	no	BSL	no	BSL
Methylene Chloride	1	_	142	1	5.00E-03	_	2.50E+01	5.80E-04	_	5.80E-04	MW-19S (10 - 20)	5.80E-04	max	1.1E-02	n	4.71E-01	NC	1.98E+00	NC	no	BSL	no	BSL	no	BSL
Methyl tert-butyl ether	7	_	142	5	1.00E-03	_	5.00E+00	1.30E-04	_	1.02E-03	HPT-28 (24 - 26)	4.85E-04	UCI	1.4E-02	C*	4.50E-01	CA	1.97E+00	CA	no	BSL	no	BSL	no	BSL
Naphthalene	12	_	142	8	1.00E-03	_	5.00E+00	1.20E-04	_	1.14E+00	HPT-32 (9 - 11)	4.87E-02	UCL	1.7E-04	C**	4.59E-03	CA	2.01E-02	CA	YES	ASL	YES	ASL	YES	ASL
n-Propylbenzene	3	_	142	2	1.00E-03	_	5.00E+00	2.40E-04	_	3.00E-04	HPT-29 (25 - 27)	3.00E-04	max	6.6E-02	n	2.43E-01	NC	1.02E+00	NC	no	BSL	no	BSL	no	BSL
Tetrachloroethene	1		142	1	1.00E-03		5.00E+00	2.88E-03		2.88E-03	HPT-29 (39 - 41)	2.88E-03	max	4.1E-03	n	5.76E-03	NC	2.42E-02	NC	no	BSL	no	BSL	no	BSL
Toluene	28	_	142	20	1.00E-03	_	5.00E+00	1.50E-04	_	1.10E-01	HPT-29 (36 - 38)	8.97E-03	UCL	1.1E-01	n	1.92E+00	NC	8.07E+00	NC	no	BSL	no	BSL	no	BSL
1,1,1-Trichloroethane	3	_	142	2	1.00E-03	_	5.00E+00	3.50E-03	_	6.12E-02	DPW-5SD (19 - 24	6.12E-02	max	8.0E-01	n	7.42E-01	NC	3.11E+00	NC	no	BSL	no	BSL	no	BSL
Trichloroethene	91		440	C4	4 005 00		0.005.04	2.30E-04		0.045.00	31 - 41) HPT-24 (12 - 14)	4.405.04	LICI	2.05.04	_	5.18E-04	NO	2.18E-03	NO	VEC	A C.I	VEC	A C.I	YES	A C I
1,2,4-Trimethylbenzene	91 8	-	142 142	64 6	1.00E-03 1.00E-03	-	8.00E-01 5.00E+00	2.30E-04 1.10E-04	-	2.61E+02 2.88E-02	(,	1.42E+01 5.22E-04	UCL	2.8E-04 5.6E-03	n	5.18E-04 2.48E-02	NC NC	2.18E-03 1.04E-01	NC NC	YES YES	ASL ASL	YES	ASL ASL		ASL BSL
1,3,5-Trimethylbenzene	8	-	142	0	1.00E-03 1.00E-03	-	5.00E+00 5.00E+00	4.20E-04	-	2.88E-02 4.20E-04	HPT-32 (9 - 11)	5.22E-04 4.20E-04		6.0E-03	n		NC NC	7.33E-02	NC NC			YES	ASL BSL	no	
Vinyl Chloride	05	-	142	67	1.00E-03 1.00E-03	-		4.20E-04 2.50E-04	-	4.20E-04 1.49E+01	HPT-34 (11 - 13)		max	1.9E-05	n	1.75E-02 1.47E-04				no	BSL	no	ASL	no YES	BSL
,	95	-				-	5.00E+00		-		HPT-28 (30 - 33)	1.06E+00	UCL		C		CA	2.45E-03	CA	YES	ASL	YES			ASL
m-,p-Xylene	17	-	142	12	2.00E-03	-	1.00E+01	1.30E-04	-	2.42E-03	MW-19S (10 - 20)	6.38E-04	UCL	1.9E-02	n	3.55E-02	NC	1.49E-01	NC	no	BSL	no	BSL	no	BSL
o-Xylene	9	-	142	6	1.00E-03	-	5.00E+00	1.10E-04	-	2.17E-03	MW-19S (10 - 20)	6.12E-04	UCL	1.9E-02	n	4.92E-02	NC	2.07E-01	NC	no	BSL	no	BSL	no	BSL
Total Inorganics	_									:															
Iron	4	-	4	100	_	-	_	5.00E-01	-	1.70E+01	MW-202D (25 - 40)	1.70E+01	max	1.4E+00	n	NA		NA		YES	ASL	no	NSL	no	NSL
Manganese	4	-	4	100	_	-	_	2.10E-02	-	4.40E-01	MW-202D (25 - 40)	4.40E-01	max	4.3E-02	n	NA		NA		YES	ASL	no	NSL	no	NSL
Dissolved Inorganics																									
Iron	4	-	4	100	_	-	_	1.80E-01	-	1.60E+01	MW-202D (25 - 40)	1.60E+01	max	1.4E+00	n	NA		NA		YES	ASL	no	NSL	no	NSL
Manganese	4	-	4	100	-	-	-	1.30E-02	-	4.80E-01	MW-202D (25 - 40)	4.80E-01	max	4.3E-02	n	NA		NA		YES	ASL	no	NSL	no	NSL

Not available or not applicable.

% Percent.

Non-cancer screening values is less than 100× the cancer screening level.

** Non-cancer screening value is less than 10× the cancer screening level.

c Cancer effect.

COPC Constituent of potential concern.

FOD Frequency of detection.

mg/L Milligram per liter.

n Non-cancer based screening values.

NA Not available or not applicable.

[a] Only constituents of potential concern are presented.

The exposure point concentration (EPC) was the lower concentration of either the upper confidence level on the mean (UCL) or the maximum detected concentration (max), where the UCL was incalculable.

The UCLs were calculated using ProUCL version 5.1.00 (USEPA 2016a). The UCL used is the one recommended by ProUCL, unless a greater than 95% UCL was recommended, in which case the 95% UCL was selected.

[c] The direct contact screening values reflect the United States Environmental Protection Agency (USEPA) tapwater Regional Screening Levels (RSLs) (USEPA 2018a).

The USEPA Vapor Intrusion Screening Levels (VISLs) are presented (USEPA 2018b). The USEPA VISLs reflect an excess lifetime cancer risk (ELCR) of 1×10-6 for constituents with cancer based endpoints and an HI of 0.1 for non-cancer endpoints.

[d] A constituent with a maximum or EPC above the screening level (ASL) was identified as a COPC. A constituent with a maximum or exposure point concentration below the screening level (BSL) was not identified as a COPC.

Constituents that are not volatile or do not have inhalation toxicity values (no screening levels [NSL]) were not identified as COPCs.

[e] The screening level for cumene was used as a surrogate.

AVX MB_HHRA Tables

	Frequ	ency of Det	ection		Detect	ion Limits		Detected	Conc	entrations						Screening	Levels I	:1			1	s Constitue	nt a COPC? [d1	
	Number of Detections	Numb - Samp	er of	FOD	Minimum		imum	Minimum	-	Maximum	Location of Maximum Concentration	Exposure Concentrat		Tapwa		Vapor Intr Reside	usion -	Vapor Inti Indus		Тару	vater	Vapor In	trusion - lential		trusion - strial
Constituent [a]	Detections	Oam	,163		(mg/L)	(m	g/L)	(mg/L)		(mg/L)	(Depth Interval in Feet)	(mg/L		(mg/L)	[basis]	(mg/L)	[basis]	(mg/L)	[basis]	(YES, no)	Rationale	(YES, no)	Rationale	(YES, no)	Rationale
Volatile Organic Compounds																									
Acetone	5	- 33	,	15	2.50E-02	- 1.25	E+02	1.21E-03	-	8.16E-03	HPT-28 (13 - 15)	6.04E-03	UCL	1.4E+00	n	2.25E+03	NC	9.45E+03	NC	no	BSL	no	BSL	no	BSL
Benzene	5	- 33	,	15	1.00E-03	- 5.00	E+00	2.80E-04	-	2.06E-03	MW-19S (10 - 20)	1.06E-03	UCL	4.6E-04	C**	1.59E-03	CA	6.93E-03	CA	YES	ASL	YES	ASL	no	BSL
2-Butanone	1	- 33	}	3	5.00E-03	- 1.25	E+02	2.26E-03	-	2.26E-03	HPT-31 (12 - 14)	2.26E-03	max	5.6E-01	n	2.24E+02	NC	9.41E+02	NC	no	BSL	no	BSL	no	BSL
tert-Butylbenzene	2	- 33	}	6	1.00E-03	- 5.00	E+00	4.50E-04	-	4.80E-04	MW-14S (10 - 15)	4.80E-04	max	6.9E-02	n	NA		NA		no	BSL	no	NSL	no	NSL
Carbon Disulfide	4	- 30	,	13	1.00E-03	- 5.00	E+00	5.10E-04	-	2.80E-03	MW-2S (10 - 15)	2.80E-03	max	8.1E-02	n	1.24E-01	NC	5.21E-01	NC	no	BSL	no	BSL	no	BSL
1,1-Dichloroethane	11	- 33	;	33	1.00E-03	- 5.00	E+00	1.20E-04	-	2.10E+00	HPT-24 (12 - 14)	4.29E-01	UCL	2.8E-03	С	7.64E-03	CA	3.34E-02	CA	YES	ASL	YES	ASL	YES	ASL
1,1-Dichloroethene	4	- 33	,	12	1.00E-03	- 5.00	E+00	2.40E-03	-	1.95E+00	HPT-24 (12 - 14)	1.95E+00	max	2.8E-02	n	1.95E-02	NC	8.21E-02	NC	YES	ASL	YES	ASL	YES	ASL
cis-1,2-Dichloroethene	24	- 33		73	1.00E-03	- 1.60)E-01	2.20E-04	-	1.09E+02	HPT-33 (14 - 16)	1.84E+01	UCL	3.6E-03	n	NA		NA		YES	ASL	no	NSL	no	NSL
trans-1,2-Dichloroethene	7	- 33		21	1.00E-03	- 5.00	E+00	3.50E-04	-	1.36E-02	HPT-25 (13 - 15)	3.31E-03	UCL	3.6E-02	n	NA		NA		no	BSL	no	NSL	no	NSL
Ethylbenzene	3	- 33	}	9	1.00E-03	- 5.00	E+00	4.10E-04	-	1.79E-03	MW-19S (10 - 20)	1.79E-03	max	1.5E-03	C*	3.49E-03	CA	1.52E-02	CA	YES	ASL	no	BSL	no	BSL
Isopropylbenzene	1	- 33	}	3	1.00E-03	- 5.00	E+00	5.60E-04	-	5.60E-04	HPT-34 (11 - 13)	5.60E-04	max	4.5E-02	n	8.87E-02	NC	3.73E-01	NC	no	BSL	no	BSL	no	BSL
p-lsopropyltoluene [e]	1	- 33	}	3	1.00E-03	- 5.00	E+00	4.50E-04	-	4.50E-04	MW-14S (10 - 15)	4.50E-04	max	4.5E-02	n	8.87E-02	NC	3.73E-01	NC	no	BSL	no	BSL	no	BSL
Methylene Chloride	1	- 33	}	3	5.00E-03	- 2.50	E+01	5.80E-04	-	5.80E-04	MW-19S (10 - 20)	5.80E-04	max	1.1E-02	n	4.71E-01	NC	1.98E+00	NC	no	BSL	no	BSL	no	BSL
Naphthalene	5	- 33	,	15	1.00E-03	- 5.00	E+00	5.30E-04	-	1.14E+00	HPT-32 (9 - 11)	2.65E-01	UCL	1.7E-04	C**	4.59E-03	CA	2.01E-02	CA	YES	ASL	YES	ASL	YES	ASL
n-Propylbenzene	1	- 33	}	3	1.00E-03	- 5.00	E+00	2.40E-04	-	2.40E-04	HPT-34 (11 - 13)	2.40E-04	max	6.6E-02	n	2.43E-01	NC	1.02E+00	NC	no	BSL	no	BSL	no	BSL
Toluene	6	- 33	,	18	1.00E-03	- 5.00	E+00	1.50E-04	-	7.30E-04	HPT-34 (11 - 13)	5.74E-04	UCL	1.1E-01	n	1.92E+00	NC	8.07E+00	NC	no	BSL	no	BSL	no	BSL
Trichloroethene	17	- 33	;	52	1.00E-03	- 2.00)E-01	3.60E-04	-	2.61E+02	HPT-24 (12 - 14)	5.37E+01	UCL	2.8E-04	n	5.18E-04	NC	2.18E-03	NC	YES	ASL	YES	ASL	YES	ASL
1,2,4-Trimethylbenzene	3	- 33	}	9	1.00E-03	- 5.00	E+00	4.60E-04	-	2.88E-02	HPT-32 (9 - 11)	2.88E-02	max	5.6E-03	n	2.48E-02	NC	1.04E-01	NC	YES	ASL	YES	ASL	no	BSL
1,3,5-Trimethylbenzene	1	- 33	}	3	1.00E-03	- 5.00	E+00	4.20E-04	-	4.20E-04	HPT-34 (11 - 13)	4.20E-04	max	6.0E-03	n	1.75E-02	NC	7.33E-02	NC	no	BSL	no	BSL	no	BSL
Vinyl Chloride	15	- 33	. 4	46	1.00E-03	- 5.00	E+00	3.00E-04	-	4.62E+00	HPT-33 (8 - 10)	1.02E+00	UCL	1.9E-05	С	1.47E-04	CA	2.45E-03	CA	YES	ASL	YES	ASL	YES	ASL
m-,p-Xylene	3	- 33	}	9	2.00E-03	- 1.00	E+01	5.50E-04	-	2.42E-03	MW-19S (10 - 20)	2.42E-03	max	1.9E-02	n	3.55E-02	NC	1.49E-01	NC	no	BSL	no	BSL	no	BSL
o-Xylene	4	- 33	•	12	1.00E-03	- 5.00	E+00	2.10E-04	-	2.17E-03	MW-19S (10 - 20)	2.17E-03	max	1.9E-02	n	4.92E-02	NC	2.07E-01	NC	no	BSL	no	BSL	no	BSL
Total Inorganics											, ,														
Iron	1	- 1	1	00	_	-	_	5.10E+00	-	5.10E+00	MW-105S (13.5 - 23.5)	5.10E+00	max	1.4E+00	n	NA		NA		YES	ASL	no	NSL	no	NSL
Manganese	1	- 1	1	00	_	-	_	2.10E-02	-	2.10E-02	MW-105S (13.5 - 23.5)	2.10E-02	max	4.3E-02	n	NA		NA		no	BSL	no	NSL	no	NSL
Dissolved Inorganics											,														
Iron	1	- 1	1	00	_	-	_	8.20E-01	-	8.20E-01	MW-105S (13.5 - 23.5)	8.20E-01	max	1.4E+00	n	NA		NA		no	BSL	no	NSL	no	NSL
Manganese	1	- 1	1	00	_	-	_	1.30E-02	-	1.30E-02	MW-105S (13.5 - 23.5)	1.30E-02	max	4.3E-02	n	NA		NA		no	BSL	no	NSL	no	NSL

Not available or not applicable.

% Percen

* Non-cancer screening values is less than 100× the cancer screening level.

** Non-cancer screening value is less than 10× the cancer screening level.

c Cancer effect.

Myrtle Beach, South Carolina

COPC Constituent of potential concern.

FOD Frequency of detection.

mg/L Milligram per liter.

n Non-cancer based screening values.

NA Not available or not applicable.

[a] Only constituents of potential concern are presented.

The exposure point concentration (EPC) was the lower concentration of either the upper confidence level on the mean (UCL) or the maximum concentration, where the UCL was incalculable.

The UCLs were calculated using ProUCL version 5.1.00 (USEPA 2016a). The UCL used is the one recommended by ProUCL, unless a greater than 95% UCL was recommended, in which case the 95% UCL was selected.

EPCs marked with "max" are based on the maximum detected concentration.

The direct contact screening values reflect the United States Environmental Protection Agency (USEPA) tapwater Regional Screening Levels (RSLs) (USEPA 2018a).

The USEPA Vapor Intrusion Screening Levels (VISLs) are presented (USEPA 2018b). The USEPA VISLs reflect an excess lifetime cancer risk (ELCR) of 1×10-6 for constituents with cancer based endpoints and an HI of 0.1 for non-cancer endpoints.

[d] A constituent with a maximum or exposure point concentration above the screening level (ASL) was identified as a COPC. A constituent with a maximum or exposure point concentration below the Standard (BSL) was not identified as a COPC.

Constituents that are not volatile or do not have inhalation toxicity values (no screening levels [NSL]) were not identified as COPCs.

[e] The screening level for cumene was used as a surrogate.

AVX MB_HHRA Tables

Table 12
Selection of Constituents of Potential Concern for Groundwater to a Depth of Less than or Equal to 25 Feet
Human Health Risk Assessment
AVX Corporation

	Freque	ncy of Detecti	on	Detec	tion Limits	Detected Co	ncentrations						Screening I	Levels I	[c]				ls Constitue	nt a COPC?	d1	
								Location of Maximum	Exposure P	oint					Vapor Intr	usion -				ntrusion -		Intrusion -
	Number of	Number o	f % FOD	Minimum	- Maximum	Minimum -	Maximum	Concentration	Concentration	on [b]	Tapwa	ater	Reside	ntial	Indust	rial	Тар	water	Resi	dential	Ind	lustrial
Constituent [a]	Detections	Samples		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(Depth Interval in Feet)	(mg/L)		(mg/L)	[basis]	(mg/L)	[basis]	(mg/L)	[basis]	(YES, no)	Rationale	(YES, no)	Rationale	(YES, no) Rationale
Volatile Organic Compounds																						
Acetone	14	- 90	16	2.50E-02	- 1.25E+02	1.21E-03 -	3.20E-02	DPW-3SD (20 - 30 40 - 45)	7.92E-03	UCL	1.4E+00	n	2.25E+03	NC	9.45E+03	NC	no	BSL	no	BSL	no	BSL
Benzene	14	- 90	16	1.00E-03	- 5.00E+00	1.20E-04 -	2.06E-03	MW-19S (10 - 20)	6.32E-04	UCL	4.6E-04	C**	1.59E-03	CA	6.93E-03	CA	YES	ASL	YES	ASL	no	BSL
2-Butanone	3	- 90	3	5.00E-03	- 1.25E+02	9.40E-04 -	4.39E-03	DPW-3SD (20 - 30 40 - 45)	4.39E-03	max	5.6E-01	n	2.24E+02	NC	9.41E+02	NC	no	BSL	no	BSL	no	BSL
tert-Butylbenzene	4	- 90	4	1.00E-03	- 5.00E+00	1.60E-04 -	1.52E-03	PW-1S (Assume 15-25)	1.52E-03	max	6.9E-02	n	NA		NA		no	BSL	no	NSL	no	NSL
Carbon Disulfide	11	- 82	13	1.00E-03	- 5.00E+00	4.50E-04 -	3.50E-02	DPW-4SD (19.5 - 29.5 29.6 - 44.5)	1.11E-03	UCL	8.1E-02	n	1.24E-01	NC	5.21E-01	NC	no	BSL	no	BSL	no	BSL
Chloroethane	2	- 90	2	1.00E-03	- 5.00E+00	4.60E-04 -	2.27E-03	PW-1S (Assume 15-25)	2.27E-03	max	2.1E+00	n	2.30E+00	NC	9.65E+00	NC	no	BSL	no	BSL	no	BSL
1,1-Dichloroethane	42	- 90	47	1.00E-03	- 5.00E+00	1.20E-04 -	2.10E+00	HPT-24 (12 - 14)	1.88E-01	UCL	2.8E-03	С	7.64E-03	CA	3.34E-02	CA	YES	ASL	YES	ASL	YES	ASL
1,1-Dichloroethene	28	- 90	31	1.00E-03	- 5.00E+00	2.50E-04 -	1.95E+00	HPT-24 (12 - 14)	1.77E-01	UCL	2.8E-02	n	1.95E-02	NC	8.21E-02	NC	YES	ASL	YES	ASL	YES	ASL
cis-1,2-Dichloroethene	72	- 90	80	1.00E-03	- 1.60E-01	2.20E-04 -	1.09E+02	HPT-33 (14 - 16)	9.21E+00	UCL	3.6E-03	n	NA		NA		YES	ASL	no	NSL	no	NSL
trans-1,2-Dichloroethene	24	- 90	27	1.00E-03	- 5.00E+00	1.40E-04 -	1.42E-01	HPT-04 (16 - 18)	1.21E-02	UCL	3.6E-02	n	NA		NA		YES	ASL	no	NSL	no	NSL
Ethylbenzene	5	- 90	6	1.00E-03	- 5.00E+00	2.20E-04 -	1.79E-03	MW-19S (10 - 20)	4.68E-04	UCL	1.5E-03	C*	3.49E-03	CA	1.52E-02	CA	YES	ASL	no	BSL	no	BSL
Isopropylbenzene	1	- 90	1	1.00E-03	- 5.00E+00	5.60E-04 -	5.60E-04	HPT-34 (11 - 13)	5.60E-04	max	4.5E-02	n	8.87E-02	NC	3.73E-01	NC	no	BSL	no	BSL	no	BSL
p-Isopropyltoluene [e]	2	- 90	2	1.00E-03	- 5.00E+00	1.60E-04 -	4.50E-04	MW-14S (10 - 15)	4.50E-04	max	4.5E-02	n	8.87E-02	NC	3.73E-01	NC	no	BSL	no	BSL	no	BSL
Methylene Chloride	1	- 90	1	5.00E-03	- 2.50E+01	5.80E-04 -	5.80E-04	MW-19S (10 - 20)	5.80E-04	max	1.1E-02	n	4.71E-01	NC	1.98E+00	NC	no	BSL	no	BSL	no	BSL
Methyl tert-butyl ether	4	- 90	4	1.00E-03	- 5.00E+00	1.30E-04 -	1.02E-03	HPT-28 (24 - 26)	1.02E-03	max	1.4E-02	C*	4.50E-01	CA	1.97E+00	CA	no	BSL	no	BSL	no	BSL
Naphthalene	6	- 90	7	1.00E-03	- 5.00E+00	5.30E-04 -	1.14E+00	HPT-32 (9 - 11)	8.32E-02	UCL	1.7E-04	C**	4.59E-03	CA	2.01E-02	CA	YES	ASL	YES	ASL	YES	ASL
n-Propylbenzene	2	- 90	2	1.00E-03	- 5.00E+00	2.40E-04 -	2.90E-04	HPT-28 (24 - 26)	2.90E-04	max	6.6E-02	n	2.43E-01	NC	1.02E+00	NC	no	BSL	no	BSL	no	BSL
Toluene	16	- 90	18	1.00E-03	- 5.00E+00	1.50E-04 -	3.33E-02	DPW-5SD (19 - 24 31 - 41)	3.23E-03	UCL	1.1E-01	n	1.92E+00	NC	8.07E+00	NC	no	BSL	no	BSL	no	BSL
1,1,1-Trichloroethane	2	- 90	2	1.00E-03	- 5.00E+00	4.91E-02 -	6.12E-02	DPW-5SD (19 - 24 31 - 41)	6.12E-02	max	8.0E-01	n	7.42E-01	NC	3.11E+00	NC	no	BSL	no	BSL	no	BSL
Trichloroethene	65	- 90	72	1.00E-03	- 2.00E-01	2.30E-04 -	2.61E+02	HPT-24 (12 - 14)	2.15E+01	UCL	2.8E-04	n	5.18E-04	NC	2.18E-03	NC	YES	ASL	YES	ASL	YES	ASL
1.2.4-Trimethylbenzene	_	- 90	6	1.00E-03	- 5.00E+00	1.10E-04 -	2.88E-02	HPT-32 (9 - 11)			5.6E-03	n	2.48E-02	NC	1.04E-01	NC	YES	ASL	YES	ASL	no	BSL
1.3.5-Trimethylbenzene	1	- 90	1	1.00E-03	- 5.00E+00	4.20E-04 -	4.20E-04	HPT-34 (11 - 13)	4.20E-04		6.0E-03	n	1.75E-02	NC	7.33E-02	NC	no	BSL	no	BSL	no	BSL
Vinyl Chloride	59	- 90	66	1.00E-03	- 5.00E+00	2.50E-04 -	4.62E+00	HPT-33 (8 - 10)			1.9E-05	C	1.47E-04	CA	2.45E-03	CA	YES	ASL	YES	ASL	YES	ASL
m-,p-Xylene	8	- 90	9	2.00E-03	- 1.00E+01	1.30E-04 -	2.42E-03	MW-19S (10 - 20)			1.9E-02	n	3.55E-02	NC	1.49E-01	NC	no	BSL	no	BSL	no	BSL
o-Xylene	6	- 90	7	1.00E-03	- 5.00E+00	1.10E-04 -	2.17E-03	MW-19S (10 - 20)			1.9E-02	n	4.92E-02	NC	2.07E-01	NC	no	BSL	no	BSL	no	BSL
Total Inorganics	· ·	50	•	1.002 00	0.002.00	1.102 04	2.17 = 00	100 (10 20)	7.272 04	OOL	1.02 02		4.02L 02	110	2.07 = 01	110	110	DOL	110	DOL	110	DOL
Iron	1	- 1	100	_		5.10E+00 -	5.10E+00	MW-105S (13.5 - 23.5)	5.10E+00	max	1.4E+00	n	NA		NA		YES	ASL	no	NSL	no	NSL
Manganese	1	- 1	100	_		2.10E-02 -	2.10E-02	MW-105S (13.5 - 23.5)	2.10E-02		4.3E-02	n	NA		NA		no	BSL	no	NSL	no	NSL
Dissolved Inorganics	'	'	100	_	_	Z.10L-0Z	Z. 10L-02	10100 (10.0 - 20.0)	2.10L-02	IIIdA	∓.UL-UZ	11	INA		INA		110	DOL	110	NOL	110	NOL
Iron	1	_ 1	100	_		8.20E-01 -	8.20E-01	MW-105S (13.5 - 23.5)	8.20E-01	max	1.4E+00	n	NA		NA		no	BSL	no	NSL	no	NSL
Manganese	1	- i	100	_		1.30E-02 -	1.30E-02	MW-105S (13.5 - 23.5)	1.30E-02		4.3E-02	n	NA		NA		no	BSL	no	NSL	no	NSL
Manganese	'	'	100	_	_	1.00L-02 -	1.00L-02	10100 (10.0 - 20.0)	1.000-02	παλ	7.UL-UZ	"	INA		INA		110	DOL	110	NOL	110	NOL

Not available or not applicable.

% Percent.

Non-cancer screening values is less than 100x the cancer screening level.

** Non-cancer screening values is less than 10x the cancer screening level.

c Cancer effect.

Myrtle Beach, South Carolina

COPC Constituent of potential concern.

FOD Frequency of detection.

mg/L Milligram per liter.

n Non-cancer based screening values.

NA Not available or not applicable.

[a] Only constituents of potential concern are presented.

[b] The exposure point concentration (EPC) was the lower concentration of either the upper confidence level on the mean (UCL) or the maximum concentration, where the UCL was incalculable.

The UCLs were calculated using ProUCL version 5.1.00 (USEPA 2016a). The UCL used is the one recommended by ProUCL, unless a greater than 95% UCL was recommended, in which case the 95% UCL was selected.

EPCs marked with "max" are based on the maximum detected concentration.

[c] The direct contact screening values reflect the United States Environmental Protection Agency (USEPA) tapwater Regional Screening Levels (RSLs) (USEPA 2018a).

The USEPA Vapor Intrusion Screening Levels (VISLs) are presented (USEPA 2018b). The USEPA VISLs reflect an excess lifetime cancer risk (ELCR) of 1×10-6 for constituents with cancer based endpoints and an HI of 0.1 for non-cancer endpoints.

[d] A constituent with a maximum or exposure point concentration above the Standard (ASL) was identified as a COPC. A constituent with a maximum or exposure point concentration below the Standard (BSL) was not identified as a COPC.

Constituents that are not volatile or do not have inhalation toxicity values (no screening levels [NSL]) were not identified as COPCs.

[e] The screening level for cumene was used as a surrogate.

AVX MB_HHRA Tables 1/1

				onstituent c	of Potential Co	oncern (COF	PC)?										Exposure Po	int Concentra	tion [b]						
	Surface Soil	Sc	oil			Grour	dwater	Groun	dwater	Sui	rface Soil			S	Soil										
	(0-2 ft)	(0-1	0 ft)	All Grou	ındwater	(<15	Feet)	(<25	Feet)		(0-2 ft)			(0-	10 ft)		All C	Groundwater		Groun	dwater (<15 Fe	et)	Grou	ndwate	er (<25 Feet)
Constituent [a]	Direct Contact	Direct Contact	Leaching	Direct Contact	Vapor Intrusion	Direct Contact	Vapor Intrusion	Direct Contact	Vapor Intrusion	Direct Contact	Le	aching	Dire Cont		Leachi	ng	Direct Contact	Vapor In	trusion	Direct Contact	Vapor In	trusion	Direc Conta		Vapor Intrus
	(YES/no)	(YES/no)	(YES/no)	(YES/no)	(YES/no)	(YES/no)	(YES/no)	(YES/no)	(YES/no)	(mg/kg)	(n	ng/kg)	(mg/	kg)	(mg/k	g)	(mg/L)	(mg	/L)	(mg/L)	(mg	/L)	(mg/L	.)	(mg/L)
/olatile Organic Compour	do																								
Acetone	no	no	YES	no	no	no	no	no	no		2.61E	-02 UC	_		2.49E-02	UCL	_								
Benzene	no	no	YES	YES	YES	YES	YES	YES	YES	_	2.46E				2.49E-02 2.98E-03			JCL 5.03E-04	UCL	1.06E-03	UCL 1.06E-03	3 UCL	6.32E-04	UCL	6.32E-04 L
P-Butanone	no	no	YES	no	no	no	no	no	no	_	1.74E		_		1.93E-03		5.03E-04 C	JCL 5.03E-02	UCL	1.00E-03	UCL 1.00E-0	3 UCL	0.326-04	UCL	0.32E-04
-Butylbenzene	no	no	YES	no	no	no	no	no	no	_	1.745	-02 00			1.93E+00		_	_		_	_		_		_
ec-Butvlbenzene	no	no	YES	no	no	no	no	no	no	_			_		2.83E-02		_	_		_	_		_		_
Carbon Tetrachloride	no	no	YES	no	no	no	no	no	no	_	8.41E	-03 ma			2.93E-03		_	_		_	_		_		_
.1-Dichloroethane	no	YES	YES	YES	YES	YES	YES	YES	YES	_	4.49E		-	UCL		UCL		JCL 1.20E-01	UCL		UCL 4.29E-0 ⁻	1 UCL	1.88E-01	UCL	1.88E-01 L
.1-Dichloroethene	no	YES	YES	YES	YES	YES	YES	YES	YES	_	4.32E							JCL 1.16E-01			max 1.95E+0			UCL	1.77E-01 L
is-1.2-Dichloroethene	YES	YES	YES	YES	no	YES	no	YES	no	1.49E-02 U					1.25E+01		8.71E+01 L		OOL		UCL –	o max	9.21E+00		-
rans-1,2-Dichloroethene	no	no	YES	YES	no	no	no	YES	no	1.49L-02 UV	1.23E			I UCL	1.89E-02		1.04E-02 L			1.04L101			1.21E-02		_
thylbenzene	no	YES	YES	YES	no	YES	no	YES	no	_	1.25E		-	2 UCL				JCL –			max –		4.68E-04	UCL	_
lexachlorobutadiene	no	no	no	YES	YES	no	no	no	no	_	1.232		_ 1.10L-02	. 001	- 1.10L-02	OOL		nax 7.70E-04	max	1.73L-03	- IIIax –			OOL	
sopropylbenzene	no	no	YES	no	no	no	no	no	no	_	8.60E				5.04E-03	UCL	7.70L-04 II	110X 7.70L-0-	IIIAX				_		
o-Isopropyltoluene	no	no	YES	no	no	no	no	no	no	_	4.56E				7.49E-03		_			_	_		_		_
I-Methyl-2-pentanone	no	no	YES	no	no	no	no	no	no	_	2.90E		- '		2.90E+00		_								_
Methyl Acetate	no	no	YES	no	no	no	no	no	no	_	6.10E		=		6.10E-01	max							_		_
Methylene Chloride	no	no	YES	no	no	no	no	no	no	_	4.19E		-		3.54E-02		_			_	_		_		_
Naphthalene	no	no	YES	YES	YES	YES	YES	YES	YES	_	8.62E				6.02E-03			JCL 4.87E-02	UCL	2.65E-01	UCL 2.65E-0 ⁻	1 UCI	8.32E-02	UCL	8.32E-02 L
n-Propylbenzene	no	no	YES	no	no	no	no	no	no	_	8.03E				6.51E-03			JOL 4.07L-02	. OOL	Z.03L-01	OOL 2.00L-0	I OOL	0.52L-02	OOL	0.52L-02 C
Tetrachloroethene	YES	YES	YES	no	no	no	no	no	no	2.14E-03 U				LICI	4.47E-01		_	_		_			_		_
Foluene	no	no	YES	no	no	no	no	no	no	2.14L-03 OV	1.82E			UUL	4.33E+00		_	_		_	_		_		_
1,1,1-Trichloroethane	no	YES	YES	no	no	no	no	no	no	_	9.62E			1 1101			_	_		_	_		_		_
Frichloroethene	YES	YES	YES	YES	YES	YES	YES	YES	YES	1.27E+02 U								JCL 1.42E+0	1 UCL	5.37E+01	UCL 5.37E+0	1 UCL	2.15E+01	UCL	2.15E+01 L
Frichlorofluoromethane	no	no	YES	no	no	no	no	no	no	1.272.02 0	2.16E			2 OOL	2.00E-03		1. 4 2L.01 C	OL 1.42L10	I OOL	J.57 L 101	001 0.071.0	1 OOL	2.132.01	OOL	2.132.101
1,2,4-Trimethylbenzene	no	no	YES	YES	YES	YES	YES	YES	YES	_	1.53E				6.96E-03			JCL 5.22E-04	UCL	2.88E-02	max 2.88E-02	2 max	2.02E-03	UCL	2.02E-03 L
1,3,5-Trimethylbenzene	no	no	YES	no	no	no	no	no	no	_	3.05E				1.18E-01	UCL	J.22L-04 C	JOL 3.22L-0-	UCL	2.00L-02	111ax 2.00L-02	2 IIIax	2.02L-03	UCL	2.02L-03 C
/inyl Chloride	YES	YES	YES	YES	YES	YES	YES	YES	YES	7.82E-03 U				ווכו			1.06E+00 L	JCL 1.06E+0	UCL	1.02E+00	UCL 1.02E+0	0 UCL	5.93E-01	UCL	5.93E-01 L
n-,p-Xylene	no	no	YES	no	no	no	no	no	no	7.02E-03 U	6.78E			. JCL	3.19E-02			, JL 1.00L FO	, 00L	-	-	U JUL	J.JJL-01	UUL	J.JJL-01 C
-Xylene	no	no	YES	no	no	no	no	no	no	_	3.05E				2.10E-02	UCL	_	_		_	_		_		_
(ylenes (total)	no	no	YES	no	no	no	no	no	no	_	3.03E	J2 UU			1.68E-02		_	_		_	_		_		_
otal Inorganics	110	110	120	110	110	110	110	110	110	_	_		_		1.00L-02	UUL	_	_		_			_		_
ron	no	no	no	YES	no	YES	no	YES	no	_	_		_		_		1.70E+01 n	nax –			max –		5.10E+00	max	_
Manganese	no	no	no	YES	no	no	no	no	no	_	_		_		_			nax – nax –		5.10E+00			J. 10L 100	шах	_
Dissolved Inorganics	110	110	110	123	110	110	110	110	110	_	_		_		_			–		_	_		_		_
ron	no	no	no	YES	no	no	no	no	no						_		- 1.60E+01 n	nax –		_	_		_		_
/langanese	no	no	no	YES	no	no	no	no	no	_	_		_		_			nax – nax –		_	_		_		_
anyanese	110	110	110	IES	110	110	110	110	110	_	_		_		_		4.00E-01 I	iiax –		_	_		_		_

avg ft mg/L UCL Feet. max Maximum.

The EPC for lead is the arithmetic average.

Only detected constituents of potential concern are presented.

Not a constituent of potential concern in this medium.

mg/kg Milligram per kilogram.

Milligram per liter. Upper confidence level.

The exposure point concentration was the lower concentration of either the 95 percent (%) upper confidence level (UCL) or the maximum concentration (max), where the UCL was incalculable.

The UCLs were calculated using ProUCL version 5.1.00 (USEPA 2016a). The UCL used is the one recommended by ProUCL, unless a greater than 95% UCL was recommended, in which case the 95% UCL was selected.

AVX MB_HHRA Tables 1/1

[[]a] [b]

Table 14
Receptor Exposure Parameters
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

									Resident							Sit	e	Constru	iction
Symbol	Units		For Co	onstituents	with a Mu	itagenic Mo	ode of Acti	on		For Constitue	nts with a Non-	Mutagenic Mode	of Action			Wor	ker	Work	ker
, i									t					Age-Ave	raged				
		0-2 Yea	irs	2-6 Ye	ars	6-16 Ye	ears	16-26 Y	ears	0 to 6 y	ears	6 to 26 y	ears	0 to 26 y	years	Value	[ref]	Value	[ref]
		Value	[ref]	Value	[ref]	Value	[ref]	Value	[ref]	Value	[ref]	Value	[ref]	Value	[ref]				
ΔΤο	dave	25 550	[1 2 2]	25 550	[1 2 2]	25 550	[1 2 a]	25 550	[1 2 2]	25 550	[1 2 a]	25 550	[1 2 a]	25 550	[1 2 2]	25 550	[1 2 2]	25 550	[1,2,a]
	,											•		•	[1,2,4]	,			[1,2,a] [1,2,a]
	,															•			[1,2,a] [1,2]
	3		[1,2]		[1,4]		[1, <u>2]</u> [1,2]	350	[1,2]				[1,2] [1 2]		[1 2]		[1,4]		ر ۱,۷] PJ [b]
	, ,		[1,2]	1	[1,2]		[1,2] [5]								[1,2]			100	[4]
	,	_		3	[5] [5]		[5]	10	[5] [5]	· ·	[1,2]		[1,2]	20		_	[1,2]	<u>'</u>	[4]
ADAI	uniticss	10	[o]	3	[0]	J	اما	•	راح										
FFsc	days/week	_		_		_		_		_		_		_		_		5	PJ [b]
	,	_		_		_		_				_		_		_		•	PJ [b]
LD30	WCCR3																	20	1 0 [6]
IFMsi	vears	_		_		_		_		_		_		72	[7]	_		_	
	•	24	[2]	24	[2]	24	[2]	24	[2]		[2]	24	[2]		ر ب _ا	8	[2]	8	[2]
	,		[-]		[-]		[-]		[-]		[-]		[-]		. 0	-	[-]	-	[-]
O.	day/noui	0.012		0.0 12		0.012		0.012		0.012		0.012		0.0 12		0.012		0.0 12	
IFso	mg-vr/kg/day	_		_		_		_		_		_		36 750	[7]	_		_	
		_		_		_		_		_		_							
	0, 0,	200	[2.3]	200	[2.3]	100	[2.3]	100	[2.3]	200	[2.3]	100	[2.3]	-	1.1	100	[2.4]	330	[4]
FI	unitless	1	[=,0]	1	[=,0]	1	[=,0]	1	[=,0]	1	[=,0]	1	[=,0]	1		1	[-, .]	1	1.1
IFsd	mg-vr/kg/dav	_		_		_		_		_		_		103.390	[7]	_		_	
IFMsd		_		_		_		_		_		_							
SSAs	cm ²	2,373	[2]	2,373	[2]	6,032	[2]	6,032	[2]	2,373	[2]	6,032	[2]	_		3,527	[2]	3,527	[2]
SAR	mg/cm²/day	0.2	[2,4]	0.2	[2,4]	0.07	[2,4]	0.07	[2,4]	0.2	[2,4]	0.07	[2,4]	_		0.12	[2,6]	0.3	[6,c]
	ATC ATnc BW EF ED ADAF EFsc EDsc IFMsi ET CF IFso IFMso IRs FI IFsd IFMsd SSAs	ATC days ATnc days BW kg EF days/year ED years ADAF unitless EFsc days/week EDsc weeks IFMsi years ET hour/day CF day/hour IFso mg-yr/kg/day IFMso mg-yr/kg/day IRs mg/day FI unitless IFsd mg-yr/kg/day IFsd mg-yr/kg/day IFMsd mg-yr/kg/day IFMsd mg-yr/kg/day SSAs cm²	ATC days 25,550 ATnc days 730 BW kg 15 EF days/year 350 ED years 2 ADAF unitless 10 EFsc days/week — EDsc weeks — IFMsi years — ET hour/day 24 CF day/hour 0.042 IFso mg-yr/kg/day — IFMso mg-yr/kg/day — IRs mg/day 200 FI unitless 1 IFsd mg-yr/kg/day — IFsd mg-yr/	O-2 Years Value	ATc days 25,550 [1,2,a] 25,550 ATnc days 730 [1,2,a] 1,460 BW kg 15 [1,2] 15 EF days/year 350 [1,2] 350 ED years 2 [5] 4 ADAF unitless 10 [5] 3 EFsc days/week -	ATC days 25,550 1,2,a 25,550 1,2,a ATnc days 730 1,2,a 1,460 1,2,a BW kg 15 1,2 350 1,2 EF days/year 350 1,2 350 1,2 ED years 2 5 4 5 ADAF unitless 10 5 3 5 5 5 5 5 5 5 5	ATC days 25,550 [1,2,a] 25,550 [1,2,a] 25,550 ATnc days 730 [1,2,a] 1,460 [1,2,a] 3,650 BW kg 15 [1,2] 15 [1,2] 80 EF days/year 350 [1,2] 350 [1,2] 350 ED years 2 [5] 4 [5] 10 ADAF unitless 10 [5] 3 [5] 3 EFsc days/week -	Child / Youth	Note	Symbol Units	Child / Youth Child / Yout	Note	Value Child Vault Child Child Vault Child Chil	Symbol Units	Symbol Units For Constituents with a Mutagenic Mode of Action Adult Child Child	Symbol Units	Value Child Vouth Child Chil	Value Constituents with a Mutagenic Mode of Action For Constituents with a Non-Mutagenic Mode of Action Collid / Youth Collid / Yout	Symbol Units

References [ref]:

[1] USEPA 1989 [4] USEPA 2002b [7] USEPA 2018a [2] USEPA 2014 [5] USEPA 2005b

[2] USEPA 2014 [5] USEPA 2005b [3] USEPA 2011a [6] USEPA 2004

[a] The averaging time for cancer risk is the expected lifespan of 70 years, expressed in days.

The averaging time for non-cancer hazard is the total exposure duration (ED), expressed in days.

The construction worker is assumed to work 5 days a week for 26 weeks during one year.

[c] The soil-to-skin adherence factor for the construction worker is based on the 95th weighted percentile adherence factor for construction workers (USEPA 2004).

Not applicable.
 cm²
 Square centimeter.
 mg/day
 Milligram per day.
 PJ
 Professional judgment.

kg Kilogram. USEPA United States Environmental Protection Agency.
mg/cm²/day Milligram per square centimeter per day.

AVX MB_HHRA Tables 1/1

Myrtle Beach, South Carolina

ROUTE-SPECIFIC RISK/HAZARD:

$$D_{A} = \frac{\left[\left(\theta_{as}^{10/3} \times D_{air} \times Ho\right) + \left(\theta_{ws}^{10/3} \times D_{wat}\right)\right]/\theta_{T}^{2}}{\left(\rho_{b} \times Koc \times Foc\right) + \theta_{ws} + \left(\theta_{as} \times Ho\right)}$$

 $EPC_s = MINIMUM [EPCs, C_{sat}] OR = EPCs when C_{sat} is not relevant$

 $C_{sat} = \frac{S}{\rho_b} \times [(Koc \times Foc \times \rho_b) + \theta_{ws} + (Ho \times \theta_{as})]$

C_{sat} is relevant only for organic constituents with melting point below 30°C.

TOTAL CANCER RISK:

ELCR = ELCR_o + ELCR_d + ELCR_i

TOTAL NON-CANCER HAZARD:

 $HI = HQ_0 + HQ_d + HQ_i$

Variable Definitions:

 θ_{as} Air-filled porosity of the soil (unitless) (Table 20).

 θ_T Total soil porosity (unitless) (Table 20).

 θ_{ws} Water-filled porosity of the soil (unitless) (Table 20).

 $\begin{array}{ll} \rho_b & \quad \text{Dry soil bulk density (g/cm}^3\text{) (Table 20)}. \\ \text{ABSd} & \quad \text{Dermal absorption efficiency (unitless)}. \end{array}$

AT_C Averaging time for cancer effects (days) (Table 14).

AT_{NC} Averaging time for non-cancer effects (days) (Table 14).

BW Body weight (kg) (Table 14).

CF Conversion factor 0.042 day/hour.

C_{sat} Constituent saturation limit in soil (mg/kg) (Table 20).

CSF Cancer slope factor for oral (CSFo) or dermal (adjusted to an absorbed dose, CSFa) exposure (kg-day/mg [inverse mg/kg/day]) (Table 23).

D_A Apparent diffusivity in soil (cm²/sec) (Table 20).
D_{air} Constituent diffusivity in air (cm²/sec) (Table 20).
D_{wat} Constituent diffusivity in water (cm²/sec) (Table 20).
ED Exposure duration (years) (Table 14)

ED Exposure duration (years) (Table 14).
EF Exposure frequency (days/year) (Table 14).

ELCR Excess lifetime cancer risk (unitless) from the following pathways: oral (o), dermal (d), and inhalation (i).

EPCs Exposure point concentration in soil (mg/kg).

ET Exposure time (hrs/day) (Table 14).

FI Fraction ingested from area of concern (unitless) (Table 14).
Foc Fraction organic carbon in the soil (unitless) (Table 20).
HI Hazard index for non-cancer effects (unitless); sum of the HQs.

Ho Dimensionless Henry's law constant (unitless); calculated as Ho = H / RT (Table 20).

HQ Hazard quotient for non-cancer effects (unitless) from the following pathways: oral (o), dermal (d), and inhalation (i).

IRs Ingestion rate of soil (mg/day) (Table 14).

IUR Inhalation unit risk (m³/mg) (Table 24).

 $\begin{array}{ll} \mbox{Koc} & \mbox{Organic carbon partition coefficient (cm^3/g = mL/g = L/kg) (Table 20).} \\ \mbox{Q/C}_{vol} & \mbox{Volatile emission flux per unit concentration } [(g/m^2/sec)/(kg/m^3)] (Table 20). \\ \end{array}$

RfC Reference concentration (mg/m³) (Table 22).

RfD Reference dose for oral (RfDo) and dermal (adjusted to an absorbed dose, RfDa), exposure (mg/kg/day) (Table 21).

S Constituent solubility limit in water (mg/L).

SAR Soil-to-skin adherence rate (mg/cm²/day) (Table 14). SSAs Exposed skin surface area for soil contact (cm²) (Table 14).

T Exposure interval (sec) (Table 20).

VF-sl Soil volatilization factor (m³/kg) (Table 20).

cm²	Square centimeter.	m²	Square meter
g	Gram.	m³	Cubic meter.
hr	Hour.	mg	Milligram.
kg	Kilogram.	μg	Microgram.
m	Meter.	sec	Second.

AVX MB_HHRA Tables 1/1

AVX Corporation

Myrtle Beach, South Carolina

ROUTE-SPECIFIC RISK/HAZARD:

$$\frac{\text{Oral:}}{\text{or HQ}_{\text{o}}} = \frac{\text{EPCs} \times \text{FI} \times \text{IRs} \times \text{EF} \times \text{ED} \times \text{RBF}}{(10^6 \text{ mg/kg}) \times \text{BW} \times (\text{AT}_{\text{C}} \text{ or AT}_{\text{NC}}) \times ([\text{1/CSF}_{\text{o}}] \text{ or RfD}_{\text{o}})}$$

$$\frac{\text{Dermal:}}{\text{or HQ}_{d}} = \frac{\text{EPCs} \times \text{SSAs} \times \text{SAR} \times \text{ABSd} \times \text{EF} \times \text{ED}}{(10^{6} \text{ mg/kg}) \times \text{BW} \times (\text{AT}_{C} \text{ or AT}_{NC}) \times ([1/\text{CSF}_{d}] \text{ or RfD}_{d})}$$

$$\frac{\text{Inhalation:}}{\textit{or}\;\mathsf{HQ}_{i}} \quad \overset{\mathsf{ELCR}_{i}}{=} \quad \frac{\mathsf{EPCs}\;\times\;\mathsf{ET}\;\times\;\mathsf{CF}\;\times\;\mathsf{EF}\;\times\;\mathsf{ED}}{(\mathsf{VF-sl}_{\mathsf{cons}})\;\times\;(\;\mathsf{AT}_{\mathsf{C}}\;\;\textit{or}\;\;\mathsf{AT}_{\mathsf{NC}}\;)\;\times\;(\;[1/\mathsf{IUR}\;\times\;10^{\text{-3}}\;\mathsf{mg/\mug}]\;\textit{or}\;\;\mathsf{RfC}\;)}$$

$$VF-sI_{cons} = \frac{Q/C_{sa} \times (1/F_{D}) \times [3.14 \times D_{A} \times T]^{1/2}}{2 \times \rho_{b} \times D_{A} \times (10,000 \text{ cm}^{2}/\text{m}^{2})}$$

$$D_{A} = \frac{[(\theta_{as}^{10/3} \times D_{air} \times Ho) + (\theta_{ws}^{10/3} \times D_{wat})]/\theta_{T}^{2}}{(\rho_{b} \times Koc \times Foc) + \theta_{ws} + (\theta_{as} \times Ho)}$$

$$EPC_s = MINIMUM [EPCs, C_{sat}] OR = EPCs when C_{sat}$$
 is not relevant

$$C_{sat} = \frac{S}{\rho_b} \times [(Koc \times Foc \times \rho_b) + \theta_{ws} + (Ho \times \theta_{as})]$$

C_{sat} is relevant only for organic constituents with melting point below 30°C.

used for volatiles

 $ELCR = ELCR_o + ELCR_d + ELCR_i$ **TOTAL CANCER RISK:**

 $HI = HQ_o + HQ_d + HQ_i$ **TOTAL NON-CANCER HAZARD:**

Variable Definitions:

 θ_{as} Air-filled porosity of the soil (unitless) (Table 20).

VF-sl_{cons} =

Total soil porosity (unitless) (Table 20). θ_{T}

Water-filled porosity of the soil (unitless) (Table 20). $\theta_{\sf ws}$

Dry soil bulk density (g/cm³) (Table 20). ρ_{b} ABSd Dermal absorption efficiency (unitless).

Averaging time for cancer effects (days) (Table 14). AT_{C}

Averaging time for non-cancer effects (days) (Table 14). AT_{NC}

BW Body weight (kg) (Table 14). CF Conversion factor 0.042 day/hour.

Constituent saturation limit in soil (mg/kg) (Table 20). C_{sat}

Cancer slope factor for oral (CSFo) or dermal (adjusted to an absorbed dose, CSFa) exposure (kg-day/mg [inverse mg/kg/day]) **CSF**

(Table 23).

Apparent diffusivity in soil (cm²/sec) (Table 20). D_A D_{air} Constituent diffusivity in air (cm²/sec) (Table 20). Constituent diffusivity in water (cm²/sec) (Table 20). D_{wat}

FD Exposure duration (years) (Table 14). EF Exposure frequency (days/year) (Table 14).

FI CR Excess lifetime cancer risk (unitless) from the following pathways: oral (a), dermal (d), and inhalation (i).

Exposure point concentration in soil (mg/kg) (Table 13). **EPCs**

Exposure time (hrs/day) (Table 14). ET Dispersion correction factor (unitless). F_D

Fraction ingested from area of concern (unitless) (Table 14). FI Foc

Fraction organic carbon in the soil (unitless) (Table 20). HI Hazard index for non-cancer effects (unitless); sum of the HQs.

Dimensionless Henry's law constant (unitless); calculated as Ho = H / RT (Table 20). Но

Hazard quotient for non-cancer effects (unitless) from the following pathways: oral (a), dermal (d), and inhalation (i). HQ

Ingestion rate of soil (mg/day) (Table 14). **IRs** Inhalation unit risk (m³/µg) (Table 24).

IUR Organic carbon partition coefficient (cm³/g = mL/g = L/kg) (Table 20). Koc

Volatile emission flux per unit concentration [(g/m²/sec)/(kg/m³)]. Q/C_{sa}

Relative bioavailability factor; constituent specific; default of 100% (i.e., 1) unless otherwise indicated (unitless). **RBF**

RfC Reference concentration (mg/m3) (Table 22).

Risk and Hazard Equations for Construction Worker Exposure to Soil Human Health Risk Assessment AVX Corporation

RfD Reference dose for oral (RfDo) and dermal (adjusted to an absorbed dose, RfDa), exposure (mg/kg/day) (Table 21).

S Constituent solubility limit in water (mg/L).

SAR Soil-to-skin adherence rate (mg/cm²/day) (Table 14). SSAs Exposed skin surface area for soil contact (cm²) (Table 14).

T Exposure interval (sec).

Myrtle Beach, South Carolina

VF-sl_{cons} Soil volatilization factor (m³/kg) during construction activities (Table 20).

cm ²	Square centimeter.	m²	Square meter.
g	Gram.	m³	Cubic meter.
hr	Hour.	mg	Milligram.
kg	Kilogram.	μg	Microgram.
m	Meter.	sec	Second.

Risk and Hazard Equations for Construction Worker Exposure to Groundwater Human Health Risk Assessment

AVX Corporation Myrtle Beach, South Carolina

ROUTE-SPECIFIC RISK/HAZARD:

Inhalation:

$$\frac{\text{ELCR}_{i}}{or \text{ HQ}_{i}} = \frac{\text{VF-gw}_{\text{trench}} \times \text{EPCgw} \times \text{ETgw} \times \text{CF} \times \text{EF} \times \text{ED}}{(\text{AT}_{C} \text{ or } \text{AT}_{NC}) \times ([1/\text{IUR} \times 10^{-3} \text{ mg/µg}] \text{ or } \text{RfC})}$$

where: VF-g

VF-gw_{trench} = $\frac{H \times D_{air} \times \theta_{as}^{3.33} \times A \times F \times 10^{-3} \times 10^{4} \times 3600}{RT \times L_{d} \times ACH \times V \times \theta_{T}^{2}}$

(VDEQ 2018)

groundwater

does not intersect

trench bottom

 $L_d = L_{gw} - D_{trench}$

Variable Definitions:

 θ_{as} Air-filled porosity of the soil (unitless) (Table 20).

 θ_{T} Total soil porosity (unitless) (Table 20).

A Area of trench (length x width) (m²) (Table 19).

ACH Air changes per hour (h-1) (Table 19).

AT_C Averaging time for cancer effects (days) (Table 14).

AT_{NC} Averaging time for non-cancer effects (days) (Table 14).

CF Conversion factor 0.042 day/hour.

D_{air} Constituent diffusivity in air (cm²/sec) (Table 20).

D_{trench} Depth to trench (cm) (Table 19).

ED Exposure duration (years) (Table 14).

EF Exposure frequency (days/year) (Table 14).

ELCR Excess lifetime cancer risk (unitless) from the following pathways: oral (o), dermal (d), and inhalation (i).

EPCgw Exposure point concentration in groundwater (mg/L) (Table 13). ETgw Exposure time for groundwater contact (hours/day) (Table 14).

F Fraction of trench floor through which contaminant can enter (unitless) (Table 19).

H Henry's law constant (atm-m³/mol) (Table 19).

HI Hazard index for non-cancer effects (unitless); sum of the HQs.

HQ Hazard quotient for non-cancer effects (unitless) from the following pathways: oral (o), dermal (d), and inhalation (i).

IUR Inhalation unit risk (m³/µg) (Table 24).

L_d Distance between trench bottom and groundwater (cm) (Table 19).

L_{gw} Depth to groundwater (cm) (Table 19). RfC Reference concentration (mg/m³) (Table 22).

RT Product of the universal gas constant (R = 8.206 × 10⁻⁵ atm-m³/mol/K) and the relevant Kelvin

temperature (T = 298.15 K); RT = 0.02447 atm-m3/mol (Table 19).

V Volume of trench (m³) (Table 19).

VF-gw_{trench} Volatilization factor in a trench (L/m³) (VDEQ 2018) (Table 19).

atm-m³/mol Atmosphere per cubic meter per mole. m³ Cubic meter. cm Centimeter. mg Milligram. cm² Square centimeter. Microgram. μg Kelvin. Mole. K mol Seconds. Т Liter. m² Square meter.

ROUTE-SPECIFIC RISK/HAZARD:

TOTAL NON-CANCER HAZARD:

 $HI = HQ_0 + HQ_d + HQ_i$

Myrtle Beach, South Carolina

UNIQUE CHEMICAL EVALUATIONS - CARCINOGENIC:

Vinyl Chloride

Trichloroethene

$$\frac{|FSM_{adj}|}{BW_{0.2}} = \frac{EF_{0.2} \times ED_{0.2} \times IRS_{0.2} \times 10}{BW_{0.2}} + \frac{EF_{2.6} \times ED_{2.6} \times IRS_{2.6} \times 3}{BW_{2.6}} + \frac{EF_{6.16} \times ED_{6.16} \times IRS_{6.16} \times 3}{BW_{6.16}} + \frac{EF_{16.26} \times ED_{16.26} \times IRS_{16.26} \times 1}{BW_{16.26}}$$

Dermal:

$$ELCR_{d} = \frac{EPCs \times [(ABSd \times CAF_{o} \times DFS_{adj}) + (ABSd \times MAF_{o} \times DSFM_{adj})] \times CSF_{a}}{(10^{6} \text{ mg/kg}) \times AT_{C}}$$

$$DFS_{adj} = \frac{EF_{c} \times ED_{c} \times SSAs_{c} \times SAR_{c}}{BW_{c}} + \frac{EF_{a} \times ED_{a} \times SSAs_{a} \times SAR_{a}}{BW_{a}}$$

$$DFSM_{adj} = EF_{0.2} \times ED_{0.2} \times SSAs_{0.2} \times SAR_{0.2} \times 10 \qquad EF_{2.6} \times ED_{2.6} \times SSAs_{2.6} \times SAR_{2.6} \times 3 \qquad EF_{6.16} \times ED_{6.16} \times SSAs_{6.16} \times 3 \qquad EF_{16.26} \times ED_{16.26} \times SSAs_{16.26} \times SAR_{16.26} \times SAR_{16.26}$$

$$\frac{\mathsf{DFSM}_{\mathsf{adj}}}{\mathsf{BW}_{02}} = \frac{\mathsf{EF}_{0.2} \times \mathsf{ED}_{0.2} \times \mathsf{SSAs}_{0.2} \times \mathsf{SAR}_{0.2} \times \mathsf{10}}{\mathsf{BW}_{0.2}} + \frac{\mathsf{EF}_{2.6} \times \mathsf{ED}_{2.6} \times \mathsf{SSAs}_{2.6} \times \mathsf{SAR}_{2.6} \times \mathsf{3}}{\mathsf{BW}_{2.6}} + \frac{\mathsf{EF}_{6.16} \times \mathsf{ED}_{6.16} \times \mathsf{SAR}_{6.16} \times \mathsf{3}}{\mathsf{BW}_{6.16}} + \frac{\mathsf{EF}_{16.26} \times \mathsf{ED}_{16.26} \times \mathsf{SAS}_{16.26} \times \mathsf{SAR}_{16.26} \times \mathsf{10}}{\mathsf{BW}_{16.26}} + \frac{\mathsf{EF}_{16.26} \times \mathsf{ED}_{16.26} \times \mathsf{SAR}_{16.26} \times \mathsf{10}}{\mathsf{BW}_{16.26}} + \frac{\mathsf{EF}_{16.26} \times \mathsf{ED}_{16.26} \times \mathsf{ED}_$$

Inhalation:

$$ELCR_{i} = \frac{EPCI \times [(CAF_{i} \times EF \times ED \times E1 \times CF) + ((MAF_{i} \times INHM_{adj})] \times IOR \times (T,000 \mu g/mg)}{VF \times AT_{C}}$$

$$INHM_{adj} = (EF_{0.2} \times ED_{0.2} \times ET_{0.2} \times CF \times 10) + (EF_{2.6} \times ED_{2.6} \times ET_{2.6} \times CF \times 3) + (EF_{6.16} \times ET_{6.16} \times CF \times 3) + (EF_{16.26} \times ED_{16.26} \times ED_{16.26} \times ET_{16.26} \times CF \times 1)$$

EPCi × [(CAF_i × EF × ED × ET × CF) + (MAF_i × INHM_{adi})] × IUR × (1,000 μ g/mg)

EPCi = MINIMUM [EPCs,
$$C_{sat}$$
] OR = EPCs when C_{sat} is not relevant

Risk and Hazard Equations for Exposure to Soil for a Hypothetical Future Resident

Human Health Risk Assessment

AVX Corporation

Myrtle Beach, South Carolina

Variable Definitions:

ABSd Dermal absorption efficiency (unitless). See risk and hazard tables for exposure to soil.

AT_C Averaging time for cancer effects (days) (Table 14).

AT_{NC} Averaging time for noncancer effects (days) (Table 14).

BW Body weight (kg) (Table 14).

 $\begin{array}{ll} \text{CF} & \text{Conversion factor} = 0.042 \ \text{day/hour} \ (\text{Table 14}). \\ \text{C}_{\text{sat}} & \text{Constituent saturation limit in soil } (\text{mg/kg}) \ (\text{Table 20}). \\ \text{CAF}_{i} & \text{Cancer adjustment factor for inhalation} = 0.756 \ (\text{unitless}). \\ \end{array}$

 CAF_o Cancer adjustment factor for oral and dermal = 0.804 (unitless).

CSF Cancer slope factor for oral (CSF_o) or dermal (adjusted to an absorbed dose, CSF_a) exposure (mg/kg/day)⁻¹ (Table 25).

DFS_{adi} Age-averaged soil dermal contact factor (Table 14).

DSFM_{adj} Age-averaged mutagenic soil dermal contact factor (Table 14).

ED Exposure duration (years) (Table 14).
EF Exposure frequency (days/year) (Table 14).
ELCR Excess lifetime cancer risk (unitless).

EPCi Minimium of EPCs and C_{sat}. See risk and hazard tables. EPCs Exposure point concentration in soil (mg/kg) (Table 13).

ET Exposure time (hrs/day) (Table 14).

FI Fraction ingested from area of concern (unitless) (Table 14).

HI Hazard index for non-cancer effects (unitless); sum of the HQs. See risk and hazard tables for exposure to soil.

HQ Hazard quotient for non-cancer effects (unitless). See risk and hazard tables for exposure to soil.

IFS_{adi} Age-averaged soil ingestion factor (Table 14).

$$\begin{split} \text{IFSM}_{\text{adj}} & \quad \text{Age-averaged mutagenic soil ingestion factor (Table 14).} \\ \text{INHM}_{\text{ad}} & \quad \text{Age-averaged muagenic inhalation factor (Table 14).} \end{split}$$

IRS Ingestion rate of soil (mg/day) (Table 14). IUR Inhalation Unit Risk $(\mu g/m^3)^{-1}$ (Table 26).

MAF_i Mutagenic adjustment factor for inhalation = 0.244 (unitless).

MAF_o Mutagenic adjustment factor for oral and dermal = 0.202 (unitless).

RBF Relative bioavailability factor; constituent specific; default of 100% (i.e., 1) unless otherwise indicated (unitless).

RfC Reference concentration (mg/m³) (Table 22).

RfD Reference dose for oral (RfDo) and dermal (adjusted to an absorbed dose, RfDa), exposure (mg/kg/day) (Table 21).

SAR Soil-to-skin adherence rate (mg/cm²/day) (Table 14). SSAs Exposed skin surface area for soil contact (cm²) (Table 7).

VF-sl Volatilization factor for soil (m³/kg) (Table 20).

cm² Square centimeter. m² Square meter. g Gram. m³ Cubic meter. hr Milligram. Hour. mg Kilogram. Microgram. Meter. sec Second. m

			Constitue	nt-Specific Phys	ical Parameters [a]				Volatilization		
Constituent	Molecular Weight (MW) (g/mol)	Melting Point (Tm) (°C)	Henry's Law Constant at Ref. Temp. (H) (atm-m³/mol)	Diffusivity in Air (D _{air}) (cm²/sec)	Enthalpy of Vaporization at Boiling Point (ΔΗ _ν) (cal/mol)	Normal Boiling Point (Tb) (K)	Critical Temperature (Tc) (K)	Enthalpy of Vaporization at Water Temp. [b] (ΔΗ _ν) (cal/mol)	Henry's Law Constant at Water Temp. [b] (H) (atm-m³/mol)	Henry's Law Constant at Water Temp. [b] (Ho) (unitless)	Factor [c] No Exposed Water in a Trench (VF-gw _{trench}) (L/m³)
Volatile Organic Compounds											
Benzene	7.81E+01	5.50E+00	5.55E-03	8.95E-02	7.34E+03	3.53E+02	5.62E+02	8.02E+03	4.28E-03	1.78E-01	3.55E-04
1,1-Dichloroethane	9.90E+01	-9.69E+01	5.62E-03	8.36E-02	6.90E+03	3.31E+02	5.23E+02	7.35E+03	4.43E-03	1.85E-01	3.44E-04
1,1-Dichloroethene	9.69E+01	-1.23E+02	2.61E-02	8.63E-02	6.25E+03	3.05E+02	4.82E+02	6.40E+03	2.12E-02	8.84E-01	1.70E-03
cis-1,2-Dichloroethene	9.69E+01	-8.00E+01	4.08E-03	8.84E-02	7.22E+03	3.33E+02	5.36E+02	7.69E+03	3.18E-03	1.33E-01	2.61E-04
Ethylbenzene	1.06E+02	-9.49E+01	7.88E-03	6.85E-02	8.50E+03	4.09E+02	6.17E+02	1.00E+04	5.69E-03	2.37E-01	3.61E-04
Naphthalene	1.28E+02	8.02E+01	4.40E-04	6.05E-02	1.04E+04	4.91E+02	7.48E+02	1.29E+04	2.90E-04	1.21E-02	1.63E-05
Trichloroethene	1.31E+02	-8.47E+01	9.85E-03	6.87E-02	7.51E+03	3.60E+02	5.71E+02	8.28E+03	7.53E-03	3.14E-01	4.80E-04
1,2,4-Trimethylbenzene	1.20E+02	-4.38E+01	6.16E-03	6.07E-02	9.37E+03	4.42E+02	6.49E+02	1.16E+04	4.23E-03	1.77E-01	2.38E-04
Vinyl Chloride Total Inorganics	6.25E+01	-1.54E+02	2.78E-02	1.07E-01	4.97E+03	2.60E+02	4.25E+02	4.61E+03	2.39E-02	9.98E-01	2.38E-03
Iron	5.58E+01	1.54E+03	NV	NV	NV	NV	NV	NV	NV	NV	_

Mass Transfer Coefficient Parameters

Default input parameters, as presented in the table beneath, were used.

Parameter	Unit	Value	
MWH ₂ 0	g/mol	18.02	Molecular weight of water.
MWO_2	g/mol	32.00	Molecular weight of oxygen.
kL,O ₂	cm/sec	0.002	Liquid-phase mass transfer coefficient of oxygen at 25°C.
kG,H ₂ O	cm/sec	0.833	Gas-phase mass transfer coefficient of water vapor at 25°C.
R	atm-m³/mole-K	0.000082	Ideal gas constant.
Tgw	°C	19.4	Temperature of groundwater (USEPA 2017).
T	K	292.55	Average system absolute temperature.

Trench Model Input Parameters:

Default input parameters, as presented in the table beneath, were used.

Parameter	U	Init	Value					
Α	m	n ²	9.29	Area of trench (length	× width). Assumed to be 10 feet wide and 10 feet long.			
F	uı	nitless	1	Fraction of trench floor	through which contaminant can enter (VDEQ default).			
V	m	1 ³	14.16	Volume of trench (area	a × depth).			
ACH	h ⁻	-1	360	Air changes per hour (width > depth) (VDEQ default).			
D_{Trench}	m	า	1.524	Depth of trench which	is set at 5 feet based on a potential depth for utilities.			
$\theta_{\sf as}$	CI	m³/cm³	0.265	Air-filled porosity in the	vadose zone (default for silty clay) (Site-specific).			
θ_{T}	CI	m³/cm³	0.481		dose zone (default for silty clay) (Site-specific).			
L_d	CI	m	152.4	Distance between the l	bottom of the trench and groundwater (Site-specific).			
-	Not applicable.			cm/sec	Centimeter per second.	m²	Square meter.	
atm-m³/mol	Atmosphere per meter c	cubed per mo	le.	g/mol	Gram per mole.	m ³	Cubic meter.	
				h ⁻¹	Inverse hour.	NV	Not volatile.	
°C	Degrees Celsius.			°K	Degrees Kelvin.			
cal/mol	Calories per mol.			L/m ³	Liter per cubic meter.			
[a] [b] [c]	Enthalpy of vaporization	and Henry's	Law Constant	were adjusted for soil temp	ameters Table from the Regional Screening Level Table (US perature based on USEPA recommended methods (USEPA 2 transment of Environmental Quality trench model (VDEQ 2018).			

Table 20 **Soil Volatilization Factors Human Health Risk Assessment AVX Corporation** Myrtle Beach, South Carolina

				Constituent Sp	ecific Physica	ıl Parameters	[a]									
Constituent	Molecular Weight (MW) (g/mol)	Melting Point (Tm) (°C)	Henry's Law Constant at 25°C (H) (atm-m³/mol)	Diffusivity in Air (D _{air}) (cm²/sec)	Diffusivity in Water (D _{wat}) (cm²/sec)	Partition Coefficient (Koc) (mL/g)	Solubility in Water (S) (mg/L)	Enthalpy of vaporization at boiling point, (ΔH _v) (cal/mol)	Normal Boiling Point (Tb) (K)	Critical Temperature (Tc) (K)	Enthalpy of vaporization at at soil temp. [b] (ΔH_{ν}) (cal/mol)		Saturation Limit in Soil [c] (Csat) (mg/kg)	Apparent Diffusivity (D _A) (cm²/sec)	Soil Volatiliz Passive (VF-sI) (m³/kg)	ation Factor [b] Soil Invasive (VF-sl _{cons}) (m³/kg)
Volatile Organic Compounds																
1,1-Dichloroethane	9.90E+01	-9.69E+01	5.62E-03	8.36E-02	1.06E-05	3.18E+01	5.04E+03	6.90E+03	3.31E+02	5.23E+02	7.35E+03	1.85E-01	1.29E+03	2.26E-03	2.64E+03	5.84E+02
1,1-Dichloroethene	9.69E+01	-1.23E+02	2.61E-02	8.63E-02	1.10E-05	3.18E+01	2.42E+03	6.25E+03	3.05E+02	4.82E+02	6.40E+03	8.84E-01	9.40E+02	7.33E-03	1.46E+03	3.24E+02
cis-1,2-Dichloroethene	9.69E+01	-8.00E+01	4.08E-03	8.84E-02	1.13E-05	3.96E+01	6.41E+03	7.22E+03	3.33E+02	5.36E+02	7.69E+03	1.33E-01	1.67E+03	1.68E-03	3.06E+03	6.77E+02
Ethylbenzene	1.06E+02	-9.49E+01	7.88E-03	6.85E-02	8.46E-06	4.46E+02	1.69E+02	8.50E+03	4.09E+02	6.17E+02	1.00E+04	2.37E-01	1.80E+02	5.56E-04	5.32E+03	1.18E+03
Tetrachloroethene	1.66E+02	-2.23E+01	1.77E-02	5.05E-02	9.46E-06	9.49E+01	2.06E+02	8.29E+03	3.94E+02	6.20E+02	9.46E+03	5.43E-01	9.30E+01	2.28E-03	2.63E+03	5.82E+02
1,1,1-Trichloroethane	1.33E+02	-3.04E+01	1.72E-02	6.48E-02	9.60E-06	4.39E+01	1.29E+03	7.14E+03	3.47E+02	5.45E+02	7.79E+03	5.57E-01	4.50E+02	3.85E-03	2.02E+03	4.48E+02
Trichloroethene	1.31E+02	-8.47E+01	9.85E-03	6.87E-02	1.02E-05	6.07E+01	1.28E+03	7.51E+03	3.60E+02	5.71E+02	8.28E+03	3.14E-01	4.30E+02	2.39E-03	2.57E+03	5.68E+02
Vinyl Chloride	6.25E+01	-1.54E+02	2.78E-02	1.07E-01	1.20E-05	2.17E+01	8.80E+03	4.97E+03	2.60E+02	4.25E+02	4.61E+03	9.98E-01	3.45E+03	1.02E-02	1.24E+03	2.75E+02

Model Input Parameters:

Soil =	SIC	silty clay	Soil type (site-specific).
Ts =	19.4	°C	Average soil temperature (USEPA 2017) (site-specific).
Ts =	292.55	K	Temperature in Kelvin.
Foc =	0.002	unitless	Fraction organic carbon (USEPA 2002b default).
$\rho_b =$	1.38	g/cm³	Soil dry bulk density for silty clay (USEPA 2017).
$\theta_T =$	0.481	unitless	Total soil porosity for silty clay (USEPA 2017).
$\theta_{as} =$	0.265	unitless	Air-filled soil porosity [= $\theta_T - \theta_{ws}$].
$\theta_{ws} =$	0.216	unitless	Water-filled soil porosity for silty clay (USEPA 2017).
$Q/C_{vol} =$	68.18	(g/m²/sec)/(kg/m³)	Volatilization flux per unit concentration under passive conditions (USEPA 2002b default).
$Q/C_{sa} =$	14.31	$(g/m^2/sec)/(kg/m^3)$	Volatilization flux per unit concentration under soil invasive conditions (USEPA 2002b default).
Tres =	8.2E+08	second	Exposure interval for a residential scenario (based on 26 years).
Tcons =	3.2E+07	second	Exposure interval under soil invasive conditions (site-specific).
CD =	365	days	Construction duration in days (site-specific).
$t_c =$	8760	hour	Construction time in hours (site-specific).
F _D =	0.186	unitless	Dispersion Correction Factor (site-specific).

°C atm-m³/mol	Degress Celsius. Atmosphere per cubic meter per mole.	g/mol g/m²/sec	Gram per mole. Gram per meter squared per second.	mg/kg mg/L	Milligram per kilogram. Milligram per liter.
cal/mol	Calorie per mol.	K	Kelvin.	mL/g	Milliliter per gram.
cm²/sec	Centimer squared per second.	kg/m³	Kilogram per cubic meter.		
g/cm²	Gram per cubic centimeter.	m³/kg	Cubic meter per kilogram.		

[a] Constituent-specific parameters were obtained from the Chemical Specific Parameters Table from the Regional Screening Level Table (USEPA 2018a).

Enthalpy of vaporization and Henry's Law Constant were adjusted for soil temperature based on USEPA recommended methods (USEPA 2001). [b]

[c] Csat and VF calculated using equations from USEPA 2002b. See Table .

Csat was calculated for constituents that might potentially be liquid at soil temperature of 30°C (i.e. for constituents whose melting point is less than 30°C).

VF was only calculated for constituents that have a volatilization potential (i.e., molecular weight less than 200 g/mol and Henry's Law Constant greater than 1 x 10⁻⁵ atm-m³/mol).

Table 21
Non-Carcinogenic Toxicity Values for Oral and Dermal Exposure
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

								Subchroi	nic	Chro	onic
	Oral Rf	D (mg	/kg/day) [a]		Adjustment	Dermal RfD (n	ng/kg/day) [b]	Target Site/	Confidence Level/	Target Site/	Confidence Level/
Constituent	Subchronic	[ref]	Chronic	[ref]	Factor [b]	Subchronic	Chronic	Critical Effect	Uncertainty Factor	Critical Effect	Uncertainty Factor
Volatile Organic Compound	ls										
Benzene	1.00E-02	Р	4.00E-03	- 1	1	1.0E-02	4.0E-03	Blood	Medium / 100	Blood	Medium / 300
1,1-Dichloroethane	2.00E+00	Р	2.00E-01	Р	1	2.0E+00	2.0E-01	Kidney	Low / 300	Kidney	Low / 3000
1,1-Dichloroethene	9.00E-03	Н	5.00E-02	- 1	1	9.0E-03	5.0E-02	Liver	NA / 1000	Liver	Medium / 100
cis-1,2-Dichloroethene	2.00E-02	Р	2.00E-03	- 1	1	2.0E-02	2.0E-03	Kidney	Low / 300	Kidney	low / 3000
trans-1,2-Dichloroethene	2.00E-01	Α	2.00E-02	- 1	1	2.0E-01	2.0E-02	Hepatic	NA / 100	Red blood cells	low / 3000
Ethylbenzene	5.00E-02	Р	1.00E-01	- 1	1	5.0E-02	1.0E-01	Liver	Medium / 1000	Hepatic, Urinary	Low / 1000
Naphthalene	6.00E-01	Α	2.00E-02	- 1	1	6.0E-01	2.0E-02	Neurological	NA / 90	Body weight	Low / 3000
Tetrachloroethene	1.00E-01	Н	6.00E-03	- 1	1	1.0E-01	6.0E-03	Neurological	NA / 100	Nervous System	medium / 1000
1,1,1-Trichloroethane	7.00E+00	- 1	2.00E+00	- 1	1	7.0E+00	2.0E+00	Whole body	Low-Medium / 1000	Whole body	Low-Medium / 1000
Trichloroethene	5.00E-04	Α	5.00E-04	- 1	1	5.0E-04	5.0E-04	Developmental/Immunological	NA / 10 to 1000	Heart/Thymus	High / 10
1,2,4-Trimethylbenzene	4.00E-02	- 1	1.00E-02	- 1	1	4.0E-02	1.0E-02	NA	NA / NA	Nervous system	Low / 300
Vinyl Chloride	3.00E-03	С	3.00E-03	- 1	1	3.0E-03	3.0E-03	Liver	Medium / 30	Liver	Medium / 30
Total Inorganics											
Iron	7.00E-01	Ρ	7.00E-01	Ρ	1	7.0E-01	7.0E-01	GI Ttract	NA / 1.5	GI Ttract	NA / 1.5

References [ref]:

A Agency for Toxic Substances Disease Registry (ATSDR 2018).

H United States Environmental Protection Agency (USEPA), Health Effects Summary Table (HEAST) (USEPA 2011b).

USEPA, Integrated Risk Information System (IRIS) (USEPA 2019a).

P USEPA, Provisional Peer Reviewed Toxicity Values (PPRTV) (USEPA 2019b).

S USEPA RSLs user guide (Section 5; USEPA 2018a).

[a] Toxicity values were obtained following USEPA recommended hierarchy (USEPA 2003).

[b] The oral-to-dermal adjustment factor (oral absorption efficiency) as used to calculate the dermal reference dose (RfD) values (USEPA 2004).

RfD (dermal) = RfD (oral) × Adjustment Factor (oral absorption efficiency).

[c] Value for non-diet.

c The chronic value is used.

GI Gastrointestinal.

mg/kg/day Milligram per kilogram per day. NA Not available or applicable.

RfD Reference dose.

Table 22
Non-Carcinogenic Toxicity Values for Inhalation Exposure
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

					Subchroni	ic	Chr	onic
	Inhalatio	on RfC	(mg/m ³) [a]		Target Site/	Confidence Level/	Target Site/	Confidence Level/
Constituent	Subchronic	[ref]	Chronic	[ref]	Critical Effect	Uncertainty Factor	Critical Effect	Uncertainty Factor
Volatile Organic Compounds								
Benzene	8.00E-02	Р	3.00E-02	- 1	Blood	Medium / 100	Blood	Medium / 300
1,1-Dichloroethane	NA		NA		NA	NA / NA	NA	NA / NA
1,1-Dichloroethene	7.93E-02	Α	2.00E-01	- 1	Hepatic	NA / 100	Liver	Medium / 30
cis-1,2-Dichloroethene	NA		NA		NA	NA / NA	NA	NA / NA
trans-1,2-Dichloroethene	7.93E-01	Α	NA		Hepatic	NA / 1000	Lung; Liver	Low / 3000
Ethylbenzene	9.00E+00	Р	1.00E+00	- 1	Ear	Medium / 100	Developmental	Low / 300
Naphthalene	3.00E-03	С	3.00E-03	I	Nervous, Respiratory	Medium / 3000	Nervous, Respiratory	Medium / 3000
Tetrachloroethene	4.07E-02	Α	4.00E-02	I	Neurological	NA / 100	Nervous System	medium / 1000
1,1,1-Trichloroethane	5.00E+00	I	5.00E+00	I	Liver	Medium / 100	Liver	Medium / 100
Trichloroethene	2.15E-03	Α	2.00E-03	I	Developmental/Immunological	NA / 10 to 1000	Thymus/Heart	High / 100
1,2,4-Trimethylbenzene	2.00E-01	I	6.00E-02	I	NA	NA / NA	Nervous system	Low to medium / 300
Vinyl Chloride	7.67E-02	Α	1.00E-01	1	Hepatic	NA / 30	Liver	Medium / 30
Total Inorganics								
Iron	NA		NA		NA	NA / NA	NA	NA / NA

References [ref]:

A Agency for Toxic Substances Disease Registry (ATSDR 2018).

I United States Environmental Protection Agency (USEPA), Integrated Risk Information System (IRIS) (USEPA 2019a).

P USEPA, Provisional Peer Reviewed Toxicity Values (PPRTV) (USEPA 2019b).

[a] Toxicity values were obtained following USEPA recommended hierarchy (USEPA 2003).

c The chronic value is used if available.

mg/m³ Milligram per cubic meter.

NA Not available or not applicable.

RfC Reference concentration.

Table 23
Carcinogenic Toxicity Values for Oral and Dermal Exposure
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Constituent		Oral CSF (mg/kg/day) ⁻¹		Adjustment Factor [b]	Dermal CSF [b] (mg/kg/day) ⁻¹	Mutagen	Tumor Site	Weight of Evidence Classification [c]
Volatile Organic Co	mpounds							
Benzene	[d]	5.50E-02	1	1	5.5E-02		Blood	Α
1,1-Dichloroethane		5.70E-03	С	1	5.7E-03		NA	С
1,1-Dichloroethene		NA		1	NA		NA	С
cis-1,2-Dichloroether	ne	NA		1	NA		NA	1
trans-1,2-Dichloroeth	nene	NA		1	NA		NA	1
Ethylbenzene	[e]	1.10E-02	С	1	1.1E-02		NA	D
Naphthalene		NA		1	NA		NA	С
Tetrachloroethene		2.10E-03	1	1	2.1E-03		Liver	L
1,1,1-Trichloroethane	Э	NA		1	NA		NA	1
Trichloroethene	[f]	4.60E-02	1	1	4.6E-02	M	Kidney, Liver	Н
1,2,4-Trimethylbenze	ene	NA		1	NA		NA	1
Vinyl Chloride	[g]	7.20E-01	1	1	7.2E-01	M	Liver	Α
Total Inorganics								
Iron		NA		1	NA		NA	NA

	References	[ref]	ŀ
--	------------	-------	---

[f]

С	California Environmental Protection Agency (CalEPA), Toxicity Criteria Database (CalEPA 2019).	

United States Environmental Protection Agency (USEPA), Integrated Risk Information System (IRIS) (USEPA 2019a).

- [a] Toxicity values were obtained following USEPA recommended hierarchy (USEPA 2003).
- [b] The oral-to-dermal adjustment factor (oral absorption efficiency) as used to calculate the dermal CSFd values (USEPA 2004).
 - CSF (dermal) = CSF (oral) / Adjustment Factor (oral absorption efficiency)
- [c] The USEPA 1986 hierarchical cancer classification system and the more recent (USEPA 2005a) narrative system were used.

The most up-to-date classification is presented for each constituent.

- 1986 A: Human carcinogen (sufficient evidence of carcinogenicity in humans).
 - C: Possible human carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).
- D: Not classifiable as to human carcinogenicity (inadequate or no evidence).

2005 H: Carcinogenic to humans.

- L: Likely to be carcinogenic to humans.
- I: Inadequate information to assess carcinogenic potential.
- [d] Maximum (most conservative) value of the range of 1.5E-02 to 5.5E-02 (mg/kg/day)-1 presented in the IRIS database.
- [e] The IRIS summary for ethylbenzene states that ethylbenzene is not classifiable as to human carcinogenicity due to the lack of animal bioassays and human studies.
 - Values for adult (site worker and construction worker).
- [g] Values are for adult/child exposure. [Vinyl chloride is a carcinogen by mutagenic mode of action (MOA) but should be assessed using two

different cancer tox values rather than by using the MOA method (USEPA 2005a).]

Not applicable.CSF Cancer slope factor.

(mg/kg/day)⁻¹ Inverse milligram per kilogram per day (risk per unit dose).

NA Not available or not applicable.

Table 24
Carcinogenic Toxicity Values for Inhalation Exposure
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Constituent		Inhalat Unit Risk ((µg/m³) ⁻¹		Mutagen	Tumor Site	Weight of Evidence Classification [b]
Volatile Organic Compo	unds	<u> </u>				
Benzene	[c]	7.80E-06	1		Blood	Α
1,1-Dichloroethane		1.60E-06	С		NA	С
1,1-Dichloroethene		NA			NA	С
cis-1,2-Dichloroethene		NA			NA	I
trans-1,2-Dichloroethene		NA			NA	I
Ethylbenzene	[d]	2.50E-06	С		NA	D
Naphthalene		3.40E-05	С		NA	С
Tetrachloroethene	[e]	2.60E-07	1		Liver	L
1,1,1-Trichloroethane		NA			NA	I
Trichloroethene	[f]	4.10E-06	1	M	Kidney, Liver	Н
1,2,4-Trimethylbenzene		NA			NA	I
Vinyl Chloride	[g]	4.40E-06	1	M	Liver	Α
Total Inorganics						
Iron		NA			NA	NA

References [ref]:

C California Environmental Protection Agency (CalEPA), Toxicity Criteria Database (CalEPA 2019).

I United States Environmental Protection Agency (USEPA), Integrated Risk Information System (IRIS; USEPA 2019a).

[a] Toxicity values were obtained following USEPA recommended hierarchy (USEPA 2003).

[b]

The USEPA 1986 hierarchal cancer classification system and the more recent (USEPA 2005a) narrative system were used. The most up-to-date classification is presented for each constituent.

1986 A: Human carcinogen (sufficient evidence of carcinogenicity in humans).

C: Possible human carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).

D: Not classifiable as to human carcinogenicity (inadequate or no evidence).

2005 H: Carcinogenic to humans.

L: Likely to be carcinogenic to humans.

I: Inadequate information to assess carcinogenic potential.

[c] Maximum (most conservative) value of the range of 1.5E-02 to 5.5E-02 (mg/kg/day)-1 presented in the IRIS database.

[d] The IRIS summary for ethylbenzene states that ethylbenzene is not classifiable as to human carcinogenicity due to the lack of animal bioassays and human studies.

[e] The IRIS summary for naphthalene states that available data are inadequate to establish a causal association between exposure to naphthalene and cancer in humans.

[f] Values for adult (site worker and construction worker).

[g] Values are for adult/child exposure. [Vinyl chloride is a carcinogen by mutagenic mode of action (MOA) but should be assessed using two different cancer toxicity values rather than by using the MOA method (USEPA 2005a).]

Not applicable.

(μg/m³)⁻¹
 Inverse microgram per cubic meter.
 NA
 Not available or not applicable.

Table 25
Dermal Absorption Parameters
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

	Permeability Constant		Non-Steady	State Dermal	Absorption Pa	rameters [c]	DA_2hı	r
ABSd [a]	Kp (cm/hour) [b] Value	2/ []		τ (hour)	t* (hour)	B (unitless)	[d] (L/cm²/eve	ent)
0	1.49E-02	Yes	1	2.88E-01	6.91E-01	5.07E-02	3.74E-05	[2]
0	6.75E-03	Yes	1	3.77E-01	9.04E-01	2.58E-02	1.84E-05	[2]
0	1.17E-02	Yes	1	3.67E-01	8.81E-01	4.43E-02	3.14E-05	[2]
0	1.10E-02	Yes	1	3.67E-01	8.81E-01	4.17E-02	2.95E-05	[2]
0	4.93E-02	Yes	1	4.13E-01	9.92E-01	1.95E-01	1.31E-04	[2]
0.13	4.66E-02	Yes	1	5.49E-01	1.32E+00	2.03E-01	1.39E-04	[2]
0	1.16E-02	Yes	1	5.72E-01	1.37E+00	5.11E-02	3.60E-05	[2]
0	8.57E-02	Yes	1	4.95E-01	1.19E+00	3.61E-01	2.39E-04	[2]
0	8.38E-03	Yes	1	2.35E-01	5.65E-01	2.55E-02	2.04E-05	[2]
0	1.00E-03	Yes	1	2.16E-01	5.19E-01	2.87E-03	2.00E-06	[0]
	0 0 0 0 0 0.13 0	ABSd [a] Kp (cm/hour) [b] Value 0 1.49E-02 0 6.75E-03 0 1.17E-02 0 1.10E-02 0 4.93E-02 0.13 4.66E-02 0 1.16E-02 0 8.57E-02 0 8.38E-03	ABSd Kp (cm/hour) [b] Within EPD? 0	ABSd	ABSd Kp (cm/hour) [b] Within FA (unitless) (hour) 0	ABSd Kp (cm/hour) [b] Within FA (unitless) T (hour) 0	ABSd [a] Kp (cm/hour) [b] Within EPD? (unitless) (hour) (hour) (unitless) 0 1.49E-02 Yes 1 2.88E-01 6.91E-01 5.07E-02 6.75E-03 Yes 1 3.77E-01 9.04E-01 2.58E-02 1.17E-02 Yes 1 3.67E-01 8.81E-01 4.43E-02 1.10E-02 Yes 1 3.67E-01 8.81E-01 4.17E-02 0 4.93E-02 Yes 1 3.67E-01 9.92E-01 1.95E-01 0.13 4.66E-02 Yes 1 5.49E-01 1.32E+00 2.03E-01 0 1.16E-02 Yes 1 5.72E-01 1.37E+00 5.11E-02 0 8.57E-02 Yes 1 4.95E-01 1.19E+00 3.61E-01 0 8.38E-03 Yes 1 2.35E-01 5.65E-01 2.55E-02	ABSd [a] Kp (cm/hour) [b] Within EPD? (unitless) T

For constituents falling outside of the EPD, dermal absorption from water is not expected to occur.

cm/hour Centimeter per hour.

EPD Effective predictive domain.

L/cm²/event Liter per centimeter squared per event.

[a] Dermal absorption efficiency (ABSd) for uptake of constituents from a soil matrix (unitless), from United States Environmental Protection Agency (USEF

[b] Permeability coefficient for dermal contact with constituents in water (centimeters per hour), from USEPA 2018a.

[c] Absorption parameters for use in the non-steady state model for dermal contact with constituents in water, from USEPA 2018a.

 τ = Lag time for dermal absorption through the skin.

t* = Time required to reach steady state.

B = Ratio of the permeability coefficient through the stratus corneum relative to the permeability coefficient across the viable epidermis.

FA = Fraction of absorbed water.

[d] Dermal absorption factor (DA) calculated according to equations presented in USEPA 2004 (using Equation [0], [1], or [2] as indicated in Table 17

based on exposure time (ET) = 2 hours.

AVX MB HHRA Tables 1/1

EPCs [b]			ABSd [c] R	ABSd [c]	RBF [d]	VF-sl [e]		Ro	CAN(CER RISK	Calculated	Percent Total	Rou	NON-CANC	CER HAZARD	Calculated	Percent Total
Constituent [a]	(mg/kg)		200 [0]	no. [a]	(m³/kg)	ı	Oral	Dermal	Inhalation	Risk	ELCR	Oral	Dermal	Inhalation	Hazard	HI	
							ELCRo	ELCRd	ELCRi	ELCR		HQo	HQd	HQi	н		
Volatile Organic Compounds											-					•	
cis-1,2-Dichloroethene	1.49E-02 U	CL	0	1	3.06E+03	V	NA	NA	NA	_		6.4E-06	_	NA	6.4E-06	<1%	
Tetrachloroethene	2.14E-03 U	CL	0	1	2.63E+03	V	1.4E-12	_	1.7E-11	1.9E-11	<1%	3.1E-07	_	4.7E-06	5.0E-06	<1%	
Trichloroethene	1.27E+02 U	CL	0	1	2.57E+03	V	1.8E-06	_	1.6E-05	1.8E-05	100%	2.2E-01	_	5.6E+00	5.9E+00	100%	
Vinyl Chloride	7.82E-03 U	CL	0	1	1.24E+03	V	1.7E-09	-	2.3E-09	4.0E-09	<1%	2.2E-06	-	1.4E-05	1.7E-05	<1%	
Total Risk or Hazard with all COPC	s							Total ELCF	?	2E-05	100%		Total HI		6	100%	

[a] (On	ly de	tect	ed	consti	tuen	ts o	po	tentia	al conceri	n are	present	ted	
----	-----	----	-------	------	----	--------	------	------	----	--------	------------	-------	---------	-----	--

Myrtle Beach, South Carolina

The UCLs were calculated using United States Environmental Protection Agency (USEPA) ProUCL version 5.1.00 (USEPA 2016a). The UCL used is the one recommended by ProUCL, unless a greater than 95% UCL was recommended, in which case the 95% UCL was selected.

[[]e] The volatilization factor for soil ([VF] identified with [V]), derived in Table 20.

_	Not applicable.	HI	Hazard index (sum of the HQs).	μg	Microgram.
%	Percent.	HQ	Hazard quotient.	mg	Milligram.
cm ²	Square centimeter.	hr	Hour.	NA	Toxicity value not available or not applicable.
CSF	Cancer slope factor.	IUR	Inhalation unit risk.	RfC	Reference concentration.
ELCR	Excess lifetime cancer risk.	kg	Kilogram.	RfD	Reference dose.
EPCs	Exposure point concentration in soil.	m^3	Cubic meter.		

Equations are presented in Table 15, and summarized below.

Constituent-specific toxicity values (CSF, IUR, RfC, RfD) are presented in Table 21 through Table 24.

$$\begin{split} & HQo = (EPCs \times RBF \times FI \times IRs \times EF \times ED) \, / \, (1,000,000 \text{ mg/kg} \times BW \times ATnc \times RfDo) \\ & HQd = (EPCs \times SSAs \times SAR \times ABSd \times EF \times ED) \, / \, (1,000,000 \text{ mg/kg} \times BW \times ATnc \times RfDa) \\ & HQi = (EPCs \times ET \times CF \times EF \times ED) \, / \, (VF \times ATnc \times RfC) \end{split}$$

Variable	Acronym	Value	Unit	Source
Averaging time, cancer	ATc	25,550	days	See Table 14
Averaging time, non-cancer	ATnc	9,125	days	See Table 14
Body weight	BW	80	kg	See Table 14
Exposure time	ET	8	hrs/day	See Table 14
Exposure frequency	EF	250	days/year	See Table 14
Exposure duration	ED	25	years	See Table 14
Conversion factor (days/hr)	CF	0.042	days/hr	See Table 14
Fraction ingested from site	FI	1	unitless	See Table 14
Ingestion rate of soil	IRs	100	mg/day	See Table 14
Soil-to-skin adherence rate	SAR	0.12	mg/cm²/day	See Table 14
Skin surface area for soil contact	SSAs	3,527	cm²	See Table 14

[[]b] The exposure point concentration (EPC) was the lower concentration of either the upper confidence level on the mean (UCL) or the maximum concentration, where the UCL was incalculable.

[[]c] Dermal absorption efficiency (ABSd) for uptake of constituents from a soil matrix (unitless) (USEPA 2018a).

[[]d] Relative bioavailability factor is constituent-specific; default of 100% (i.e., 1) unless otherwise indicated (unitless).

Table 27
Risk and Hazard Calculations for a Hypothetical Site Worker for Exposure to Combined Surface and Subsurface Soil (0-10 Feet)
Human Health Risk Assessment
AVX Corporation

Myrtle Beach, South Carolina

								CA	NCER RISK		Percent	NON-CANCER HAZARD				Percent		
	EPCs [b]		ABSd [c]	RBF [d]	RBF [d] VF-sl [e]	VF-sl [e]		VF-sl [e]		ute-Specific	Risk	Calculated	Total	Rout	Route-Specific Hazard		Calculated	Total
Constituent [a]	(mg/k	g)			(m³/kg)		Oral	Dermal	Inhalation	Risk	ELCR	Oral	Dermal	Inhalation	Hazard	HI		
							ELCRo	ELCRd	ELCRi	ELCR		HQo	HQd	HQi	н			
Volatile Organic Compounds											_							
1,1-Dichloroethane	4.53E-01	UCL	0	1	2.64E+03	V	7.9E-10	_	2.2E-08	2.3E-08	<1%	1.9E-06	_	NA	1.9E-06	<1%		
1,1-Dichloroethene	3.42E+00	UCL	0	1	1.46E+03	V	NA	NA	NA	_		5.8E-05	_	2.7E-03	2.7E-03	<1%		
cis-1,2-Dichloroethene	1.25E+01	UCL	0	1	3.06E+03	V	NA	NA	NA	_		5.4E-03	_	NA	5.4E-03	<1%		
Ethylbenzene	1.10E-02	UCL	0	1	5.32E+03	V	3.7E-11	_	4.2E-10	4.6E-10	<1%	9.4E-08	_	4.7E-07	5.6E-07	<1%		
Tetrachloroethene	4.47E-01	UCL	0	1	2.63E+03	V	2.9E-10	_	3.6E-09	3.9E-09	<1%	6.4E-05	_	9.7E-04	1.0E-03	<1%		
1,1,1-Trichloroethane	3.64E+01	UCL	0	1	2.02E+03	V	NA	NA	NA	_		1.6E-05	_	8.2E-04	8.4E-04	<1%		
Trichloroethene	2.04E+02	UCL	0	1	2.57E+03	V	2.9E-06	_	2.7E-05	2.9E-05	100%	3.5E-01	_	9.1E+00	9.4E+00	100%		
Vinyl Chloride	1.75E-02	UCL	0	1	1.24E+03	V	3.8E-09	-	5.1E-09	8.9E-09	<1%	5.0E-06	-	3.2E-05	3.7E-05	<1%		
Total Risk or Hazard with all COPCs								Total ELC	R	3E-05	100%		Total HI		9	100%		

[a] Only detected constituents of potential concern are presented.

[b] The exposure point concentration (EPC) was the lower concentration of either the upper confidence level on the mean (UCL) or the maximum concentration, where the UCL was incalculable.

The UCLs were calculated using United States Environmental Protection Agency (USEPA) ProUCL version 5.1.00 (USEPA 2016a). The UCL used is the one recommended by ProUCL, unless a greater than 95% UCL was recommended. in which case the 95% UCL was selected.

[c] Dermal absorption efficiency (ABSd) for uptake of constituents from a soil matrix (unitless) (USEPA 2018a).

[d] Relative bioavailability factor for arsenic in soil was set at 60% (i.e., 0.6) consistent with USEPA recommendations (USEPA 2018a).

 m^3

[e] The volatilization factor for soil ([VF] identified with [V]), derived in Table 20.

_ %	Not applicable. Percent.	HI HQ	Hazard index (sum of the HQs). Hazard quotient.	μg mg	Microgram. Milligram.
cm ²	Square centimeter.	hr	Hour.	NA	Toxicity value not available or not applicable.
CSF	Cancer slope factor.	IUR	Inhalation unit risk.	RfC	Reference concentration.
ELCR	Excess lifetime cancer risk.	kg	Kilogram.	RfD	Reference dose.

Equations are presented in Table 15, and summarized below.

Exposure point concentration in soil.

EPCs

Constituent-specific toxicity values (CSF, IUR, RfC, RfD) are presented in Table 21 through Table 24.

 $\mathsf{ELCRo} = (\mathsf{EPCs} \times \mathsf{RBF} \times \mathsf{FI} \times \mathsf{IRs} \times \mathsf{EF} \times \mathsf{ED} \times \mathsf{CSFo}) \, / \, (1,000,000 \, \mathsf{mg/kg} \times \mathsf{BW} \times \mathsf{ATc})$

ELCRd = (EPCs × SSAs × SAR × ABSd × EF × ED × CSFa) / (1,000,000 mg/kg × BW × ATc)

ELCRi = (EPCs × ET × CF × EF × ED × IUR × 1000 μ g/mg) / (VF × ATc)

 $HQo = (EPCs \times RBF \times FI \times IRs \times EF \times ED) / (1,000,000 mg/kg \times BW \times ATnc \times RfDo)$ $HQd = (EPCs \times SSAs \times SAR \times ABSd \times EF \times ED) / (1,000,000 mg/kg \times BW \times ATnc \times RfDa)$

 $HQi = (EPCs \times ET \times CF \times EF \times ED) / (VF \times ATnc \times RfC)$

Variable	Acronym	Value	Unit	Source
Averaging time, cancer	ATc	25,550	days	See Table 14
Averaging time, non-cancer	ATnc	9,125	days	See Table 14
Body weight	BW	80	kg	See Table 14
Exposure time	ET	8	hrs/day	See Table 14
Exposure frequency	EF	250	days/year	See Table 14
Exposure duration	ED	25	years	See Table 14
Conversion factor (days/hr)	CF	0.042	days/hr	See Table 14
Fraction ingested from site	FI	1	unitless	See Table 14
Ingestion rate of soil	IRs	100	mg/day	See Table 14
Soil-to-skin adherence rate	SAR	0.12	mg/cm²/day	See Table 14
Skin surface area for soil contact	SSAs	3,527	cm²	See Table 14

Cubic meter.

1/4

Table of Inputs and Outputs for Multiple Chemicals

Note: Parameters other than the chemical concentration must be entered in the MODEL sheet and must be the same for all chemicals. Warnings and errors are displayed in only on the MODEL sheet.

			Benzene	Dichloroethane, 1,1-	Dichloroethylene, 1,1-	Naphthalene	Trichloroethylene	rimethylbenzene, 1,2,4	Vinyl Chloride
Source Characteristics:	Units	Symbol	Value	Value	Value	Value	Value	Value	Value
Source medium		Source	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Groundwater concentration	(ug/L)	Cmedium	0.632	188	177	83.2	21500	2.02	593
Depth below grade to water table	(m)	Ls	3.05	3.05	3.05	3.05	3.05	3.05	3.05
Average groundwater temperature	(°C)	Ts	19.4	19.4	19.4	19.4	19.4	19.4	19.4
Calc: Source vapor concentration	(ug/m3)	Cs	113	34724	156897	1008	6718244	357	586406
Calc: % of pure component saturated vapor concentration	(%)	%Sat	0.000%	0.003%	0.005%	0.172%	1.378%	0.003%	0.006%
Chemical:	Units	Symbol	Value	Value	Value	Value	Value	Value	Value
Chemical Name		Chem	Benzene	Dichloroethane, 1,1-	Dichloroethylene, 1,1-	Naphthalene	Trichloroethylene	Trimethylbenzene, 1,2,4-	Vinyl Chloride
CAS No.		CAS	71-43-2	75-34-3	75-35-4	91-20-3	79-01-6	95-63-6	75-01-4
Toxicity Factors									
Unit risk factor	(ug/m ³) ⁻¹	IUR	7.80E-06	1.60E-06	Not Available	3.40E-05	see note	Not Available	4.40E-06
Mutagenic compound		Mut	No	No	No	No	Yes	No	VC
Reference concentration	(ug/m³)	RfC	3.00E-02	Not Available	2.00E-01	3.00E-03	2.00E-03	6.00E-02	1.00E-01
Chemical Properties:	Units	Symbol	Value	Value	Value	Value	Value	Value	Value
Pure component water solubility	(mg/L)	S	1.79E+03	5.04E+03	2.42E+03	3.10E+01	1.28E+03	5.70E+01	8.80E+03
Henry's Law Constant @ 25°C	(atm-m³/mol)	Hc	5.55E-03	5.62E-03	2.61E-02	4.40E-04	9.85E-03	6.16E-03	2.78E-02
Calc: Henry's Law Constant @ 25°C	(dimensionless)	Hr	2.27E-01	2.30E-01	1.07E+00	1.80E-02	4.03E-01	2.52E-01	1.14E+00
Calc: Henry's Law Constant @ system temperature	(dimensionless)	Hs	1.78E-01	1.85E-01	8.86E-01	1.21E-02	3.12E-01	1.77E-01	9.89E-01
Diffusivity in air	(cm2/s)	Dair	8.95E-02	8.36E-02	8.63E-02	6.05E-02	6.87E-02	6.07E-02	1.07E-01
Diffusivity in water	(cm2/s)	Dwater	1.03E-05	1.06E-05	1.10E-05	8.38E-06	1.02E-05	7.92E-06	1.20E-05
Building Characteristics:	Units	Symbol	Value	Value	Value	Value	Value	Value	Value
Building setting		Bldg_Setting	Commercial	Commercial	Commercial	Commercial	Commercial	Commercial	Commercial
Foundation type		Found_Type	Slab-on-grade	Slab-on-grade	Slab-on-grade	Slab-on-grade	Slab-on-grade	Slab-on-grade	Slab-on-grade
Depth below grade to base of foundation	(m)	Lb	0.20	0.20	0.20	0.20	0.20	0.20	0.20
Foundation thickness	(m)	Lf	0.20	0.20	0.20	0.20	0.20	0.20	0.20
Fraction of foundation area with cracks	(-)	eta	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Enclosed space floor area Enclosed space mixing height	(m2)	Ab Hb	1500.00 3.00	1500.00 3.00	1500.00 3.00	1500.00 3.00	1500.00 3.00	1500.00 3.00	1500.00 3.00
Indoor air exchange rate	(m) (1/hr)	ach	1.50	1.50	1.50	1.50	1.50	1.50	3.00 1.50
Qsoil/Qbuilding	(-)	Qsoil_Qb	0.0030	0.0030	0.0030	0.0030	0.0030	0.0030	0.0030
Calc: Building ventilation rate	(m3/hr)	Qb	6750.00	6750.00	6750.00	6750.00	6750.00	6750.00	6750.00
Calc: Average vapor flow rate into building	(m3/hr)	Qsoil	20.25	20.25	20.25	20.25	20.25	20.25	20.25

Table 28_\&E Site Worker 0-25 ft GW

Table of Inputs and Outputs for Multiple Chemicals

Note: Parameters other than the chemical concentration must be entered in the MODEL sheet and must be the same for all chemicals. Warnings and errors are displayed in only on the MODEL sheet.

Units	Symbol							
	Syllibol	Value	Value	Value	Value	Value	Value	Value
	SCS_A	Silty Clay	Silty Clay	Silty Clay	Silty Clay	Silty Clay	Silty Clay	Silty Clay
(m)	hSA	3.05	3.05	3.05	3.05	3.05	3.05	3.05
	nSA	0.481	0.481	0.481	0.481	0.481	0.481	0.481
	nwSA	0.216	0.216	0.216	0.216	0.216	0.216	0.216
	rhoSA	1.380	1.380	1.380	1.380	1.380	1.380	1.380
,	ı							
	SCS B	Not Present	Not Present	Not Present	Not Present	Not Present	Not Present	Not Present
(m)	hSB	0.00	0.00	0.00	0.00	0.00	0.00	0.00
(9, 5)	l							
	scs c	Not Present	Not Present	Not Present	Not Present	Not Present	Not Present	Not Present
(m)	_	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	nwSC							
(9, 5)	- [
	src soil	Stratum A	Stratum A	Stratum A	Stratum A	Stratum A	Stratum A	Stratum A
(m)	hcz	1.923	1.923	1.923	1.923	1.923	1.923	1.923
(-)	ncz	0.481	0.481	0.481	0.481	0.481	0.481	0.481
(-)	nwcz				0.424			0.424
Units	Symbol	Value	Value	Value	Value	Value	Value	Value
(-)	Target_CR	1.00E-06	1.00E-06	1.00E-06	1.00E-06	1.00E-06	1.00E-06	1.00E-06
(-)		1	1	1	1	1	1	1
()								Commercial
								70 25
								25
								25 250
					∠5U o			∠5U o
		ū			o 72		•	8 72
	(-) Units	(m) hSA (-) nSA (-) nWSA (g/cm³) rhoSA SCS_B (m) hSB (-) nSB (-) nWSB (g/cm³) rhoSB SCS_C (m) hSC (-) nSC (-) nSC (-) nSC (-) nSC (-) nSC (g/cm³) rhoSC Src_soil (m) hcz (-) ncz (-) ncz (-) ncz (-) Target_R (-) Target_HQ Scenario (yrs) ATc (yrs) ATnc (yrs) ED (days/yr) EF (hrs/24 hrs) ET	(m) hSA 3.05 (-) nSA 0.481 (-) nwSA 0.216 (g/cm³) rhoSA 1.380 SCS_B Not Present (m) hSB 0.00 (-) nSB (-) nwSB (g/cm³) rhoSB SCS_C Not Present (m) hSC 0.00 (-) nSC (-) nwSC (g/cm³) rhoSC Src_soil Stratum A 1.923 (-) nwSC (g/cm³) rhoSC Units Symbol Value (-) Target_CR 1.00E-06 (-) Target_HQ 1 Scenario Commercial (yrs) ATc 70 (yrs) ATc 70 (yrs) ATnc 25 (yrs) ED 25 (days/yr) EF 250 (hrs/24 hrs) ET 8	(m) hSA 3.05 3.05 (-) nSA 0.481 0.481 (-) nwSA 0.216 0.216 (g/cm³) rhoSA 1.380 1.380 SCS_B Not Present Not Present (m) hSB 0.00 0.00 (-) nSB 0.00 0.00 (-) nSC 0.481 0.481 (-) nwcz 0.424 0.424 Uni	(m) hSA 3.05 3.05 3.05 (-) nSA 0.481 0.481 0.481 (-) nwSA 0.216 0.216 0.216 (g/cm³) rhoSA 1.380 1.380 1.380 SCS_B Not Present Not Present Not Present (m) hSB 0.00 0.00 0.00 (-) nwSB 0.00 0.00 0.00 (-) nwSC 0.00 0.00 0.00 (-) nsC 0.00 0.00 0.00 (-) nwSC 0.00 0.0	(m) hSA 3.05 3.05 3.05 3.05 3.05 (-) nSA 0.481 0.481 0.481 0.481 0.481 0.481 0.481 (-) nwSA 0.216 0.216 0.216 0.216 0.216 (g/cm³) rhoSA 1.380 1.380 1.380 1.380 1.380 1.380 1.380	(m) hSA 3.05 3.05 3.05 3.05 3.05 3.05 (c) nSA 0.481 0.	(m) hSA 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05

Table 28_J&E Site Worker 0-25 ft GW

Table of Inputs and Outputs for Multiple Chemicals
Site Worker Exposure to Vapors from Groundwater Less than 25 Feet
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

ARCADIS Design & Consultancy for ratural and built assets

3/4

Table of Inputs and Outputs for Multiple Chemicals

Note: Parameters other than the chemical concentration must be entered in the MODEL sheet and must be the same for all chemicals. Warnings and errors are displayed in only on the MODEL sheet.

			Benzene	Dichloroethane, 1,1-	Dichloroethylene, 1,1-	Naphthalene	Trichloroethylene	rimethylbenzene, 1,2,4	Vinyl Chloride
Source to Indoor Air Attenuation Factor	Units	Symbol	Value	Value	Value	Value	Value	Value	Value
Groundwater to indoor air attenuation coefficient	(-)	alpha	1.8E-06	1.7E-06	1.3E-06	7.8E-06	1.3E-06	1.3E-06	1.6E-06
		Range	1.8E-06 - 1.8E-06	1.7E-06 - 1.7E-06	1.3E-06 - 1.3E-06	7.3E-06 - 7.9E-06	1.2E-06 - 1.3E-06	1.3E-06 - 1.3E-06	1.5E-06 - 1.6E-06
Predicted Indoor Air Concentration			Value	Value	Value	Value	Value	Value	Value
Indoor air concentration due to vapor intrusion	(ug/m3)	Cia	2.0E-04	6.0E-02	2.0E-01	7.9E-03	8.5E+00	4.6E-04	9.2E-01
		Range	_ 2.0E-04 - 2.0E-04	5.9E-02 - 6.0E-02	2.0E-01 - 2.0E-01	7.3E-03 - 7.9E-03	8.4E+00 - 8.5E+00	4.5E-04 - 4.6E-	9.0E-01 - 9.2E-
	(ppbv)	Cia	6.4E-05	1.5E-02	5.1E-02	1.5E-03	1.6E+00	9.3E-05	3.6E-01
		Range	6.3E-05 - 6.4E-05	1.5E-02 - 1.5E-02	5.0E-02 - 5.1E-02	1.4E-03 - 1.5E-03	1.6E+00 - 1.6E+00	9.2E-05 - 9.3E-05	3.5E-01 - 3.6E-01
Predicted Vapor Concentration Beneath the			Value	Value	Value	Value	Value	Value	Value
Subslab vapor concentration	(ug/m3)	Css	6.8E-02	2.0E+01	6.7E+01	2.6E+00	2.8E+03	1.5E-01	3.1E+02
		Range	4.1E-03 - 2.0E+00	1 2F+00 - 5 9F+02	4.0E+00 - 2.0E+03	1.6E-01 - 7.3E+01	1.7E+02 - 8.4E+04	9.2E-03 -	1.8E+01 -
		range	4.1L-00 - 2.0L · 00	1.22 100 - 0.32 102	4.0L 100 - 2.0L 100	1.02-01-7.02-01	1.7 6 102 - 0.46 104	4.5E+00	9.0E+03
	(ppbv)	Css	2.1E-02	4.9E+00	1.7E+01	5.0E-01	5.3E+02	3.1E-02	1.2E+02
		Range	1.3E-03 - 6.3E-01	3.0E-01 - 1.5E+02	1.0E+00 - 5.0E+02	3.0E-02 - 1.4E+01	3.2E+01 - 1.6E+04	1.9E-03 - 9.2E-01	7.2E+00 - 3.5E+03
Diffusive Transport Upward Through Vados	<u>se Zone</u>		Value	Value	Value	Value	Value	Value	Value
Effective diffusion coefficient through Stratum A	(cm2/sec)	DeffA	4.6E-03	4.3E-03	4.5E-03	3.2E-03	3.6E-03	3.1E-03	5.6E-03
Effective diffusion coefficient through Stratum B	(cm2/sec)	DeffB							
Effective diffusion coefficient through Stratum C Effective diffusion coefficient through capillary zone	(cm2/sec)	DeffC DeffCZ	4.3E-05	4.1E-05	3.0E-05	1.9E-04	3.0E-05	3.0E-05	3.7E-05
Effective diffusion coefficient through capillary zone Effective diffusion coefficient through unsaturated zone	(cm2/sec) (cm2/sec)	DeffT	4.3E-05 6.3E-05	4.1E-05 6.0E-05	4.5E-05	2.7E-04	4.4E-05	4.5E-05	5.7E-05 5.5E-05
	(01112/300)	DeliT	0.02-00	0.02-00	4.0∟-00	2.7 = 04	4.4⊏-00	4.0∟-00	0.0L-00
Critical Parameters			Value	Value	Value	Value	Value	Value	Value
a for diffusive transport from source to building with	(-)	A_Param	1.8E-06	1.7E-06	1.3E-06	7.9E-06	1.3E-06	1.3E-06	1.6E-06
Pe (Peclet Number) for transport through the foundation	(-)	B_Param	1.6E+03	1.7E+03	1.6E+03	2.3E+03	2.1E+03	2.3E+03	1.3E+03
a for convective transport from subslab to building	(-)	C_Param	3.0E-03	3.0E-03	3.0E-03	3.0E-03	3.0E-03	3.0E-03	3.0E-03
Interpretation			_						
						inant mechanism across soil is the overall rate limi			
####					J2001. 10390		g p. 22222		
Critical Parameters									
####						Hb, Ls, DeffT, ach			
Non-Critical Parameters									
					0-	ooil Ob If DoffA at-			
####					Qs	soil_Qb, Lf, DeffA, eta			

Table 28_J&E Site Worker 0-25 ft GW

Table of Inputs and Outputs for Multiple Chemicals
Site Worker Exposure to Vapors from Groundwater Less than 25 Feet
Human Health Risk Assessment
AVX Corporation
Myrtle Beach, South Carolina

Table of Inputs and Outputs for Multiple Chemicals

Note: Parameters other than the chemical concentration must be entered in the MODEL sheet and must be the same for all chemicals. Warnings and errors are displayed in only on the MODEL sheet.

			Benzene	Dichloroethane, 1,1-	Dichloroethylene, 1,1-	Naphthalene	Trichloroethylene	rimethylbenzene, 1,2,4	Vinyl Chloride
Risk Calculations	Units	Symbol	Value	Value	Value	Value	Value	Value	Value
Risk-Based Target Screening Levels									
Target risk for carcinogens	(-)	Target_CR	1E-06	1E-06	1E-06	1E-06	1E-06	1E-06	1E-06
Target hazard quotient for noncarcinogens	(-)	Target_HQ	1	1	1	1	1	1	1
Target indoor air concentration	(ug/m3)	Target_IA	1.57E+00	7.67E+00	8.76E+02	3.61E-01	2.05E+00	2.63E+02	2.10E-01
	(ppbv)	Target_IA	4.92E-01	1.89E+00	2.21E+02	6.88E-02	3.82E-01	5.35E+01	8.22E-02
Target groundwater concentration	(ug/L)	Target_GW	4.88E+03	2.41E+04	7.67E+05	3.80E+03	5.20E+03	1.16E+06	1.36E+02
Incremental Risk Estimates									
Incremental cancer risk from vapor intrusion	(-)	Cancer_Risk	1.29E-10	7.80E-09	No IUR	2.19E-08	1.10E-05	No IUR	3.29E-07
·	.,	Range	1.3E-10 - 1.3E-10	7.7E-09 - 7.8E-09	-	2.0E-08 - 2.2E-08	1.1E-05 - 1.1E-05	-	3.2E-07 - 3.3E-07
Hazard quotient from vapor intrusion	(-)	HQ	1.54885E-06	No RfC Available	0.000230905	0.000601	0.968684871	1.74115E-06	0.002096338
	, ,	Range	1.5E-06 - 1.5E-06	C Available - No RfC Ava	2.3E-04 - 2.3E-04	5.6E-04 - 6.0E-04	9.6E-01 - 9.7E-01	1.7E-06 - 1.7E-06	2.1E-03 - 2.1E-03

Total Risk 1E-05 Total Hazard 1

Table 28_J&E Site Worker 0-25 ft GW

9.5E+00

3.4E-05

9.7E+00

3.7E-05

10

100%

<1%

100%

CANCER RISK NON-CANCER HAZARD Percent Percent EPCs [b] ABSd [c] RBF [d] VF-sI_{cons} [e] Route-Specific Risk Calculated Route-Specific Hazard Calculated Total Total **ELCR** Constituent [a] (mg/kg) (unitless) (unitless) (m³/kg) Oral Dermal Inhalation Risk Oral Dermal Inhalation Hazard **ELCRo ELCRd ELCRi ELCR** HQo HQd HQi н **Volatile Organic Compounds** cis-1,2-Dichloroethene 1.49E-02 UCL 0 6.77E+02 V NA NA NA 8.4E-07 NA 8.4E-07 <1% Tetrachloroethene V 1.3E-12 <1% 8.3E-06 2.14E-03 UCL 0 1 5.82E+02 7.3E-14 1.2E-12 2.4E-08 8.3E-06 <1%

9.4E-08

9.1E-11

[a]	Only detected constituents of potential concern are presented.
[b]	The exposure point concentration (EPC) was the lower concentration of either the upper confidence level on the mean (UCL) or the maximum concentration, where the UCL was incalculable.

2.75E+02 V

5.68E+02

V

The UCLs were calculated using United States Environmental Protection Agency (USEPA) ProUCL version 5.1.00 (USEPA 2016a). The UCL used is the one recommended by ProUCL, unless a greater than 95% UCL was recommended, in which case the 95% UCL was selected.

Total ELCR

1.2E-06

1.6E-10

1.3E-06

2.5E-10

1E-06

100%

<1%

100%

2.9E-01

2.9E-06

Total HI

0

0

1

1

[e] The volatilization factor for soil ([VF] identified with [V]), derived in Table 20.

1.27E+02 UCL

7.82E-03 UCL

_	Not applicable.	HI	Hazard index (sum of the HQs).	μg	Microgram.
%	Percent.	HQ	Hazard quotient.	mg	Milligram.
cm ²	Square centimeter.	hr	Hour.	NA	Toxicity value not available or not applicable.
CSF	Cancer slope factor.	IUR	Inhalation unit risk.	RfC	Reference concentration.
ELCR	Excess lifetime cancer risk.	kg	Kilogram.	RfD	Reference dose.
EPCs	Exposure point concentration in soil.	m^3	Cubic meter.		

Equations are presented in Table 16, and summarized below.

Myrtle Beach, South Carolina

Trichloroethene

Total Risk or Hazard

Vinyl Chloride

Constituent-specific toxicity values (CSF, IUR, RfC, RfD) are presented in Table 21 through Table 24.

ELCRo = (EPCs × RBF × FI × IRs × EF × ED × CSFo) / (1,000,000 mg/kg × BW × ATc)

ELCRd = (EPCs × SSAs × SAR × ABSd × EF × ED × CSFa) / (1,000,000 mg/kg × BW × ATc)

ELCRi = (EPCs × ET × CF × EF × ED × IUR × 1000 μg/mg) / (VF × ATc)

$$\label{eq:hqo} \begin{split} &HQo = (EPCs \times RBF \times FI \times IRs \times EF \times ED) \, / \, (1,000,000 \,\, mg/kg \times BW \times ATnc \times RfDo) \\ &HQd = (EPCs \times SSAs \times SAR \times ABSd \times EF \times ED) \, / \, (1,000,000 \,\, mg/kg \times BW \times ATnc \times RfDa) \\ &HQi = (EPCs \times ET \times CF \times EF \times ED) \, / \, (VF \times ATnc \times RfC) \end{split}$$

Variable	Acronym	Value	Unit	Source
Averaging time, cancer	ATc	25,550	days	See Table 14
Averaging time, non -cancer	ATnc	365	days	See Table 14
Body weight	BW	80	kg	See Table 14
Exposure time	ET	8	hrs/day	See Table 14
Exposure frequency	EFsc	5	days/week	See Table 14
Exposure duration	EDsc	20	weeks	See Table 14
Conversion factor (days/hr)	CF	0.042	days/hr	See Table 14
Fraction ingested from site	FI	1	unitless	See Table 14
Ingestion rate of soil	IRs	330	mg/day	See Table 14
Soil-to-skin adherence rate	SAR	0.3	mg/cm²/day	See Table 14
Skin surface area for soil contact	SSAs	3,527	cm²	See Table 14

[[]c] Dermal absorption efficiency (ABSd) for uptake of constituents from a soil matrix (unitless) (USEPA 2018a).

[[]d] Relative bioavailability factor is constituent-specific; default of 100% (i.e., 1) unless otherwise indicated (unitless).

Table 30
Risk and Hazard Calculations for a Hypothetical Future Construction Worker for Exposure to Combined Surface and Subsurface Soil (0-10 Feet)
Human Health Risk Assessment

Myrtle Beach, South Carolina

AVX Corporation

[e]

EPCs

					}		CANC	ER RISK		Percent		NON-CAN	CER HAZAR	D	Percent	
	EPCs [t	0]	ABSd [c]	RBF [d]	VF-sI _{cons} [e	1	Rou	te-Specific	Risk	Calculated	Total	Route	e-Specific I	Hazard	Calculated	Total
Constituent [a]	(mg/kg	1)			(m³/kg)		Oral	Dermal	Inhalation	Risk	ELCR	Oral	Dermal	Inhalation	Hazard	HI
							ELCRo	ELCRd	ELCRi	ELCR		HQo	HQd	HQi	ні	
Volatile Organic Compounds											-					•
1,1-Dichloroethane	4.53E-01	UCL	0	1	5.84E+02	V	4.2E-11	_	1.6E-09	1.7E-09	<1%	2.6E-07	_	NA	2.6E-07	<1%
1,1-Dichloroethene	3.42E+00	UCL	0	1	3.24E+02	V	NA	NA	NA	-		4.3E-04	_	1.2E-02	1.3E-02	<1%
cis-1,2-Dichloroethene	1.25E+01	UCL	0	1	6.77E+02	V	NA	NA	NA	_		7.1E-04	_	NA	7.1E-04	<1%
Ethylbenzene	1.10E-02	UCL	0	1	1.18E+03	V	1.9E-12	_	3.0E-11	3.2E-11	<1%	2.5E-07	_	9.4E-08	3.4E-07	<1%
Tetrachloroethene	4.47E-01	UCL	0	1	5.82E+02	V	1.5E-11	_	2.6E-10	2.8E-10	<1%	5.0E-06	_	1.7E-03	1.7E-03	<1%
1,1,1-Trichloroethane	3.64E+01	UCL	0	1	4.48E+02	V	NA	NA	NA	_		5.9E-06	_	1.5E-03	1.5E-03	<1%
Trichloroethene	2.04E+02	UCL	0	1	5.68E+02	V	1.5E-07	_	1.9E-06	2.1E-06	100%	4.6E-01	_	1.5E+01	1.6E+01	100%
Vinyl Chloride	1.75E-02	UCL	0	1	2.75E+02	V	2.0E-10	-	3.6E-10	5.7E-10	<1%	6.6E-06	-	7.6E-05	8.2E-05	<1%
Total Risk or Hazard								Total ELCF	}	2E-06	100%		Total HI		16	100%

[a] C	only detected constituents of	potential concern are	presented.
-------	-------------------------------	-----------------------	------------

[[]b] The exposure point concentration (EPC) was the lower concentration of either the upper confidence level on the mean (UCL) or the maximum concentration, where the UCL was incalculable.

The UCLs were calculated using United States Environmental Protection Agency (USEPA) ProUCL version 5.1.00 (USEPA 2016a). The UCL used is the one recommended by ProUCL, unless a greater than 95% UCL was recommended, in which case the 95% UCL was selected.

 m^3

The volatilization factor for soil ([VF] identified with [V]), derived in Table 20.

_	Not applicable.	HI	Hazard index (sum of the HQs).	μg	Microgram.
%	Percent.	HQ	Hazard quotient.	mg	Milligram.
cm ²	Square centimeter.	hr	Hour.	NA	Toxicity value not available or not applicable.
CSF	Cancer slope factor.	IUR	Inhalation unit risk.	RfC	Reference concentration.
ELCR	Excess lifetime cancer risk.	kg	Kilogram.	RfD	Reference dose.

Equations are presented in Table 16, and summarized below.

Exposure point concentration in soil.

Constituent-specific toxicity values (CSF, IUR, RfC, RfD) are presented in Table 21 through Table 24.

ELCRo = (EPCs × RBF × FI × IRs × EF × ED × CSFo) / (1,000,000 mg/kg × BW × ATc)

ELCRd = (EPCs × SSAs × SAR × ABSd × EF × ED × CSFa) / (1,000,000 mg/kg × BW × ATc)

ELCRi = (EPCs × ET × CF × EF × ED × IUR × 1000 µg/mg) / (VF × ATc)

 $\begin{aligned} & \text{HQo} = (\text{EPCs} \times \text{RBF} \times \text{FI} \times \text{IRs} \times \text{EF} \times \text{ED}) \, / \, (1,000,000 \, \text{mg/kg} \times \text{BW} \times \text{ATnc} \times \text{RfDo}) \\ & \text{HQd} = (\text{EPCs} \times \text{SSAs} \times \text{SAR} \times \text{ABSd} \times \text{EF} \times \text{ED}) \, / \, (1,000,000 \, \text{mg/kg} \times \text{BW} \times \text{ATnc} \times \text{RfDa}) \\ & \text{HQi} = (\text{EPCs} \times \text{ET} \times \text{CF} \times \text{EF} \times \text{ED}) \, / \, (\text{VF} \times \text{ATnc} \times \text{RfC}) \end{aligned}$

Variable	Acronym	Value	Unit	Source
Averaging time, cancer	ATc	25,550	days	See Table 14
Averaging time, non -cancer	ATnc	365	days	See Table 14
Body weight	BW	80	kg	See Table 14
Exposure time	ET	8	hrs/day	See Table 14
Exposure frequency	EFsc	5	days/week	See Table 14
Exposure duration	EDsc	20	weeks	See Table 14
Conversion factor (days/hr)	CF	0.042	days/hr	See Table 14
Fraction ingested from site	FI	1	unitless	See Table 14
Ingestion rate of soil	IRs	330	mg/day	See Table 14
Soil-to-skin adherence rate	SAR	0.3	mg/cm²/day	See Table 14
Skin surface area for soil contact	SSAs	3,527	cm²	See Table 14

Cubic meter.

[[]c] Dermal absorption efficiency (ABSd) for uptake of constituents from a soil matrix (unitless) (USEPA 2018a).

[[]d] Relative bioavailability factor for arsenic in soil was set at 60% (i.e., 0.6) consistent with USEPA recommendations (USEPA 2018a).

[c]

Risk and Hazard Calculations for a Hypothetical Future Construction Worker for Exposure to Groundwater (Less than 15 ft bgs) in a Trench Human Health Risk Assessment

AVX Corporation

Myrtle Beach, South Carolina

					CANCI	ER RISK		Percent			Percent		
	EPCgw	[b]	VFtrench [c]	Ro	ute-Specific	Risk	Calculated	Total	Rou	te-Specific F	lazard	Calculated	Total
Constituent [a]	(mg/L	-)	(L/m³)	Oral	Dermal	Inhalation	Risk	ELCR	Oral	Dermal	Inhalation	Hazard	н
	·			ELCRo	ELCRd	ELCRi	ELCR		HQo	HQd	HQi	н	
Volatile Organic Compounds								•			·		1
Benzene	1.06E-03	UCL	3.55E-04	NA	NA	3.8E-12	3.8E-12	<1%	NA	NA	4.3E-07	4.3E-07	<1%
1,1-Dichloroethane	4.29E-01	UCL	3.44E-04	NA	NA	3.1E-10	3.1E-10	<1%	NA	NA	NA	NA	_
1,1-Dichloroethene	1.95E+00	max	1.70E-03	NA	NA	NA	NA	_	NA	NA	3.8E-03	3.8E-03	<1%
cis-1,2-Dichloroethene	1.84E+01	UCL	2.61E-04	NA	NA	NA	NA	_	NA	NA	NA	NA	_
Ethylbenzene	1.79E-03	max	3.61E-04	NA	NA	2.1E-12	2.1E-12	<1%	NA	NA	6.6E-09	6.6E-09	<1%
Naphthalene	2.65E-01	UCL	1.63E-05	NA	NA	1.9E-10	1.9E-10	<1%	NA	NA	1.3E-04	1.3E-04	<1%
Trichloroethene	5.37E+01	UCL	4.80E-04	NA	NA	1.4E-07	1.4E-07	91%	NA	NA	1.1E+00	1.1E+00	99%
1,2,4-Trimethylbenzene	2.88E-02	max	2.38E-04	NA	NA	NA	NA	_	NA	NA	3.1E-06	3.1E-06	<1%
Vinyl Chloride	1.02E+00	UCL	2.38E-03	NA	NA	1.4E-08	1.4E-08	9%	NA	NA	2.9E-03	2.9E-03	<1%
Total Inorganics													
Iron	5.10E+00	max	_	NA	NA	_	NA	_	NA	NA	_	NA	_
Total Risk or Hazard					Total ELCR		2E-07	100%		Total HI		1	100%

[a] Only detected constituents of potential concern are presented.

[b] The exposure point concentration (EPC) was the lower concentration of either the upper confidence level on the mean (UCL) or the maximum concentration, where the UCL was incalculable.

The UCLs were calculated using United States Environmental Protection Agency (USEPA) ProUCL version 5.1.00 (USEPA 2016a). The UCL used is the one recommended by ProUCL, unless a greater than 95% UCL was recommended, in which case the 95% UCL was selected.

EPCs marked with "max" are based on the maximum detected concentration.

The volatilization factor of exposed groundwater in a trench (VFtrench) is calculated in Table 19.

_	Not applicable.	HI	Hazard index (sum of the HQs).	m^3	Cubic meter.
%	Percent.	HQ	Hazard quotient.	μg	Microgram.
cm ²	Square centimeter.	hr	Hour.	mg	Milligram.
ELCR	Excess lifetime cancer risk.	IUR	Inhalation unit risk.	NA	Toxicity value not available or not applicable.
EPCgw	Exposure point concentration in groundwater.	kg	Kilogram.	RfC	Reference concentration.

Liter.

Equations are presented in Table 17, and summarized below.

Constituent-specific toxicity values (CSF, IUR, RfC, RfD) are presented in Table 21 through Table 24.

ELCRi = (EPCgw × VFtrench × ETinh × CF x EF × ED × IUR × 1000 μ g/mg) / (ATc) HQi = (EPCgw × VFtrench × ETinh × CF × EF × ED) / (ATnc × RfC)

Variable	Acronym	Value	Unit	Source
Averaging time, cancer	ATc	25,550	days	See Table 14
Averaging time, non-cancer	ATnc	365	days	See Table 14
Body weight	BW	80	kg	See Table 14
Exposure time for inhalation	ET	8	hours/day	See Table 14
Exposure frequency	EFsc	5	days/week	See Table 14
Exposure duration	EDsc	20	weeks	See Table 14
Conversion factor (days/hr)	CF	0.042	days/hr	See Table 14

						CANCER RISK			Percent	NON-CANCER HAZARD				Percent
	EPCs [b]	ABSd [d] RBF [d]	VF-sl [e]	Ro	oute-Specific F	Risk	Calculated	Total	Rou	ite-Specific H	azard	Calculated	Total
Constituent [a]	(mg/kg)	(untiles:	(unitless)	(m³/kg)	Oral	Dermal	Inhalation	Risk	ELCR	Oral	Dermal	Inhalation	Hazard	HI
			·		ELCRo	ELCRd	ELCRi	ELCR		HQo	HQd	HQi	HI	
Volatile Organic Compounds													·-	_
cis-1,2-Dichloroethene	1.49E-02 U0	L 0	1	3.06E+03 V	NA	NA	NA	_		9.5E-05	_	NA	9.5E-05	<1%
Tetrachloroethene	2.14E-03 UC	L 0	1	2.63E+03 V	6.5E-12	_	7.5E-11	8.2E-11	<1%	4.6E-06	_	2.0E-05	2.4E-05	<1%
Trichloroethene	1.27E+02 U	L 0	1	2.57E+03 V	1.4E-05	_	1.0E-04	1.2E-04	100%	3.2E+00	-	2.4E+01	2.7E+01	100%
Vinyl Chloride	7.82E-03 U	L 0	1	1.24E+03 V	8.3E-08	_	3.8E-08	1.2E-07	<1%	3.3E-05	_	6.0E-05	9.4E-05	<1%
				-										
Total Risk or Hazard						Total ELCR		1E-04	100%		Total HI		27	100%

- [a] Only detected constituents of potential concern are presented.
- The exposure point concentration (EPC) was the lower concentration of either the upper confidence level on the mean (UCL) or the maximum concentration, where the UCL was incalculable. [b] The UCLs were calculated using United States Environmental Protection Agency (USEPA) ProUCL version 5.1.00 (USEPA 2016a). The UCL used is the one recommended by ProUCL, unless a greater than 95% UCL was recommended, in which case the 95% UCL was selected.
- Dermal absorption efficiency (ABSd) for uptake of constituents from a soil matrix (unitless) (USEPA 2018a).
- [c] [d] [e] Relative bioavailability factor is constituent-specific; default of 100% (i.e., 1) unless otherwise indicated (unitless).
- The volatilization factor for soil ([VF] identified with [V]), derived in Table 20.
- [f] ELCRs for trichloroethene (TCE) were calculated using the TCE-specific equations presented in Table 11.
- ELCRs for vinyl chloride (VC) were calculated using the VC-specific equations presented in Table 11. [g]

-	Not applicable.	HI	Hazard index (sum of the HQs).	m³/kg	Cubic meters per kilogram.
ELCR	Excess lifetime cancer risk.	HQ	Hazard quotient.	mg/kg	Milligrams per kilogram.
FPCs	Exposure point concentration in soil	m	FPC based on maximum	NΑ	Toxicity value not available or not applic

Equations are presented in Table 11.

Receptor-specific exposure parameters are presented in Table 14 while constituent specific absorption parameters are presented in Table 25. Constituent-specific toxicity values are presented in Table 21 through Table 24.

Variable	Acronym	Value	Value	Unit	Source
	-	Child	Average		
Averaging time, cancer	ATc	25,550	25,550	days	See Table 14
Averaging time, non -cancer	ATnc	2,190	-	days	See Table 14
Body weight	BW	15	-	kg	See Table 14
Exposure time	ET	24	24	hrs/day	See Table 14
Exposure frequency	EF	350	350	days/year	See Table 14
Exposure duration	ED	6	26	years	See Table 14
Conversion factor (days/hr)	CF	0.042		days/hr	See Table 14
Fraction ingested from site	FI	1		unitless	See Table 14
Ingestion rate of soil	IRs	200	-	mg/day	See Table 14
Soil-to-skin adherence rate	SAR	0.2	_	mg/cm²/day	See Table 14
Skin surface area for soil contact	SSAs	2,373	-	cm ²	See Table 14
Age-adjusted soil oral intake factor	IFso	=-	36,750	mg-yr/kg/day	See Table 14
Mutagenic age-adjusted soil oral intake factor	IFMso	_	166,833	mg-yr/kg/day	See Table 14
Age-adjusted soil dermal intake factor	IFsd		103,390	mg-yr/kg/day	See Table 14
Mutagenic age-adjusted soil dermal intake factor	IFMsd	=-	428,260	mg-yr/kg/day	See Table 14
Mutagenic age-adjusted soil inhalation intake factor	IFMsi	-	72	years	See Table 14
Cancer adjustment factor for TCE, oral and dermal	CAFo		0.804	unitless	
Mutagenic adjustement factor for TCE, oral and dermal	MAFo	_	0.202	unitless	
Cancer adjustment factor for TCE, inhalation	CAFi	_	0.756	unitless	
Mutagenic adjustement factor for TCE, inhalation	MAFi	_	0.244	unitless	

AVX MB HHRA Tables 1/1

Table 33
Risk and Hazard Calculations for a Hypothetical Future Resident for Exposure to Combined Surface and Subsurface Soil (0-15 Feet)
Human Health Risk Assessment
AVX Corporation

						CANC	ER RISK		Percent		NON-CAN	CER HAZARD		Percent
	EPCs [b]	ABSd [c]	RBF [d]	VF-sl [e]	Route-Specific Risk		Calculated	Total	Rou	ite-Specific H	azard	Calculated	Total	
Constituent [a]	(mg/kg)	(untiless)	(unitless)	(m³/kg)	Oral	Dermal	Inhalation	Risk	ELCR	Oral	Dermal	Inhalation	Hazard	HI
					ELCRo	ELCRd	ELCRi	ELCR		HQo	HQd	HQi	HI	
Volatile Organic Compounds				•				,						•
1,1-Dichloroethane	4.53E-01 UCL	0	1	2.64E+03 V	3.7E-09	_	9.8E-08	1.0E-07	<1%	2.9E-05	_	NA	2.9E-05	<1%
1,1-Dichloroethene	3.42E+00 UCL	0	1	1.46E+03 V	NA	NA	NA	_		8.7E-04	_	1.1E-02	1.2E-02	<1%
cis-1,2-Dichloroethene	1.25E+01 UCL	0	1	3.06E+03 V	NA	NA	NA	_		8.0E-02	_	NA	8.0E-02	<1%
Ethylbenzene	1.10E-02 UCL	0	1	5.32E+03 V	1.7E-10	_	1.8E-09	2.0E-09	<1%	1.4E-06	_	2.0E-06	3.4E-06	<1%
Tetrachloroethene	4.47E-01 UCL	0	1	2.63E+03 V	1.3E-09	_	1.6E-08	1.7E-08	<1%	9.5E-04	_	4.1E-03	5.0E-03	<1%
1,1,1-Trichloroethane	3.64E+01 UCL	0	1	2.02E+03 V	NA	NA	NA	_		2.3E-04	_	3.5E-03	3.7E-03	<1%
Trichloroethene	2.04E+02 UCL	0	1	2.57E+03 V	2.3E-05	_	1.7E-04	1.9E-04	100%	5.2E+00	_	3.8E+01	4.3E+01	100%
Vinyl Chloride	1.75E-02 UCL	0	1	1.24E+03 V	1.9E-07	_	8.4E-08	2.7E-07	<1%	7.4E-05	-	1.4E-04	2.1E-04	<1%
Total Risk or Hazard						Total ELCR		2E-04	100%		Total HI		43	100%

- [a] Only detected constituents of potential concern are presented.
- The exposure point concentration (EPC) was the lower concentration of either the upper confidence level on the mean (UCL) or the maximum concentration, where the UCL was incalculable.

 The UCLs were calculated using United States Environmental Protection Agency (USEPA) ProUCL version 5.1.00 (USEPA 2016a). The UCL used is the one recommended by ProUCL, unless a greater than 95% UCL was recommended, in which case the 95% UCL was selected.
- [c] Dermal absorption efficiency (ABSd) for uptake of constituents from a soil matrix (unitless) (USEPA 2018a).
- [d] Relative bioavailability factor is constituent-specific; default of 100% (i.e., 1) unless otherwise indicated (unitless).
- [e] The volatilization factor for soil ([VF] identified with [V]), derived in Table 20.
- [f] ELCRs for trichloroethene (TCE) were calculated using the TCE-specific equations presented in Table 11.
- [g] ELCRs for vinyl chloride (VC) were calculated using the VC-specific equations presented in Table 11.

_	Not applicable.	HI	Hazard index (sum of the HQs).	m³/kg	Cubic meters per kilogram.
ELCR	Excess lifetime cancer risk.	HQ	Hazard quotient.	mg/kg	Milligrams per kilogram.
EPCs	Exposure point concentration in soil.	m	EPC based on maximum.	NA	Toxicity value not available or not applicable.

Equations are presented in Table 11.

Myrtle Beach, South Carolina

Receptor-specific exposure parameters are presented in Table 14 while constituent specific absorption parameters are presented in Table 25. Constituent-specific toxicity values are presented in Table 21 through Table 24.

Variable	Acronym	Value	Value	Unit	Source
		Child	Average		
Averaging time, cancer	ATc	25,550	25,550	days	See Table 14
Averaging time, non -cancer	ATnc	2,190	_	days	See Table 14
Body weight	BW	15	_	kg	See Table 14
Exposure time	ET	24	24	hrs/day	See Table 14
Exposure frequency	EF	350	350	days/year	See Table 14
Exposure duration	ED	6	26	years	See Table 14
Conversion factor (days/hr)	CF	0.042		days/hr	See Table 14
Fraction ingested from site	FI	1		unitless	See Table 14
Ingestion rate of soil	IRs	200	_	mg/day	See Table 14
Soil-to-skin adherence rate	SAR	0.2	_	mg/cm²/day	See Table 14
Skin surface area for soil contact	SSAs	2,373	_	cm ²	See Table 14
Age-adjusted soil oral intake factor	IFso	_	36,750	mg-yr/kg/day	See Table 14
Mutagenic age-adjusted soil oral intake factor	IFMso	_	166,833	mg-yr/kg/day	See Table 14
Age-adjusted soil dermal intake factor	IFsd	_	103,390	mg-yr/kg/day	See Table 14
Mutagenic age-adjusted soil dermal intake factor	IFMsd	_	428,260	mg-yr/kg/day	See Table 14
Mutagenic age-adjusted soil inhalation intake factor	IFMsi	_	72	years	See Table 14
Cancer adjustment factor for TCE, oral and dermal	CAFo	_	0.804	unitless	
Mutagenic adjustement factor for TCE, oral and dermal	MAFo	_	0.202	unitless	
Cancer adjustment factor for TCE, inhalation	CAFi	_	0.756	unitless	
Mutagenic adjustement factor for TCE, inhalation	MAFi	_	0.244	unitless	

AVX MB HHRA Tables 1/1

Myrtle Beach, South Carolina

Table of Inputs and Outputs for Multiple Chemicals

Note: Parameters other than the chemical concentration must be entered in the MODEL sheet and must be the same for all chemicals. Warnings and errors are displayed in only on the MODEL sheet.

			Benzene	Dichloroethane, 1,1-	Dichloroethylene, 1,1-	Naphthalene	Trichloroethylene	rimethylbenzene, 1,2,4	Vinyl Chloride
Source Characteristics:	Units	Symbol	Value	Value	Value	Value	Value	Value	Value
Source medium		Source	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Groundwater concentration	(ug/L)	Cmedium	0.632	188	177	83.2	21500	2.02	593
Depth below grade to water table	(m)	Ls	3.05	3.05	3.05	3.05	3.05	3.05	3.05
Average groundwater temperature	(°C)	Ts	19.4	19.4	19.4	19.4	19.4	19.4	19.4
Calc: Source vapor concentration	(ug/m3)	Cs	113	34724	156897	1008	6718244	357	586406
Calc: % of pure component saturated vapor concentration	(%)	%Sat	0.000%	0.003%	0.005%	0.172%	1.378%	0.003%	0.006%
Chemical:	Units	Symbol	Value	Value	Value	Value	Value	Value	Value
Chemical Name		Chem	Benzene	Dichloroethane, 1,1-	Dichloroethylene, 1,1-	Naphthalene	Trichloroethylene	Trimethylbenzene, 1,2,4-	Vinyl Chloride
CAS No.		CAS	71-43-2	75-34-3	75-35-4	91-20-3	79-01-6	95-63-6	75-01-4
Toxicity Factors									
Unit risk factor	(ug/m ³) ⁻¹	IUR	7.80E-06	1.60E-06	Not Available	3.40E-05	see note	Not Available	4.40E-06
Mutagenic compound		Mut	No	No	No	No	Yes	No	VC
Reference concentration	(ug/m³)	RfC	3.00E-02	Not Available	2.00E-01	3.00E-03	2.00E-03	6.00E-02	1.00E-01
Chemical Properties:	Units	Symbol	Value	Value	Value	Value	Value	Value	Value
Pure component water solubility	(mg/L)	S	1.79E+03	5.04E+03	2.42E+03	3.10E+01	1.28E+03	5.70E+01	8.80E+03
Henry's Law Constant @ 25°C	(atm-m³/mol)	Hc	5.55E-03	5.62E-03	2.61E-02	4.40E-04	9.85E-03	6.16E-03	2.78E-02
Calc: Henry's Law Constant @ 25°C	(dimensionless)	Hr	2.27E-01	2.30E-01	1.07E+00	1.80E-02	4.03E-01	2.52E-01	1.14E+00
Calc: Henry's Law Constant @ system temperature	(dimensionless)	Hs	1.78E-01	1.85E-01	8.86E-01	1.21E-02	3.12E-01	1.77E-01	9.89E-01
Diffusivity in air	(cm2/s)	Dair	8.95E-02	8.36E-02	8.63E-02	6.05E-02	6.87E-02	6.07E-02	1.07E-01
Diffusivity in water	(cm2/s)	Dwater	1.03E-05	1.06E-05	1.10E-05	8.38E-06	1.02E-05	7.92E-06	1.20E-05
Building Characteristics:	Units	Symbol	Value	Value	Value	Value	Value	Value	Value
Building setting		Bldg_Setting	Residential	Residential	Residential	Residential	Residential	Residential	Residential
Foundation type		Found_Type	Slab-on-grade	Slab-on-grade	Slab-on-grade	Slab-on-grade	Slab-on-grade	Slab-on-grade	Slab-on-grade
Depth below grade to base of foundation	(m)	Lb	0.10	0.10	0.10	0.10	0.10	0.10	0.10
Foundation thickness	(m)	Lf	0.10	0.10	0.10	0.10	0.10	0.10	0.10
Fraction of foundation area with cracks	(-)	eta	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Enclosed space floor area	(m2)	Ab	150.00	150.00	150.00	150.00	150.00	150.00	150.00
Enclosed space mixing height	(m)	Hb	2.44	2.44 0.45	2.44 0.45	2.44	2.44 0.45	2.44 0.45	2.44 0.45
Indoor air exchange rate Qsoil/Qbuilding	(1/hr) (-)	ach Qsoil Qb	0.45 0.0030	0.45	0.45	0.45 0.0030	0.45	0.45	0.45
Calc: Building ventilation rate	(-) (m3/hr)	Qsoii_Qb [Qb	164.70	164.70	164.70	164.70	164.70	164.70	164.70
Calc: Average vapor flow rate into	` ,	Qsoil	0.49	0.49	0.49	0.49	0.49	0.49	0.49
building	(m3/hr)	M2011	0.49	U. 4 9	0.49	U.49 	0.49	0.49	0.49

Table 34_J&E Resident 0-25 ft GW 1/3 Myrtle Beach, South Carolina

Vadose zone characteristics:	Units	Symbol	Value						
Stratum A (Top of soil profile):		<u>-</u>							
Stratum A SCS soil type		SCS_A	Silty Clay						
Stratum A thickness (from surface)	(m)	hSA	3.05	3.05	3.05	3.05	3.05	3.05	3.05
Stratum A total porosity	(-)	nSA	0.481	0.481	0.481	0.481	0.481	0.481	0.481
Stratum A water-filled porosity	(-)	nwSA	0.216	0.216	0.216	0.216	0.216	0.216	0.216
Stratum A bulk density	(g/cm ³)	rhoSA	1.380	1.380	1.380	1.380	1.380	1.380	1.380
Stratum B (Soil layer below Stratum A):	(9,5)	l l		11000			11202	11000	
Stratum B SCS soil type		SCS_B	Not Present						
Stratum B thickness	(m)	hSB	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Stratum B total porosity	(-)	nSB							
Stratum B water-filled porosity	(-)	nwSB							
Stratum B bulk density	(g/cm ³)	rhoSB							
Stratum C (Soil layer below Stratum B):	(g/ciii)	ПООВ							
Stratum C SCS soil type		scs c	Not Present						
Stratum C thickness	(m)	hSC	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	(m)	nSC	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Stratum C total porosity	(-)								
Stratum C water-filled porosity	(-)	nwSC							
Stratum C bulk density	(g/cm ³)	rhoSC							
Stratum directly above the water table									
Stratum A, B, or C		src_soil	Stratum A						
Height of capillary fringe	(m)	hcz	1.923	1.923	1.923	1.923	1.923	1.923	1.923
Capillary zone total porosity	(-)	ncz	0.481	0.481	0.481	0.481	0.481	0.481	0.481
Capillary zone water filled porosity	(-)	nwcz	0.424	0.424	0.424	0.424	0.424	0.424	0.424
Exposure Parameters:	Units	Symbol	Value						
Target risk for carcinogens	(-)	Target_CR	1.00E-06						
Target hazard quotient for non-carcinogens	(-)	Target_HQ	1	1	1	1	1	1	1
Exposure Scenario		Scenario	Residential						
Averaging time for carcinogens	(yrs)	ATc	70	70	70	70	70	70	70
Averaging time for non-carcinogens	(yrs)	ATnc	26	26	26	26	26	26	26
Exposure duration	(yrs)	ED	26	26	26	26	26	26	26
Exposure frequency	(days/yr)	EF	350	350	350	350	350	350	350
Exposure time	(hrs/24 hrs)	ET	24	24	24	24	24	24	24
Mutagenic mode-of-action factor	(yrs)	MMOAF	72	72	72	72	72	72	72

Source to Indoor Air Attenuation Factor	Units	Symbol	Value						
Groundwater to indoor air attenuation coefficient	(-)	alpha	7.5E-06	7.1E-06	5.3E-06	3.2E-05	5.2E-06	5.3E-06	6.5E-06
		Range	7.0E-06 - 7.5E-06	6.7E-06 - 7.1E-06	5.1E-06 - 5.3E-06	2.5E-05 - 3.2E-05	5.0E-06 - 5.2E-06	5.1E-06 - 5.3E-06	6.1E-06 - 6.5E-06
Predicted Indoor Air Concentration			Value						
Indoor air concentration due to vapor intrusion	(ug/m3)	Cia	8.4E-04	2.5E-01	8.4E-01	3.2E-02	3.5E+01	1.9E-03	3.8E+00
		Range	7.9E-04 - 8.4E-04	2.3E-01 - 2.5E-01	8.0E-01 - 8.4E-01	2.5E-02 - 3.3E-02	3.3E+01 - 3.5E+01	1.8E-03 - 1.9E-03	3.6E+00 -
	(ppbv)	Cia	2.6E-04	6.1E-02	2.1E-01	6.2E-03	6.5E+00	3.9E-04	1.5E+00
		Range	2.5E-04 - 2.6E-04	5.7E-02 - 6.1E-02	2.0E-01 - 2.1E-01	4.7E-03 - 6.2E-03	6.2E+00 - 6.5E+00	3.7E-04 - 3.9E-04	1.4E+00 - 1.5E+00

Table 34_J&E Resident 0-25 ft GW

<u>Predicted Vapor Concentration Beneath t</u>	<u>the Foundation</u>	_	Value	Value	Value	Value	Value	Value	Value
Subslab vapor concentration	(ug/m3)	Css	2.8E-01	8.2E+01	2.8E+02	1.1E+01	1.2E+04	6.3E-01	1.3E+03
		Range	1.7E-02 - 7.9E+00	5.0E+00 - 2.3E+03	1.7E+01 - 8.0E+03	6.5E-01 - 2.5E+02	7.0E+02 - 3.3E+05	3.8E-02 - 1.8E+01	7.6E+01 - 3.6E+04
	(ppbv)	Css	8.8E-02	2.0E+01	7.0E+01	2.1E+00	2.2E+03	1.3E-01	5.0E+02
	,	Range	5.3E-03 - 2.5E+00	1.2E+00 - 5.7E+02	4.2E+00 - 2.0E+03	1.2E-01 - 4.7E+01	1.3E+02 - 6.2E+04	7.7E-03 - 3.7E+00	3.0E+01 - 1.4E+04
Diffusive Transport Upward Through Vad	lose Zone		Value	Value	Value	Value	Value	Value	Value
Effective diffusion coefficient through Stratum A	(cm2/sec)	DeffA	4.6E-03	4.3E-03	4.5E-03	3.2E-03	3.6E-03	3.1E-03	5.6E-03
Effective diffusion coefficient through Stratum B	(cm2/sec)	DeffB							
Effective diffusion coefficient through Stratum C	(cm2/sec)	DeffC							
Effective diffusion coefficient through capillary zone	(cm2/sec)	DeffCZ	4.3E-05	4.1E-05	3.0E-05	1.9E-04	3.0E-05	3.0E-05	3.7E-05
Effective diffusion coefficient through unsaturated zone	(cm2/sec)	DeffT	6.5E-05	6.2E-05	4.7E-05	2.8E-04	4.6E-05	4.6E-05	5.7E-05
Critical Parameters			Value	Value	Value	Value	Value	Value	Value
a for diffusive transport from source to building with	(-)	A_Param	7.5E-06	7.1E-06	5.3E-06	3.2E-05	5.2E-06	5.3E-06	6.5E-06
Pe (Peclet Number) for transport through the foundation	(-)	B_Param	1.9E+02	2.0E+02	2.0E+02	2.8E+02	2.5E+02	2.8E+02	1.6E+02
a for convective transport from subslab to building	(-)	C Param	3.0E-03	3.0E-03	3.0E-03	3.0E-03	3.0E-03	3.0E-03	3.0E-03

Interpretation

####

Advection is the dominant mechanism across the foundation. Diffusion through soil is the overall rate limiting process.

Critical Parameters

####

Hb, Ls, DeffT, ach

Non-Critical Parameters

####

Qsoil_Qb, Lf, DeffA, eta

Risk Calculations	Units	Symbol	Value	Value	Value	Value	Value	Value	Value
Risk-Based Target Screening Levels									
Target risk for carcinogens	(-)	Target_CR	1E-06	1E-06	1E-06	1E-06	1E-06	1E-06	1E-06
Target hazard quotient for noncarcinogens	(-)	Target_HQ	1	1	1	1	1	1	1
Target indoor air concentration	(ug/m3)	Target_IA	3.60E-01	1.75E+00	2.09E+02	8.26E-02	4.78E-01	6.26E+01	1.68E-01
	(ppbv)	Target_IA	1.13E-01	4.34E-01	5.26E+01	1.58E-02	8.91E-02	1.27E+01	6.56E-02
Target groundwater concentration	(ug/L)	Target_GW	2.70E+02	1.33E+03	4.41E+04	2.12E+02	2.93E+02	6.67E+04	2.62E+01
Incremental Risk Estimates									
Incremental cancer risk from vapor intrusion	(-)	Cancer_Risk	2.34E-09	1.41E-07	No IUR	3.92E-07	7.34E-05	No IUR	2.27E-05
		Range	2.2E-09 - 2.3E-09	1.3E-07 - 1.4E-07	-	3.0E-07 - 4.0E-07	7.0E-05 - 7.4E-05	-	2.1E-05 - 2.3E-05
Hazard quotient from vapor intrusion	(-)	HQ	2.69104E-05	No RfC Available	0.004014501	0.01035028	16.84056852	3.02673E-05	0.036436492
		Range	2.5E-05 - 2.7E-05	C Available - No RfC Ava	3.8E-03 - 4.0E-03	7.9E-03 - 1.0E-02	1.6E+01 - 1.7E+01	2.9E-05 - 3.0E-05	3.4E-02 - 3.7E-02

Total Risk 1E-04 Total Hazard 17

RECEPTOR Exposure Medium - Scenario	Calculation Table	Total Excess Lifetime Cancer Risk	Total Non-Cancer Hazard
Current or Hypothetical Future Site Worker			
Direct Contact with Soil (0-2 Feet)	Table 26	2E-05	6
Direct Contact with Soil (0-10 Feet)	Table 27	3E-05	9
Inhalation of Vapors in Indoor Air	Table 28	1E-05	1
Total for Surfa	ce Soil and Indoor Air	3E-05	7
Total for Combined Surface and Subsurfa	ce Soil and Indoor Air	4E-05	10
Hypothetical Future Construction Worker			
Direct Contact with Soil (0-2 Feet)	Table 29	1E-06	9.7
Direct Contact with Soil (0-10 Feet)	Table 30	2E-06	16
Direct Contact with Groundwater	Table 31	2E-07	1
Total for Surface	Soil and Groundwater	1E-06	11
Total for Combined Surface and Subsurface	Soil and Groundwater	2E-06	17
Hypothetical Future Resident			
Direct Contact with Soil (0-2 Feet)	Table 32	1E-04	27
Direct Contact with Soil (0-10 Feet)	Table 33	2E-04	43
Inhalation of Vapors in Indoor Air	Table 34	1E-04	17
·	ce Soil and Indoor Air	2E-04	44
Total for Combined Surface and Subsurfa	ce Soil and Indoor Air	3E-04	60

Cancer risk estimates exceeding 1x10⁻⁴ and non-cancer hazard estimates exceeding 1 are in bold.

Table 36 Health-Based Concentration Goal Calculations for Exposure to Soil of a Resident Human Health Risk Assessment AVX Corporation Myrtle Beach, South Carolina

		CANCE	R EFFECTS	NON-CAN	CER EFFECTS	Minimum
	EPCs		HBG _c (mg/kg)		HBG _{NC} (mg/kg)	HBG
Constituent	[a]	ELCR	TCR =	HI	THQ =	[b]
	(mg/kg)		1E-06		1	(mg/kg)
Volatile Organic Compounds Trichloroethene	2.04E+02 UCL	1.89E-04	1.1E+00	4.33E+01	4.7E+00	1.1E+00 C

[a] Exposure point concentration in soil (EPCs), as shown on Table 33.

[b] Minimum of the HBG_C (identified by "C") and HBG_{NC} (identified by "N") for TCR = 10^{-6} and HBG_{NC} for THQ = 1.

ELCR Excess lifetime cancer risk. mg/kg Milligram per kilogram. HBG Heath-based concentration goal. TCR Target cancer risk.

HI Hazard index (sum of the HQs). THQ Target hazard quotient for non-cancer effects.

Equations:

 $HBG_C = EPCs \times TCR / ELCR$ $HBG_{NC} = EPCs \times THQ / HI$

Table 37 Health-Based Concentration Goal Calculations for Exposure to Soil of a Site Worker Human Health Risk Assessment AVX Corporation Myrtle Beach, South Carolina

		CANCER	EFFECTS	NON-CANO	ER EFFECTS	Minimum	
	EPCs		HBG _c (mg/kg)		HBG _{NC} (mg/kg)	HBG	
Constituent	[a]	ELCR	TCR =	HI	THQ =	[b]	
	(mg/kg)		1E-06		1	(mg/kg)	
Volatile Organic Compounds Trichloroethene	2.04E+02 UCL	2.94F-05	6.9E+00	9.41E+00	2.2E+01	6.9E+00 C	

[a] Exposure point concentration in soil (EPCs), as shown on Table 27.

[b] Minimum of the HBG_C (identified by "C") and HBG_{NC} (identified by "N") for TCR = 10^{-6} and HBG_{NC} for THQ = 1.

Not applicable.
 ELCR
 Excess lifetime cancer risk.
 mg/kg
 Milligram per kilogram.
 TCR
 Target cancer risk.

HBG Heath-based concentration goal. THQ Target hazard quotient for non-cancer effects.

HI Hazard index (sum of the HQs).

Equations:

 $HBG_C = EPCs \times TCR / ELCR$ $HBG_{NC} = EPCs \times THQ / HI$

Table 38 Health-Based Concentration Goal Calculations for Exposure to Soil of a Construction Worker Human Health Risk Assessment AVX Corporation Myrtle Beach, South Carolina

		CANCE	REFFECTS	NON-CANCER EFFECTS		Minimum	
	EPCs		HBG _c (mg/kg)		HBG _{NC} (mg/kg)	HBG	
Constituent	[a]	ELCR	TCR =	HI	THQ =	[b]	
	(mg/kg)		1E-06		1	(mg/kg)	
Volatile Organic Compounds Trichloroethene	2.04E+02 UCL	2.07E-06	9.8E+01	1.57E+01	1.3E+01	1.3E+01 N	

[a] Exposure point concentration in soil (EPCs), as shown on Table 30.

[b] Minimum of the HBG_C (identified by "C") and HBG_{NC} (identified by "N") for TCR = 10^{-6} and HBG_{NC} for THQ = 1.

Not applicable.
 ELCR
 Excess lifetime cancer risk.
 mg/kg
 Milligram per kilogram.
 TCR
 Target cancer risk.

HBG Heath-based concentration goal. THQ Target hazard quotient for non-cancer effects.

HI Hazard index (sum of the HQs).

Equations:

 $HBG_C = EPCs \times TCR / ELCR$ $HBG_{NC} = EPCs \times THQ / HI$

Table 39 Health-Based Concentration Goal Calculations for Exposure to Groundwater of a Construction Worker Human Health Risk Assessment AVX Corporation

Myrtle Beach, South Carolina

		CANCER	EFFECTS	NON-CANC	Minimum	
	EPCw		HBG _c (mg/L)		HBG _{NC} (mg/L)	HBG
Constituent	[a]	ELCR	TCR =	HI	THQ =	[b]
	(mg/L)		1E-06		1	(mg/L)
Volatile Organic Compounds						
Trichloroethene	_	_	_	_	_	_

[a] Exposure point concentration in groundwater (EPCw), as shown on Table 31.

[b] Minimum of the HBG_C (identified by "C") and HBG_{NC} (identified by "N") for TCR = 10^{-6} and HBG_{NC} for THQ = 1.

ELCR Excess lifetime cancer risk. NA Toxicity value not available.

HBG Heath-based concentration goal. TCR Target cancer risk.

HI Hazard index (sum of the HQs). THQ Target hazard quotient for non-cancer effects.

mg/L Milligram per liter.

Equations:

 $HBG_C = EPCw \times TCR / ELCR$ $HBG_{NC} = EPCw \times THQ / HI$

Table 40 Health-Based Concentration Goal Calculations for Exposure to Vapor Migration from Groundwater of a Resident Human Health Risk Assessment

AVX Corporation

Myrtle Beach, South Carolina

		CANCER EFFECTS		NON-CANCER EFFECTS		Minimum	
	EPCw		HBG _c (mg/L)		HBG _{NC} (mg/L)	HBG	
Constituent	[a]	ELCR	TCR =	HI	THQ =	[b]	
	(mg/L)		1E-06		1	(mg/L)	
Volatile Organic Compounds							
Trichloroethene	2.15E+01 UCL	7.34E-05	2.9E-01	1.68E+01	1.3E+00	2.9E-01 C	
Vinyl Chloride	5.93E-01 UCL	2.27E-05	2.6E-02	-	_	2.6E-02 C	

[[]a] Exposure point concentration in groundwater (EPCw), as shown on Table 34.

[b] Minimum of the HBG_C (identified by "C") and HBG_{NC} (identified by "N") for TCR = 10^{-6} and HBG_{NC} for THQ = 1.

ELCR	Excess lifetime cancer risk.	mg/L	Milligram per liter.
HBG	Heath-based concentration goal.	TCR	Target cancer risk.

HI Hazard index (sum of the HQs). THQ Target hazard quotient for non-cancer effects.

Equations:

 $HBG_C = EPCw \times TCR / ELCR$ $HBG_{NC} = EPCw \times THQ / HI$

Table 41 Health-Based Concentration Goal Calculations for Exposure to Vapor Migration from Groundwater of a Site Worker Human Health Risk Assessment AVX Corporation

Myrtle Beach, South Carolina

		CANCER EFFECTS		NON-CANCER EFFECTS		Minimum
	EPCw	ELCR	HBG _c (mg/L)	н	HBG _{NC} (mg/L)	HBG
Constituent	[a]				THQ =	[b]
	(mg/L)		1E-06		1	(mg/L)
Volatile Organic Compounds Trichloroethene	2.15E+01 UCL	1.1E-05	2.0E+00	9.7E-01	2.2E+01	2.0E+00 C

[a] Exposure point concentration in groundwater (EPCw), as shown on Table 28.

[b] Minimum of the HBG_C (identified by "C") and HBG_{NC} (identified by "N") for TCR = 10^{-6} and HBG_{NC} for THQ = 1.

ELCR Excess lifetime cancer risk. mg/L Milligram per liter. HBG Heath-based concentration goal. TCR Target cancer risk.

HI Hazard index (sum of the HQs). THQ Target hazard quotient for non-cancer effects.

Equations:

 $HBG_C = EPCw \times TCR / ELCR$ $HBG_{NC} = EPCw \times THQ / HI$

Constituent Volatile Organic Compounds Trichloroethene Vinyl Chloride		Soil HBG (mg/kg)		Groundwater HBG (mg/L)		Vapor Intrusion from Groundwater HBG (mg/L)		Recommended HBG Based on Implementation of	
		Resident	Site Worker	Construction Worker	MCL	Construction Worker	Resident	Site Worker	Land Use Controls (mg/L)
		1.1E+00 6.9E+00 	1.3E+01 _	5.0E-03 2.0E-03	4.9E+01 _	2.9E-01 2.6E-02	2.0E+00 -	2.0E+00 NA	
 Not calculated. HBG Health-based concentration goal. MCL Maximum Contaminant Level (USEPA 2018a). 				mg/kg mg/L NA	Milligram per kilogr Milligram per liter. Not available.	am.			

FIGURES

- 2008 WASTE PAD POST DEMOLITION SAMPLING LOCATION
- 2009/10 PDG BLDG PRE/POST DEMOLITION SAMPLING LOCATION
- 2012 MB1 PHASE 1 POST DEMOLITION SAMPLING LOCATION
- 2015 MB1 PHASE 2 POST DEMOLITION SAMPLING LOCATION
- 2018 RECLAIM AND RMM BLDG POST DEMOLITION SAMPLING LOCATION

TCE CONCENTRATIONS IN SURFACE SOIL (0-2 FT BGS)

NON-DETECT OR <0.01 mg/kg

- >/=0.01 mg/kg AND <0.1 mg/kg
- >/=0.1 mg/kg AND <1.1 mg/kg
- >/=1.1 mg/kg AND <10 mg/kg
- >/=10 mg/kg AND <100 mg/kg
- >/=100 mg/kg

- AERIAL PHOTOGRAPH OBTAINED FROM GOOGLE EARTH PRO, DATED NOVEMBER 15, 2017.
- THE RELATIONSHIPS BETWEEN INVESTIGATION LOCATIONS AND OTHER FEATURES LIKE ROADS, BUILDINGS AND WATER FEATURES ARE APPROXIMATE.

AVX CORPORATION MYRTLE BEACH FACILITY MYRTLE BEACH, SOUTH CAROLINA

LOCATIONS OF SURFACE SOIL SAMPLES USED IN THE HHRA

3-1

3-2

- O MONITORING WELL SCREENED IN THE UPPER TERRACE DEPOSITS
- MONITORING WELL SCREENED IN THE UPPER & LOWER TERRACE DEPOSITS
- FORMER PUMPING WELL SCREENED IN THE UPPER TERRACE DEPOSITS
- PRODUCTION WELL SCREENED IN THE UPPER & LOWER TERRACE DEPOSITS
- HYDRAULIC PROFILING TOOL SAMPLING LOCATION

NOTES:

- 1. AERIAL PHOTOGRAPH OBTAINED FROM GOOGLE EARTH PRO, DATED NOVEMBER 15, 2017.
- THE RELATIONSHIPS BETWEEN INVESTIGATION LOCATIONS AND OTHER FEATURES LIKE ROADS, BUILDINGS AND WATER FEATURES ARE APPROXIMATE.

AVX CORPORATION MYRTLE BEACH FACILITY MYRTLE BEACH, SOUTH CAROLINA

LOCATIONS OF GROUNDWATER SAMPLES USED IN THE HHRA

Site Worker		
	ite Worker	Current
	Construction Worker	thetical F
	Resident	uture

PRIMARY SECONDARY PATHWAY/
PRIMARY RELEASE SECONDARY RELEASE EXPOSURE
SOURCE MECHANISM SOURCE MECHANISM MEDIUM

EXPOSURE ROUTE

Notes:

x: Potentially complete exposure pathway.

NA: Incomplete exposure pathway.

a: Subsurface soil is considered to include soil from 0 to 10 feet below ground surface.

Risk Assessment Conceptual Site Model

Potential Human Health Receptors

AVX Corporation

Myrtle Beach, South Carolina

Figure 4-1

APPENDIX A

Vapor Intrusion Screening Levels

Site-specific Resident Equation Inputs for Soil

Variable	Value
THQ (target hazard quotient) unitless	0.1
TR (target risk) unitless	0.000001
LT (lifetime) year	70
ET _{res} (exposure time) hour	24
ET _{res-c} (child exposure time) hour	24
ET _{res-a} (adult exposure time) hour	24
ET ₀₋₂ (mutagenic exposure time) hour	24
ET ₂₋₆ (mutagenic exposure time) hour	24
ET ₆₋₁₆ (mutagenic exposure time) hour	24
ET ₁₆₋₂₆ (mutagenic exposure time) hour	24
ED _{res} (exposure duration) year	26
ED _{res-c} (exposure duration - child) year	6
ED _{res-a} (exposure duration - adult) year	20
ED ₀₋₂ (mutagenic exposure duration) year	2
ED ₂₋₆ (mutagenic exposure duration) year	4
ED ₆₋₁₆ (mutagenic exposure duration) year	10
ED ₁₆₋₂₆ (mutagenic exposure duration) year	10
BW _{res-c} (body weight - child) kg	15
BW _{res-a} (body weight - drilla) kg	80
BW ₀₋₂ (mutagenic body weight) kg	15
BW ₂₋₆ (mutagenic body weight) kg	15
	80
BW 6-16 (mutagenic body weight) kg	80
BW ₁₆₋₂₆ (mutagenic body weight) kg	2373
SA _{res-c} (skin surface area - child) cm ² /day	
SA _{res-a} (skin surface area - adult) cm ² /day	6032
SA ₀₋₂ (mutagenic skin surface area) cm ² /day	2373
SA ₂₋₆ (mutagenic skin surface area) cm ² /day	2373
SA ₆₋₁₆ (mutagenic skin surface area) cm²/day	6032
SA ₁₆₋₂₆ (mutagenic skin surface area) cm ² /day	6032
EF _{res} (exposure frequency) day/year	350
EF _{res-c} (exposure frequency - child) day/year	350
EF _{res-a} (exposure frequency - adult) day/year	350
EF ₀₋₂ (mutagenic exposure frequency) day/year	350
EF ₂₋₆ (mutagenic exposure frequency) day/year	350
EF ₆₋₁₆ (mutagenic exposure frequency) day/year	350
EF ₁₆₋₂₆ (mutagenic exposure frequency) day/year	350
IFS _{res-adj} (age-adjusted soil ingestion factor) mg/kg	36750
IFSM _{res-adj} (mutagenic age-adjusted soil ingestion factor) mg/kg	166833.33
IRS _{res-c} (soil intake rate - child) mg/day	200
IRS _{res-a} (soil intake rate - adult) mg/day	100
IRS ₀₋₂ (mutagenic soil intake rate) mg/day	200
IRS ₂₋₆ (mutagenic soil intake rate) mg/day	200
IRS ₆₋₁₆ (mutagenic soil intake rate) mg/day	100
IRS ₁₆₋₂₆ (mutagenic soil intake rate) mg/day	100
AF _{res-a} (skin adherence factor - adult) mg/cm ²	0.07
AF _{res-c} (skin adherence factor - child) mg/cm ²	0.2
AF ₀₋₂ (mutagenic skin adherence factor) mg/cm ²	0.2
AF ₂₋₆ (mutagenic skin adherence factor) mg/cm ²	0.2
AF ₆₋₁₆ (mutagenic skin adherence factor) mg/cm ²	0.07

Site-specific Resident Equation Inputs for Soil

Variable	Value
AF ₁₆₋₂₆ (mutagenic skin adherence factor) mg/cm ²	0.07
DFS _{res-adj} (age-adjusted soil dermal factor) mg/kg	103390
DFSM _{res-adj} (mutagenic age-adjusted soil dermal factor) mg/kg	428260
City _{PEF} (Climate Zone) Selection	Default
A _s (acres)	0.5
$\mathrm{Q/C_{wp}}$ (inverse of the ratio of the geometric mean air concentration to the emission flu	93.77
PEF (particulate emission factor) m³/kg	1359344438
A (PEF Dispersion Constant)	16.2302
B (PEF Dispersion Constant)	18.7762
C (PEF Dispersion Constant)	216.108
V (fraction of vegetative cover) unitless	0.5
U _m (mean annual wind speed) m/s	4.69
U _t (equivalent threshold value)	11.32
$F(x)$ (function dependant on U_m/U_t) unitless	0.194
City _{VF} (Climate Zone) Selection	Default
A _s (acres)	0.5
Q/C _{vol} (inverse of the ratio of the geometric mean air concentration to the emission flu	68.18
foc (fraction organic carbon in soil) g/g	0.006
p _h (dry soil bulk density) g/cm ³	1.5
p _s (soil particle density) g/cm ³	2.65
n (total soil porosity) L _{pore} /L _{soil}	0.43396
$_{\rm a}$ (air-filled soil porosity) ${\sf L}_{\rm air}/{\sf L}_{\rm soil}$	0.28396
$_{\rm w}$ (water-filled soil porosity) $L_{\rm water}/L_{\rm soil}$	0.15
T (exposure interval) s	819936000
A (VF Dispersion Constant)	11.911
B (VF Dispersion Constant)	18.4385
C (VF Dispersion Constant)	209.7845
City _{VF mass-loading} (Climate Zone) Selection	Default
VF _{ml} (volitization factor - mass-limit) m ³ /kg	Boladit
Q/C _{vol} (inverse of the ratio of the geometric mean air concentration to the	-
emission fl	68.18365
A _s (acres)	0.5
T (exposure interval) yr	26
d _s (depth of source) m	
p _b (dry soil bulk density) g/cm ³	1.5
A (VF Dispersion Constant - Mass Limit)	11.911
B (VF Dispersion Constant - Mass Limit)	18.4385
C (VF Dispersion Constant - Mass Limit)	209.7845

Output generated 16FEB2017:12:07:58

					Inhalation										Henry's			Soil	Particulate		
			voc	Ingestion SF SFO	Unit Risk	шь	Chronic	Chronic	Chronic RfC	Chronic				Volatilization Factor	Law		K	Saturation	Emission Factor	Screening	
Chemical	CAS Number	r Mutagen?	1	(mg/kg-day) ⁻¹ Ref	(ug/m ³) ⁻¹	IUR Ref	RfD (mg/kg-day)	RfD Ref	(mg/m³)	RfC Ref	GIABS	ABS	RBA	(m ³ /kg)	Constant (unitless)	S (mg/L)	K _{oc} (cm3/g)	Concentration (mg/kg)	(m³/kg)	Level (mg/kg)	[basis]
Acephate	30560-19-1	No	No.	(mg/kg-day) iter	(ug/iii)		1.20E-03	OP	(ilig/iii)	IXOI	1	0.1	1	(III /kg)	2.05E-11	8.18E+05	1.00E+01	(mg/kg)	1.36E+09	7.59E+00	nc
Acetaldehyde	75-07-0	No	Yes		2.20E-06		1.202 00	01	9.00E-03	IR	1	0.1	- 1	8.72E+03	2.73E-03	1.00E+06	1.00E+00	1.07E+05	1.36E+09	8.18E+00	nc
Acetochlor	34256-82-1	No	No		2.20L-00	. '	2.00E-02	IR	J.00L-03	111	1	0.1	1	0.721.00	9.12E-07	2.23E+02	2.98E+02	1.07 🗀 100	1.36E+09	1.26E+02	nc
Acetone	67-64-1	No	Yes				9.00E-01	IR	3.09E+01	AT	1	0.1	- 1	1.37E+04	1.43E-03	1.00E+06	2.36E+00	1.14E+05	1.36E+09	6.07E+03	nc
Acetone Cyanohydrin	75-86-5	No	No				3.00L-01	111	2.00E-03	SC	1	0.1	1	1.07 = 104	8.05E-08	1.00E+06	1.00E+00	1.142.00	1.36E+09	2.84E+05	cm
Acetonitrile	75-05-8	No	Yes				_		6.00E-02	IR	1	0.1	- 1	1.30E+04	1.41E-03	1.00E+06	4.67E+00	1.28E+05	1.36E+09	8.11E+01	nc
Acetophenone	98-86-2	No	Yes				1.00E-01	IR	0.00L-02	IIX	1		- ' - 1	5.97E+04	4.25E-04	6.13E+03	5.19E+01	2.52E+03	1.36E+09	7.82E+02	nc
Acetylaminofluorene, 2-	53-96-3	No	No	3.80E+00 C	1.30E-03	С	1.002-01	111			1	0.1	1	J.57 L 1 04	7.85E-09	5.53E+00	2.21E+03	2.021 100	1.36E+09	1.43E-01	ca
Acifluorofen	50594-66-6	No	No	3.00L100 O	1.50L-05						1	0.1	1		2.47E-09	1.20E+02	3.88E+03		1.36E+09	1.432-01	Ca
Acridine	260-94-6	No	No				_		_		1	0.1	1	_	1.62E-05	3.84E+01	1.64E+04	_	1.36E+09		
Acrolein	107-02-8	No	Yes				5.00E-04	IR	2.00E-05	IR	1	0.1	- 1	6.91E+03	4.99E-03	2.12E+05	1.00E+00	2.27E+04	1.36E+09	1.44E-02	nc
Acrylamide	79-06-1	Yes	No	5.00E-01 I	1.00E-04	1	2.00E-03	IR	6.00E-03	IR	1	0.1	1	0.912103	6.95E-08	3.90E+05	5.69E+00	2.27 L 104	1.36E+09	2.44E-01	ca*
Acrylic Acid	79-10-7	No	Yes	3.00L-01 1	1.00L-04	'	5.00E-03	IR	1.00E-03	IR	1	0.1	- 1	9.53E+04	1.51E-05	1.00E+06	1.44E+00	1.09E+05	1.36E+09	9.91E+00	nc
Acrylonitrile	107-13-1	No	Yes	5.40E-01 I	6.80E-05		4.00E-02	AT	2.00E-03	IR	1		1	7.69E+03	5.64E-03	7.45E+04	8.51E+00	1.13E+04	1.36E+09	2.55E-01	ca**
Adiponitrile	111-69-3	No	No	J.40E-01 1	0.00E-03	-	4.00E-02	Ai	6.00E-03	PP	1	0.1	1	7.092+03	4.95E-08	8.00E+04	2.02E+01	1.132+04	1.36E+09	8.51E+05	
			_	F 60F 02 C	-		1.005.00	ID	0.00⊑-03	FF	1		1	-				-			cm
Alachlor	15972-60-8 1596-84-5	No	No	5.60E-02 C 1.80E-02 C	5.10E-06	С	1.00E-02 1.50E-01	IR IR	-		1	0.1	1	-	3.40E-07 1.73E-08	2.40E+02	3.12E+02	-	1.36E+09 1.36E+09	9.69E+00 3.01E+01	ca**
Daminozide		No	No	1.00E-02 C	5. IUE-06	C			-		1		1	-		1.00E+05	1.00E+01	-	1.36E+09 1.36E+09		ca*
Aldicarb	116-06-3	No	No	-	-		1.00E-03	IR	-			0.1	1	-	5.89E-08	6.03E+03	2.46E+01	-		6.32E+00	nc
Aldicarb Sulfone	1646-88-4	No	No	-	-		1.00E-03	IR	-		1	0.1	1	-	1.38E-07	1.00E+04	1.00E+01	-	1.36E+09	6.32E+00	nc
Aldicarb sulfoxide	1646-87-3	No	No	4 705 : 04	4.005.00		- 0.005.05	ID	-		1	0.1	1	4.705.00	3.96E-08	2.80E+04	1.00E+01	-	1.36E+09	0.005.00	**
Aldrin	309-00-2	No	Yes	1.70E+01 I	4.90E-03	I	3.00E-05	IR	-		1	0.4	- 1	1.72E+06	1.80E-03	1.70E-02	8.20E+04	-	1.36E+09	3.93E-02	ca**
Aliphatic Chlorinated Hydrocarbons (each)	NA	No	No	-	-		-		-		1	0.1	1	-	-	-	-	-	1.36E+09		
Aliphatic Chlorinated Hydrocarbons (total)	NA	No	No	-	-		-		-		1	0.1	1	-	-	-	-	-	1.36E+09		
Alizarin Red Compounds	NA	No	No	-	-				-		1	0.1	1	-	-	-	-	-	1.36E+09		
Allyl Alcohol	107-18-6	No	Yes	-	-		5.00E-03	IR	1.00E-04	SC	1		- 1	3.42E+04	2.04E-04	1.00E+06	1.90E+00	1.11E+05	1.36E+09	3.53E-01	nc
Allyl Chloride	107-05-1	No	Yes	2.10E-02 C	6.00E-06	С	-		1.00E-03	IR	1		- 1	1.58E+03	4.50E-01	3.37E+03	3.96E+01	1.42E+03	1.36E+09	1.65E-01	nc
Aluminum	7429-90-5	No	No	-	-		1.00E+00	PP	5.00E-03	PP	1		- 1	-	-	-	-	-	1.36E+09	7.74E+03	nc
Aluminum Phosphide	20859-73-8	No	No	-	-		4.00E-04	IR	-		1		- 1	-	-	<u> </u>	-	-	1.36E+09	3.13E+00	nc
Hydramethylnon	67485-29-4	No	No	-	-		1.70E-02	OP	-		1	0.1	1	-	8.99E-05	6.00E-03	1.80E+08	-	1.36E+09	1.07E+02	nc
Ametryn	834-12-8	No	No	-	-		9.00E-03	IR	-		1	0.1	1	-	9.93E-08	2.09E+02	4.28E+02	-	1.36E+09	5.69E+01	nc
Amino-4-chlorobenzotrifluoride, 3-	121-50-6	No	Yes	-	-		-		-		1		- 1	2.67E+05	5.03E-04	1.12E+02	7.90E+02	-	1.36E+09		
Aminoazobenzene, p-	60-09-3	No	No	-	-		-		-		1	0.1	1	-	3.56E-09	3.20E+01	1.81E+03	-	1.36E+09		
Aminobiphenyl, 4-	92-67-1	No	No	2.10E+01 C	6.00E-03	С	-		-		1	0.1	1	-	5.97E-06	2.24E+02	2.47E+03	-	1.36E+09	2.58E-02	ca
Aminophenol, m-	591-27-5	No	No	-	-		8.00E-02	PP	-		1	0.1	1	-	8.09E-09	2.70E+04	9.02E+01	-	1.36E+09	5.06E+02	nc
Aminophenol, o-	95-55-6	No	No	-	-		4.00E-03	SC	-		1	0.1	1	-	8.09E-09	2.00E+04	9.20E+01	-	1.36E+09	2.53E+01	nc
Aminophenol, p-	123-30-8	No	No	-	-		2.00E-02	PP	-		1	0.1	1	-	1.47E-08	1.60E+04	9.02E+01	-	1.36E+09	1.26E+02	nc
Aminopyridine, 4-	504-24-5	No	No	-	-		-		-		1	0.1	1	-	1.15E-07	8.33E+04	3.46E+01	-	1.36E+09		
Amitraz	33089-61-1	No	No	-	-		2.50E-03	IR	-		1	0.1	1	-	4.04E-04	1.00E+00	2.57E+05	-	1.36E+09	1.58E+01	nc
Ammonium Sulfamate	7773-06-0	No	No	-	-		2.00E-01	IR	-		1		- 1	-	-	1.34E+06	-	-	1.36E+09	1.56E+03	nc
Amyl Alcohol, tert-	75-85-4	No	Yes	-	-		-		3.00E-03	SC	1		- 1	2.62E+04	5.64E-04	1.10E+05	4.14E+00	1.37E+04	1.36E+09	8.20E+00	nc
Aniline	62-53-3	No	No	5.70E-03 I	1.60E-06	С	7.00E-03	PP	1.00E-03	IR	1	0.1	1	-	8.26E-05	3.60E+04	7.02E+01	-	1.36E+09	4.42E+01	nc
Anilinobenzothiazole	1843-21-6	No	No	-	-		-		-		1	0.1	1	-	-	-	-	-	1.36E+09		
Anthraquinone, 9,10-	84-65-1	No	No	4.00E-02 P	-		2.00E-03	SC			1	0.1	1	-	9.61E-07	1.35E+00	5.01E+03	-	1.36E+09	1.26E+01	nc
Antimony (metallic)	7440-36-0	No	No	-	-		4.00E-04	IR	-		0.15		- 1	-		-		-	1.36E+09	3.13E+00	nc
Antimony Pentoxide	1314-60-9	No	No	-	-		5.00E-04	HE	-		0.15		- 1	-	-	3.00E+03	-		1.36E+09	3.91E+00	nc
Antimony Potassium Tartrate	11071-15-1	No	No	-	-		-		-		1	0.1	1	-	-	5.26E+04	1.34E+01	-	1.36E+09		
Antimony Tetroxide	1332-81-6	No	No	-	-		4.00E-04	HE	-		0.15		- 1	-	-	-	-		1.36E+09	3.13E+00	nc
			-	· · · · · · · · · · · · · · · · · · ·		-								-				-			

Chemical	CAS Number	Mutana 2	VOC	Ingestion SF	SFO	Inhalation Unit Risk	IUR	Chronic RfD	Chronic RfD	RfC	Chronic RfC	GIABS	ABS	RBA	Volatilization Factor (m³/kg)	Henry's Law Constant	S (mg/l)	K _{oc}	Soil Saturation Concentration	Particulate Emission Factor	Screening Level	[hasia]
Antimony Trioxide	1309-64-4	Mutagen?	No	(mg/kg-day) ⁻¹	Ref	(ug/m³) ⁻¹	Ref	(mg/kg-day)	Ref	(mg/m³) 2.00E-04	Ref IR	0.15	ADS	1 1	(III /kg)	(unitless)	(mg/L)	(cm3/g)	(mg/kg)	(m³/kg) 1.36E+09	(mg/kg) 2.84E+04	[basis]
Antimony Trichloride	10025-91-9	No	No	_				_		2.00L-04	II X	1		1	-	_	6.02E+06	_	_	1.36E+09	2.046104	· · ·
Clofentezine	74115-24-5	No	No	_				1.30E-02	IR	-		1	0.1	1	-	1.59E-08	1.00E+00	3.02E+04	-	1.36E+09	8.22E+01	no
Arsenic Salts	NA	No	No					1.30E-02	IIX.	-		1	0.03	0.6	-	1.39E-00	1.002+00	3.02E+04	-	1.36E+09	0.226+01	nc
	7440-38-2	No	No	1.50E+00	1	4.30E-03		3.00E-04	IR	1.50E-05	CA	-	0.03	0.6	-	-	-	-	-	1.36E+09	6.77E-01	ca**
Arsenic, Inorganic Arsine	7784-42-1	No	No	1.50=+00	1	4.30⊑-03	1	3.50E-04 3.50E-06	CA	5.00E-05	IR	1	0.03	0.6	-	-	2.00E+05	-	-	1.36E+09	2.74E-02	
Asulam	3337-71-1	No	No					3.60E-02	OP	J.00L-03	IIX	1	0.1	1	-	6.99E-11	5.00E+03	2.78E+01	-	1.36E+09	2.28E+02	nc
	1912-24-9	No		2.30E-01	С	•		3.50E-02	IR	-		1	0.1	1	-	9.65E-08	3.47E+01	2.76E+01 2.25E+02	-	1.36E+09	2.36E+00	nc *
Atrazine			No		C	2 505 04	С	3.50E-02	IIX	-		1		1	-		-	4.46E+03	-			ca*
Avermentin B1	492-80-8	No	No	8.80E-01	C	2.50E-04	C	4 00E 04	IR	-		-	0.1	1	-	1.49E-07	5.35E+01	8.77E+05	-	1.36E+09 1.36E+09	6.17E-01	ca
Average Averag	65195-55-3	No	No	1 105 01		3.10E-05		4.00E-04	IK	-		1	0.1	-	- - - -	5.40E-26	3.50E-04	3.76E+03	-	1.36E+09 1.36E+09	2.53E+00	nc
Azobenzene	103-33-3	No	Yes	1.10E-01	1	3.10E-05	1	4.005.00	DD.	7.005.00	DD	1	- 0.4	1	5.23E+05	5.52E-04	6.40E+00		-		5.58E+00	ca
Azodicarbonamide Barium	123-77-3 7440-39-3	No	No			•		1.00E+00 2.00E-01	PP	7.00E-06	PP	0.07	0.1	1	-	3.35E-11	3.50E+01	6.96E+01	-	1.36E+09 1.36E+09	8.58E+02	nc
		No	No	F 00F 04		1 505 04			IR CA	5.00E-04	HE			1	-	-	2 60 5 . 00	-	-		1.53E+03	nc
Barium Chromate	10294-40-3	Yes	No	5.00E-01	С	1.50E-01	С	2.00E-02	CA	2.00E-04	CA	0.025	- 0.4	1	-	1 105 00	2.60E+00	1 245 - 05	-	1.36E+09	2.96E-01	ca
Cyfluthrin	68359-37-5	No	No	-		•		2.50E-02	IR	-		1	0.1	1	0.075.05	1.19E-06	3.00E-03	1.31E+05	-	1.36E+09	1.58E+02	nc
Benfluralin	1861-40-1	No	Yes	-		•		5.00E-03	OP	-		1		1	3.07E+05	1.19E-02	1.00E-01	1.64E+04	-	1.36E+09	3.91E+01	nc
Benomyl	17804-35-2	No	No	-		•		5.00E-02	IR	-		1	0.1	1	-	2.02E-10	3.80E+00	3.36E+02	-	1.36E+09	3.16E+02	nc
Bentazon	25057-89-0	No	No	-		•		3.00E-02	IR	-		1	0.1	1	-	8.91E-08	5.00E+02	1.00E+01	-	1.36E+09	1.90E+02	nc
Benzaldehyde	100-52-7	No	Yes	4.00E-03	Р	•		1.00E-01	IR	-		1	-	1	2.25E+04	1.09E-03	6.95E+03	1.11E+01	1.16E+03	1.36E+09	1.74E+02	ca**
Benzamide, N,N-diethyl-3-methyl (DEET)	134-62-3	No	No				-	-		-		1	0.1	-	-	8.50E-07	0.00E+00	1.13E+02	-	1.36E+09		**
Benzene	71-43-2	No	Yes	5.50E-02	1	7.80E-06	I	4.00E-03	IR	3.00E-02	IR	1		1	3.54E+03	2.27E-01	1.79E+03	1.46E+02	1.82E+03	1.36E+09	1.16E+00	ca**
Benzene, Ethyldimethyl	29224-55-3	No	Yes	-		<u> </u>		-		-		1		1	9.12E+03	4.17E-01	1.77E+01	1.20E+03	1.30E+02	1.36E+09		
Benzene, Ethylmethyl	25550-14-5	No	Yes	-		•		-		-		1		1	1.78E+04	2.05E-01	7.45E+01	7.16E+02	3.30E+02	1.36E+09		
Benzene, Methylpropenyl	768-00-3	No	Yes	-		•		-		-		1	-	1	1.15E+04	2.78E-01	5.00E+01	1.33E+03	4.07E+02	1.36E+09		
Benzene, Methylpropyl	28729-54-6	No	No	-		•		-		-		1	0.1	1	-	-	-	-	-	1.36E+09		
Benzene, Trimethyl	25551-13-7	No	Yes	-		•		-		-		1	-	1	1.23E+04	3.59E-01	4.82E+01	6.02E+02	1.82E+02	1.36E+09		
Benzenediamine-2-methyl sulfate, 1,4-	6369-59-1	No	No	1.00E-01	X	•		3.00E-04	SC	-		1	0.1	1	-	8.86E-22	1.00E+06	3.84E+01	-	1.36E+09	1.90E+00	nc
Benzenethiol	108-98-5	No	Yes	-				1.00E-03	PP	-		1		1	1.94E+04	1.37E-02	8.35E+02	2.34E+02	1.26E+03	1.36E+09	7.82E+00	nc
Benzidine	92-87-5	Yes	No	2.30E+02	I	6.70E-02	I	3.00E-03	IR	-		1	0.1	1	-	2.11E-09	3.22E+02	1.19E+03	-	1.36E+09	5.30E-04	ca
Benzofluoranthenes, total	NA	No	No	-				-		-		1	0.1	1	-	-	-	-	-	1.36E+09		
Benzofluorene, 2,3-	243-17-4	No	No	-		•		-		-		1	0.1	1	-	1.60E-04	4.00E-03	9.70E+04	-	1.36E+09		
Benzoic Acid	65-85-0	No	No	-		•		4.00E+00	IR	-		1	0.1	1	-	1.56E-06	3.40E+03	6.00E-01	-	1.36E+09	2.53E+04	nc
Benzoic acid, 3,5-dichloro-	51-36-5	No	No	-		•		-		-		1	0.1	1	-	2.43E-06	1.47E+02	4.26E+01	-	1.36E+09		
Benzoic acid, 4-hydroxy-, methyl ester	99-76-3	No	No	-		•		-		-		1	0.1	1	-	9.12E-08	2.50E+03	8.63E+01	-	1.36E+09		
Benzothiazole	95-16-9	No	No	-		•		-		-		1	0.1	1	-	1.53E-05	4.30E+03	8.47E+02	-	1.36E+09		
Benzotrichloride	98-07-7	No	Yes	1.30E+01	I	•		-		-		1	-	1	6.76E+04	1.06E-02	5.30E+01	1.00E+03	3.24E+02	1.36E+09	5.35E-02	ca
Benzyl Alcohol	100-51-6	No	No	-				1.00E-01	PP	-		1	0.1	1	-	1.38E-05	4.29E+04	2.15E+01	-	1.36E+09	6.32E+02	nc
Benzyl Chloride	100-44-7	No	Yes	1.70E-01	I	4.90E-05	С	2.00E-03	PP	1.00E-03	PP	1	-	1	2.55E+04	1.68E-02	5.25E+02	4.46E+02	1.46E+03	1.36E+09	1.08E+00	ca**
Beryllium and compounds	7440-41-7	No	No	-		2.40E-03	I	2.00E-03	IR	2.00E-05	IR	0.007	-	1	-	-	-	-	-	1.36E+09	1.56E+01	nc
Dicrotophos	141-66-2	No	No	-		•		7.00E-05	OP	-		1	0.1	1	-	2.06E-09	1.00E+06	1.66E+01	-	1.36E+09	4.42E-01	nc
Bifenox	42576-02-3	No	No					9.00E-03	PP	-		1	0.1	1	-	4.42E-06	3.98E-01	3.68E+03	-	1.36E+09	5.69E+01	nc
Biphenthrin	82657-04-3	No	No	-				1.50E-02	IR	-		1	0.1	1	-	4.09E-05	1.00E-03	2.27E+06	-	1.36E+09	9.48E+01	nc
Biphenyl, 1,1'-	92-52-4	No	Yes	8.00E-03	I			5.00E-01	IR	4.00E-04	SC	1		1	1.14E+05	1.26E-02	7.48E+00	5.13E+03	-	1.36E+09	4.75E+00	nc
Bis(2-chloroethoxy)methane	111-91-1	No	No	-		-		3.00E-03	PP	-		1	0.1	1	-	1.57E-04	7.80E+03	1.44E+01	-	1.36E+09	1.90E+01	nc
Bis(2-chloroethyl)ether	111-44-4	No	Yes	1.10E+00	I	3.30E-04	I	-		-		1	-	1	4.25E+04	6.95E-04	1.72E+04	3.22E+01	5.05E+03	1.36E+09	2.30E-01	ca
Bis(2-chloro-1-methylethyl) ether	108-60-1	No	Yes	-				4.00E-02	IR	-		1	-	1	3.50E+04	3.03E-03	1.70E+03	8.29E+01	1.02E+03	1.36E+09	3.13E+02	nc
Bis(chloromethyl)ether	542-88-1	No	Yes	2.20E+02	I	6.20E-02	I	-		-		1		1	1.88E+03	1.78E-01	2.20E+04	9.70E+00	4.22E+03	1.36E+09	8.28E-05	ca
			-		-														-			

Chemical	CAS Number	Mutagen?	VOC	Ingestion SF (mg/kg-day) ⁻¹	SFO Ref	Inhalation Unit Risk (ug/m³)-1	IUR Ref	Chronic RfD (mg/kg-day)	Chronic RfD Ref	Chronic RfC (mg/m³)	Chronic RfC Ref	GIABS	ABS	RBA	Volatilization Factor (m³/kg)	Henry's Law Constant (unitless)	S (mg/L)	K _{oc}	Soil Saturation Concentration (mg/kg)	Particulate Emission Factor (m³/kg)	Screening Level (mg/kg)	[basis]
Bisphenol A	80-05-7	No	No	-		()	-	5.00E-02	IR	-		1	0.1	1	-	4.09E-10	1.20E+02	3.77E+04	-	1.36E+09	3.16E+02	nc
Boron And Borates Only	7440-42-8	No	No	-			-	2.00E-01	IR	2.00E-02	HE	1	-	1	-	-	-	_	-	1.36E+09	1.56E+03	nc
Boron Trifluoride	7637-07-2	No	Yes	-			-	4.00E-02	CA	1.30E-02	CA	1	-	1	-	-	3.32E+06	-	-	1.36E+09	3.13E+02	nc
Boron Trichloride	10294-34-5	No	Yes	-			-	2.00E+00	PP	2.00E-02	PP	1	-	1	-	7.48E-01	-	-	-	1.36E+09	1.56E+04	nc
Bromacil	314-40-9	No	No	-			-	-		-		1	0.1	1	-	5.27E-09	8.15E+02	6.66E+01	-	1.36E+09		
Bromate	15541-45-4	No	No	7.00E-01	I		-	4.00E-03	IR	-		1	-	1	-	-	-	-	-	1.36E+09	9.93E-01	ca*
Bromine	7726-95-6	No	Yes	-			-	-		-		1	-	1	-	-	3.36E+04	-	2.55E+05	1.36E+09		
Bromo-2-chloroethane, 1-	107-04-0	No	Yes	2.00E+00	Х	6.00E-04	Х	-		-		1	-	1	5.92E+03	3.72E-02	6.90E+03	3.96E+01	2.38E+03	1.36E+09	2.57E-02	ca
Bromo-3-fluorobenzene, 1-	1073-06-9	No	Yes	_			-	-		-		1	-	1	1.12E+04	1.02E-01	3.78E+02	3.75E+02	8.96E+02	1.36E+09		
Bromo-4-Ethylbenzene, 1-	1585-07-5	No	Yes	-			-	-		-		1	-	1	1.54E+04	1.28E-01	2.33E+01	7.16E+02	1.03E+02	1.36E+09		
Bromoacetic acid	79-08-3	No	No	-			-	-		-		1	0.1	1	-	2.67E-07	1.75E+06	1.44E+00	-	1.36E+09		
Bromoacetophenone, 3-	2142-63-4	No	No	_			-	-		-		1	0.1	1	-	1.60E-04	3.44E+02	8.32E+01	-	1.36E+09		
Bromobenzene	108-86-1	No	Yes	_			-	8.00E-03	IR	6.00E-02	IR	1	-	1	8.37E+03	1.01E-01	4.46E+02	2.34E+02	6.79E+02	1.36E+09	2.85E+01	nc
Bromochloromethane	74-97-5	No	Yes	_			-	-		4.00E-02	SC	1	-	1	3.58E+03	5.97E-02	1.67E+04	2.17E+01	4.04E+03	1.36E+09	1.49E+01	nc
Bromodichloromethane	75-27-4	No	Yes	6.20E-02	I	3.70E-05	С	2.00E-02	IR	-		1	-	1	3.97E+03	8.67E-02	3.03E+03	3.18E+01	9.32E+02	1.36E+09	2.93E-01	ca
Bromodiphenyl Ether, p-	101-55-3	No	Yes	_			-	-		-		1	-	1	1.86E+05	4.78E-03	1.45E+00	3.08E+03	2.69E+01	1.36E+09		
Bromofluorobenzene, p-	460-00-4	No	Yes	-			-	-		-		1	-	1	1.14E+04	1.02E-01	1.36E+02	3.75E+02	3.23E+02	1.36E+09		
Bromoform	75-25-2	No	Yes	7.90E-03	I	1.10E-06	T	2.00E-02	IR	-		1	-	1	9.70E+03	2.19E-02	3.10E+03	3.18E+01	9.15E+02	1.36E+09	1.93E+01	ca**
Bromomethane	74-83-9	No	Yes	_			-	1.40E-03	IR	5.00E-03	IR	1	-	1	1.40E+03	3.00E-01	1.52E+04	1.32E+01	3.59E+03	1.36E+09	6.83E-01	nc
Bromophenol, p-	106-41-2	No	No	_			-	-		-		1	0.1	1	_	6.17E-06	1.40E+04	3.00E+02	-	1.36E+09		
Bromophos	2104-96-3	No	Yes	-			-	5.00E-03	HE	-		1	-	1	1.24E+05	8.38E-03	3.00E-01	2.02E+03	-	1.36E+09	3.91E+01	nc
Bromopropane, 1-	106-94-5	No	Yes	-			-	-		-		1	-	1	2.14E+03	2.99E-01	2.45E+03	3.96E+01	9.66E+02	1.36E+09		
Bromopyridine, 2-	109-04-6	No	No	_			-	-		-		1	0.1	1	_	3.15E-04	2.08E+04	1.15E+02	-	1.36E+09		
Bromotrichloromethane	75-62-7	No	Yes	-			-	-		-		1	-	1	1.30E+04	1.52E-02	8.69E+02	4.39E+01	3.18E+02	1.36E+09		
Bromoxynil	1689-84-5	No	No	1.03E-01	0		-	1.50E-02	OP	-		1	0.1	1	-	5.40E-09	1.30E+02	3.30E+02	-	1.36E+09	5.27E+00	ca*
Bromoxynil Octanoate	1689-99-2	No	Yes	_			-	1.50E-02	OP	-		1	-	1	4.74E+05	1.30E-03	8.00E-02	4.25E+03	-	1.36E+09	1.17E+02	nc
Butadiene, 1,3-	106-99-0	No	Yes	3.40E+00	С	3.00E-05	1	-		2.00E-03	IR	1	-	1	8.66E+02	3.01E+00	7.35E+02	3.96E+01	6.67E+02	1.36E+09	5.80E-02	ca**
Butanediol, 2,3-	513-85-9	No	No	_			-	-		-		1	0.1	1	-	1.18E-06	1.00E+06	1.00E+00	-	1.36E+09		
Butanol	35296-72-1	No	Yes	-			-	-		-		1	-	1	4.12E+04	3.70E-04	1.25E+05	2.92E+00	1.47E+04	1.36E+09		
Butanol, N-	71-36-3	No	Yes	-			-	1.00E-01	IR	-		1	-	1	3.00E+04	3.60E-04	6.32E+04	3.47E+00	7.64E+03	1.36E+09	7.82E+02	nc
Butanone-2, 4-chloro-4,4-difluoro	1515-16-8	No	No	_			-	-		-		1	0.1	1	-	-	-	-	-	1.36E+09		
Butyl alcohol, sec-	78-92-2	No	Yes	_			-	2.00E+00	PP	3.00E+01	PP	1	-	1	2.92E+04	3.70E-04	1.81E+05	2.92E+00	2.13E+04	1.36E+09	1.34E+04	nc
Butyl Alcohol, t-	75-65-0	No	Yes	-			-	-		-		1	-	1	2.87E+04	3.70E-04	1.00E+06	2.11E+00	-	1.36E+09		
Butyl Formate, tert-	762-75-4	No	Yes	-			-	-		-		1	-	1	4.35E+03	2.82E-02	1.12E+04	7.91E+00	1.70E+03	1.36E+09		
Butylacetate	123-86-4	No	Yes	-			-	-		-		1	-	1	8.56E+03	1.15E-02	8.40E+03	1.85E+01	1.79E+03	1.36E+09		
Butylate	2008-41-5	No	Yes	-			-	5.00E-02	IR	-		1	-	1	8.63E+04	3.45E-03	4.50E+01	3.86E+02	-	1.36E+09	3.91E+02	nc
Butylated hydroxyanisole	25013-16-5	No	No	2.00E-04	С	5.70E-08	С	-		-		1	0.1	1	-	4.78E-05	2.13E+02	8.41E+02	-	1.36E+09	2.71E+03	ca
Butylated hydroxytoluene	128-37-0	No	No	3.60E-03	Р		-	3.00E-01	PP	-		1	0.1	1	-	1.68E-04	6.00E-01	1.48E+04	-	1.36E+09	1.51E+02	ca*
Butylbenzene, n-	104-51-8	No	Yes	-			-	5.00E-02	PP	-		1	-	1	8.14E+03	6.50E-01	1.18E+01	1.48E+03	1.08E+02	1.36E+09	3.91E+02	cs
Butylbenzene, sec-	135-98-8	No	Yes	-			-	1.00E-01	SC	-		1	-	1	7.35E+03	7.20E-01	1.76E+01	1.33E+03	1.45E+02	1.36E+09	7.82E+02	cs
Butylbenzene, tert-	98-06-6	No	Yes	-			-	1.00E-01	SC	-		1	-	1	7.36E+03	5.40E-01	2.95E+01	1.00E+03	1.83E+02	1.36E+09	7.82E+02	cs
Butylchloride, t-	507-20-0	No	Yes	-			-	-		-		1	-	1	1.70E+03	5.23E-01	2.88E+03	4.39E+01	1.33E+03	1.36E+09		
Butyltin	NA	No	No				-	-		-		1	0.1	1	_		-	-	-	1.36E+09		
Cacodylic Acid	75-60-5	No	No	-			-	2.00E-02	AT	-		1	0.1	1	-	7.36E-13	2.00E+06	4.39E+01	-	1.36E+09	1.26E+02	nc
Cadmium (Diet)	7440-43-9	No	No	-		1.80E-03	I	1.00E-03	IR	1.00E-05	AT	0.025	0.001	1	-	-	-	-	-	1.36E+09	7.11E+00	nc
Calcium	7440-70-2	No	No	-			-	-		-		1	-	1	-	-	-	-	-	1.36E+09		
Calcium Chromate	13765-19-0	Yes	No	5.00E-01	С	1.50E-01	С	2.00E-02	CA	2.00E-04	CA	0.025	-	1	-	-	-	-	-	1.36E+09	2.96E-01	ca

			voc	Ingestion SF	SFO	Inhalation Unit Risk	IUR	Chronic RfD	Chronic RfD	Chronic RfC	Chronic RfC				Volatilization Factor	Henry's Law Constant	s	K _{oc}	Soil Saturation Concentration	Particulate Emission Factor	Screening Level	
Chemical	CAS Number	_	?	(mg/kg-day) ⁻¹	Ref	(ug/m³) ⁻¹	Ref	(mg/kg-day)	Ref	(mg/m³)	Ref	GIABS	ABS	RBA	(m³/kg)	(unitless)	(mg/L)	(cm3/g)	(mg/kg)	(m³/kg)	(mg/kg)	[basis]
Caprolactam	105-60-2	No	No	-		-		5.00E-01	IR	2.20E-03	CA	1	0.1	1	-	1.03E-06	7.72E+05	2.45E+01	-	1.36E+09	3.13E+03	nc
Captafol	2425-06-1	No	No	1.50E-01	С	4.30E-05	С	2.00E-03	IR	-		1	0.1	1	-	2.01E-07	1.40E+00	7.83E+02	-	1.36E+09	3.62E+00	ca**
Captan	133-06-2	No	No	2.30E-03	С	6.60E-07	С	1.30E-01	IR	-		1	0.1	1	-	2.86E-07	5.10E+00	2.52E+02	-	1.36E+09	2.36E+02	ca**
Carbaryl	63-25-2		No	-		-		1.00E-01	IR	-		1	0.1	1	-	1.34E-07	1.10E+02	3.55E+02	-	1.36E+09	6.32E+02	nc
Carbazole	86-74-8	No	No	-		-		-		-		1	0.1	1	-	4.74E-06	1.80E+00	9.16E+03	-	1.36E+09		
Carbofuran	1563-66-2	No	No	-		-		5.00E-03	IR	-		1	0.1	1	-	1.26E-07	3.20E+02	9.53E+01	-	1.36E+09	3.16E+01	nc
Carbon Disulfide	75-15-0	No	Yes	-		-		1.00E-01	IR	7.00E-01	IR	1	-	1	1.17E+03	5.89E-01	2.16E+03	2.17E+01	7.38E+02	1.36E+09	7.68E+01	nc
Carbon Tetrachloride	56-23-5	No	Yes	7.00E-02	I	6.00E-06	ı	4.00E-03	IR	1.00E-01	IR	1	-	1	1.49E+03	1.13E+00	7.93E+02	4.39E+01	4.58E+02	1.36E+09	6.53E-01	ca*
Carbonyl Sulfide	463-58-1	No	Yes	-		-		-		1.00E-01	PP	1	-	1	6.46E+02	2.49E+01	1.22E+03	1.00E+00	5.89E+03	1.36E+09	6.74E+00	nc
Carbosulfan	55285-14-8	No	No	-		-		1.00E-02	IR	-		1	0.1	1	-	2.09E-05	3.00E-01	1.20E+04	-	1.36E+09	6.32E+01	nc
Carboxin	5234-68-4	No	No	-		-		1.00E-01	IR	-		1	0.1	1	-	1.31E-08	1.47E+02	1.69E+02	-	1.36E+09	6.32E+02	nc
Catechol	120-80-9	No	No	-		-		-		-		1	0.1	1	-	4.91E-08	4.61E+05	2.45E+02	-	1.36E+09		
Ceric oxide	1306-38-3	No	No	-		-		-		9.00E-04	IR	1	-	1	-	-	-	-	-	1.36E+09	1.28E+05	cm
Cerium, Stable	7440-45-1	No	No	-		-		-		-		1	-	1	-	-	-	-	-	1.36E+09		
Chloral	75-87-6	No	Yes	-		-		-		-		1		1	1.55E+05	1.19E-07	3.00E+04	2.14E+00	3.38E+03	1.36E+09		
Chloral Hydrate	302-17-0	No	Yes	-		-		1.00E-01	IR	-		1		1	1.45E+05	2.33E-07	7.93E+05	1.00E+00	-	1.36E+09	7.82E+02	nc
Chloramben	133-90-4	No	No	-		-		1.50E-02	IR	-		1	0.1	1	-	1.58E-09	7.00E+02	2.14E+01	-	1.36E+09	9.48E+01	nc
Chloramine	127-65-1	No	No	-		-		-		-		1	-	1	-	-	-	-	-	1.36E+09		
Chloranil	118-75-2	No	No	4.03E-01	Н	-		-		-		1	0.1	1	-	1.34E-08	2.50E+02	3.08E+02	-	1.36E+09	1.35E+00	ca
Chlorate (CIO3) as	14866-68-3	No	No	-		-		-		-		1	-	1	-	-	-	-	-	1.36E+09		
Chlordane	12789-03-6	No	Yes	3.50E-01	1	1.00E-04	1	5.00E-04	IR	7.00E-04	IR	1	0.04	1	1.53E+06	1.99E-03	5.60E-02	6.75E+04	-	1.36E+09	1.71E+00	ca**
Chlordane (alpha)	5103-71-9	No	Yes	-		-		-		-		1	-	1	1.49E+06	1.99E-03	5.60E-02	6.75E+04	-	1.36E+09		
Chlordane (gamma)	5103-74-2	No	Yes	-		-		-		-		1	-	1	1.49E+06	1.99E-03	5.60E-02	6.75E+04	-	1.36E+09		
Chlordecone (Kepone)	143-50-0	No	No	1.00E+01	I	4.60E-03	С	3.00E-04	IR	-		1	0.1	1	-	2.20E-06	2.70E+00	1.75E+04	-	1.36E+09	5.43E-02	ca*
Chlorfenvinphos	470-90-6	No	No	-		-		7.00E-04	AT	-		1	0.1	1	-	1.18E-06	1.24E+02	1.26E+03	-	1.36E+09	4.42E+00	nc
Chloride	16887-00-6	No	No	-		-		-		-		1	-	1	-	-	-	-	-	1.36E+09		
Chlorimuron, Ethyl-	90982-32-4	No	No	-		-		9.00E-02	OP	-		1	0.1	1	-	7.44E-14	1.20E+03	7.18E+01	-	1.36E+09	5.69E+02	nc
Chlorinated Hydrocarbons (total)	NA	No	No	-		-		-		-		1	0.1	1	-	-	-	-	-	1.36E+09		
Chlorine	7782-50-5	No	Yes	-		-		1.00E-01	IR	1.45E-04	AT	1	-	1	1.22E+03	4.78E-01	6.30E+03	-	2.78E+03	1.36E+09	1.85E-02	nc
Chlorine Dioxide	10049-04-4	No	Yes	_		-		3.00E-02	IR	2.00E-04	IR	1	_	1	-	1.64E+00	_	_	-	1.36E+09	2.33E+02	nc
Chlorite	14998-27-7	No	No	-		-		-		-		1	-	1	-	-	-	-	-	1.36E+09		
Chlorite (Sodium Salt)	7758-19-2	No	No	_		-		3.00E-02	IR	-		1	-	1	-	-	6.40E+05	_	-	1.36E+09	2.35E+02	nc
Chloro-2-methylphenol, 4-	1570-64-5	No	No	-		-		-		-		1	0.1	1	-	4.62E-05	4.00E+03	4.92E+02	-	1.36E+09		
Chloro-4-methylphenol	35421-08-0	No	No	_		-		-		-		1	0.1	1	-	-	_	_	-	1.36E+09		
Chloro-1,1-difluoroethane, 1-	75-68-3	No	Yes	-		-		-		5.00E+01	IR	1	-	1	1.03E+03	2.40E+00	1.40E+03	4.39E+01	1.15E+03	1.36E+09	5.36E+03	CS
Chloro-1,3-butadiene, 2-	126-99-8	No	Yes	-		3.00E-04	ı	2.00E-02	HE	2.00E-02	IR	1	-	1	1.08E+03	2.29E+00	8.75E+02	6.07E+01	7.86E+02	1.36E+09	1.01E-02	ca
Chloro-2-methylaniline HCl, 4-	3165-93-3		No	4.60E-01	Н	-		-		-		1	0.1	1	_	6.38E-05	9.54E+02	3.52E+02	-	1.36E+09	1.18E+00	ca
Chloro-2-methylaniline, 4-	95-69-2		No	1.00E-01	Р	7.70E-05	С	3.00E-03	SC	-		1	0.1	1	-	8.14E-05	9.54E+02		-		5.43E+00	ca**
Chloro-6-fluorophenol, 2-	2040-90-6		No	-		-		-		-		1	0.1	1	-	-	-	-	-	1.36E+09		
Chloroacetaldehyde, 2-	107-20-0	No	Yes	2.70E-01	Х	-		-		-		1	_	1	1.62E+04	9.77E-04	1.11E+05	1.00E+00	1.18E+04	1.36E+09	2.57E+00	ca
Chloroacetamide	79-07-2		No	-		-		-		-		1	0.1	1	_	1.61E-07	9.00E+04	5.69E+00	-	1.36E+09		
Chloroacetic Acid	79-11-8	No	No	-		-		-		-		1	0.1	1	_	3.79E-07	8.58E+05	1.44E+00	-	1.36E+09		
Chloroacetophenone, 2-	532-27-4	No	No	-		-		-		3.00E-05	IR	1	0.1	1	_	1.41E-04	1.10E+03	9.89E+01	-	1.36E+09	4.25E+03	nc
Chloroaniline	27134-26-5	No	No	_		-		-		_		1	0.1	1	_	2.20E-04	8.16E+03	1.15E+02	_	1.36E+09		
Chloroaniline, 3-	108-42-9	No	No	_		-		-		_		1	0.1	1	_	4.09E-05	5.40E+03	1.13E+02	-	1.36E+09		
Chloroaniline, p-	106-47-8		No	2.00E-01	Р	-		4.00E-03	IR	_		1	0.1	1	_	4.74E-05	3.90E+03	1.13E+02	_	1.36E+09	2.71E+00	ca**
Chlorobenzene	108-90-7		Yes	-		-		2.00E-02	IR	5.00E-02	PP	1		1	6.45E+03	1.27E-01	4.98E+02	2.34E+02	7.61E+02	1.36E+09	2.77E+01	nc
	1.00 00 1		. 50		-					3.552 52	• •			<u> </u>	332.00	= 01						

Site-specific

Resident Screening Levels (RSL) for Soil

						Inhalation										Henry's			Soil	Particulate		
			voc	Ingestion SF	SFO	Unit Risk	IUR	Chronic RfD	Chronic RfD	Chronic RfC	Chronic RfC				Volatilization Factor	Law Constant	s	K _{oc}	Saturation Concentration	Emission Factor	Screening Level	
Chemical	CAS Number	Mutagen?	_		Ref	(ug/m ³) ⁻¹	Ref	(mg/kg-day)	Ref	(mg/m³)	Ref	GIABS	ABS	RBA	(m ³ /kg)	(unitless)	(mg/L)	(cm3/g)	(mg/kg)	(m³/kg)	(mg/kg)	[basis]
Chlorobenzene sulfonic acid, p-	98-66-8	No	No	(gg)		(g /	1101	1.00E-01	SC	- (9)		1	0.1	1	(/g/	7.60E-08	3.06E+05	1.61E+01	(99)	1.36E+09	6.32E+02	nc
Chlorobenzenes (total)	NA	No	No	_				-		_		1	0.1	1	_	- 1002 00				1.36E+09	0.022 02	1.0
Chlorobenzilate	510-15-6	No	No	1.10E-01	С	3.10E-05	С	2.00E-02	IR	_		1	0.1	1	-	2.96E-06	1.30E+01	1.54E+03	_	1.36E+09	4.93E+00	ca*
Chlorobenzoic Acid, 2-	118-91-2	No	No	1.102 01		-		2.002 02		_		1	0.1	<u> </u>	_	2.66E-06	2.09E+03	2.71E+01	_	1.36E+09	1.002 - 00	
Chlorobenzoic Acid, p-	74-11-3	No	No	_				3.00E-02	SC	_		1	0.1	1	_	3.28E-06	7.20E+01	2.66E+01	_	1.36E+09	1.90E+02	nc
Chlorobenzotrifluoride, 3-nitro-4-	121-17-5	No	Yes	_				0.002 02		_		1	0.1	. 1	1.55E+05	5.60E-03	3.56E+01	2.55E+03	5.47E+02	1.36E+09	1.002 - 02	110
Chlorobenzotrifluoride, 4-	98-56-6	No	Yes	1				3.00E-03	PP	3.00E-01	PP	1		. 1	6.76E+03	1.42E+00	2.90E+01	1.61E+03	2.90E+02	1.36E+09	2.11E+01	nc
Chlorobiphenyl, p-	2051-62-9	No	Yes					3.00L-03		3.00L-01	11	1		1	1.29E+05	2.34E-02	1.34E+00	8.23E+03	Z.30L10Z	1.36E+09	2.112.01	TIC .
Chlorobutane, 1-	109-69-3	No	Yes					4.00E-02	PP	_		1		. 1	1.76E+03	6.83E-01	1.10E+03	7.22E+01	7.28E+02	1.36E+09	3.13E+02	nc
Chlorobutane, 2-	78-86-4	No	Yes					4.00L-02		_		1		. 1	1.46E+03	9.85E-01	1.00E+03	6.07E+01	6.51E+02	1.36E+09	0.10L+02	TIO .
Chlorocyclopentadiene	41851-50-7	No	Yes	-				_		_		1		. 1	1.88E+03	9.16E-01	9.70E+02	1.28E+02	1.01E+03	1.36E+09		
Chlorodibromoethane	73506-94-2	No	_	-				-		_		1	0.1	1	1.002103	9.10L-01	9.70L102	1.201102	1.012103	1.36E+09		
Chlorodifluoromethane	75-45-6	No	No Yes	-		-		-		5.00E+01	IR	1	0.1	. 1	9.38E+02	1.66E+00	2.77E+03	3.18E+01	1.68E+03	1.36E+09 1.36E+09	4.89E+03	CS
Chloroethanol, 2-	107-07-3	No	Yes	-			-	2.00E-02	PP	J.00E+01	ir	1	•	. 1	9.36E+02 7.81E+04	3.11E-05	2.77E+03 1.00E+06	1.90E+00	1.06E+05	1.36E+09 1.36E+09	4.69E+03 1.56E+02	
,				-		-		2.UUE-U2	FF	-		1		- 1	1.60E+03		4.29E+02		1.11E+05 1.17E+02		1.30E+02	nc
Chloroform	110-75-8	No	Yes	2.405.00		2 205 05		1.005.00	IR	0.775.00	Λ.Τ.	·				3.58E-01		1.77E+01		1.36E+09	2.465.04	
Chloromethana	67-66-3	No	Yes	3.10E-02	С	2.30E-05	I	1.00E-02	IK	9.77E-02	AT IR	1	•	. 1	2.63E+03 1.18E+03	1.50E-01	7.95E+03	3.18E+01	2.54E+03 1.32E+03	1.36E+09	3.16E-01	ca*
Chloromethane	74-87-3	No	Yes	0.405.00		- 0.005.04	_	-		9.00E-02	IK		•	1		3.61E-01	5.32E+03	1.32E+01		1.36E+09	1.10E+01	nc
Chloromethyl Methyl Ether	107-30-2	No	Yes	2.40E+00	С	6.90E-04	С	-		-		1	•	1	5.33E+03	1.24E-02	6.94E+04	5.32E+00	9.32E+03	1.36E+09	2.02E-02	ca
Chloronaphthalene, alpha-	90-13-1	No	Yes	-		-		-		-		1		1	7.59E+04	1.45E-02	1.74E+01	2.53E+03	2.66E+02	1.36E+09		
Chloronitrobenzene, o-	88-73-3	No	No	3.00E-01	P	-		3.00E-03	PP	1.00E-05	SC	1	0.1	1	-	3.80E-04	4.41E+02	3.71E+02	-	1.36E+09	1.81E+00	ca*
Chloronitrobenzene, p-	100-00-5	No	No	6.00E-02	Р	-		7.00E-04	PP	2.00E-03	PP	1	0.1	1		2.00E-04	2.25E+02	3.63E+02	-	1.36E+09	4.42E+00	nc
Chlorooctadecane, 1-	3386-33-2	No	Yes	-		-		-		-		1			2.48E+04	4.13E+01	0.00E+00	3.22E+05	-	1.36E+09		
Chlorophenol, 2-	95-57-8	No	Yes	-				5.00E-03	IR	-		1		- 1	1.39E+05	4.58E-04	1.13E+04	3.88E+02	2.74E+04	1.36E+09	3.91E+01	nc
Chlorophenol, 3-	108-43-0	No	No	-				-		-		1	0.1	1	-	1.41E-05	2.60E+04	3.00E+02	-	1.36E+09		
Chlorophenol, 4-	106-48-9	No	No	-				-		-		1	0.1	1	-	2.56E-05	2.40E+04	3.00E+02	-	1.36E+09		
Chlorophenols (total)	NA	No	No	-				-		-		1	0.1	1	-	-	-	-	-	1.36E+09		
Chlorophenyl phenyl ether, 4-	7005-72-3	No	Yes	-		-		-		-		1		- 1	2.15E+05	3.68E-03	3.30E+00	3.08E+03	-	1.36E+09		
Chlorophenyl Methyl Sulfide, p-	123-09-1	No	Yes	-		-		-		-		1		- 1	6.91E+04	4.74E-03	1.19E+02	7.16E+02	5.23E+02	1.36E+09		
Chlorophenyl Methyl Sulfoxide	934-73-6	No	No	-		-		-		-		1	0.1	1	-	3.00E-07	7.07E+03	7.33E+01	-	1.36E+09		
Chloropicrin	76-06-2	No	Yes	-		-		-		4.00E-04	CA	1		- 1	4.68E+03	8.38E-02	1.62E+03	4.42E+01	6.17E+02	1.36E+09	1.95E-01	nc
Chloropropane, 2-	75-29-6	No	Yes	-		-		-		-		1		- 1	1.30E+03	7.15E-01	3.10E+03	3.18E+01	1.32E+03	1.36E+09		
Chlorothalonil	1897-45-6	No	No	3.10E-03	С	8.90E-07	С	1.50E-02	IR	-		1	0.1	1	-	8.18E-05	8.10E-01	1.04E+03	-	1.36E+09	9.48E+01	nc
Chlorotoluene, o-	95-49-8	No	Yes	-		-		2.00E-02	IR	-		1		- 1	8.12E+03	1.46E-01	3.74E+02	3.83E+02	9.07E+02	1.36E+09	1.56E+02	nc
Chlorotoluene, p-	106-43-4	No	Yes	-		-		2.00E-02	SC	-		1		- 1	7.29E+03	1.79E-01	1.06E+02	3.75E+02	2.53E+02	1.36E+09	1.56E+02	nc
Chlorozotocin	54749-90-5	No	No	2.40E+02	С	6.90E-02	С	-		-		1	0.1	1	-	1.50E-20	1.83E+03	1.00E+01	-	1.36E+09	2.26E-03	ca
Chlorpropham	101-21-3	No	No	-		-		5.00E-02	OP	-		1	0.1	1	-	2.33E-05	8.90E+01	3.51E+02	-	1.36E+09	3.16E+02	nc
Chlorpyrifos	2921-88-2	No	No	-		-		1.00E-03	AT	-		1	0.1	1	-	1.20E-04	1.12E+00	7.28E+03	-	1.36E+09	6.32E+00	nc
Chlorpyrifos Methyl	5598-13-0	No	No	-		-		1.00E-02	HE	-		1	0.1	1	-	1.53E-04	4.76E+00	2.19E+03	-	1.36E+09	6.32E+01	nc
Chlorsulfuron	64902-72-3	No	No	-		-		2.00E-02	OP	-		1	0.1	1	-	1.40E-14	3.10E+04	3.22E+02	-	1.36E+09	1.26E+02	nc
Chlorthiophos	60238-56-4	No	No	-		-		8.00E-04	HE	-		1	0.1	1	-	4.91E-05	3.00E-01	1.28E+04	-	1.36E+09	5.06E+00	nc
Chromium(III), Insoluble Salts	16065-83-1	No	No	-		-		1.50E+00	IR	-		0.013		- 1	-	-	-			1.36E+09	1.17E+04	nc
Chromium(VI)	18540-29-9	Yes	No	5.00E-01	J	8.40E-02	S	3.00E-03	IR	1.00E-04	IR	0.025		- 1	-	-	1.69E+06	-		1.36E+09	3.01E-01	ca*
Chromium, Total	7440-47-3	No	No	-		-		-		-		0.013		- 1	-	-	-		-	1.36E+09		
Cobalt	7440-48-4	No	No	-		9.00E-03	Р	3.00E-04	PP	6.00E-06	PP	1		- 1	-	-	-			1.36E+09	2.34E+00	nc
Complex Mixtures of Aliphatic and Aromatic																						
Hydrocarbons	NA	No	No	-		-		-		-		1	0.1	1	-	-	-	-	-	1.36E+09		
Copper	7440-50-8	No	No	-		-		4.00E-02	HE	-		1		1	-	-	-	-	-	1.36E+09	3.13E+02	nc

				Ingestion		Inhalation Unit		Chronic	Chronic		Chronic				Volatilization	Henry's Law	_		Soil Saturation	Particulate Emission	Screening	
Chamical	CAS Number	Mutagan?	VOC	SF (ma/ka day)-1	SFO Ref	Risk (ug/m³) ⁻¹	IUR		RfD	RfC	RfC	GIABS	ABS	RBA	Factor (m³/kg)	Constant	S (mg/L)	K _{oc}	Concentration	Factor (m³/kg)	Level	[hooio]
Cresete	CAS Number 8001-58-9			(mg/kg-day) ⁻¹	Kei	(ug/m)	Ref	(mg/kg-day)	Ref	(mg/m³)	Ref	1	0.1	T 1	(m /kg)	(unitless)	(mg/L)	(cm3/g)	(mg/kg)	1.36E+09	(mg/kg)	[basis]
Crease m		No	No	-	-	•		5.00E-02	IR	6.00E-01	CA	1	0.1	1	-	3.50E-05	2.27E+04	3.00E+02	-	1.36E+09	3.16E+02	
Cresol, m- Cresol, o-	108-39-4 95-48-7	No	No	-		•	•	5.00E-02 5.00E-02	IR	6.00E-01	CA	1	0.1	1	-	4.91E-05	2.27E+04 2.59E+04	3.00E+02 3.07E+02	-	1.36E+09 1.36E+09	3.16E+02	nc
Cresol, p-	106-44-5	No No	No No			•	-	1.00E-02	AT	6.00E-01	CA	1	0.1	1	-	4.91E-05 4.09E-05	2.39E+04 2.15E+04	3.00E+02	-	1.36E+09	6.32E+02	nc
		No				•	-		AT	0.00E-01	CA	•	0.1	1	-				-			nc
Cresol, p-chloro-m-	59-50-7		No	-		•		1.00E-01	AT	6.005.04	C 4	1		1	-	1.00E-04	3.83E+03	4.92E+02	-	1.36E+09	6.32E+02	nc
Cresols	1319-77-3	No	No	-		•	-	1.00E-01	AI	6.00E-01	CA	1	0.1	-	4.005.04	2.53E-05	9.07E+03	3.07E+02	2.045.04	1.36E+09	6.32E+02	nc
Crotonaldehyde	4170-30-3	No	Yes	4.005.00		•	-	4.005.00	DD	-		1		1	1.89E+04	7.93E-04	1.81E+05	1.79E+00	2.01E+04	1.36E+09	0.005.04	
Crotonaldehyde, trans-	123-73-9	No	Yes	1.90E+00	Н	•	-	1.00E-03	PP	4.005.04	ID.	1		1	1.89E+04	7.93E-04	1.50E+05	1.79E+00	1.66E+04	1.36E+09	3.66E-01	ca*
Cumene	98-82-8	No	Yes	0.005.04		0.005.05		1.00E-01	IR	4.00E-01	IR	1	- 0.4	1	6.21E+03	4.70E-01	6.13E+01	6.98E+02	2.68E+02	1.36E+09	1.95E+02	nc
Cupferron	135-20-6	No	No	2.20E-01	C	6.30E-05	С	-		-		1	0.1	1	-	1.48E-07	6.08E+05	7.62E+02	-	1.36E+09	2.47E+00	ca
Cyanazine	21725-46-2	No	No	8.40E-01	Н	•	-	2.00E-03	HE	-		1	0.1	1	-	1.05E-10	1.70E+02	1.34E+02	-	1.36E+09	6.46E-01	ca*
Cyclohexane	110-82-7	No	Yes	-	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	•	-	-	0.0	6.00E+00	IR	1	-	1	1.04E+03	6.13E+00	5.50E+01	1.46E+02	1.17E+02	1.36E+09	6.52E+02	CS
Cyclohexane, 1,2,3,4,5-pentabromo-6-chloro-	87-84-3	No	No	2.00E-02	X	•	-	2.00E-02	SC			1	0.1	1	-	3.92E-05	5.50E-02	2.81E+03	-	1.36E+09	2.71E+01	ca**
Cyclohexanone	108-94-1	No	Yes	-		•	-	5.00E+00	IR	7.00E-01	PP	1		1	4.17E+04	3.68E-04	2.50E+04	1.74E+01	5.11E+03	1.36E+09	2.82E+03	nc
Cyclohexene	110-83-8	No	Yes		-	•	-	5.00E-03	PP	1.00E+00	SC	1	-	1	1.46E+03	1.86E+00	2.13E+02	1.46E+02	2.83E+02	1.36E+09	3.11E+01	nc
Cyclohexylamine	108-91-8	No	Yes					2.00E-01	IR	-		1		1	7.46E+04	1.70E-04	1.00E+06	3.22E+01	2.93E+05	1.36E+09	1.56E+03	nc
Cyclopentadiene	542-92-7	No	Yes	-				-		-		1		1	1.49E+03	8.59E-01	1.80E+03	8.00E+01	1.34E+03	1.36E+09		
Cyhalothrin	68085-85-8	No	No			•		1.00E-03	OP	-		1	0.1	1	-	6.05E-05	5.00E-03	3.41E+05	-	1.36E+09	6.32E+00	nc
Cypermethrin	52315-07-8	No	No	-	-		-	6.00E-02	OP	-		1	0.1	1	-	1.72E-05	4.00E-03	7.98E+04	-	1.36E+09	3.79E+02	nc
Cyromazine	66215-27-8	No	No	-			-	1.50E-02	OP	-		1	0.1	1	-	2.31E-12	1.30E+04	2.87E+01	-	1.36E+09	9.48E+01	nc
Barium Cyanide	542-62-1	No	No	-	-		-	-		-		0.07	-	1	-	-	1.71E+04	-	-	1.36E+09		
Calcium Cyanide	592-01-8	No	No	-			-	1.00E-03	IR	-		1	-	1	-	-	-	-	-	1.36E+09	7.82E+00	nc
Copper Cyanide	544-92-3	No	No	-	-		-	5.00E-03	IR	-		1	-	1	-	-	-	-	-	1.36E+09	3.91E+01	nc
Cyanide (CN-)	57-12-5	No	Yes	-	-		-	6.00E-04	IR	8.00E-04	SU	1	-	1	5.33E+04	4.15E-03	9.54E+04	-	9.54E+05	1.36E+09	2.28E+00	nc
Cyanide (total complex)	NA	No	No	-			-	-		-		1	-	1	-	-	-	-	-	1.36E+09		
Cyanogen	460-19-5	No	Yes	-			-	1.00E-03	IR	-		1	-	1	-	2.21E-01	8.00E+03	-	-	1.36E+09	7.82E+00	nc
Cyanogen Bromide	506-68-3	No	Yes	-			-	9.00E-02	IR	-		1	-	1	-	1.00E+00	_	-	-	1.36E+09	7.04E+02	nc
Cyanogen Chloride	506-77-4	No	Yes	-			-	5.00E-02	IR	-		1	-	1	-	7.87E-02	6.00E+04	-	-	1.36E+09	3.91E+02	nc
Hydrogen Cyanide	74-90-8	No	Yes	-				6.00E-04	IR	8.00E-04	IR	1	-	1	5.22E+04	5.44E-03	1.00E+06	-	1.00E+07	1.36E+09	2.26E+00	nc
Chlorthal-dimethyl	1861-32-1	No	No	-				1.00E-02	IR	-		1	0.1	1	-	8.91E-05	5.00E-01	5.11E+02	-	1.36E+09	6.32E+01	nc
Dalapon	75-99-0	No	No	-				3.00E-02	IR	-		1	0.1	1	-	2.31E-06	5.02E+05	3.23E+00	-	1.36E+09	1.90E+02	nc
DDD	72-54-8	No	No	2.40E-01	I	6.90E-05	С	-		-		1	0.1	1	-	2.70E-04	9.00E-02	1.18E+05	-	1.36E+09	2.26E+00	ca
DDD, o,p'-	53-19-0	No	No	-				-		-		1	0.1	1	-	3.34E-04	1.00E-01	1.20E+05	-	1.36E+09		
DDT/DDE/DDD (total)	NA	No	No	-				-		-		1	0.1	1	-	-	-	-	-	1.36E+09		
DDE, p,p'-	72-55-9	No	Yes	3.40E-01	1	9.70E-05	С	-		-		1	-	1	2.10E+06	1.70E-03	4.00E-02	1.18E+05	-	1.36E+09	1.98E+00	ca
DDT	50-29-3	No	No	3.40E-01	1	9.70E-05	T	5.00E-04	IR	_		1	0.03	1	-	3.40E-04	5.50E-03	1.69E+05	-	1.36E+09	1.89E+00	ca**
DDT, o,p'-	789-02-6	No	No	-				-		_		1	0.1	1	_	3.03E-04	8.50E-02	1.72E+05	_	1.36E+09		
Decabromodiphenyl ether, 2,2',3,3',4,4',5,5',6,6'-	1		· ·																			
(BDE-209)	1163-19-5	No	No	7.00E-04	1		-	7.00E-03	IR	-		1	0.1	1	-	4.87E-07	1.00E-04	2.76E+05	-	1.36E+09	4.42E+01	nc
Decane	124-18-5	No	Yes	-			-	-		-		1	-	1	1.13E+03	2.11E+02	5.20E-02	1.45E+03	2.53E+00	1.36E+09		
Decanol, n-	112-30-1	No	Yes	-				-		-		1	-	1	6.32E+04	1.31E-03	3.70E+01	1.27E+02	3.19E+01	1.36E+09		
Deltamethrin	52918-63-5	No	No	-			-	-		-		1	0.1	1	-	2.04E-04	2.00E-03	7.98E+04	-	1.36E+09		
Demeton	8065-48-3	No	No	-				4.00E-05	IR	-		1	0.1	1	-	1.56E-04	6.66E+02	-	-	1.36E+09	2.53E-01	nc
Di(2-ethylhexyl)adipate	103-23-1	No	No	1.20E-03	1			6.00E-01	IR	-		1	0.1	1	-	1.77E-05	7.80E-01	3.60E+04	-	1.36E+09	4.52E+02	ca**
Diallate	2303-16-4	No	No	6.10E-02	Н			-		-		1	0.1	1	_	1.55E-04	1.40E+01	6.44E+02	-	1.36E+09	8.89E+00	ca
Diazinon	333-41-5		No	-				7.00E-04	AT	_		1	0.1	1	_	4.62E-06	4.00E+01	3.03E+03	-	1.36E+09	4.42E+00	nc
Dibenzothiophene	132-65-0	No	Yes	-				1.00E-02	SC	_		1		1	5.24E+05	1.38E-03		9.16E+03	-	1.36E+09	7.82E+01	nc
	1																	1 1 1 2 2 2 2	I			

			voc	Ingestion SF	SFO	Inhalation Unit Risk	IUR		Chronic RfD	Chronic RfC	RfC				Volatilization Factor	Henry's Law Constant	S	K _{oc}	Soil Saturation Concentration	Particulate Emission Factor	Screening Level	
Chemical	CAS Number		7	(mg/kg-day) ⁻¹	Ref	(ug/m³) ⁻¹	Ref		Ref	(mg/m ³)	Ref	GIABS	ABS	RBA	(m³/kg)	(unitless)	(mg/L)	(cm3/g)	(mg/kg)	(m³/kg)	(mg/kg)	[basis]
Dibromo-3-chloropropane, 1,2-	96-12-8	Yes	Yes	8.00E-01	Р	6.00E-03	Р	2.00E-04	PP	2.00E-04	IR	1		1	3.20E+04	6.01E-03	1.23E+03	1.16E+02	9.79E+02	1.36E+09	5.26E-03	ca*
Dibromoacetic acid	631-64-1	No	No	-			-	-			-	1	0.1	1	-	1.81E-07	2.11E+06	2.25E+00	-	1.36E+09		
Dibromobenzene, 1,3-	108-36-1	No	Yes	-			-	4.00E-04	SC		-	1		1	1.93E+04	5.07E-02	6.75E+01	3.75E+02	1.59E+02	1.36E+09	3.13E+00	nc
Dibromobenzene, 1,4-	106-37-6	No	Yes	-			-	1.00E-02	IR		-	1		1	2.20E+04	3.65E-02	2.00E+01	3.75E+02	-	1.36E+09	7.82E+01	nc
Dibromochloromethane	124-48-1	No	Yes	8.40E-02	I		-	2.00E-02	IR	•	-	1		1	7.95E+03	3.20E-02	2.70E+03	3.18E+01	8.02E+02	1.36E+09	8.28E+00	ca*
	594-18-3	No	Yes	-			-	-			-	1		1	2.32E+04	4.95E-03	4.79E+02	4.39E+01	-	1.36E+09		
Dibromodiphenyl Ether, p,p'-	2050-47-7	No	Yes	-			-	-			-	1		1	6.05E+05	7.65E-04	1.80E-01	4.94E+03	-	1.36E+09		
Dibromoethane, 1,2-	106-93-4	No	Yes	2.00E+00	I	6.00E-04	I	9.00E-03	IR	9.00E-03		1	-	1	8.64E+03	2.66E-02	3.91E+03	3.96E+01	1.34E+03	1.36E+09	3.62E-02	ca
	74-95-3	No	Yes				-	-		4.00E-03	SC	1	-	1	5.64E+03	3.36E-02	1.19E+04	2.17E+01	2.82E+03	1.36E+09	2.35E+00	nc
Bis(Octanoyloxy)Di-N-Butyl Stannane	4731-77-5	No	Yes	-			-	-			-	1	-	1	6.15E+04	6.83E-01	1.01E-03	5.06E+04	-	1.36E+09		
Bis(oleoyloxy)dibutyl tin	13323-62-1	No	Yes	-			-	-			-	1	-	1	1.91E+06	1.53E+02	1.43E-13	8.27E+09	-	1.36E+09		
Di-n-butyltin bis(2-ethylhexanoate)	2781-10-4	No	Yes				-	-			-	1		1	9.37E+04	9.08E-01	4.81E-03	8.16E+04	-	1.36E+09		
Di-n-butyltin bis(methyl maleate)	15546-11-9	No	No	-			-	-			-	1	0.1	1	-	1.42E-08	6.05E+00	3.01E+01	-	1.36E+09		
Di-n-butyltin bis(n-butyl maleate)	15546-16-4	No	No	-			-	-			-	1	0.1	1	-	7.81E-08	5.26E-03	1.10E+03	-	1.36E+09		
Di-n-butyltin dilaurate	77-58-7	No	Yes	-			-	-			-	1	-	1	3.19E+05	6.58E+00	3.00E+00	6.16E+06	-	1.36E+09		
Di-n-butyltin distearate	5847-55-2	No	Yes	-			-	-			-	1	-	1	1.69E+06	1.97E+02	5.75E-14	8.27E+09	-	1.36E+09		
Dibutoxy di-n-butyltin	3349-36-8	No	Yes	-			-	-			-	1	-	1	5.99E+04	3.02E+00	4.45E+00	2.62E+05	-	1.36E+09		
Dibutylbis((1-oxoisooctyl)oxy)stannane	85702-74-5	No	No	-			-	-			-	1	0.1	1	-	-	-	-	-	1.36E+09		
Dibutylbis(octadeca-9(Z),12(Z),15(Z)-																						
trienoyloxy)stannane	95873-60-2	No	Yes	-			-	-			-	1	-	1	2.46E+06	9.16E+01	7.88E-07	8.27E+09	-	1.36E+09		
Dibutylbis(octadeca-9(Z),12(Z)-dienoyloxy)stannane	85391-79-3	No	No	-			-	-			-	1	0.1	1	-	-	-	-	-	1.36E+09		
Dibutylbis(palmitoyloxy)stannane	13323-63-2	No	Yes	-			-	-			-	1	-	1	8.72E+05	6.38E+01	7.44E-07	7.50E+08	-	1.36E+09		
Dibutyltin Compounds	NA	No	No	-			-	3.00E-04	PP		-	1	0.1	1	-	-	-	-	-	1.36E+09	1.90E+00	nc
Dibutyltin diacetate	1067-33-0	No	Yes	-			-	-			-	1	-	1	1.27E+04	2.28E-02	6.00E+00	3.44E+01	1.87E+00	1.36E+09		
Dibutyltin oxide	818-08-6	No	Yes	-			-	-			-	1	-	1	-	-	6.73E-01	1.28E+03	-	1.36E+09		
Dibutyltin dichloride	683-18-1	No	Yes	-			-	-			-	1	-	1	3.10E+04	1.25E-01	9.20E+01	1.86E+03	-	1.36E+09		
Dicamba	1918-00-9	No	No	-			-	3.00E-02	IR		-	1	0.1	1	-	8.91E-08	8.31E+03	2.90E+01	-	1.36E+09	1.90E+02	nc
Dichloro-2-butene, cis-1,4-	1476-11-5	No	Yes	-		4.20E-03	Р	_			-	1	-	1	1.11E+04	2.71E-02	5.80E+02	1.32E+02	5.19E+02	1.36E+09	7.43E-03	ca
Dichloro-2-butene, trans-1,4-	110-57-6	No	Yes	-		4.20E-03	Р	-			-	1	-	1	1.11E+04	2.71E-02	8.50E+02	1.32E+02	7.60E+02	1.36E+09	7.44E-03	ca
Dichloro-2-butene, 1,4-	764-41-0	No	Yes	_		4.20E-03	Р	-			-	1	-	1	3.21E+03	3.48E-01	5.80E+02	1.32E+02	5.54E+02	1.36E+09	2.15E-03	ca
Dichloroacetic Acid	79-43-6	No	No	5.00E-02	1		-	4.00E-03	IR		-	1	0.1	1	_	3.43E-07	1.00E+06	2.25E+00	_	1.36E+09	1.09E+01	ca**
Dichloroaniline, 2,4-	554-00-7	No	No	-			-	-			-	1	0.1	1	_	6.46E-05	6.20E+02	1.85E+02	_	1.36E+09		
	95-76-1	No	Yes	_			-	_			-	1	-	1	1.01E+05	5.97E-04	9.20E+01	1.85E+02	_	1.36E+09		
	25321-22-6	No	Yes	_			-	_			-	1		1	2.02E+04	7.85E-02	8.00E+01	3.83E+02	1.93E+02	1.36E+09		
	95-50-1	No	Yes	_			_	9.00E-02	IR	2.00E-01	HE	1	_	1	1.17E+04	7.85E-02	1.56E+02	3.83E+02	3.76E+02	1.36E+09	1.81E+02	nc
	541-73-1	No	Yes	_			_	0.00L 02				1		1	9.93E+03	1.08E-01	1.25E+02	3.75E+02	2.97E+02	1.36E+09		
Dichlorobenzene, 1,4-	106-46-7	No	Yes	5.40E-03	С	1.10E-05	С	7.00E-02	AT	8.00E-01	IR	1		1	1.04E+04	9.85E-02	8.13E+01	3.75E+02		1.36E+09	2.61E+00	ca
	91-94-1	No	No	4.50E-01	1	3.40E-04	_	7.002 02	, , , ,	3.55E 01	- "\	1	0.1	1	1.012.04	1.16E-09	3.10E+00	3.19E+03	_	1.36E+09	1.21E+00	ca
	51-36-5	No	No	7.00L-01	'	0.406-04	_	<u> </u>			_	1	0.1	1	_	2.43E-06	1.47E+02	4.26E+01		1.36E+09	1.212.00	
	90-98-2		No				_	9.00E-03	SC		_	1	0.1	1	-	4.37E-05	8.29E-01	2.93E+03	_	1.36E+09	5.69E+01	nc
	328-84-7		Yes	_				J.00L-03	30		_	1		1	1.15E+04	1.05E+00	1.88E+01	2.63E+03	3.02E+02	1.36E+09	0.002101	110
	75-71-8			<u>-</u>			-	2.00E-01	ID	1.00E-01	SC	-		1	8.41E+02		2.80E+01	4.39E+01	8.45E+02	1.36E+09 1.36E+09	8.72E+00	nc
	39638-32-9	No	Yes	-	1		-	2.00E-01	IR	1.00E-01	30	1			1.32E+04	1.40E+01 1.36E-02	6.23E+02	4.39E+01 4.58E+01	8.45E+02 2.35E+02	1.36E+09 1.36E+09	0.72E+00	nc
		No	Yes	5 70F 02		1 605 00	-	2.005.04	DD		-	-		1							2 555+00	
	75-34-3	No	Yes	5.70E-03	С	1.60E-06	C	2.00E-01	PP	7.005.00		1		1	2.08E+03	2.30E-01	5.04E+03	3.18E+01	1.69E+03	1.36E+09	3.55E+00	ca
	107-06-2	No	Yes	9.10E-02	1	2.60E-05		6.00E-03	SC	7.00E-03		1		1	4.57E+03	4.82E-02	8.60E+03	3.96E+01	2.98E+03	1.36E+09	4.64E-01	ca**
Dichloroethylene, 1,1-	75-35-4	No	Yes	-			-	5.00E-02	IR	2.00E-01	IR	1	-	1	1.16E+03	1.07E+00	2.42E+03	3.18E+01	1.19E+03	1.36E+09	2.27E+01	nc

				Ingestion		Inhalation Unit		Chronic	Chronic		Chronic				Volatilization	Henry's Law			Soil Saturation	Particulate Emission	Screening	
			VOC	SF	SFO	Risk	IUR	l	RfD	RfC	RfC				Factor	Constant	S	K _{oc}	Concentration	Factor	Level	
Chemical	CAS Number			(mg/kg-day) ⁻¹	Ref	(ug/m ³) ⁻¹	Ref	, , ,	Ref	(mg/m³)	Ref	GIABS	ABS	RBA	(m³/kg)	(unitless)	(mg/L)	(cm3/g)	(mg/kg)	(m³/kg)	(mg/kg)	[basis]
Dichloroethylene, 1,2-cis-	156-59-2	No	Yes	-		-	-	2.00E-03	IR IR	-		1	-	1	2.50E+03	1.67E-01	6.41E+03	3.96E+01	2.37E+03	1.36E+09	1.56E+01	nc
Dichloroethylene, 1,2-trans-	156-60-5	No	Yes	-			-	2.00E-02	IR	-		1	-	1	1.75E+03	3.83E-01	4.52E+03	3.96E+01	1.85E+03	1.36E+09	1.56E+02	nc
Dichlorophenol, 2,6-	87-65-0	No	No	-		-	-	-		-		1	0.1	1	-	1.09E-04	1.90E+03	5.02E+02	-	1.36E+09		
Dichlorophenol, 3,4-	95-77-2	No	No	-		-	-	-		-		1	0.1	1	-	1.26E-05	9.26E+03	4.92E+02	-	1.36E+09		
Dichlorophenol, 2,3-	576-24-9	No	No	-			-	-		-		1	0.1	1	-	1.26E-05	3.60E+03	5.02E+02	-	1.36E+09		
Dichlorophenol, 2,4-	120-83-2	No	No	-			-	3.00E-03	IR	-		1	0.1	1	-	1.75E-04	5.55E+03	1.47E+02	-	1.36E+09	1.90E+01	nc
Dichlorophenol, 2,5-	583-78-8	No	No	-		-	•	-		-		1	0.1	1	-	1.26E-05	2.00E+03	4.92E+02	-	1.36E+09		
Dichlorophenols (total)	NA	No	No	-			-	-		-		1	0.1	1	-	-	-	-	-	1.36E+09		
Dichlorophenoxy Acetic Acid, 2,4-	94-75-7	No	No	-			-	1.00E-02	IR	-		1	0.05	1	-	1.45E-06	6.77E+02	2.96E+01	-	1.36E+09	6.99E+01	nc
Butanoic acid, 4-(2,4-dichlorophenoxy)-	94-82-6		No	-			-	3.00E-02	OP	-		1	0.1	1	-	9.36E-08	4.60E+01	3.70E+02	-	1.36E+09	1.90E+02	nc
Dichloropropane, 1,2-	78-87-5	No	Yes	3.70E-02	Р	3.70E-05	P	4.00E-02	PP	4.00E-03	IR	1	-	1	3.79E+03	1.15E-01	2.80E+03	6.07E+01	1.36E+03	1.36E+09	2.83E-01	ca**
Dichloropropane, 1,3-	142-28-9	No	Yes	-		-	-	2.00E-02	PP	-		1	-	1	6.76E+03	3.99E-02	2.75E+03	7.22E+01	1.49E+03	1.36E+09	1.56E+02	nc
Dichloropropane, 2,2-	594-20-7	No	Yes	_			-	-		-		1		1	1.60E+03	6.58E-01	3.91E+02	4.39E+01	1.91E+02	1.36E+09		
Dichloropropanol, 2,3-	616-23-9	No	No	-			-	3.00E-03	IR	-		1	0.1	1	-	1.47E-07	6.42E+04	5.57E+00	-	1.36E+09	1.90E+01	nc
Dichloropropene, 1,3-	542-75-6	No	Yes	1.00E-01	I	4.00E-06	I	3.00E-02	IR	2.00E-02	IR	1	-	1	3.55E+03	1.45E-01	2.80E+03	7.22E+01	1.57E+03	1.36E+09	1.84E+00	ca**
Dichloropropene, 2,3-	78-88-6	No	Yes	-		-	-	-		-		1	-	1	3.09E+03	1.70E-01	2.15E+03	6.07E+01	1.07E+03	1.36E+09		
Dichloropropene, cis-1,3-	10061-01-5	No	Yes	-		-	-	-		-		1	-	1	4.04E+03	1.11E-01	2.18E+03	7.22E+01	1.21E+03	1.36E+09		
Dichloropropene, trans-1,3-	10061-02-6	No	Yes			-	-	-		-		1	-	1	7.04E+03	3.56E-02	2.80E+03	7.22E+01	1.51E+03	1.36E+09		
Dichloropropene, 1,1-	563-58-6	No	Yes	-		-	-	-		-		1	-	-	1.18E+03	2.04E+00	7.49E+02	6.07E+01	-	1.36E+09		
Dichlorvos	62-73-7	No	No	2.90E-01	I	8.30E-05	С	5.00E-04	IR	5.00E-04	IR	1	0.1	1	-	2.35E-05	8.00E+03	5.40E+01	-	1.36E+09	1.87E+00	ca**
Dicyclohexylamine	101-83-7	No	Yes	-		-	-	-		-		1	-	1	6.26E+04	2.25E-03	1.07E+02	1.73E+02	1.22E+02	1.36E+09		
Dicyclopentadiene	77-73-6	No	Yes	-		-	-	8.00E-02	PP	3.00E-04	SC	1	-	1	4.11E+03	2.56E+00	2.65E+01	1.51E+03	2.56E+02	1.36E+09	1.29E-01	nc
Dieldrin	60-57-1	No	No	1.60E+01	I	4.60E-03	I	5.00E-05	IR	-		1	0.1	1	-	4.09E-04	1.95E-01	2.01E+04	-	1.36E+09	3.39E-02	ca**
Diepoxybutane	1464-53-5	No	Yes	-		-	-	-		-		1	-	1	1.46E+05	1.45E-06	1.00E+06	2.53E+00	1.15E+05	1.36E+09		
Diethanolamine	111-42-2	No	No	-		-	-	2.00E-03	PP	2.00E-04	PP	1	0.1	1	-	1.58E-09	1.00E+06	1.00E+00	-	1.36E+09	1.26E+01	nc
Diethyl sulfate	64-67-5	No	No	_		-	-	_		-		1	0.1	1	-	2.51E-04	7.00E+03	2.82E+01	-	1.36E+09		
Diethyl-p-nitrophenylphosphate	311-45-5	No	No	_		-	-	-		-		1	0.1	1	-	4.46E-09	3.64E+03	1.31E+02	-	1.36E+09		
Diethylene-glycol	111-46-6	No	No	-		-	-	-		-		1	0.1	1	-	1.22E-08	1.00E+06	1.00E+00	-	1.36E+09		
Diethylene Glycol Dinitrate (DEGDN)	693-21-0	No	No	-		_		-		-		1	0.1	1	-	1.59E-05	3.90E+03	3.22E+01	-	1.36E+09		
Diethylene Glycol Monobutyl Ether	112-34-5	No	No	_		_	-	3.00E-02	PP	1.00E-04	PP	1	0.1	1	-	2.94E-07	1.00E+06	1.00E+01	-	1.36E+09	1.87E+02	nc
Diethylene Glycol Monoethyl Ether	111-90-0	No	No	-		-		6.00E-02	PP	3.00E-04	PP	1	0.1	1	-	9.12E-07	1.00E+06	1.00E+00	-	1.36E+09	3.76E+02	nc
Diethylformamide	617-84-5	No	Yes	-		-	-	1.00E-03	PP	-		1	-	1	1.39E+05	5.31E-06	1.00E+06	2.06E+00	1.12E+05	1.36E+09	7.82E+00	nc
Diethylphosphorodithioate	298-06-6	No	Yes	_		_	-	-		-		1	-	1	1.30E+04	1.52E-02	6.40E-02	3.88E+01	2.15E-02	1.36E+09		
Diethylstilbestrol	56-53-1	No	No	3.50E+02	С	1.00E-01	С	-		-		1	0.1	1	-	2.37E-10	1.20E+01	2.74E+05	-	1.36E+09	1.55E-03	ca
Difenzoquat	43222-48-6	No	No	-		-	-	8.30E-02	OP	-		1	0.1	1	-	-	8.17E+05	7.84E+04	-	1.36E+09	5.25E+02	nc
Diflubenzuron	35367-38-5	No	No	_		-	-	2.00E-02	IR	-		1	0.1	1	-	1.88E-07	8.00E-02	4.63E+02	-	1.36E+09	1.26E+02	nc
Difluoroethane, 1,1-	75-37-6	No	Yes	-		-		-		4.00E+01	IR	1	_	1	1.15E+03	8.30E-01	3.20E+03	3.18E+01	1.43E+03	1.36E+09	4.79E+03	cs
Difluoropropane, 2,2-	420-45-1		Yes	-		-		-		-		1	-	1	7.58E+02	2.10E+01	1.59E+02	4.39E+01	6.91E+02	1.36E+09		
Dihydrosafrole	94-58-6	No	Yes	4.40E-02	С	1.30E-05	С	-		-		1	-	1	1.23E+05	4.99E-04	5.69E+01	2.07E+02	-	1.36E+09	9.91E+00	ca
Diisopropyl Ether	108-20-3		Yes	-		-		-		7.00E-01	PP	1		1	3.06E+03	1.05E-01	8.80E+03	2.28E+01	2.26E+03	1.36E+09	2.23E+02	nc
Diisopropyl Methylphosphonate	1445-75-6		Yes	_				8.00E-02	IR			1		1	3.81E+04	1.79E-03	1.50E+03	4.22E+01	5.30E+02	1.36E+09	6.26E+02	cs
Dimethipin	55290-64-7	No	No	_				2.18E-02	OP	-		1	0.1	1	-	9.40E-10	4.60E+03	1.00E+01	-	1.36E+09	1.38E+02	nc
Dimethoate	60-51-5	No	No	_			-	2.20E-03	OP	_		1	0.1	1	_	9.93E-09	2.33E+04	1.28E+01	_	1.36E+09	1.39E+01	nc
Dimethoxybenzidine, 3,3'-	119-90-4	No	No	1.60E+00	Р	-				_		1	0.1	1	_	1.92E-09	6.00E+01	5.09E+02	_	1.36E+09	3.39E-01	ca
Dimethyl methylphosphonate	756-79-6	No	No	1.70E-03	P			6.00E-02	PP	_		1	0.1	1	_	5.56E-06	1.00E+06	5.41E+00	_	1.36E+09	3.19E+02	ca**
Dimethyl Sulfate	77-78-1	No	No	-				-		_		1	0.1	1	_	1.64E-04	2.80E+04	8.49E+00	_	1.36E+09		
Dimethyl Sulfide	75-18-3		Yes	_				_		_		1		1	2.97E+03	6.58E-02	2.20E+04	2.17E+01	5.35E+03	1.36E+09		
Zcarji camac	1.0 10 0		. 55		1							•			2.07.2.00	0.002 02	2.202.07	2.172.01	0.002.00	1.002.00		

Chemical	CAS Number	Mutagen?	VOC	Ingestion SF SI (mg/kg-day) ⁻¹ R	=o	Inhalation Unit Risk (ug/m³) ⁻¹	IUR Ref	Chronic RfD (mg/kg-day)	Chronic RfD Ref	Chronic RfC (mg/m³)	Chronic RfC Ref	GIABS	ABS	RBA	Volatilization Factor (m³/kg)	Henry's Law Constant (unitless)	S (mg/L)	K _{oc} (cm3/g)	Soil Saturation Concentration (mg/kg)	Particulate Emission Factor (m³/kg)	Screening Level (mg/kg)	[basis]
	60-11-7		No	4.60E+00		1.30E-03	C	(mg/ng day)	1101	(g / /	1101	1	0.1	1	(/\\ g /	1.64E-08	2.30E-01	2.03E+03	(9/1.9/	1.36E+09	1.18E-01	ca
,	21436-96-4	_	No	5.80E-01 H		1.002 00		_		_		1	0.1	1	_	9.48E-05	3.65E+03	3.52E+02	_	1.36E+09	9.35E-01	ca
	95-68-1		No	2.00E-01 F		_		2.00E-03	SC	_		1	0.1	1	_	1.02E-04	6.07E+03	1.85E+02	_	1.36E+09	2.71E+00	ca**
Dimethylaniline, N,N-	121-69-7		Yes	2.70E-02 F)			2.00E-03	IR	_		1	- 0.1	. 1	3.13E+04	2.32E-03	1.45E+03	7.87E+01	8.30E+02	1.36E+09	1.56E+01	nc
<u> </u>	119-93-7	_	No	1.10E+01 F				2.00L-00	11 \	_		1	0.1	1	J. 13L 104	2.57E-09	1.30E+03	3.19E+03	0.002102	1.36E+09	4.93E-02	ca
Dimethylcyclohexylamine, n,n-	98-94-2		Yes	1.102.01						_		1	- 0.1	1	3.80E+04	9.61E-04	1.05E+04	3.60E+01	_	1.36E+09	4.33L-02	·
Dimethylformamide	68-12-2		Yes	_		_		1.00E-01	PP	3.00E-02	IR	1		- 1	1.28E+05	3.02E-06	1.00E+06	1.00E+00	1.06E+05	1.36E+09	2.64E+02	nc
Dimethylhydrazine, 1,1-	57-14-7		Yes					1.00E-01	SC	2.00E-06	SC	1		1	2.77E+04	5.27E-04	1.00E+06	1.20E+01	1.72E+05	1.36E+09	5.73E-03	nc
Dimethylhydrazine, 1,2-	540-73-8	_	Yes	5.50E+02 (_	1.60E-01	С	1.002-04		Z.00L-00		1		1	1.68E+05	2.84E-06	1.00E+06	1.49E+01	1.89E+05	1.36E+09	8.84E-04	ca
Dimethylphenethylamine	122-09-8		No	J.JUL 102	,	1.00L-01						1	0.1	1	1.002103	5.85E-05	1.86E+04	1.49E+01	1.092103	1.36E+09	0.04L-04	·
Dimethylphenol, 2,4-	105-67-9		No	-		-		2.00E-02	IR	-		1	0.1	1	-	3.89E-05	7.87E+03	4.92E+02	_	1.36E+09	1.26E+02	nc
• • • • • • • • • • • • • • • • • • • •	576-26-1	_	No	-		-		6.00E-02	IR	-		1	0.1	1	-	2.72E-04	6.05E+03	5.02E+02	-	1.36E+09	3.79E+00	
• •	95-65-8		No	-		-		1.00E-03	IR	-		1	0.1	1	-	1.70E-05	4.76E+03	4.92E+02	-	1.36E+09	6.32E+00	nc
<u> </u>	513-37-1		Yes	4.50E-02 (1.30E-05	_	1.00E-03	11.	-		1	0.1	- 1	5.48E+03	4.84E-02	1.00E+03	6.07E+01	4.73E+02	1.36E+09	1.10E+00	nc
• • •	534-52-1	_	No	4.JUE-UZ (,	1.50⊑-05	U	8.00E-05	SC	-		1	0.1	1	J.40ETU3	4.64E-02 5.72E-05	1.00E+03 1.98E+02	7.54E+02	4.7 35702	1.36E+09	5.06E-01	ca
				-		-				-		1		1	-		1.50E+02 1.50E+01		-			nc
·	131-89-5		No	-		-		2.00E-03	IR	-		1	0.1	1	-	2.26E-06		1.65E+04	-	1.36E+09	1.26E+01	nc
Dinitroaniline, 3,5-	618-87-1		No	-		-		1.00E-04	DD	-		1		1	-	1.21E-09	1.29E+03	1.69E+02	-	1.36E+09 1.36E+09	6 225 04	
	528-29-0	_	No	-		-			PP	-			0.1	1	-	2.18E-06	1.33E+02	3.59E+02	-		6.32E-01	nc
Dinitrobenzene, 1,3-	99-65-0	_	No	-		-		1.00E-04	IR	-		1	0.1	' '	-	2.00E-06	5.33E+02	3.52E+02	-	1.36E+09	6.32E-01	nc
	100-25-4		No	-		-		1.00E-04	PP	-		1	0.1	1	-	3.43E-06	6.90E+01	3.52E+02	-	1.36E+09	6.32E-01	nc
Dinitrophenol, 2,4-	51-28-5		No	-		-		2.00E-03	IR	-		1	0.1	1	-	3.52E-06	2.79E+03	4.61E+02	-	1.36E+09	1.26E+01	nc
Dinitrophenols	25550-58-7		No	-		-		-		-		1	0.1	1	-	1.13E-06	5.60E+00	4.70E+02	-	1.36E+09		
Dinitrosopentamethylenetetramine, N,N-	101-25-7		No	-		-		-		-		1	0.1	1	-	2.02E-04	5.70E-03	5.80E+01	-	1.36E+09	7.005.04	
Dinitrotoluene Mixture, 2,4/2,6-	NA		No	6.80E-01				-		-		1	0.1	1	-	1.62E-05	2.70E+02	5.87E+02	-	1.36E+09	7.98E-01	ca
Dinitrotoluene, 2,4-	121-14-2		No	3.10E-01 (8.90E-05	С	2.00E-03	IR	-		1	0.102	1	-	2.21E-06	2.00E+02	5.76E+02	-	1.36E+09	1.74E+00	ca**
	606-20-2		No	1.50E+00 F	,	-		3.00E-04	SC	-		1	0.099	1	-	3.05E-05	1.82E+02	5.87E+02	-	1.36E+09	3.63E-01	ca**
· · · · · · · · · · · · · · · · · · ·	35572-78-2		No	-		-		2.00E-03	SU	-		1	0.006	1	-	1.34E-09	1.22E+03	2.83E+02	-	1.36E+09	1.54E+01	nc
	19406-51-0		No	-		-		2.00E-03	SU	-		1	0.009	1	-	1.34E-09	1.22E+03	2.83E+02	-	1.36E+09	1.53E+01	nc
Dinitrotoluene, 2,3-	602-01-7	_	No	-		-		-		-		1	0.1	-	-	3.79E-06	2.70E+02	5.87E+02	-	1.36E+09		
Dinitrotoluene, 2,5-	619-15-8		No	-		-		-		-		1	0.1	-	-	3.79E-06	2.20E+02	5.76E+02	-	1.36E+09		
Dinitrotoluene, 3,4-	610-39-9		No	-		-		-		-		1	0.1	-	-	3.79E-06	1.79E+02	5.76E+02	-	1.36E+09		
Dinitrotoluene, 3,5-	618-85-9	No	No	-		-		-		-		-	<u> </u>		-	3.79E-06	1.45E+02	5.64E+02	-	1.36E+09		
· •	25321-14-6	_	No	4.50E-01	Κ	-		9.00E-04	SC	-		1	0.1	1	-	3.79E-06	2.70E+02	5.87E+02	-	1.36E+09	1.21E+00	ca**
Dinoseb	88-85-7		No	-				1.00E-03	IR	-		1	0.1	1	-	1.86E-05	5.20E+01	4.29E+03	-	1.36E+09	6.32E+00	nc
Dioxane, 1,4-	123-91-1		Yes	1.00E-01	l :	5.00E-06	1	3.00E-02	IR	3.00E-02	IR	1		- 1	3.96E+04	1.96E-04	1.00E+06	2.63E+00	1.16E+05	1.36E+09	5.30E+00	ca*
•	957-51-7		No	-		-		3.00E-02	IR	-		1	0.1	1	-	1.48E-09	2.60E+02	4.80E+03	-	1.36E+09	1.90E+02	nc
· · · ·	127-63-9		No	-		-		8.00E-04	SC	-		1	0.1	1	-	1.02E-05	3.14E+02	1.11E+03	-	1.36E+09	5.06E+00	nc
	122-39-4		No	-		-		1.00E-01	OP	-		1	0.1	1	-	1.10E-04	5.30E+01	8.26E+02	-	1.36E+09	6.32E+02	nc
	122-66-7	No	No	8.00E-01	I :	2.20E-04	I	-		-		1	0.1	1	-	1.95E-05	2.21E+02	1.51E+03	-	1.36E+09	6.78E-01	ca
•	85-00-7		No	-		-		2.20E-03	IR	-		1	0.1	1	-	5.81E-12	7.08E+05	9.27E+03	-	1.36E+09	1.39E+01	nc
	1937-37-7		No	7.10E+00 (С	-		-		1	0.1	1	-	3.36E-38	3.00E+03	2.42E+08	-	1.36E+09	7.62E-02	ca
	2602-46-2	No	No	7.40E+00 (1.40E-01	С	-		-		1	0.1	1	-	3.72E-42	1.37E-04	7.91E+08	-	1.36E+09	7.31E-02	ca
	16071-86-6	No	No	6.70E+00 (1.40E-01	С	-		-		1	0.1	1	-		1.00E+06	6.99E+06	-	1.36E+09	8.07E-02	ca
	2610-05-1	No	No	-		-		-		-		1	0.1	1	-	3.50E-42	4.00E+04	2.88E+08	-	1.36E+09		
Disulfoton	298-04-4	No	No	-		-		4.00E-05	IR	-		1	0.1	1	-	8.83E-05	1.63E+01	8.38E+02	-	1.36E+09	2.53E-01	nc
Dithiane, 1,4-	505-29-3	No	Yes	-		-		1.00E-02	IR	-		1		- 1	4.54E+04	1.72E-03	3.00E+03	1.46E+02	-	1.36E+09	7.82E+01	nc
Diundecyl Phthalate	3648-20-2	No	Yes	-		-		-		-		1	-		1.47E+07	2.29E-03	1.11E+00	5.16E+06	-	1.36E+09		

			voc	Ingestion SF	SFO		IUR	Chronic RfD	Chronic RfD	Chronic RfC	Chronic RfC				Volatilization Factor	Henry's Law Constant	s	K _{oc}	Soil Saturation Concentration	Particulate Emission Factor	Screening Level	
Chemical	CAS Number	Mutagen?	?	(mg/kg-day) ⁻¹	Ref	(ug/m ³) ⁻¹	Ref	(mg/kg-day)	Ref	(mg/m³)	Ref	GIABS	ABS	RBA	(m³/kg)	(unitless)	(mg/L)	(cm3/g)	(mg/kg)	(m³/kg)	(mg/kg)	[basis]
Diuron	330-54-1	No	No	-		-		2.00E-03	IR	-		1	0.1	1	-	2.06E-08	4.20E+01	1.09E+02	-	1.36E+09	1.26E+01	nc
Dodine	2439-10-3	No	No	-		-		2.00E-02	OP	-		1	0.1	1	-	3.68E-09	6.30E+02	2.48E+03	-	1.36E+09	1.26E+02	nc
Hexachlorodibenzo-p-dioxin	34465-46-8	No	No	1.30E+04	W	3.80E+00	W	7.00E-09	WH	4.00E-07	WH	1	0.03	1	-	2.33E-04	4.00E-06	6.95E+05	-	1.36E+09	4.93E-05	ca**
Hexachlorodibenzo-p-dioxin, 1,2,3,4,7,8-	39227-28-6	No	No	1.30E+04	W	3.80E+00	W	7.00E-09	WH	4.00E-07	WH	1	0.03	1	-	1.61E-04	4.40E-06	6.95E+05	-	1.36E+09	4.93E-05	ca**
Hexachlorodibenzo-p-dioxin, Mixture	NA	No	No	6.20E+03	I	1.30E+00	I	-		-		1	0.03	1	-	2.33E-04	4.00E-06	6.95E+05	-	1.36E+09	1.03E-04	ca
HpCDD, 2,3,7,8-	37871-00-4	No	Yes	1.30E+03	W	3.80E-01	W	7.00E-08	WH	4.00E-06	WH	1	0.03	1	2.43E+06	7.15E-03	1.41E-06	1.16E+06	-	1.36E+09	4.80E-04	ca**
HxCDD, 1,2,3,6,7,8-	57653-85-7	No	No	1.30E+04	W	3.80E+00	W	7.00E-09	WH	4.00E-07	WH	1	0.03	1	-	7.93E-05	2.65E-05	6.95E+05	-	1.36E+09	4.93E-05	ca**
HxCDD, 1,2,3,7,8,9-	19408-74-3	No	No	1.30E+04	W	3.80E+00	W	7.00E-09	WH	4.00E-07	WH	1	0.03	1	-	7.93E-05	2.65E-05	6.95E+05	-	1.36E+09	4.93E-05	ca**
Endosulfan	115-29-7	No	Yes	-		-		6.00E-03	IR	-		1	-	1	4.10E+05	2.66E-03	3.25E-01	6.76E+03	-	1.36E+09	4.69E+01	nc
Endosulfan I	959-98-8	No	No	-		-		-		-		1	-	1	-	2.90E-04	5.10E-01	6.76E+03	-	1.36E+09		
Endosulfan II	33213-65-9	No	No	-		-		-		-		1	-	1	-	1.60E-05	4.50E-01	6.76E+03	-	1.36E+09		
Endosulfan Sulfate	1031-07-8	No	No	-		-		-		-		1	0.1	1	-	1.33E-05	4.80E-01	9.85E+03	-	1.36E+09		
Endothall	145-73-3	No	No	-		-		2.00E-02	IR	-		1	0.1	1		1.57E-14	1.00E+05	1.94E+01	-	1.36E+09	1.26E+02	nc
Endrin	72-20-8	No	No	-		-		3.00E-04	IR	-		1	0.1	1		2.60E-04	2.50E-01	2.01E+04	-	1.36E+09	1.90E+00	nc
Endrin ketone	53494-70-5	No	No	-		-		-		-		1	0.1	1	_	8.26E-07	2.22E-01	9.72E+03	-	1.36E+09		
Endrin aldehyde	7421-93-4	No	No	-		-		-		-		1	0.1	1	-	1.71E-04	2.40E-02	3.27E+03	-	1.36E+09		
Epichlorohydrin	106-89-8	No	Yes	9.90E-03	I	1.20E-06	ı	6.00E-03	PP	1.00E-03	IR	1	-	1	1.89E+04	1.24E-03	6.59E+04	9.91E+00	1.05E+04	1.36E+09	1.89E+00	nc
Epoxybutane, 1,2-	106-88-7	No	Yes	-		-		-		2.00E-02	IR	1	-	1	7.66E+03	7.36E-03	9.50E+04	9.91E+00	1.53E+04	1.36E+09	1.60E+01	nc
EPTC	759-94-4	No	Yes	_		-		5.00E-02	OP	-		1	-	1	1.17E+05	6.50E-04	3.75E+02	1.64E+02	-	1.36E+09	3.91E+02	nc
Ethanol	64-17-5	No	Yes	-		-		-		-		1	-	1	3.14E+04	2.04E-04	1.00E+06	1.05E+00	1.06E+05	1.36E+09		
Ethanol, 2-(2-methoxyethoxy)-	111-77-3	No	No	-		-		4.00E-02	PP	-		1	0.1	1	-	6.75E-10	1.00E+06	1.00E+00	-	1.36E+09	2.53E+02	nc
Ethephon	16672-87-0	No	No	-		-		5.00E-03	IR	-		1	0.1	1	-	2.33E-10	1.00E+06	5.03E+00	-	1.36E+09	3.16E+01	nc
Ethion	563-12-2	No	No	-		-		5.00E-04	IR	-		1	0.1	1	-	1.55E-05	2.00E+00	8.82E+02	-	1.36E+09	3.16E+00	nc
Ethoxy Propanol	52125-53-8	No	Yes	-		-		-		-		1	-	1	1.46E+05	3.02E-06	3.66E+05	1.36E+00	3.96E+04	1.36E+09		
Ethoxyethanol Acetate, 2-	111-15-9	No	Yes	-		-		1.00E-01	PP	6.00E-02	PP	1	-	1	6.15E+04	1.31E-04	1.87E+05	4.54E+00	2.38E+04	1.36E+09	2.58E+02	nc
Ethoxyethanol, 2-	110-80-5	No	Yes	-		-		9.00E-02	PP	2.00E-01	IR	1	-	1	9.84E+04	1.92E-05	1.00E+06	1.00E+00	1.06E+05	1.36E+09	5.24E+02	nc
Ethyl methane sulfonate	62-50-0	No	No	-		-		-		-		1	0.1	1	-	1.06E-05	1.35E+05	7.89E+00	-	1.36E+09		
Ethyl Acetate	141-78-6	No	Yes	-		-		9.00E-01	IR	7.00E-02	PP	1	-	1	8.62E+03	5.48E-03	8.00E+04	5.58E+00	1.08E+04	1.36E+09	6.24E+01	nc
Ethyl Acrylate	140-88-5	No	Yes	-		-		5.00E-03	PP	8.00E-03	PP	1	-	1	6.34E+03	1.39E-02	1.50E+04	1.07E+01	2.50E+03	1.36E+09	4.66E+00	nc
Ethyl Chloride	75-00-3	No	Yes	-		-		-		1.00E+01	IR	1	-	1	1.29E+03	4.54E-01	6.71E+03	2.17E+01	2.12E+03	1.36E+09	1.35E+03	nc
Ethyl Ether	60-29-7	No	Yes	-		-		2.00E-01	IR	-		1	-	1	3.12E+03	5.03E-02	6.04E+04	9.70E+00	1.01E+04	1.36E+09	1.56E+03	nc
Ethyl Methacrylate	97-63-2	No	Yes	_		-		-		3.00E-01	PP	1	_	1	5.77E+03	2.34E-02	5.40E+03	1.67E+01	1.10E+03	1.36E+09	1.81E+02	nc
Ethyl-p-nitrophenyl Phosphonate	2104-64-5	No	No	_		-		1.00E-05	IR	-		1	0.1	1	-	1.82E-05	3.11E+00	1.55E+04	-	1.36E+09	6.32E-02	nc
Ethylbenzene	100-41-4	No	Yes	1.10E-02	С	2.50E-06	С	1.00E-01	IR	1.00E+00	IR	1	-	1	5.67E+03	3.22E-01	1.69E+02	4.46E+02	4.80E+02	1.36E+09	5.78E+00	ca*
Ethylene Cyanohydrin	109-78-4	No	No	-		-		7.00E-02	PP	-		1	0.1	1	-	3.07E-07	1.00E+06	1.00E+00	-	1.36E+09	4.42E+02	nc
Ethylene Diamine	107-15-3	No	Yes	_		-		9.00E-02	PP	-		1	-	1	1.80E+05	7.07E-08	1.00E+06	1.49E+01	1.89E+05	1.36E+09	7.04E+02	nc
Ethylene Glycol	107-21-1	No	No	_		-		2.00E+00	IR	4.00E-01	CA	1	0.1	1	-	2.45E-06	1.00E+06	1.00E+00	_	1.36E+09	1.26E+04	nc
Ethylene Glycol Monobutyl Ether	111-76-2	No	No	-		-		1.00E-01	IR	1.60E+00	IR	1	0.1	1	_	6.54E-05	1.00E+06	2.82E+00	-	1.36E+09	6.32E+02	nc
Ethylene Oxide	75-21-8	Yes	Yes	3.10E-01	С	3.00E-03	ı	-		3.00E-02	CA	1	-	1	6.09E+03	6.05E-03	1.00E+06	3.24E+00	1.21E+05	1.36E+09	2.05E-03	ca
Ethylene Thiourea	96-45-7	No	No	4.50E-02	С	1.30E-05	С	8.00E-05	IR	-		1	0.1	1	_	5.56E-10	2.00E+04	1.30E+01	_	1.36E+09	5.06E-01	nc
Ethyleneimine	151-56-4	No	Yes	6.50E+01	С		С	-		-		1	-	1	2.39E+04	4.95E-04	1.00E+06	9.04E+00	1.54E+05	1.36E+09	2.66E-03	ca
Ethylphenol, 4-	123-07-9	No	No	-		-		-		-		1	0.1	1	-	3.16E-05	4.90E+03	5.73E+02	-	1.36E+09		
Ethylphthalyl Ethyl Glycolate	84-72-0	No	No	-		-		3.00E+00	IR	-		1	0.1	1	-	2.71E-07	2.17E+02	1.02E+03	-	1.36E+09	1.90E+04	nc
Famphur	52-85-7	No	No	_		-		-		_		1	0.1	1	_	6.58E-07	1.09E+02	1.89E+02	_	1.36E+09		
Fenamiphos	22224-92-6	No	No	_		-		2.50E-04	IR	_		1	0.1	1	-	4.95E-08	3.29E+02	3.98E+02	_	1.36E+09	1.58E+00	nc
Fenpropathrin	39515-41-8	No	No	_		-		2.50E-02	IR	_		1	0.1	1	_	3.12E-04	3.30E-01	2.25E+04	_	1.36E+09	1.58E+02	nc
Fluometuron	2164-17-2	No	No	_		_		1.30E-02	IR	_		1	0.1	1	_	1.07E-07	1.10E+02	2.85E+02	_	1.36E+09	8.22E+01	nc
	····· -	1							•			<u> </u>		· · · · · ·								

			VOC	Ingestion SF	850	Inhalation Unit Risk		Chronic	Chronic	Chronic RfC	Chronic				Volatilization Factor	Henry's Law		K	Soil Saturation	Particulate Emission Factor	Screening	
Chemical	CAS Number	Mutagen?	VOC	(mg/kg-day) ⁻¹	SFO Ref	(ug/m ³) ⁻¹	IUR Ref		RfD Ref	(mg/m³)	RfC Ref	GIABS	ABS	RBA	(m³/kg)	Constant (unitless)	S (mg/L)	K _{oc} (cm3/g)	Concentration (mg/kg)	(m³/kg)	Level (mg/kg)	[basis]
Fluoride	16984-48-8	No	No	(ilig/kg-day)	IVEI	(ug/iii)	- 1761	4.00E-02	CA	1.30E-02	CA	1	AD3 -	1	(III /kg)	(unitiess)	1.69E+00	(Cilio/g)	(Ilig/kg)	1.36E+09	3.13E+02	nc
Fluorine (Soluble Fluoride)	7782-41-4	No	No					6.00E-02	IR	1.30E-02	CA	1		1		_	1.69E+00	_	_	1.36E+09	4.69E+02	nc
Fluorobenzene	462-06-6	No	Yes				_	0.002 02	11.	1.002 02	0/1	1		1	4.71E+03	2.56E-01	1.54E+03	2.34E+02	2.39E+03	1.36E+09	4.002 - 02	110
Fluorobiphenyl, 2-	321-60-8	No	Yes				-	_				1		1	1.24E+05	1.97E-02	1.39E+01	8.40E+03	-	1.36E+09		
Fluorophenol, 2-	367-12-4	No	Yes	_				_				1		1	2.12E+05	1.32E-04	1.41E+04	3.07E+02	2.73E+04	1.36E+09		
Fluridone	59756-60-4	No	No	_			-	8.00E-02	IR	_		1	0.1	1		3.31E-07	1.20E+01	5.68E+04	-	1.36E+09	5.06E+02	nc
Flurprimidol	56425-91-3	No	No	_			-	1.50E-02	OP	_		1	0.1	1	_	5.36E-08	1.14E+02	2.19E+03	_	1.36E+09	9.48E+01	nc
Flutolanil	66332-96-5	No	No	_				5.00E-01	OP			1	0.1	1	_	1.30E-07	6.53E+00	2.56E+03	_	1.36E+09	3.16E+03	nc
Fluvalinate	69409-94-5	No	No	_				1.00E-02	IR			1	0.1	1	_	5.93E-07	5.00E-03	7.30E+05	_	1.36E+09	6.32E+01	nc
Folpet	133-07-3	No	No	_			-	9.00E-02	OP	_		1	0.1	1	_	3.13E-06	8.00E-01	1.77E+01	_	1.36E+09	5.69E+02	nc
Fomesafen	72178-02-0	No	No	_			_	2.50E-03	OP			1	0.1	1	_	3.08E-11	5.00E+01	1.55E+03	_	1.36E+09	1.58E+01	nc
Fonofos	944-22-9	No	No	_			-	2.00E-03	IR	_		1	0.1	1	-	2.85E-04	1.57E+01	8.56E+02	_	1.36E+09	1.26E+01	nc
Formaldehyde	50-00-0	No	Yes	_		1.30E-05	1	2.00E-01	IR	9.83E-03	AT	1	-	1	7.77E+04	1.38E-05	4.00E+05	1.00E+00	4.24E+04	1.36E+09	1.68E+01	ca**
Formic Acid	64-18-6	No	Yes	_				9.00E-01	PP	3.00E-04	SC	1		1	9.30E+04	6.83E-06	1.00E+06	1.00E+00	1.06E+05	1.36E+09	2.91E+00	nc
Fosetyl-AL	39148-24-8	No	No	_			-	2.50E+00	OP	-	- 30	1	0.1	1		1.29E-12	1.11E+05	6.49E+03	-	1.36E+09	1.58E+04	nc
Fuel Oil Number 2	68476-30-2	No	No	_			-	2.002.00	<u> </u>			1	0.1	1	_		-	0.102.00	_	1.36E+09		110
Furazolidone	67-45-8	No	No	3.80E+00	Н		_	_				1	0.1	1	_	1.33E-09	4.00E+01	8.58E+02	_	1.36E+09	1.43E-01	ca
Furfural	98-01-1	No	Yes	0.002.00			_	3.00E-03	IR	5.00E-02	HE	1	-	1	4.86E+04	1.54E-04	7.41E+04	6.08E+00	1.01E+04	1.36E+09	2.15E+01	nc
Furium	531-82-8	No	No	1.50E+00	С	4.30E-04	С	0.002 00	11.	0.002 02	115	1	0.1	1	4.002.04	5.44E-14	4.21E+03	5.78E+02	1.012.04	1.36E+09	3.62E-01	ca
Furmecyclox	60568-05-0	No	No	3.00E-02	ı	8.60E-06	C	_				1	0.1	1	_	2.82E-07	3.00E-01	4.29E+02	_	1.36E+09	1.81E+01	ca
Dibenzofuran	132-64-9	No	Yes	3.00L-02		0.000	_	1.00E-03	SC			1	0.03	1	1.56E+05	8.71E-03	3.10E+00	9.16E+03	_	1.36E+09	7.30E+00	nc
Furan	110-00-9	No	Yes	_				1.00E-03	IR			1	0.03	1	2.62E+03	2.21E-01	1.00E+04	8.00E+01	6.22E+03	1.36E+09	7.30E+00	nc
Heptachlorodibenzofuran, 1,2,3,4,6,7,8-	67562-39-4	No	Yes	1.30E+03	W	3.80E-01	W	7.00E-08	WH	4.00E-06	WH	1	0.03	1	6.27E+06	5.76E-04	1.35E-06	6.50E+05	0.222.100	1.36E+09	4.88E-04	ca**
Hexachlorodibenzofuran, 1,2,3,4,7,8-	70648-26-9	No	Yes	1.30E+04	W	3.80E+00	W	7.00E-09	WH	4.00E-07	WH	1	0.03	1	2.89E+06	1.59E-03	2.98E-06	3.89E+05	_	1.36E+09	4.82E-05	ca**
HpCDF, 1,2,3,4,7,8,9-	55673-89-7	No	Yes	1.30E+03	W	3.80E-01	W	7.00E-08	WH	4.00E-06	WH	1	0.03	1	6.27E+06	5.76E-04	1.35E-06	6.50E+05	_	1.36E+09	4.88E-04	ca**
HpCDF, 2,3,7,8-	38998-75-3	No	Yes	1.30E+03	W	3.80E-01	W	7.00E-08	WH	4.00E-06	WH	1	0.03	1	6.27E+06	5.76E-04 5.76E-04	1.35E-06	6.50E+05	_	1.36E+09	4.88E-04	ca**
HxCDF, 1,2,3,6,7,8-	57117-44-9	No	Yes	1.30E+04	W	3.80E+00	W	7.00E-09	WH	4.00E-07	WH	1	0.03	1	2.89E+06	1.59E-03	3.49E-04	3.89E+05	_	1.36E+09	4.82E-05	ca**
HxCDF, 1,2,3,7,8,9-	72918-21-9	No	No	1.30E+04	W	3.80E+00	W	7.00E-09 7.00E-09	WH	4.00E-07	WH	1	0.03	1	2.092100	3.47E-04	1.56E-03	3.89E+05	_	1.36E+09	4.93E-05	ca**
HxCDF, 2,3,4,6,7,8-	60851-34-5		No	1.30E+04	W	3.80E+00	W	7.00E-09	WH	4.00E-07	WH	1	0.03	1	_	2.78E-04	5.89E-05	3.89E+05	_	1.36E+09	4.93E-05	ca**
HxCDF, 2,3,7,8-	55684-94-1	No	No	1.30E+04	W	3.80E+00	W	7.00E-09	WH	4.00E-07	WH	1	0.03	1	-	3.47E-04	1.56E-03	3.97E+05	_	1.36E+09	4.93E-05	ca**
Gadolinium	7440-54-2	No	No	1.302104		3.00L 100	_	7.00L-09	VVII	4.00L-07	VVII	1	0.03	1		3.47 L-04	1.50L-05	3.97 🗆 103	_	1.36E+09	4.93L-03	Ca
Gallium	7440-55-3	No	No					_				1		1	-	_	_	_	<u>-</u>	1.36E+09		
Germanium	7440-56-4	No	No					-				1		1	-		_	_	_	1.36E+09		
Glufosinate. Ammonium	77182-82-2	No	No					6.00E-03	OP			1	0.1	1	-	1.81E-12	1.37E+06	1.00E+01	_	1.36E+09	3.79E+01	nc
Glutaraldehyde	111-30-8	No	No					0.00L-03	Oi	8.00E-05	CA	1	0.1	1		1.35E-06	2.24E+05	1.00E+00	_	1.36E+09	1.13E+04	nc
Glycerol	56-81-5	No	No					_		0.00L-00	- OA	1	0.1	1	_	7.07E-07	1.00E+06	1.00E+00	_	1.36E+09	1.102.104	110
Glycidyl	765-34-4		Yes					4.00E-04	IR	1.00E-03	HE	1	0.1	1	8.43E+04	2.09E-05	1.00E+06	1.00E+00	1.06E+05	1.36E+09	2.31E+00	nc
Glyphosate	1071-83-6	No	No					1.00E-01	IR	1.00L-03	I IL	1	0.1	1	0.432104	8.59E-11	1.05E+04	2.10E+03	1.002103	1.36E+09	6.32E+02	nc
Guanidine Chloride	50-01-1	No	No					2.00E-02	PP			1	0.1	1	-	8.87E-17	1.00E+06	2.102103	<u>-</u>	1.36E+09	1.26E+02	nc
Guanidine	113-00-8		Yes	_			-	1.00E-02				1	0.1	1	1.45E+05	9.57E-10	1.84E+03	1.20E+01	-	1.36E+09	7.82E+01	
Guanidine Nitrate	506-93-4	No	No	_				3.00E-02	SC SC	-		1	0.1	1	1.43E7U3	9.57E-10 3.66E-17	1.04E+03 1.00E+06	2.28E+01	<u>-</u>	1.36E+09 1.36E+09	1.90E+02	nc
Azinphos-methyl	86-50-0	No	No	_		'		3.00E-02 3.00E-03		1.00E-02	AT	1	0.1	1	-	9.77E-07	2.09E+01	5.19E+01	<u>-</u>	1.36E+09 1.36E+09	1.90E+02 1.90E+01	nc
Haloacetic acids	NA	No	_					3.00E-03	ΑI	1.00⊑-02	AI	1	0.1		-	∌.≀≀⊑ - ∪≀	Z.U8ETU1	J. 19ETU I	-	1.36E+09 1.36E+09	1.302+01	nc
	69806-40-2	No	No				-	5.00E-05	IR	-		1	0.1	1	-	1.30E-05	9.30E+00	5.45E+03	<u>-</u>	1.36E+09 1.36E+09	3.16E-01	ne
Haloxyfop, Methyl HCDD, 1,2,3,4,6,7,8,-	35822-46-9		No	1.30E+03	С	3.80E-01	C			4.00E-06	CA	1		1	2.43E+06	7.15E-03	9.30E+00 2.40E-06	1.16E+06	<u>-</u>	1.36E+09 1.36E+09	4.80E-04	nc ca*
Heptachlor	76-44-8	No	Yes	4.50E+00	1	1.30E-03	1	5.00E-06	CA IR	4.00⊑-00	CA	1	0.03	1	4.79E+05	1.15E-03 1.20E-02	1.80E-01	4.13E+04	<u>-</u>	1.36E+09 1.36E+09		ca*
Heptachlor Epoxide	1024-57-3	No	Yes		1	2.60E-03	1	1.30E-05	IR IR	-		1			4.79E+05 8.43E+05	8.59E-04	2.00E-01	4.13E+04 1.01E+04	<u>-</u>	1.36E+09 1.36E+09	1.34E-01 7.05E-02	ca*
пернастног Ерохиче	1024-37-3	No	Yes	9.10E+00	1	∠.00⊑-03	1	1.30E-03	IK	<u>-</u>	<u> </u>	1	-	1	0.43⊑+05	0.09E-04	2.00E-01	1.01E+04		1.300+09	1.03E-02	Ca

				Ingestion		Inhalation Unit		Chronic	Chronic	Chronic	Chronic				Volatilization	Henry's Law			Soil Saturation	Particulate Emission	Screening	
			voc	SF	SFO	Risk	IUR	RfD	RfD	RfC	RfC				Factor	Constant	S	K _{oc}	Concentration	Factor	Level	
Chemical	CAS Number	Mutagen?	?	(mg/kg-day) ⁻¹	Ref	(ug/m ³) ⁻¹	Ref	(mg/kg-day)	Ref	(mg/m³)	Ref	GIABS	ABS	RBA	(m³/kg)	(unitless)	(mg/L)	(cm3/g)	(mg/kg)	(m³/kg)	(mg/kg)	[basis]
Heptanal, n-	111-71-7	No	Yes		-	-		-		-		1	-	1	7.80E+03	1.10E-02	1.25E+03	1.09E+01	2.09E+02	1.36E+09		
Heptane, N-	142-82-5	No	Yes		-	-		3.00E-04	SC	4.00E-01	PP	1	-	1	8.95E+02	8.18E+01	3.40E+00	2.40E+02	5.79E+01	1.36E+09	2.21E+00	nc
Heptanol, n-	111-70-6	No	Yes		-	-		-		-		1	-	1	3.43E+04	7.69E-04	1.67E+03	2.10E+01	3.78E+02	1.36E+09		
Hexabromobenzene	87-82-1	No	Yes		-	-		2.00E-03	IR	-		1	-	1	3.80E+05	1.15E-03	1.60E-04	2.81E+03	-	1.36E+09	1.56E+01	nc
Hexabromodiphenyl ether, 2,2',4,4',5,5'- (BDE-153)	68631-49-2	No	No		-	_		2.00E-04	IR	-		1	0.1	1	_	-	9.00E-04	_	_	1.36E+09	1.26E+00	nc
Hexachlorobenzene	118-74-1	No	Yes	1.60E+00	I	4.60E-04	I	8.00E-04	IR	-		1	-	1	6.80E+04	6.95E-02	6.20E-03	6.20E+03	-	1.36E+09	2.12E-01	ca*
Hexachlorobutadiene	87-68-3	No	Yes	7.80E-02	I	2.20E-05	ı	1.00E-03	PP	-		1	-	1	1.08E+04	4.21E-01	3.20E+00	8.45E+02	1.68E+01	1.36E+09	1.19E+00	ca**
Hexachlorocyclohexane, Alpha-	319-84-6	No	No	6.30E+00	1	1.80E-03	I	8.00E-03	AT	-		1	0.1	1	-	2.74E-04	2.00E+00	2.81E+03	-	1.36E+09	8.61E-02	ca
Hexachlorocyclohexane, Beta-	319-85-7	No	No	1.80E+00	I	5.30E-04	ı	-		-		1	0.1	1	-	1.80E-05	2.40E-01	2.81E+03	-	1.36E+09	3.01E-01	ca
Hexachlorocyclohexane, Delta-	319-86-8	No	No		-	-		-		-		1	0.1	1	-	2.10E-04	3.14E+01	2.81E+03	-	1.36E+09		
Hexachlorocyclohexane, Epsilon	6108-10-7	No	No		-	-		-		-		1	0.1	1	-	2.10E-04	8.00E+00	2.81E+03	-	1.36E+09		
Hexachlorocyclohexane, Gamma- (Lindane)	58-89-9	No	No	1.10E+00	С	3.10E-04	С	3.00E-04	IR	-		1	0.04	1	-	2.10E-04	7.30E+00	2.81E+03	-	1.36E+09	5.68E-01	ca**
Hexachlorocyclohexane, Technical	608-73-1	No	No	1.80E+00	I	5.10E-04	I	-		-		1	0.1	1	_	2.10E-04	8.00E+00	2.81E+03	_	1.36E+09	3.01E-01	ca
	77-47-4	No	Yes		-	-		6.00E-03	IR	2.00E-04	IR	1	-	1	8.51E+03	1.10E+00	1.80E+00	1.40E+03	1.57E+01	1.36E+09	1.77E-01	nc
Hexachloroethane	67-72-1	No	Yes	4.00E-02	I	1.10E-05	С	7.00E-04	IR	3.00E-02	IR	1	-	1	8.01E+03	1.59E-01	5.00E+01	1.97E+02	_	1.36E+09	1.83E+00	ca**
	70-30-4	No	No		-	-		3.00E-04	IR	-		1	0.1	1	-	2.24E-11	1.40E+02	6.69E+05	_	1.36E+09	1.90E+00	nc
Hexachloropropene	1888-71-7	No	Yes		-	_		-		-		1	-	1	1.07E+04	1.92E-01	1.70E+01	4.06E+02	4.38E+01	1.36E+09		
Hexadecanoic Acid	57-10-3	No	Yes		_	_		_		_		1	_	1	5.56E+05	8.18E-04	4.00E-02	3.52E+03	_	1.36E+09		
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)	121-82-4	No	No	1.10E-01	1	_		3.00E-03	IR	_		1	0.015	1	_	8.22E-10	5.97E+01	8.91E+01	_	1.36E+09	6.06E+00	ca**
Hexamethylene Diisocyanate, 1,6-	822-06-0	No	Yes		_	_		_		1.00E-05	IR	1	-	1	3.00E+05	1.96E-03	1.17E+02	4.82E+03	3.39E+03	1.36E+09	3.13E-01	nc
Hexamethylphosphoramide	680-31-9	No	No		_	_		4.00E-04	PP	_		1	0.1	1	_	8.18E-07	1.00E+06	1.00E+01	-	1.36E+09	2.53E+00	nc
Hexane, N-	110-54-3	No	Yes		_	_		-		7.00E-01	IR	1	-	1	8.29E+02	7.36E+01	9.50E+00	1.32E+02	1.41E+02	1.36E+09	6.05E+01	nc
Hexanedioic Acid	124-04-9	No	No		_	_		2.00E+00	PP			1	0.1	1	-	1.93E-10	3.08E+04	2.43E+01		1.36E+09	1.26E+04	nc
Hexanol, n-	111-27-3	No	Yes		_	_				_		1	-	1	2.93E+04	6.99E-04	5.90E+03	1.15E+01	9.99E+02	1.36E+09	0_ 0.	
	591-78-6	No	Yes		_	_		5.00E-03	IR	3.00E-02	IR	1	_	1	1.33E+04	3.81E-03	1.72E+04	1.50E+01	3.28E+03	1.36E+09	2.02E+01	nc
	51235-04-2	No	No		_	_		3.30E-02	IR			1	0.1	1	_	9.24E-11	3.30E+04	1.29E+02	_	1.36E+09	2.09E+02	nc
Hydrazine	302-01-2	No	Yes	3.00E+00	1	4.90E-03	1	- 0.002 02		3.00E-05	PP	1	-	1	_	2.50E-05	1.00E+06		_	1.36E+09	2.32E-01	ca
Hydrazine Sulfate	10034-93-2	No	No	3.00E+00	i	4.90E-03	I	_		-		1		1	_		3.06E+04	_	_	1.36E+09	2.32E-01	ca
Hydrogen Chloride	7647-01-0	No	Yes		_	-		_		2.00E-02	IR	1		1	_	8.34E+07	6.73E+05	_	_	1.36E+09	2.84E+06	cm
Hydrogen Fluoride	7664-39-3	No	Yes		_	_		4.00E-02	CA	1.40E-02	CA	1		1	_	4.25E-03	1.00E+06	_	_	1.36E+09	3.13E+02	nc
Hydrogen Selenide	7783-07-5	No	Yes		_	_		-	. .	-	<u> </u>	1		1	_	-	-	_	_	1.36E+09	01.02 02	
Hydrogen Sulfate	12143-45-2	No	No		_	_		_		_		1		1	_		_	_	_	1.36E+09		
Hydrogen Sulfide	7783-06-4	No	Yes		_	_		_		2.00E-03	IR	1	_	1	_	3.50E-01	3.74E+03	_	_	1.36E+09	2.84E+05	cm
Hydroquinone	123-31-9	No	No	6.00E-02	P	_		4.00E-02	PP		•	1	0.1	1	_	1.93E-09	7.20E+04	2.41E+02	_	1.36E+09	9.04E+00	ca*
Imazalil	35554-44-0	No	No	6.11E-02	0	_		2.50E-03	OP	_		1	0.1	1	_	1.06E-07	1.80E+02		_		8.88E+00	ca**
	81335-37-7	No	No		-	_		2.50E-01	IR	_		1	0.1	1	_	2.83E-16	9.00E+01			1.36E+09	1.58E+03	nc
	7440-74-6	No	No		_	_				_		1		1	_		-			1.36E+09		
		No	No		-	_		_		_		1		1	_		_	-		1.36E+09		
	7553-56-2	No	No		_	_		1.00E-02	AT	_		1		1	_		3.30E+02	_			7.82E+01	nc
	74-88-4	No	Yes		_	_			7	_		1		1	1.85E+03	2.15E-01	1.38E+04	1.32E+01	3.04E+03	1.36E+09		
		No	No		_	_		_		_		1	0.1	1		4.91E-06	1.56E+02	2.85E+02		1.36E+09		
		No	No		_	_		4.00E-02	IR	_		1	0.1	1	_	1.28E-07	1.39E+01				2.53E+02	nc
•		No	No		_	_		7.00E-01	PP	_		1		1	_			-			5.48E+03	nc
	-	No	No		_	_				_		1		1	_		_	_		1.36E+09		
	78-83-1	No	Yes		_	_		3.00E-01	IR			1		1	2.81E+04	4.00E-04	8.50E+04	2.92E+00	1.00E+04		2.35E+03	nc
	465-73-6	No	Yes		_	_		0.00L-01				1		1	1.68E+06	1.80E-03	1.70E-02			1.36E+09		110
	.00 / 0 0		1.00			_		_		_		•	-	•	1.502.00	1.502 00	02-02	J.202 107	_	1.002.00		

				Ingestion		Inhalation Unit		Chronic	Chronic		Chronic				Volatilization	Henry's Law	_		Soil Saturation	Particulate Emission	Screening	
Chemical	CAS Number	Mutagan2	VOC	SF (mg/kg-day) ⁻¹	SFO Ref	Risk (ug/m³) ⁻¹	IUR Ref	RfD	RfD Ref	RfC (mg/m³)	RfC Ref	GIABS	ABS	RBA	Factor (m³/kg)	Constant (unitless)	S (mg/L)	K _{oc} (cm3/g)	Concentration (mg/kg)	Factor (m³/kg)	Level (mg/kg)	[basis]
Isophorone	78-59-1	No	No	9.50E-04	Kei	(ug/iii)	. Kei	(mg/kg-day) 2.00E-01	IR	2.00E+00	CA	1	0.1	1	(III /kg)	2.71E-04	(mg/L) 1.20E+04	6.52E+01	(Hig/kg)	1.36E+09	5.71E+02	ca**
Isopropalin	33820-53-0	No	Yes	0.00L 04	<u>'</u>			1.50E-02	IR	2.002.00		1		1	4.20E+05	4.54E-03	1.10E-01	1.14E+04	_	1.36E+09	1.17E+02	nc
Isopropanol	67-63-0	No	Yes					2.00E+00	PP	2.00E-01	PP	1		1	2.77E+04	3.31E-04	1.00E+06	1.53E+00	1.09E+05	1.36E+09	5.57E+02	nc
Isopropyl Methyl Phosphonic Acid	1832-54-8	No	No			_		1.00E-01	IR	2.002 01	- ' '	1	0.1	1	2.772.04	2.81E-07	5.04E+04	7.71E+00	1.002.00	1.36E+09	6.32E+02	nc
Isopropyltoluene, p-	99-87-6	No	Yes					1.002 01	11.	_		1		1	8.53E+03	4.50E-01	2.34E+01	1.12E+03	1.62E+02	1.36E+09	0.022 - 02	110
Isosafrole	120-58-1	No	Yes					_		_		1		1	2.48E+03	1.47E+00	1.44E+02	2.07E+02	2.34E+02	1.36E+09		
Isoxaben	82558-50-7	No	No					5.00E-02	IR	_		1	0.1	1	2.402.00	5.19E-08	1.42E+00	1.26E+03	2.042.02	1.36E+09	3.16E+02	nc
JP-4	50815-00-4	No	Yes					0.002 02	11 \	_		1	0.1	1	_	4.09E+02	5.70E+01	1.202.00	_	1.36E+09	0.102.02	110
JP-5	NA	No	Yes					_		_		1		1	_	2.41E-03	5.00E+00	1.25E+00	5.40E-01	1.36E+09		
JP-7	NA	No	Yes					_		3.00E-01	U	1		1	_	4.09E-01	1.04E+01	1.202.00	0.402 01	1.36E+09	4.25E+07	cm
JP-8	NA	No	Yes					_		0.002 01					_	2.41E-03	1.24E+01	1.25E+00	1.34E+00	1.36E+09	4.202.07	OIII
Kerosene	8008-20-6	No	Yes					_		_		1		1		4.09E-01	1.04E+01	1.252.100	1.042.00	1.36E+09		
Lactofen	77501-63-4	No	No					8.00E-03	U	_		1	0.1	1	-	1.93E-05	1.04E+01	2.30E+04		1.36E+09	5.06E+01	nc
Lactoritrile	78-97-7	No	No					0.00L-00		_		1	0.1	1		4.01E-04	4.66E+05	1.00E+00		1.36E+09	0.001	
Lanthanum	7439-91-0	No	No					_		-		1	U. I	. 1		7.01L-0 4	T.00L 100	1.002100	_	1.36E+09		
Lead Alkyls	NA	No	No	-				_		-		1	0.1	1	-	-	_	_	-	1.36E+09		
Lead Chromate	7758-97-6	Yes	No	5.00E-01	U	1.50E-01	U	2.00E-02	U	2.00E-04	U	0.025	0.1	. 1	-		1.70E-01	-	_	1.36E+09	2.96E-01	ca
Lead Phosphate	7446-27-7	No	No	8.50E-03	U	1.20E-05	U	2.00E-02	U	2.00L-04		1		1	-	-	0.00E+00	-	-	1.36E+09	8.18E+01	
Lead acetate	301-04-2	No	No	8.50E-03	U	1.20E-05	U	_		-		1	0.1	1	-	-	1.60E+03	1.00E+00	-	1.36E+09	6.38E+01	ca
Lead and Compounds	7439-92-1	No	No	0.30E-03	U	1.202-03	-	-		-		1	0.1	1	-	-	1.00E+03	1.002+00	-	1.36E+09	0.30⊑+01	Ca
Lead subacetate	1335-32-6	No		8.50E-03	U	1.20E-05	· U	-		-		1	0.1	1	-	-	6.25E+04	1.04E+01	-	1.36E+09	6.38E+01	
Lewisite	541-25-3	No	No Yes	0.50E-05	0	1.20E-03	- 0	5.00E-06	U	-		1	0.1	. 1	2.56E+04	8.91E-03	5.00E+02	1.04E+01 1.11E+02	3.84E+02	1.36E+09	3.91E-02	ca
	330-55-2	No	No			-	-	7.70E-03	U	-		1	0.1	1	2.300-04	2.56E-07	7.50E+01	3.40E+02	3.04⊏+02	1.36E+09	4.87E+01	nc
Linuron Lithium	7439-93-2	No	No			-	•	2.00E-03	U	-		1	0.1	. 1	-	2.30E-07	7.50E+01	3.40E+02	-	1.36E+09 1.36E+09	1.56E+01	nc
Lithium Perchlorate	7791-03-9	No				•	-	7.00E-04	U	-		1	-	1	-	-	5.87E+05	-	-	1.36E+09	5.48E+00	nc
	7439-94-3	No	No			-		7.00E-04	U	-		1	-		-	-	3.07 E+03	-	-	1.36E+09	5.46⊑+00	nc
Lutetium MCPA	94-74-6	_	No			-	•	5.00E-04		-		1		1	-	5.44E-08	6.30E+02	2.96E+01	-	1.36E+09 1.36E+09	2.465.00	
MCPB	94-74-6	No	No			-	•	4.40E-03	U	-		1	0.1	1	-	1.11E-07	4.80E+01	9.84E+01	-	1.36E+09 1.36E+09	3.16E+00 2.78E+01	nc
MCPP	93-65-2	No No	No No			•	-	1.00E-03	U	-		1	0.1	1	-	7.44E-07	6.20E+01	4.85E+01	-	1.36E+09	6.32E+00	nc
	7439-95-4	_				-	-	1.00E-03	U	-		1	0.1	. 1	-	7.44⊑-07	0.20E+02	4.03E+01	-	1.36E+09	0.32⊑+00	nc
Magnesium Malathion	121-75-5	No	No			-	-	2.00E-02	U	-		1	0.1	1	-	2.00E-07	1.43E+02	3.13E+01	-	1.36E+09	1.26E+02	no.
		No	No			•	-			7.00E-04	- 11	-		1	-			1.00E+00	-			nc
Maleic Anhydride Maleic Hydrazide	108-31-6 123-33-1	No No	No No			-	-	1.00E-01 5.00E-01	U	7.00⊑-04	U	1	0.1	1	-	1.61E-04 1.08E-09	1.63E+05 4.51E+03	3.30E+00	-	1.36E+09 1.36E+09	6.28E+02 3.16E+03	nc
Malononitrile	109-77-3	No				-	-	1.00E-01	U	-		1	0.1	1	-	5.36E-06	4.51E+03 1.33E+05	3.30E+00 3.33E+00	-	1.36E+09 1.36E+09	6.32E-01	nc
Mancozeb	8018-01-7	No	No No			-		3.00E-02	U	-		1	0.1	1	-	6.21E-10	6.20E+00	6.08E+02	-	1.36E+09 1.36E+09	1.90E+02	nc nc
Maneb	12427-38-2							5.00E-02 5.00E-03	U	-		1	0.1	1	-	1.99E-07	6.00E+00	6.08E+02	-	1.36E+09	3.16E+01	
Manganese (Non-diet)	7439-96-5	No	No No			-		2.40E-02	U	5.00E-05	U	0.04	0.1	1 1	-	1.33⊏-07	0.00E+00	0.00⊑+02	-	1.36E+09 1.36E+09	1.83E+02	nc
Mechlorethamine	7439-96-5 51-75-2							2.4UE-UZ	U	3.00⊑-05	U	1	0.1	1 1	-	1.19E-04	1.20E+04	8.85E+01	-	1.36E+09 1.36E+09	1.03E+02	nc
Mephosfolan	950-10-7	No No	No No			-		9.00E-05	U	-		1	0.1	1	-	4.87E-09	5.70E+04	6.36E+01	-	1.36E+09 1.36E+09	5.69E-01	ne
Mepiquat Chloride	24307-26-4	No	No	-		-		9.00E-05 3.00E-02	U	-		1	0.1	1	-	4.67E-09 1.76E-10	5.70E+01 5.00E+05	6.62E+01	-	1.36E+09 1.36E+09	1.90E+02	nc
Mercaptobenzothiazole, 2-	149-30-4		No	1.10E-02	U	-		4.00E-02	U	-		1	0.1	1	-	1.76E-10 1.48E-06	1.20E+02	1.36E+03	-	1.36E+09 1.36E+09	2.53E+01	nc
Mercuric Chloride	7487-94-7	No		1.10E-02	U			3.00E-04	U	3.00E-04	U	0.07		1 1	-	1.40⊏-00	6.90E+04	1.300=103	-	1.36E+09 1.36E+09	2.35E+01 2.35E+00	nc
Mercury (elemental)	7439-97-6	No	No					3.00E-04	U	3.00E-04 3.00E-04	U			1 1	3.47E+04	3.52E-01	6.90E+04 6.00E-02	_	3.13E+00	1.36E+09 1.36E+09	1.09E+00	nc
,		No	Yes			-	-	3 005 05	11	3.00⊑-04	U	1			3.47E+04 1.94E+06		3.50E-03	4.90E+04	3.13⊑+00			nc
Merphos Oxide	150-50-5 78-48-8	No	Yes	-		-	-	3.00E-05 1.00E-04	U	-		1	0.1	1	1.94⊑+06	9.28E-04 1.20E-05	3.50E-03 2.30E+00	4.90E+04 2.35E+03	-	1.36E+09 1.36E+09	2.35E-01 6.32E-01	nc
		No	No			-				-		-		1	-				-			nc
Methacyl Mathematical	57837-19-1	No	No			-	-	6.00E-02	U	2 005 02	11	1	0.1	1	6 905 +02	1.21E-07	8.40E+03	3.86E+01	4.500.03	1.36E+09	3.79E+02	nc
Methacrylonitrile	126-98-7	No	Yes	-		-		1.00E-04	U	3.00E-02	U	1	-	1	6.80E+03	1.01E-02	2.54E+04	1.31E+01	4.59E+03	1.36E+09	7.54E-01	nc

				Ingestion		Inhalation Unit		Chronic	Chronic	Chronic	Chronic				Volatilization	Henry's Law			Soil Saturation	Particulate Emission	Screening	
Observiced	040 Normalis and	M 4	voc	SF	SFO	Risk	IUR	RfD	RfD	RfC	RfC	OLADO	400		Factor	Constant	S (K _{oc}	Concentration	Factor	Level	
Chemical	10265-92-6			(mg/kg-day) ⁻¹	Ref	(ug/m ³) ⁻¹	Ref	, , ,	Ref U	(mg/m³)	Ref	GIABS	ABS 0.1	RBA	(m³/kg)	(unitless) 3.55E-08	(mg/L) 1.00E+06	(cm3/g) 5.41E+00	(mg/kg)	(m³/kg) 1.36E+09	(mg/kg)	[basis]
Methamidophos Methanol		No	No	-			-	5.00E-05 2.00E+00	U	2.00E+01	U	1	0.1	1	2.91E+04	3.55E-06 1.86E-04	1.00E+06	1.00E+00	1.06E+05	1.36E+09 1.36E+09	3.16E-01	nc
	67-56-1	No No	Yes	-			-	2.00E+00	U	2.00=+01	U	1	- 0.1	-	2.91E+04				1.00=+05	1.36E+09 1.36E+09	1.24E+04	nc
	91-80-5		No	-			-	4.505.00	- 11	-			0.1	1	-	1.32E-10	6.01E+02	1.86E+03	-		0.405.00	
Methidathion	950-37-8	No	No	-			-	1.50E-03	U	-		1	0.1	1	-	2.93E-07	1.87E+02	2.12E+01	-	1.36E+09	9.48E+00	nc
Methomyl	16752-77-5	No	No	4.005.00		4 405 05	-	2.50E-02	U	-		1	0.1	1	-	8.05E-10	5.80E+04	1.00E+01	-	1.36E+09	1.58E+02	nc
Methoxy-5-nitroaniline, 2-	99-59-2	No	No	4.90E-02	U	1.40E-05	U	-		-		1	0.1	1	-	5.11E-07	1.15E+02	7.13E+01	-	1.36E+09	1.11E+01	ca
Methoxychlor	72-43-5	No	No	-			-	5.00E-03	U	4 005 00		1	0.1	1	1.045.05	8.30E-06	1.00E-01	2.69E+04	4.455.05	1.36E+09	3.16E+01	nc
Methoxyethanol Acetate, 2-	110-49-6	No	Yes	-			-	8.00E-03	U	1.00E-03	U	1	-	1	1.24E+05	1.27E-05	1.00E+06	2.49E+00	1.15E+05	1.36E+09	1.07E+01	nc
Methoxyethanol, 2-	109-86-4	No	Yes	-			-	5.00E-03	U	2.00E-02	U	1		1	1.01E+05	1.35E-05	1.00E+06	1.00E+00	1.06E+05	1.36E+09	3.30E+01	nc
Methyl Acetate	79-20-9	No	Yes	-			-	1.00E+00	U	-		1		1	8.12E+03	4.70E-03	2.43E+05	3.06E+00	2.90E+04	1.36E+09	7.82E+03	nc
Methyl Acrylate	96-33-3	No	Yes	-			-	-		2.00E-02	U	1	-	1	6.97E+03	8.14E-03	4.94E+04	5.84E+00	6.75E+03	1.36E+09	1.45E+01	nc
Methyl Ethyl Ketone (2-Butanone)	78-93-3	No	Yes	-			-	6.00E-01	U	5.00E+00	U	1	-	1	1.22E+04	2.33E-03	2.23E+05	4.51E+00	2.84E+04	1.36E+09	2.70E+03	nc
Methyl Hydrazine	60-34-4	No	Yes	-		1.00E-03	U	1.00E-03	U	2.00E-05	U	1	-	1	5.04E+04	1.24E-04	1.00E+06	1.33E+01	1.80E+05	1.36E+09	1.04E-01	nc
Methyl Isobutyl Ketone (4-methyl-2-pentanone)	108-10-1	No	Yes	_			-	_		3.00E+00	U	1	-	1	1.06E+04	5.64E-03	1.90E+04	1.26E+01	3.36E+03	1.36E+09	3.31E+03	nc
Methyl Isocyanate	624-83-9	No	Yes	-			-	-		1.00E-03	U	1	-	1	4.40E+03	3.79E-02	2.92E+04	3.96E+01	1.01E+04	1.36E+09	4.59E-01	nc
Methyl Mercaptan	74-93-1	No	Yes	-			-	_		_		1		1	1.78E+03	1.28E-01	1.54E+04	1.32E+01	3.13E+03	1.36E+09		
Methyl Mercury	22967-92-6	No	No	_			-	1.00E-04	U	_		1	-	1	-	-	-	-	-	1.36E+09	7.82E-01	nc
Methyl Methacrylate	80-62-6	No	Yes	-			_	1.40E+00	U	7.00E-01	U	1		1	6.34E+03	1.30E-02	1.50E+04	9.14E+00	2.36E+03	1.36E+09	4.44E+02	nc
Methyl Parathion	298-00-0	No	No	_			_	2.50E-04	U	-		1	0.1	1	-	4.09E-06	3.77E+01	7.29E+02		1.36E+09	1.58E+00	nc
Methyl Phosphonic Acid	993-13-5	No	No	_			_	6.00E-02	U	_		1	0.1	1	_	4.99E-10	2.00E+04	1.41E+00	_	1.36E+09	3.79E+02	nc
Methyl Styrene (Mixed Isomers)	25013-15-4	No	Yes				_	6.00E-03	U	4.00E-02	U	1	0.1	1	2.43E+04	1.07E-01	8.90E+01	7.16E+02	3.93E+02	1.36E+09	3.21E+01	nc
Methyl dicyclohexylamine, n-	7560-83-0	No	Yes	_			_	0.002 00		4.00L 0Z		1	_	1	4.74E+04	4.95E-03	3.19E+02	1.77E+02	0.002.02	1.36E+09	0.212.01	110
Methyl methanesulfonate	66-27-3	No	No	9.90E-02	U	2.80E-05	Ш	_				1	0.1	1	4.742.04	1.65E-04	2.00E+05	4.33E+00	_	1.36E+09	5.48E+00	ca
Methyl tert-Butyl Ether (MTBE)	1634-04-4	No	Yes	1.80E-03	U	2.60E-07	11	_		3.00E+00	U	1	0.1	1	4.90E+03	2.40E-02	5.10E+04	1.16E+01	8.88E+03	1.36E+09	4.66E+01	ca*
Methyl-1,4-benzenediamine dihydrochloride, 2-	615-45-2	No	No	1.002-03		2.00L-07		3.00E-04	U	3.00L100		1	0.1	1	4.50L105	2.61E-16	1.00E+06	2.02E+02	0.002103	1.36E+09	1.90E+00	nc
Methyl-2-Pentanol, 4-	108-11-2	No	Yes					3.00L-04	0			1	0.1	1	1.72E+04	1.82E-03	1.64E+04	8.16E+00	2.45E+03	1.36E+09	1.30L 100	110
Methyl-5-Nitroaniline, 2-	99-55-8	No	No	9.00E-03	U		-	2.00E-02	U	_		1	0.1	1	1.721.104	3.39E-07	1.04E+04	1.79E+02	2.43L103	1.36E+09	6.03E+01	ca**
Methyl-N-nitro-N-nitrosoguanidine, N-	70-25-7	No	No	8.30E+00	U	2.40E-03	·	2.00E-02	U	-		1	0.1	1	-	4.99E-11	2.67E+05	7.20E+01	-	1.36E+09	6.54E-02	
	636-21-5	No	No	1.30E-01	U	3.70E-05	U	_		-		1	0.1	1	-	8.59E-05	8.29E+03	1.15E+02	-	1.36E+09	4.17E+00	ca
Methylarapsia said				1.30⊑-01	U	3.70⊑-03	U	1 005 00	11	-				1	-	6.59E-05	2.56E+05		-	1.36E+09		ca
Methylarsonic acid	124-58-3	No	No	-			-	1.00E-02	U	-		1	0.1	-	2 205 - 04	4.005.04		4.39E+01	1 075 105		6.32E+01	nc
Methylaziridine, 2-	75-55-8	No	Yes	-			-	-		-		1	-	1	3.20E+04	4.09E-04	1.00E+06	1.45E+01	1.87E+05	1.36E+09		
Methylbenzene,1-4-diamine monohydrochloride, 2-	74612-12-7	No	No	_			-	2.00E-04	U	_		1	0.1	1	-	-	_	_	_	1.36E+09	1.26E+00	nc
Methylbenzene-1,4-diamine sulfate, 2-	615-50-9	No	No	1.00E-01	U		-	3.00E-04	U	-		1	0.1	1	-	-	-	-	-	1.36E+09	1.90E+00	nc
Methylcholanthrene, 3-	56-49-5	Yes	No	2.20E+01	U	6.30E-03	U	-		-		1	0.1	1	-	2.14E-04	2.90E-03	9.62E+05	-	1.36E+09	5.54E-03	ca
Methylcyclohexane	108-87-2	No	Yes	-			-	-		-		1	-	1	9.90E+02	1.76E+01	1.40E+01	2.34E+02	6.77E+01	1.36E+09		
Methylcyclohexylamine, n-	100-60-7	No	Yes	-			-	-		-		1	-	1	3.18E+04	1.23E-03	1.75E+04	3.76E+01	5.70E+03	1.36E+09		
Methylcyclopentane	96-37-7	No	Yes	-			-	-		-		1	-	1	8.86E+02	1.48E+01	4.20E+01	1.28E+02	1.54E+02	1.36E+09		
Methylene Chloride	75-09-2	Yes	Yes	2.00E-03	U	1.00E-08	U	6.00E-03	U	6.00E-01	U	1	-	1	2.19E+03	1.33E-01	1.30E+04	2.17E+01	3.32E+03	1.36E+09	3.50E+01	nc
Methylene-bis(2-chloroaniline), 4,4'-	101-14-4	Yes	No	1.00E-01	U	4.30E-04	U	2.00E-03	U	-		1	0.1	1	-	1.66E-09	1.39E+01	5.70E+03	-	1.36E+09	1.22E+00	ca*
Methylene-bis(N,N-dimethyl) Aniline, 4,4'-	101-61-1	No	No	4.60E-02	U	1.30E-05	U	-		-		1	0.1	1	-	4.37E-08	4.14E+00	2.67E+03	_	1.36E+09	1.18E+01	ca
Methylenebisbenzenamine, 4,4'-	101-77-9	No	No	1.60E+00	U	4.60E-04	U	-		2.00E-02	U	1	0.1	1	-	2.17E-09	1.00E+03	2.13E+03	_	1.36E+09	3.39E-01	ca
Methylenediphenyl Diisocyanate	101-68-8	No	No	-			-	-		6.00E-04	U	1	0.1	1	-	3.66E-05	8.29E-01	2.85E+05	_	1.36E+09	8.51E+04	nc
	556-61-6	No	Yes	-			-	-		-		1		1	1.48E+04	1.83E-03	7.60E+03	1.07E+01	-	1.36E+09		
Methylnaphthalene	1321-94-4	No	Yes	-			-	-		-		1	-	1	5.86E+04	2.10E-02	2.50E+01	2.53E+03	-	1.36E+09		
Methylnaphthalene, 1-	90-12-0	No	Yes	2.90E-02	U		-	7.00E-02	U	-		1	0.13	1	5.86E+04	2.10E-02	2.58E+01	2.53E+03	3.94E+02	1.36E+09	1.76E+01	ca*
	1						1	I.	1								I.					

				Ingestion		Inhalation Unit		Chronic	Chronic		Chronic				Volatilization	Henry's Law			Soil Saturation	Particulate Emission	Screening	
Chemical	CAS Number	Mutagan?	VOC	SF (mg/kg dov) ⁻¹	SFO Ref	Risk (ug/m³) ⁻¹	IUR	_	RfD	RfC	RfC Ref	GIABS	ABS	RBA	Factor (m³/kg)	Constant	S (ma/l.)	K _{oc}	Concentration	Factor (m³/kg)	Level	[boois]
Methylnaphthalene, 2-	91-57-6	Mutagen?	Yes	(mg/kg-day) ⁻¹	Kei	(ug/III)	Ref	f (mg/kg-day) 4.00E-03	Ref U	(mg/m³)	Kei	1	0.13	1	5.80E+04	(unitless) 2.12E-02	(mg/L) 2.46E+01	(cm3/g) 2.48E+03	(mg/kg)	1.36E+09	(mg/kg) 2.39E+01	[basis]
Methylstyrene, Alpha-	98-83-9	No	Yes	_			-	7.00E-02	U	-		1	0.13	. 1	1.28E+04	1.04E-01	1.16E+02	6.98E+02	5.00E+02	1.36E+09	5.48E+02	CS
Methyltriethyl Lead	1762-28-3	No	Yes	-			-	7.00E-02	U	-		1		. 1	1.63E+03	2.54E+01	1.10E+02 1.92E+00	3.31E+02	1.32E+01	1.36E+09	J.40E+02	US
Metolachlor	51218-45-2	No	No	_			-	1.50E-01	U	-		1	0.1	1	1.03E+03	3.68E-07	5.30E+02	4.89E+02	1.326+01	1.36E+09	9.48E+02	nc
Metribuzin	21087-64-9	No	No	_			-	2.50E-02	U	-		1	0.1	1	-	4.78E-09	1.05E+03	5.31E+01	-	1.36E+09	1.58E+02	
Metsulfuron-methyl	74223-64-6	No	No	-			-	2.50E-02 2.50E-01	U	-		1	0.1	1	-	5.40E-09	9.50E+03	9.25E+01	-	1.36E+09	1.58E+03	nc nc
Mineral oils	8012-95-1	No	Yes	_			-	3.00E+00	U	-		1	0.1	. 1	1.38E+03	3.40E-13	3.70E-03	4.82E+03	3.41E-01	1.36E+09	2.35E+04	
Mirex	2385-85-5	No	Yes	1.80E+01	U	5.10E-03	-	2.00E-04	U	-		1		. 1	8.57E+05	3.34E+02 3.32E-02	8.50E-03	3.57E+05	3.41⊑-01	1.36E+09	3.57E-02	CS
-		_		1.000-01	0	5.10⊑-03	- 0			-		1	- 0.1		0.57 = +05				-			ca*
Molinate	2212-67-1 7439-98-7	No No	No No	-			-	2.00E-03	U	-		1	0.1	1	-	1.68E-04	9.70E+02	1.82E+02	-	1.36E+09 1.36E+09	1.26E+01	nc
Molybdenum	13530-50-2			-			-	5.00E-03	U	-		-		1	-	-	-	-	-	1.36E+09 1.36E+09	3.91E+01 3.80E+05	nc
Monoaluminum phosphate		No	No	<u>-</u>			-	4.86E+01	U	-		1	<u>-</u>	1	-	-	-	-	-			cm
Monoammonium phosphate	7722-76-1	No	No	-			-	4.86E+01	U	-		1	0.1	1	-	-	-	-	-	1.36E+09	3.80E+05	cm
Monobutyltin Compounds	NA 7750 00 0	No	No	-			-	4.065.04	- 11	-		1	0.1	1	-	-	-	-	-	1.36E+09	2.005.05	
Monocalcium phosphate	7758-23-8	No	No	-			-	4.86E+01	U	-		1	-	1	-	-	-	-	-	1.36E+09	3.80E+05	cm
Monochloramine	10599-90-3	No	No	-			-	1.00E-01	U	-		1		. 1	-	-	-	-	-	1.36E+09	7.82E+02	nc
Monochlorobutanes	25154-42-1	No	No	-			-	-		-		1	0.1	1	-	-	-	-	-	1.36E+09		
Monochlorophenols (total)	NA	No	No	-			-	-		-		1	0.1	1	-	-	-	-	-	1.36E+09		
Monocyclic aromatic hydrocarbons (total)	NA	No	No	-			-	-		-		1	0.1	1	-	-	-	-	-	1.36E+09		
Monomagnesium phosphate	7757-86-0	No	No	-			-	4.86E+01	U	-		1	-	. 1	-	-	-	-	-	1.36E+09	3.80E+05	cm
Monomethylaniline	100-61-8	No	No	-			-	2.00E-03	U	-		1	0.1	1	-	3.63E-04	5.62E+03	8.21E+01	-	1.36E+09	1.26E+01	nc
Monopotassium phosphate	7778-77-0	No	No	-			-	4.86E+01	U	-		1	-	. 1	-	-	-	-	-	1.36E+09	3.80E+05	cm
Monosodium phosphate	7558-80-7	No	No	-			-	4.86E+01	U	-		1	-	. 1	-	-	4.87E+05	-	-	1.36E+09	3.80E+05	cm
Myclobutanil	88671-89-0	No	No	-			-	2.50E-02	U	-		1	0.1	1	-	1.75E-07	1.42E+02	6.08E+03	-	1.36E+09	1.58E+02	nc
N,N'-Diphenyl-1,4-benzenediamine	74-31-7	No	No	-			-	3.00E-04	U	-		1	0.1	1	-	8.38E-09	7.35E+00	5.19E+04	-	1.36E+09	1.90E+00	nc
N-Methyl dithiocarbamate	137-42-8	No	No	-			-	-		-		1	0.1	1	-	-	7.22E+05	5.87E+01	-	1.36E+09		
Naled	300-76-5	No	Yes	-			-	2.00E-03	U	-		1		. 1	5.70E+04	2.66E-03	1.50E+00	1.27E+02	-	1.36E+09	1.56E+01	nc
Naphtha, High Flash Aromatic (HFAN)	64742-95-6	No	Yes	-			-	3.00E-02	U	1.00E-01	U	1	-	. 1	-	1.80E-02	3.10E+01	-	-	1.36E+09	2.35E+02	nc
Naphthalene	91-20-3	No	Yes	-		3.40E-05	U	2.00E-02	U	3.00E-03	U	1	0.13	1	4.63E+04	1.80E-02	3.10E+01	1.54E+03	-	1.36E+09	3.82E+00	ca**
Naphthol, 2-	135-19-3	No	No	-			-	-		-		1	0.1	1	-	1.12E-06	7.55E+02	1.98E+03	-	1.36E+09		
Naphthoquinone, 1,4-	130-15-4	No	No	-			-	-		-		1	0.1	1	-	8.05E-08	6.68E+02	4.54E+02	-	1.36E+09		
Naphthylamine, 1-	134-32-7	No	No	-			-	-		-		1	0.1	1	-	4.54E-06	1.70E+03	2.53E+03	-	1.36E+09		
Naphthylamine, 2-	91-59-8	No	No	1.80E+00	U	0.00E+00	U	-		-		1	0.1	1	-	3.31E-06	1.89E+02	2.48E+03	-	1.36E+09	3.01E-01	ca
Napropamide	15299-99-7	No	No	-			-	1.20E-01	U	-		1	0.1	1	-	3.44E-08	7.30E+01	3.22E+03	-	1.36E+09	7.59E+02	nc
Neodymium Chloride (Stable, Nonradioactive)	10024-93-8	No	No	-			-	-		-		1	-	1	-	-	1.00E+06	-	-	1.36E+09		
Niagara Blue 4B	2429-74-5	No	No	-			-	-		-		1	0.1	1	-	3.50E-42	5.89E-03	2.82E+08	-	1.36E+09		
Nickel Acetate	373-02-4	No	No	-		2.60E-04	U	1.10E-02	U	1.40E-05	U	1	0.1	1	-	-	1.66E+05	1.00E+00	-	1.36E+09	6.72E+01	nc
Nickel Carbonate	3333-67-3	No	No	-		2.60E-04	U	1.10E-02	U	1.40E-05	U	1	0.1	1	-	-	9.30E+01	-	-	1.36E+09	6.72E+01	nc
Nickel Carbonyl	13463-39-3	No	Yes	-		2.60E-04	U	1.10E-02	U	1.40E-05	U	1	-	. 1	-	2.04E+01	1.80E+02	-	-	1.36E+09	8.25E+01	nc
Nickel Hydroxide	12054-48-7	No	No	-		2.60E-04	U	1.10E-02	U	1.40E-05	U	0.04	-	1	-	-	-	-	-	1.36E+09	8.25E+01	nc
Nickel Oxide	1313-99-1	No	No	-		2.60E-04	U	1.10E-02	U	2.00E-05	U	0.04	-	. 1	-	-	-	-	-	1.36E+09	8.35E+01	nc
Nickel Refinery Dust	NA	No	No	-		2.40E-04	U	1.10E-02	U	1.40E-05	U	0.04	-	. 1	-	-	-	-	-	1.36E+09	8.25E+01	nc
Nickel Soluble Salts	7440-02-0	No	No	-		2.60E-04	U	2.00E-02	U	9.00E-05	U	0.04	-	. 1	-	-	-	-	-	1.36E+09	1.55E+02	nc
Nickel Subsulfide	12035-72-2	No	No	1.70E+00	U	4.80E-04	U	1.10E-02	U	1.40E-05	U	0.04	-	. 1	-	-	-	-	-	1.36E+09	4.09E-01	ca
Nickelocene	1271-28-9	No	No	-		2.60E-04	U	1.10E-02	U	1.40E-05	U	1	0.1	1	-	-	-	-	-	1.36E+09	6.72E+01	nc
Nicotinonitrile	100-54-9	No	No	-			-	-		-		1	0.1	1	-	1.12E-05	1.35E+05	4.72E+01	-	1.36E+09		
Niobium	7440-03-1	No	No	-			-	-		-		1	-	. 1	-	-	-	-	-	1.36E+09		
Nitrate	14797-55-8	No	No	-			-	1.60E+00	U	-		1	-	. 1	-	-	-	-	-	1.36E+09	1.25E+04	nc
	·	·	-				-	·						-	-							

Chemical	CAS Number	Mutagen?	VOC	Ingestion SF (mg/kg-day) ⁻¹	SFO Ref	Inhalation Unit Risk (ug/m³) ⁻¹	IUR Ref	Chronic RfD (mg/kg-day)	Chronic RfD Ref	Chronic RfC (mg/m³)	Chronic RfC Ref	GIABS	ABS	RBA	Volatilization Factor (m³/kg)	Henry's Law Constant (unitless)	S (mg/L)	K _{oc} (cm3/g)	Soil Saturation Concentration (mg/kg)	Particulate Emission Factor (m³/kg)	Screening Level (mg/kg)	[basis]
Nitrate + Nitrite (as N)	NA	No	No	-		(-3)		-	-	-	-	1	-	1	-	-	-	-	-	1.36E+09	(3 3/	
Nitric Acid	7697-37-2	No	Yes	_			-	_		-		1	-	1	-	_	_	_	_	1.36E+09		
Nitric Oxide	10102-43-9	No	Yes	-				-		-		1	-	. 1	-	-	9.49E+04	-	-	1.36E+09		
Nitrite	14797-65-0	No	No	_			-	1.00E-01	U	_		1	-	1	-	_	_	_	_	1.36E+09	7.82E+02	nc
Nitroaniline, 2-	88-74-4	No	No	_				1.00E-02	U	5.00E-05	U	1	0.1	1	-	2.41E-06	1.47E+03	1.11E+02	_	1.36E+09	6.27E+01	nc
Nitroaniline, 3-	99-09-2	No	No	_			-	_		-		1	0.1	1	-	3.23E-07	1.20E+03	1.09E+02	_	1.36E+09		
Nitroaniline, 4-	100-01-6	No	No	2.00E-02	U		-	4.00E-03	U	6.00E-03	U	1	0.1	1	-	5.15E-08	7.28E+02	1.09E+02	_	1.36E+09	2.53E+01	nc
Nitrobenzene	98-95-3	No	Yes	_		4.00E-05	U	2.00E-03	U	9.00E-03	U	1	-	1	7.31E+04	9.81E-04	2.09E+03	2.26E+02	3.04E+03	1.36E+09	5.13E+00	ca**
Nitrobiphenyl, 4-	92-93-3	No	No	_				_		-		1	0.1	1	-	1.45E-04	1.23E+00	7.97E+03	_	1.36E+09		
Nitrocellulose	9004-70-0	No	No	_			-	3.00E+03	U	_		1	0.1	1	-	1.35E-21	1.00E+06	1.00E+01	_	1.36E+09	1.90E+07	cm
Nitrodiphenylamine, 2-	119-75-5	No	No	_			_	_		_		1	0.1	1	-	3.71E-06	2.77E+01	1.31E+03	_	1.36E+09		
Nitrofurantoin	67-20-9	No	No	_			_	7.00E-02	U	_		1	0.1	1	_	5.44E-11	7.95E+01	1.17E+02	_	1.36E+09	4.42E+02	nc
Nitrofurazone	59-87-0	No	No	1.30E+00	U	3.70E-04	U	-		_		1	0.1	1	_	1.27E-11	2.10E+02	3.50E+02	-	1.36E+09	4.17E-01	ca
Nitrogen Dioxide	10102-44-0	No	Yes	-				-		_		1		1	_	-	-	-	-	1.36E+09		
Nitroglycerin	55-63-0	No	No	1.70E-02	U		_	1.00E-04	U	_		1	0.1	1	_	3.54E-06	1.38E+03	1.16E+02	_	1.36E+09	6.32E-01	nc
Nitroguanidine	556-88-7	No	No	02 02			_	1.00E-01	U	_		1	0.1	1	_	1.82E-14	4.40E+03	2.07E+01	_	1.36E+09	6.32E+02	nc
Nitromethane	75-52-5	No	Yes	_		8.80E-06	U	-		5.00E-03	U	1	-	1	1.69E+04	1.17E-03	1.11E+05	1.03E+01	1.80E+04	1.36E+09	5.41E+00	ca**
Nitrophenol. 2-	88-75-5	No	Yes	_		0.002 00	_			-		1		1	1.20E+05	5.23E-04	2.50E+03	2.97E+02		1.36E+09	02 00	
Nitrophenol, 2-amino-4-	99-57-0	No	No	_						_		1	0.1	1	1.202.00	9.12E-11	9.25E+02	1.43E+02	_	1.36E+09		
Nitrophenol, 3-	554-84-7	No	No	_						_		1	0.1	1	_	8.18E-08	1.35E+04	2.91E+02	_	1.36E+09		
Nitrophenol, 4-	100-02-7	No	No	_			_			_		1	0.1	1	_	1.70E-08	1.16E+04	2.91E+02	_	1.36E+09		
Nitrophenol, 4-amino-2-	119-34-6	No	No	_			_			_		1	0.1	1	_	9.12E-11	1.10E+04	1.43E+02	_	1.36E+09		
Nitropropane, 2-	79-46-9	No	Yes	_		2.70E-03	U			2.00E-02	U	1	0.1	1	1.31E+04	4.87E-03	1.70E+04	3.08E+01	4.86E+03	1.36E+09	1.37E-02	ca
Nitropyrene, 4-	57835-92-4	No	No	1.20E+00	U	1.10E-04	U			2.002 02		1	0.13	1	1.012.04	1.00E-06	6.79E-02	8.61E+04	4.002.00	1.36E+09	4.24E-01	ca
Nitroquinoline-1-oxide. 4-	56-57-5	No	No	1.202 - 00		1.102 01				_		1	0.1	1	_	1.11E-12	2.34E+03	4.01E+03	_	1.36E+09	1.212 01	
Nitroso-N-ethylurea, N-	759-73-9	Yes	No	2.70E+01	U	7.70E-03	U			_		1	0.1	1	_	5.40E-09	1.30E+04	2.10E+01	_	1.36E+09	4.51E-03	ca
Nitroso-N-methylurea, N-	684-93-5	Yes	No	1.20E+02	U	3.40E-02	U			_		1	0.1	1	_	4.05E-09	1.44E+04	1.10E+01	_	1.36E+09	1.02E-03	ca
Nitroso-di-N-butylamine, N-	924-16-3	No	Yes	5.40E+00	U	1.60E-03	U			_		1	-	1	2.43E+05	5.40E-04	1.27E+03	9.15E+02	_	1.36E+09	9.89E-02	ca
Nitroso-di-N-propylamine, N-	621-64-7	No	No	7.00E+00	U	2.00E-03	U			_		1	0.1	1	2.102.00	2.20E-04	1.30E+04	2.75E+02	_	1.36E+09	7.75E-02	ca
Nitrosodiethanolamine, N-	1116-54-7	No	No	2.80E+00	U	8.00E-04	U			_		1	0.1	1	_	1.98E-10	1.00E+06	1.00E+00	_	1.36E+09	1.94E-01	ca
Nitrosodiethylamine, N-	55-18-5	Yes	No	1.50E+02	U	4.30E-02	II			_		1	0.1	1	_	1.48E-04	1.06E+05	8.29E+01	_	1.36E+09	8.12E-04	ca
Nitrosodimethylamine, N-	62-75-9	Yes	Yes	5.10E+01	U	1.40E-02	II	8.00E-06	U	4.00E-05	U	1	0.1	. 1	8.23E+04	7.44E-05	1.00E+06	2.28E+01	2.37E+05	1.36E+09	2.00E-03	ca*
Nitrosodiphenylamine, N-	86-30-6	No	No	4.90E-03	Ш	2.60E-06	II	0.002 00		4.002 00		1	0.1	1	0.202.04	4.95E-05	3.50E+01	2.63E+03	2.072.00	1.36E+09	1.11E+02	ca
Nitrosomethylethylamine, N-	10595-95-6	No	Yes	2.20E+01	U	6.30E-03	II	_		_		1	-	1	1.21E+05	5.89E-05	3.00E+05	4.35E+01	1.08E+05	1.36E+09	1.99E-02	ca
Nitrosomethylvinylamine, N-	4549-40-0	No	Yes	2.202.01		0.002 00				_		1		1	8.09E+04	1.47E-04	3.00E+04	4.35E+01	1.08E+04	1.36E+09	1.002 02	
Nitrosomorpholine [N-]	59-89-2	No	No	6.70E+00	U	1.90E-03	U			_		1	0.1	1	-	1.00E-06	1.00E+06	2.25E+01			8.10E-02	ca
Nitrosopiperidine [N-]	100-75-4	No	No	9.40E+00	U	2.70E-03	U			_		1	0.1	1		3.45E-05	7.65E+04	1.68E+02	_		5.77E-02	ca
Nitrosopyrolidine, N-	930-55-2	No	No	2.10E+00	U	6.10E-04	U	_		_		1	0.1	1		2.00E-06	1.00E+06	9.19E+01	_	1.36E+09	2.58E-01	ca
Nitrotoluene, 4-Amino-2-	119-32-4	No	No			JJE 01				_		1	0.1	1	_	3.39E-07	1.40E+03	1.79E+02	_	1.36E+09		
Nitrotoluene, m-	99-08-1	No	No	_				1.00E-04	U	_		1	0.1	1	_	3.80E-04	5.00E+02	3.63E+02	_	1.36E+09	6.32E-01	nc
Nitrotoluene, o-	88-72-2	No	Yes	2.20E-01	U		+ +	9.00E-04	U	_		1	-	1	1.37E+05	5.11E-04	6.50E+02	3.71E+02	1.51E+03	1.36E+09	3.16E+00	ca**
Nitrotoluene, p-	99-99-0	No	No	1.60E-02	U		+ +	4.00E-03	U	_		1	0.1	1		2.30E-04	4.42E+02	3.63E+02	-	1.36E+09	2.53E+01	nc
Nonachlor, trans-	39765-80-5	No	Yes				+ +	-		_		1		1	2.71E+06	1.01E-03	1.04E-02	1.13E+05	_	1.36E+09		
Nonane, n-	111-84-2	No	Yes	_				3.00E-04	U	2.00E-02	U	1		1	1.04E+03	1.39E+02	2.20E-01	7.96E+02	6.86E+00	1.36E+09	1.13E+00	nc
Nonanol, n-	143-08-8	No	Yes	_			_	-				1		1	4.65E+04	1.26E-03	1.40E+02	6.98E+01	7.27E+01	1.36E+09		
Norflurazon	27314-13-2	No	No	_			_	1.50E-02	U	_		1	0.1	1		1.40E-08	3.37E+01	3.12E+03	-	4.005.00	9.48E+01	nc
OCDD	3268-87-9	No	No	3.90E+01	U	1.14E-02	U	2.33E-06	U	1.33E-04	U	1	0.03	1	_	2.76E-04	2.29E-07	1.94E+06	_	1.36E+09	1.64E-02	ca**
	3200 01 0		1.15	0.002.01				2.002 00	3				0.00			2.702 04	2.202 07	1.012.00	_	1.002.00		

				Ingestion		Inhalation Unit		Chronic	Chronic	Chronic	Chronic				Volatilization	Henry's Law			Soil Saturation	Particulate Emission	Screening	
			voc	SF	SFO	Risk	IUR		RfD	RfC	RfC				Factor	Constant	S	K _{oc}	Concentration	Factor	Level	
Chemical	CAS Number	Mutagen?	?	(mg/kg-day) ⁻¹	Ref	(ug/m³) ⁻¹	Ref		Ref	(mg/m³)	Ref	GIABS	ABS	RBA	(m³/kg)	(unitless)	(mg/L)	(cm3/g)	(mg/kg)	(m³/kg)	(mg/kg)	[basis]
OCDF	39001-02-0	No	No	3.90E+01	U	1.14E-02	U	2.33E-06	U	1.33E-04	U	1	0.03	1	-	7.73E-05	4.09E-07	1.09E+06	-	1.36E+09	1.64E-02	ca**
Octabromodiphenyl Ether	32536-52-0	No	No	-			-	3.00E-03	U	-		1	0.1	1	-	3.06E-06	1.11E-08	9.90E+04	-	1.36E+09	1.90E+01	nc
Octachlorostyrene	29082-74-4	No	Yes	-			-	-		-		1	-	1	6.09E+05	9.40E-03	1.74E-03	5.51E+04	-	1.36E+09		
Octadecanoic Acid	57-11-4	No	No	-			-	-		-		1	0.1	1	-	1.95E-05	5.97E-01	1.17E+04	-	1.36E+09		
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine	0004 44 0	NI-	N.					E 00E 00				_	0.000			2.545.00	E 00E : 00	E 20E : 00		4.205.00	2.005.02	
(HMX)	2691-41-0	No	No	<u>-</u>			-	5.00E-02	U	-		1	0.006	1	-	3.54E-08 2.40E-05	5.00E+00	5.32E+02 3.95E+05	-	1.36E+09 1.36E+09	3.86E+02	nc
Octahydrotrimethylmethylethylphenanthrenol	511-15-9	No	No	-		'	-	2.005.02		-			0.1		-		1.15E-01		-		4.005.04	
Octamethylpyrophosphoramide	152-16-9	No	No	-			-	2.00E-03	U	-		1	0.1	1	0.005.04	1.54E-08	1.00E+06	2.01E+01	4.705.00	1.36E+09	1.26E+01	nc
Octanol, n-	111-87-5	No	Yes	-			-	-		-		1	-	1	3.88E+04	1.00E-03	5.40E+02	3.83E+01	1.78E+02	1.36E+09		
Octanone, 2-	111-13-7	No	Yes	-			-	-		-		1	-	1	1.54E+04	7.69E-03	8.99E+02	4.98E+01	3.60E+02	1.36E+09		
Octanone, 3-	106-68-3	No	Yes	-			-	-		-		1	-	1	1.88E+04	5.31E-03	2.60E+03	5.21E+01	1.08E+03	1.36E+09	0.005 : 0.4	
Octyl Phthalate, di-N-	117-84-0	No	No	-			-	1.00E-02	U	-		1	0.1	1	- 0.005 : 0.5	1.05E-04	2.20E-02	1.41E+05	- 0.005.04	1.36E+09	6.32E+01	nc
Oleic acid	112-80-1	No	Yes	-			-	-		-		1	-	1	6.92E+05	1.83E-03	1.15E-02	1.17E+04	8.08E-01	1.36E+09		
Oleum	8014-95-7	No	No		.		-	-		-		1	-	1	-	-	-	-	-	1.36E+09	0.075 . 0.1	
Oryzalin	19044-88-3	No	No	7.79E-03	U		_	1.40E-01	U	-		1	0.1	1	-	7.81E-08	2.50E+00	8.25E+02	-	1.36E+09	6.97E+01	ca*
Oxadiazon	19666-30-9	No	No	-			-	5.00E-03	U	-		1	0.1	1	-	2.97E-06	7.00E-01	5.00E+03	-	1.36E+09	3.16E+01	nc
Oxamyl	23135-22-0	No	No	-			-	2.50E-02	U	-		1	0.1	1	-	9.69E-09	2.80E+05	1.00E+01	-	1.36E+09	1.58E+02	nc
Oxychlordane	27304-13-8	No	No	-			-	-		-		1	0.1	1	-	3.52E-06	2.30E-02	1.55E+04	-	1.36E+09		
Oxyfluorfen	42874-03-3	No	No	7.32E-02	U		-	3.00E-02	U	-		1	0.1	1	-	3.35E-05	1.16E-01	3.99E+04	-	1.36E+09	7.41E+00	ca*
Ozone	10028-15-6	No	No	-			-	-		-		1	-	1	-	-	4.94E+03	-	-	1.36E+09		
Paclobutrazol	76738-62-0	No	No	-			-	1.30E-02	U	-		1	0.1	1	-	3.39E-09	2.60E+01	9.23E+02	-	1.36E+09	8.22E+01	nc
Paraquat Dichloride	1910-42-5	No	No	-			-	4.50E-03	U	-		1	0.1	1	-	1.32E-11	6.20E+05	6.78E+03	-	1.36E+09	2.84E+01	nc
Parathion	56-38-2	No	No	-			-	6.00E-03	U	-		1	0.1	1	-	1.22E-05	1.10E+01	2.42E+03	-	1.36E+09	3.79E+01	nc
PeCDD, 2,3,7,8-	36088-22-9	No	No	1.30E+05	U	3.80E+01	U	7.00E-10	U	4.00E-08	U	1	0.03	1	-	8.99E-05	1.20E-04	4.33E+05	-	1.36E+09	4.93E-06	ca**
PeCDF, 1,2,3,7,8-	57117-41-6	No	No	3.90E+03	U	1.14E+00	U	2.33E-08	U	1.33E-06	U	1	0.03	1	-	2.05E-04	2.35E-04	2.33E+05	-	1.36E+09	1.64E-04	ca**
PeCDF, 2,3,4,7,8-	57117-31-4	No	No	3.90E+04	U	1.14E+01	U	2.33E-09	U	1.33E-07	U	1	0.03	1	-	2.05E-04	2.35E-04	2.33E+05	-	1.36E+09	1.64E-05	ca**
Pebulate	1114-71-2	No	Yes	-			-	5.00E-02	U	-		1	-	1	4.49E+04	9.69E-03	1.00E+02	2.99E+02	-	1.36E+09	3.91E+02	nc
Pendimethalin	40487-42-1	No	No	-			-	3.00E-02	U	-		1	0.1	1	-	3.50E-05	3.30E-01	5.62E+03	-	1.36E+09	1.90E+02	nc
Pentabromodiphenyl Ether	32534-81-9	No	Yes	-			-	2.00E-03	U	-		1	-	1	5.14E+05	4.42E-03	2.40E-03	2.17E+04	3.13E-01	1.36E+09	1.56E+01	CS
Pentabromodiphenyl ether, 2,2',4,4',5- (BDE-99)	60348-60-9	No	No	_			_	1.00E-04	U	_		1	0.1	1	_	4.82E-05	7.86E-05	2.17E+04	_	1.36E+09	6.32E-01	nc
Pentachloroaniline	527-20-8	No	No	_			_	1.002 01		_		1	0.1	1	_	1.74E-05	2.98E-02	1.24E+04	_	1.36E+09	0.022 01	110
Pentachlorobenzene	608-93-5	No	Yes					8.00E-04	U	_		1	0.1	1	8.13E+04	2.87E-02	8.31E-01	3.71E+03	_	1.36E+09	6.26E+00	nc
Pentachlorobiphenyl, 2',3,4,4',5- (PCB 123)	65510-44-3	No	Yes	3.90E+00	U	1.14E-03	11	2.33E-05	U	1.33E-03	U	1	0.14	1	7.35E+05	7.77E-03	1.60E-02	1.31E+05	_	1.36E+09	1.19E-01	ca**
Pentachlorobiphenyl, 2,3',4,4',5- (PCB 118)	31508-00-6	No	Yes	3.90E+00	U	1.14E-03	11	2.33E-05	U	1.33E-03	U	1	0.14	1	5.89E+05	1.18E-02	1.34E-02	1.28E+05		1.36E+09	1.18E-01	ca**
Pentachlorobiphenyl, 2,3,3',4,4'- (PCB 105)	32598-14-4	No	Yes	3.90E+00	U	1.14E-03	U	2.33E-05	U	1.33E-03	U	1	0.14	1	6.01E+05	1.16E-02	3.40E-03	1.31E+05	_	1.36E+09	1.18E-01	ca**
Pentachlorobiphenyl, 2,3,4,4',5- (PCB 114)	74472-37-0	No	Yes	3.90E+00	U	1.14E-03	11	2.33E-05	U	1.33E-03	U	1	0.14	1	1.05E+06	3.78E-03	1.60E-02	1.31E+05	_	1.36E+09	1.22E-01	ca**
Pentachlorobiphenyl, 3,3',4,4',5- (PCB 126)		No		1.30E+04	U	3.80E+00	11		U		U	1	0.14	1	7.26E+05	7.77E-03	7.33E-03	1.31E+05	_	1.36E+09	3.58E-05	ca**
Pentachlorocyclopentadiene	57465-28-8 25329-35-5	No	Yes	1.30ETU4	U	3.00⊑₹00	U	7.00E-09	U	4.00E-07	U	1		1	1.42E+04	2.45E-01	1.01E+01	9.41E+02	-	1.36E+09 1.36E+09	J.JOL-03	Ua Ua
Pentachlorodibenzo-p-dioxin, 1,2,3,7,8-	40321-76-4		No	1.30E+05	U	3.80E+01	- U	7.00E-10	U	4.00E-08	U	1	0.03	1	1.425704	1.07E-04	1.01E+01 1.53E-04	9.41E+02 4.16E+05	-	1.36E+09 1.36E+09	4.93E-06	ca**
Pentachloroethane		No	Yes		U	3.00⊏+01	U	7.00⊑-10	U	4.00⊏-00	U	1	0.03	1	9.64E+03		4.90E+02	4.16E+05 1.36E+02	4.56E+02	1.36E+09 1.36E+09	4.93E-06 7.72E+00	
Pentachloronitrobenzene	76-01-7 82-68-8	No		9.00E-02 2.60E-01			-	3.00E-03	U	-		1			4.31E+05	7.93E-02 1.81E-03	4.90E+02 4.40E-01	6.00E+03	4.500702	1.36E+09 1.36E+09	2.67E+00	ca ca**
		No	Yes		U	5 10E 06	- U		U	-		1		1	4.310+00				-			
Pentachlorophenol	87-86-5	No	No	4.00E-01	U	5.10E-06	- 0	5.00E-03		-			0.25	1	-	1.00E-06	1.40E+01	5.92E+02	-	1.36E+09	1.02E+00	ca*
Pentaerythritol tetranitrate (PETN)	78-11-5	No	No	4.00E-03	U		-	2.00E-03	U	-		1	0.1		-	5.40E-08	4.30E+01	6.48E+02	-	1.36E+09	1.26E+01	nc
Pentamethyl dipropylenetriamine	3855-32-1	No	No	_			-	-		1.005 : 00	- 11	1	0.1	1	7 705 : 00	2.00E-09	1.00E+06	1.21E+02	2.00[.00	1.36E+09	0.125.01	
Pentane, n-	109-66-0	No	Yes	-			-	-		1.00E+00	U	1		1	7.79E+02	5.11E+01	3.80E+01	7.22E+01	3.88E+02	1.36E+09	8.13E+01	nc
Pentyl Alcohol, N-	71-41-0	No	Yes	-			-	-		-		1	-	1	2.84E+04	5.31E-04	2.20E+04	6.33E+00	3.04E+03	1.36E+09		

			voc	Ingestion SF	SFO	Inhalation Unit Risk	IUR	Chronic RfD	Chronic RfD	Chronic RfC	Chroni RfC	c			Volatilization Factor	Henry's Law Constant	s	K _{oc}	Soil Saturation Concentration	Particulate Emission Factor	Screening Level	
Chemical	CAS Number	Mutagen?	?	(mg/kg-day) ⁻¹	Ref	(ug/m³) ⁻¹	Ref	(mg/kg-day)	Ref	(mg/m ³)	Ref	GIABS	ABS	RBA	(m³/kg)	(unitless)	(mg/L)	(cm3/g)	(mg/kg)	(m³/kg)	(mg/kg)	[basis]
Perchlorate and Perchlorate Salts	14797-73-0	No	No	-		-		7.00E-04	U	-		1		- 1	-	-	2.45E+05	-	-	1.36E+09	5.48E+00	nc
Perfluorobutane Sulfonate (PFBS)	375-73-5	No	No	-		-		2.00E-02	U	-		1	0.1	1	-	-	5.66E+04	6.17E+01	-	1.36E+09	1.26E+02	nc
Perfluorooctane Sulfonate (PFOS)	1763-23-1	No	No	-		-		2.00E-05	U	-		1	0.1	1	-	-	6.80E+02	3.72E+02	-	1.36E+09	1.26E-01	nc
Perfluorooctanoic acid (PFOA)	335-67-1	No	No	7.00E-02	U	-		2.00E-05	U	-		1	0.1	1	-	-	9.50E+03	1.15E+02	-	1.36E+09	1.26E-01	nc
Permethrin	52645-53-1	No	No	-		-		5.00E-02	U	-		1	0.1	1	-	7.65E-05	6.00E-03	1.19E+05	-	1.36E+09	3.16E+02	nc
Perylene	198-55-0	No	No	-		-		-		-		1	0.13	1	-	1.49E-04	4.00E-04	5.99E+05	-	1.36E+09		
Pesticides (total)	NA	No	No	-		-		-		-		1	0.1	1	-	-	_		_	1.36E+09		
Pesticides, organochlorinated (each)	NA	No	No	-		-		-		-		1	0.1	1	-	-	_		_	1.36E+09		
Pesticides, organochlorinated (total)	NA	No	No	-		-		-		-		1	0.1	1	-	-	-		-	1.36E+09		
Phenacetin	62-44-2	No	No	2.20E-03	U	6.30E-07	U	-		-		1	0.1	1	-	8.71E-09	7.66E+02	4.10E+01	-	1.36E+09	2.47E+02	ca
Phenanthrene	85-01-8	No	Yes	-		-		-		-		1	0.13	1	6.43E+05	1.73E-03	1.15E+00	1.67E+04	-	1.36E+09		
Phenmedipham	13684-63-4	No	No	-		-		2.40E-01	U	-		1	0.1	1	-	3.44E-11	4.70E+00	2.59E+03	-	1.36E+09	1.52E+03	nc
Phenol	108-95-2	No	No	-		-		3.00E-01	U	2.00E-01	U	1	0.1	1	-	1.36E-05	8.28E+04	1.87E+02	-	1.36E+09	1.90E+03	nc
Phenol, 2-(1-methylethoxy)-, methylcarbamate	114-26-1	No	No	-		-		4.00E-03	U	-		1	0.1	1	-	5.85E-08	1.86E+03	6.00E+01	-	1.36E+09	2.53E+01	nc
Phenothiazine	92-84-2	No	No	-		-		5.00E-04	U	-		1	0.1	1	-	1.14E-06	1.59E+00	1.48E+03	-	1.36E+09	3.16E+00	nc
Phenyl Isothiocyanate	103-72-0	No	Yes	-		-		2.00E-04	U	-		1		- 1	7.08E+03	1.21E-01	8.99E+01	2.19E+02	1.29E+02	1.36E+09	1.56E+00	nc
Phenylenediamine, m-	108-45-2	No	No	-		-		6.00E-03	U	-		1	0.1	1	-	5.11E-08	2.38E+05	3.38E+01	-	1.36E+09	3.79E+01	nc
Phenylenediamine, o-	95-54-5	No	No	1.20E-01	U	-		4.00E-03	U	-		1	0.1	1	-	2.94E-07	4.04E+04	3.45E+01	-	1.36E+09	4.52E+00	ca**
Phenylenediamine, p-	106-50-3	No	No	-		-		1.00E-03	U	-		1	0.1	1	-	2.75E-08	3.70E+04	3.38E+01	-	1.36E+09	6.32E+00	nc
Phenylmercuric Acetate	62-38-4	No	No	-		-		8.00E-05	U	_		1	0.1	1	-	2.31E-08	4.37E+03	5.64E+01	-	1.36E+09	5.06E-01	nc
Phenylphenol, 2-	90-43-7	No	No	1.94E-03	U	-		-		-		1	0.1	1	-	4.29E-05	7.00E+02	6.72E+03	-	1.36E+09	2.80E+02	ca
Phorate	298-02-2	No	No	-		-		2.00E-04	U	-		1	0.1	1	-	1.79E-04	5.00E+01	4.60E+02	-	1.36E+09	1.26E+00	nc
Phosgene	75-44-5	No	Yes	-		-		-		3.00E-04	U	1		- 1	9.81E+02	6.83E-01	6.83E+03	1.00E+00	1.61E+03	1.36E+09	3.07E-02	nc
Phosmet	732-11-6	No	No	-		-		2.00E-02	U	-		1	0.1	1	-	3.43E-07	2.44E+01	1.00E+01	-	1.36E+09	1.26E+02	nc
Phosphine	7803-51-2	No	Yes	-		-		3.00E-04	U	3.00E-04	U	1		- 1	-	9.98E-01	2.60E+05	-	-	1.36E+09	2.35E+00	nc
Phosphoric Acid	7664-38-2	No	No	-		-		4.86E+01	U	1.00E-02	U	1		- 1	-	-	5.48E+06	-	-	1.36E+09	3.00E+05	cm
Phosphorus (total)	NA	No	No	-		-		-		-		1		- 1	-	-	_	-	-	1.36E+09		
Phosphorus pentoxide	1314-56-3	No	No	-		-		-		-		1		- 1	-	-	-	-	-	1.36E+09		
Phosphorus, White	7723-14-0	No	Yes	-		-		2.00E-05	U	-		1		- 1	6.92E+03	8.60E-02	3.00E+00	1.12E+03	-	1.36E+09	1.56E-01	nc
Phthalates (total)	NA	No	No	-		-		-		-		1	0.1	1	-	-	_	-	-	1.36E+09		
Phthalic Acid, P-	100-21-0	No	No	-		-		1.00E+00	U	-		1	0.1	1	-	1.59E-11	1.50E+01	7.92E+01	-	1.36E+09	6.32E+03	nc
Phthalic Acid, m-	121-91-5	No	No	-		-		-		-		1	0.1	1	-	1.59E-11	1.30E+02	7.92E+01	-	1.36E+09		
Phthalic Acid, o-	88-99-3	No	No	-		-		-		-		1	0.1	1	-	8.18E-10	6.97E+03	8.09E+01	-	1.36E+09		
Phthalic Anhydride	85-44-9	No	No	-		-		2.00E+00	U	2.00E-02	U	1	0.1	1	-	6.66E-07	6.20E+03	1.00E+01	-	1.36E+09	1.26E+04	nc
Picloram	1918-02-1	No	No	-		-		7.00E-02	U	_		1	0.1	1	-	2.18E-12	4.30E+02	3.88E+01	-	1.36E+09	4.42E+02	nc
Picoline, 2-	109-06-8	No	Yes	-		-		-		-		1		- 1	7.64E+04	4.07E-04	1.00E+06	1.15E+02	7.90E+05	1.36E+09		
Picramic Acid (2-Amino-4,6-dinitrophenol)	96-91-3	No	No			-		1.00E-04	U	-		1	0.1	1	-	3.99E-10	1.40E+03	2.27E+02	_	1.36E+09	6.32E-01	nc
Picric Acid (2,4,6-Trinitrophenol)	88-89-1	No	No	-		-		9.00E-04	U	_		1	0.1	1	-	6.95E-10	1.27E+04	2.25E+03	-	1.36E+09	5.69E+00	nc
Piperidine	110-89-4	No	Yes	-		-		-		-		1		- 1	8.11E+04	1.82E-04	1.00E+06	5.47E+01	4.28E+05	1.36E+09		
Pirimiphos, Methyl	29232-93-7	No	No	-		-		6.67E-05	U	_		1	0.1	1	-	2.87E-05	8.60E+00	3.75E+02	-	1.36E+09	4.22E-01	nc
Polybrominated Biphenyls	59536-65-1	No	No	3.00E+01	U	8.60E-03	U	7.00E-06	U	-		1	0.1	1	-	-	-	-	_	1.36E+09	1.81E-02	ca**
Polychlorinated Biphenyls (high risk)	1336-36-3	No	Yes	2.00E+00	U	5.71E-04	U	-		-		1	0.14	1	5.32E+05	1.70E-02	7.00E-01	7.81E+04	-	1.36E+09	2.28E-01	ca
Polycyclic aromatic hydrocarbons (PAH), Total Polycyclic aromatic hydrocarbons (PAH), Total (high	NA	No	No	-		_		-		-		1	0.13	1	_	-	-	-	_	1.36E+09		
molecular weight) Polycyclic aromatic hydrocarbons (PAH), Total (low	NA	No	No	-		-		-		-		1	0.13	1	-	-	-	-	-	1.36E+09		
molecular weight)	NA	No	No	-		-		_		-		1	0.13	1	_	-	-		-	1.36E+09		

Site-specific

Resident Screening Levels (RSL) for Soil

Chemical	CAS Number	· Mutagen?	VOC	Ingestion SF SFO (mg/kg-day) ⁻¹ Ref	Inhalation Unit Risk (ug/m³) ⁻¹	IUR Ref		Chronic RfD Ref	Chronic RfC (mg/m³)	Chronic RfC Ref	GIABS	ABS	RBA	Volatilization Factor (m³/kg)	Henry's Law Constant (unitless)	S (mg/L)	K _{oc}	Soil Saturation Concentration (mg/kg)	Particulate Emission Factor (m³/kg)	Screening Level (mg/kg)	[basis]
Polycyclic chlorinated hydrocarbons (total)	NA	No	No	(mg/kg ddy) - rtor	(ag/ /		(mg/ng day)	1101	(g, ,	1101	1	0.1	1	(/\\ g /	-	(9, =,	. (61116/9)	(9/1.9)	1.36E+09	(9/1.9)	[Buolo]
1 diyayana amanata nyarasansana (tatai)	1471	140	110									0.1	•						1.002 - 00		
Polymeric Methylene Diphenyl Diisocyanate (PMDI)	9016-87-9	No	No	-	-		-		6.00E-04	U	1	0.1	1	-	5.40E-10	1.76E-06	1.00E+10	_	1.36E+09	8.51E+04	nc
Polyphosphoric acid	8017-16-1	No	No	-	-		4.86E+01	U	-		1		- 1	-	-	-	-	-	1.36E+09	3.80E+05	cm
Potassium	7440-09-7	No	No	-	-		-		-		1		- 1	-	-	-	-	-	1.36E+09		
Potassium Cyanide	151-50-8	No	No	-	-	-	2.00E-03	U	-		1		- 1	-	-	7.20E+05	-	-	1.36E+09	1.56E+01	nc
Potassium Perchlorate	7778-74-7	No	No	-	-		7.00E-04	U	-		1		- 1	-	-	1.50E+04	-	-	1.36E+09	5.48E+00	nc
Potassium Perfluorobutane Sulfonate	29420-49-3	No	No	-	-		2.00E-02	U	-		1	0.1	1	-	3.59E-11	4.62E+04	-	-	1.36E+09	1.26E+02	nc
Potassium Perfluorooctane Sulfonate	2795-39-3	No	No	-	-	-	2.00E-05	U	-		1	0.1	1	-	8.18E-05	6.80E+02	-	-	1.36E+09	1.26E-01	nc
Potassium Silver Cyanide	506-61-6	No	No	-	_	-	5.00E-03	U	-		0.04		- 1	-	-	_		-	1.36E+09	3.91E+01	nc
Potassium tripolyphosphate	13845-36-8	No	No	-	-		4.86E+01	U	-		1		- 1	-	-	-	-	-	1.36E+09	3.80E+05	cm
Praseodymium	7440-10-0	No	No	-	_	-	-		-		1		- 1	-	-	_		-	1.36E+09		
Praseodymium Chloride (Stable, Nonradioactive)	10361-79-2	No	No	-	-		-		-		1		- 1	-	-	9.61E+05	-	-	1.36E+09		
Prochloraz	67747-09-5	No	No	1.50E-01 U	-		9.00E-03	U	-		1	0.1	1	-	6.70E-07	3.40E+01	2.43E+03	-	1.36E+09	3.62E+00	ca*
Profluralin	26399-36-0	No	Yes	-	-		6.00E-03	U	-		1		- 1	4.19E+05	1.19E-02	1.00E-01	3.05E+04	-	1.36E+09	4.69E+01	nc
Promethium	7440-12-2	No	No	-	-		-		-		1		- 1	-	-	-	-	-	1.36E+09		
Prometon	1610-18-0	No	No	-	-		1.50E-02	U	-		1	0.1	1	-	3.72E-08	7.50E+02	1.37E+02	-	1.36E+09	9.48E+01	nc
Prometryn	7287-19-6	No	No	-	-		4.00E-02	U	-		1	0.1	1	-	4.87E-07	3.30E+01	6.56E+02	-	1.36E+09	2.53E+02	nc
Propachlor	1918-16-7	No	No	-	-	-	1.30E-02	U	-		1	0.1	1	-	1.47E-05	5.80E+02	2.05E+02	-	1.36E+09	8.22E+01	nc
Propanil	709-98-8	No	No	-	-	-	5.00E-03	U	-		1	0.1	1	-	6.99E-08	1.52E+02	1.76E+02	-	1.36E+09	3.16E+01	nc
Propanoic acid, 2-(2,4-dichlorophenoxy)-	120-36-5	No	No	-	-		-		-		1	0.1	1	-	3.55E-09	3.50E+02	4.85E+01	-	1.36E+09		
Propargite	2312-35-8	No	No	3.27E-02 U	-	-	4.00E-02	U	-		1	0.1	1	-	2.62E-05	2.15E-01	3.67E+04	-	1.36E+09	1.66E+01	ca*
Propargyl Alcohol	107-19-7	No	Yes	-	-		2.00E-03	U	-		1		- 1	6.28E+04	4.70E-05	1.00E+06	1.90E+00	1.11E+05	1.36E+09	1.56E+01	nc
Propazine	139-40-2	No	No	-	-		2.00E-02	U	-		1	0.1	1	-	1.88E-07	8.60E+00	3.44E+02	-	1.36E+09	1.26E+02	nc
Propham	122-42-9	No	No	-	-	-	2.00E-02	U	-		1	0.1	1	-	7.52E-06	1.79E+02	2.19E+02	-	1.36E+09	1.26E+02	nc
Propiconazole	60207-90-1	No	No	-	-	-	1.00E-01	U	-		1	0.1	1	-	7.03E-08	1.10E+02	1.56E+03	-	1.36E+09	6.32E+02	nc
Propionaldehyde	123-38-6	No	Yes	-	-		-		8.00E-03	U	1		- 1	8.96E+03	3.00E-03	3.06E+05	1.00E+00	3.26E+04	1.36E+09	7.47E+00	nc
Propionitrile	107-12-0	No	Yes	-	-	-	-		-		1		- 1	1.50E+04	1.51E-03	1.03E+05	8.51E+00	1.56E+04	1.36E+09		
Propionitrile, 3-(NN-dimethylamino)	1738-25-6	No	Yes	-	-	-	-		-		1		- 1	1.89E+05	8.22E-07	1.00E+06	9.97E+00	1.60E+05	1.36E+09		
Propyl Alcohol, n-	71-23-8	No	Yes	-	-	-	-		-		1		- 1	2.91E+04	3.03E-04	1.00E+06	1.90E+00	1.11E+05	1.36E+09		
Propyl benzene	103-65-1	No	Yes	-	-	-	1.00E-01	U	1.00E+00	U	1		- 1	6.99E+03	4.29E-01	5.22E+01	8.13E+02	2.64E+02	1.36E+09	3.77E+02	CS
Propylene	115-07-1	No	Yes	-	-	-	-		3.00E+00	U	1		- 1	7.03E+02	8.01E+00	2.00E+02	2.17E+01	3.49E+02	1.36E+09	2.20E+02	nc
Propylene Glycol	57-55-6	No	No	-	-	-	2.00E+01	U	-		1	0.1	1	-	5.27E-07	1.00E+06	1.00E+00	-	1.36E+09	1.26E+05	cm
Propylene Glycol Dinitrate	6423-43-4	No	No	-	-	-	-		2.72E-04	U	1	0.1	1	-	3.85E-05	3.26E+03	6.07E+01	-	1.36E+09	3.86E+04	nc
Propylene Glycol Monoethyl Ether	1569-02-4	No	Yes	-	-	-	-		-		1		- 1	1.46E+05	3.02E-06	3.66E+05	1.30E+00	3.95E+04	1.36E+09		
Propylene Glycol Monomethyl Ether	107-98-2	No	Yes	-	-		7.00E-01	U	2.00E+00	U	1		- 1	7.83E+04	3.76E-05	1.00E+06	1.00E+00	1.06E+05	1.36E+09	4.10E+03	nc
Propylene Oxide	75-56-9	No	Yes	2.40E-01 U	3.70E-06	U	-		3.00E-02	U	1		- 1	1.03E+04	2.85E-03	5.90E+05	5.19E+00	7.77E+04	1.36E+09	2.11E+00	ca*
Propyzamide	23950-58-5	No	No	-	-	-	7.50E-02	U	-		1	0.1	1	-	3.99E-07	1.50E+01	4.05E+02	-	1.36E+09	4.74E+02	nc
Prussian Blue (Ferric Ferrocyanide)	14038-43-8	No	No	-	-		-		-		1	0.1	1	-	-		·	-	1.36E+09		
Pyrazinyl phosphorothioate, O,O-diethyl O-2-	297-97-2	No	No	-	-	-	-		-		1	0.1	1	-	3.52E-05	1.14E+03	3.95E+02	-	1.36E+09		
Pyrene	129-00-0	No	Yes	-	-	-	3.00E-02	U	-		1	0.13	1	2.38E+06	4.87E-04	1.35E-01	5.43E+04	-	1.36E+09	1.79E+02	nc
Pyridine	110-86-1	No	Yes	-	-	-	1.00E-03	U	-		1		- 1	5.54E+04	4.50E-04	1.00E+06	7.17E+01	5.30E+05	1.36E+09	7.82E+00	nc
Quinalphos	13593-03-8	No	No	-	-	-	5.00E-04	U	-		1	0.1	1	-	1.90E-06	2.20E+01	4.19E+03	-	1.36E+09	3.16E+00	nc
Quinoline	91-22-5	No	No	3.00E+00 U	-	-	-		-		1	0.1	1	-	6.83E-05	6.11E+03	1.54E+03	-	1.36E+09	1.81E-01	ca
Quizalofop-ethyl	76578-14-8	No	No	-	-	-	9.00E-03	U	-		1	0.1	1	-	4.33E-07	3.00E-01	7.74E+03	-	1.36E+09	5.69E+01	nc
Refractory Ceramic Fibers	NA	No	No	-	-		-		3.00E-02	U	1		- 1	-	-	-	-	-	1.36E+09	4.25E+06	cm

			voc	Ingestion SF	SFO	Inhalation Unit Risk	IUR	Chronic R RfD	Chronic RfD	Chronic RfC	Chronic RfC				Volatilization Factor	Henry's Law Constant	s	K _{oc}	Soil Saturation Concentration	Particulate Emission Factor	Screening Level	
Chemical	CAS Number	Mutagen?	?	(mg/kg-day) ⁻¹	Ref	(ug/m ³) ⁻¹	Ref	f (mg/kg-day)	Ref	(mg/m³)	Ref	GIABS	ABS	RBA	(m³/kg)	(unitless)	(mg/L)	(cm3/g)	(mg/kg)	(m³/kg)	(mg/kg)	[basis]
Resmethrin	10453-86-8	No	No	-	-		-	3.00E-02	U	-		1	0.1	1	-	5.44E-06	3.79E-02	3.11E+05	-	1.36E+09	1.90E+02	nc
Resorcinol	108-46-3	No	No	-	-		-	-		-		1	0.1	1	-	4.04E-09	7.17E+05	2.41E+02	-	1.36E+09		
Ronnel	299-84-3	No	Yes	-	-		-	5.00E-02	U	-		1	-	- 1	4.64E+05	1.31E-03	1.00E+00	4.46E+03	-	1.36E+09	3.91E+02	nc
Rotenone	83-79-4	No	No	-	-		-	4.00E-03	U	-		1	0.1	1	-	4.58E-12	2.00E-01	2.61E+05	-	1.36E+09	2.53E+01	nc
Rubidium	7440-17-7	No	No	-	-		-	-		-		1	-	- 1	-	-	-	-	-	1.36E+09		
Rubidium Chloride	7791-11-9	No	No	-	-		-	-		-		1	-	- 1	-	-	9.39E+07	-	-	1.36E+09		
Rubidium Hydroxide	1310-82-3	No	No	-	-		-	-		-		1	_	- 1	-	-	1.73E+06	-	-	1.36E+09		
Rubidium Iodide	7790-29-6	No	No	-	-		-	-		-		1	-	- 1	-	-	1.65E+06	-	-	1.36E+09		
Safrole	94-59-7	Yes	No	2.20E-01	U	6.30E-05	U	-		-		1	0.1	1	-	3.71E-04	1.21E+02	2.07E+02	-	1.36E+09	5.54E-01	ca
Samarium Chloride (Stable, Nonradioactive)	10361-82-7	No	No	-	-		-	-		-		1	-	- 1	-	-	9.38E+05	-	-	1.36E+09		
Samarium Nitrate (Stable, Nonradioactive)	10361-83-8	No	No	-	-		-	-		-		1	-	- 1	-	-	1.44E+06	-	-	1.36E+09		
Scandium	7440-20-2	No	No	-	-		-	-		-		1	-	- 1	-	-	-	-	-	1.36E+09		
Selenious Acid	7783-00-8	No	No	-	-		-	5.00E-03	U	-		1	-	- 1	-	-	9.00E+05	-	-	1.36E+09	3.91E+01	nc
Selenite	14124-67-5	No	No	-	-		-	-		-		1	-	- 1	-	-	-	-	-	1.36E+09		
Selenium	7782-49-2	No	No	-	-		-	5.00E-03	U	2.00E-02	U	1	-	- 1	-	-	-	-	-	1.36E+09	3.91E+01	nc
Selenium Sulfide	7446-34-6	No	No	-	-		-	5.00E-03	U	2.00E-02	U	1		- 1	-	-	-	-	-	1.36E+09	3.91E+01	nc
Selenourea	630-10-4	No	Yes	-	-		-	-		-		1	_	- 1	-	-	1.00E+06	1.20E+01	1.72E+05	1.36E+09		
Sethoxydim	74051-80-2	No	No	-	-		-	1.40E-01	U	-		1	0.1	1	-	8.83E-10	2.50E+01	4.37E+03	-	1.36E+09	8.85E+02	nc
Silica (crystalline, respirable)	7631-86-9	No	No	-	-		-	-		3.00E-03	U	1	_	- 1	-	-	-	-	-	1.36E+09	4.25E+05	cm
Silicon	7440-21-3	No	No	-	-		-	-		-		1		- 1	-	-	-	-	-	1.36E+09		
Silver	7440-22-4	No	No	-	-		-	5.00E-03	U	-		0.04	_	- 1	-	-	-	-	-	1.36E+09	3.91E+01	nc
Silver Cyanide	506-64-9	No	No	_	-		-	1.00E-01	U	-		0.04	_	- 1	-	-	2.30E+01	-	-	1.36E+09	7.82E+02	nc
Simazine	122-34-9	No	No	1.20E-01	U		-	5.00E-03	U	-		1	0.1	1	-	3.85E-08	6.20E+00	1.47E+02	-	1.36E+09	4.52E+00	ca**
Sodium	7440-23-5	No	No	-	-		-	-		-		1	-	- 1	-	-	-	-	-	1.36E+09		
Sodium Acifluorfen	62476-59-9	No	No	-	-		-	1.30E-02	U	-		1	0.1	1	-	2.47E-09	2.50E+05	3.88E+03	-	1.36E+09	8.22E+01	nc
Sodium Azide	26628-22-8	No	No	-	-		-	4.00E-03	U	-		1	-	- 1	-	-	4.08E+05	-	-	1.36E+09	3.13E+01	nc
Sodium Cyanide	143-33-9	No	No	-	-		-	1.00E-03	U	-		1	-	- 1	-	-	5.82E+05	-	-	1.36E+09	7.82E+00	nc
Sodium Dichromate	10588-01-9	Yes	No	5.00E-01	U	1.50E-01	U	2.00E-02	U	2.00E-04	U	0.025	-	- 1	-	-	1.87E+06	-	-	1.36E+09	2.96E-01	ca
Sodium Diethyldithiocarbamate	148-18-5	No	No	2.70E-01	U		-	3.00E-02	U	-		1	0.1	1	-	-	3.64E+05	2.05E+02	-	1.36E+09	2.01E+00	ca*
Sodium Fluoride	7681-49-4	No	No	-	-		-	5.00E-02	U	1.30E-02	U	1	-	- 1	-	-	4.22E+04	-	-	1.36E+09	3.91E+02	nc
Sodium Fluoroacetate	62-74-8	No	No	-	-		-	2.00E-05	U	-		1	0.1	1	-	4.46E-05	1.11E+06	1.44E+00	-	1.36E+09	1.26E-01	nc
Sodium Hydroxide	1310-73-2	No	No	-	-		-	-		-		1	-	- 1	-	-	4.20E+05	-	-	1.36E+09		
Sodium Metavanadate	13718-26-8	No	No	-	-		-	1.00E-03	U	-		1	-	- 1	-	-	2.10E+05	-	-	1.36E+09	7.82E+00	nc
Sodium Perchlorate	7601-89-0	No	No	-	-		-	7.00E-04	U	-		1	-	- 1	-	-	2.10E+06	-	-	1.36E+09	5.48E+00	nc
Sodium Tungstate	13472-45-2	No	No	-	-		-	8.00E-04	U	-		1	-	- 1	-	-	7.42E+05	-	-	1.36E+09	6.26E+00	nc
Sodium Tungstate Dihydrate	10213-10-2	No	No	-	-		-	8.00E-04	U	-		1	-	- 1	-	-	7.42E+05	-	-	1.36E+09	6.26E+00	nc
Sodium acid pyrophosphate	7758-16-9	No	No	-	-		-	4.86E+01	U	-		1	-	- 1	-	-	-	-	-	1.36E+09	3.80E+05	cm
Sodium aluminum phosphate (acidic)	7785-88-8	No	No	-	-		-	4.86E+01	U	-		1	-	- 1	-	-	-	-	-	1.36E+09	3.80E+05	cm
Sodium aluminum phosphate (anhydrous)	10279-59-1	No	No	-	-		-	4.86E+01	U	-		1	-	- 1	-	-	-	-	-	1.36E+09	3.80E+05	cm
Sodium aluminum phosphate (tetrahydrate)	10305-76-7	No	No	-	-		-	4.86E+01	U	-		1	-	- 1	-	-	-	-	-	1.36E+09	3.80E+05	cm
Sodium hexametaphosphate	10124-56-8	No	No	-	-		-	4.86E+01	U	-		1	-	- 1	-	-	-	-	-	1.36E+09	3.80E+05	cm
Sodium polyphosphate	68915-31-1	No	No	-	-		-	4.86E+01	U	-		1	-	- 1	-	-	-	-	-	1.36E+09	3.80E+05	cm
Sodium trimetaphosphate	7785-84-4	No	No	-	-		-	4.86E+01	U	-		1	-	- 1	-	-	-	-	-	1.36E+09	3.80E+05	cm
Sodium tripolyphosphate	7758-29-4	No	No	-	-		-	4.86E+01	U	-		1	-	- 1	-	-	-	-	-	1.36E+09	3.80E+05	cm
Stearyl Acetate	822-23-1	No	Yes	-	-		-	-		-		1	-	- 1	8.74E+04	8.87E-01	5.57E-04	8.27E+04	-	1.36E+09		
Stirofos (Tetrachlorovinphos)	961-11-5	No	No	2.40E-02	U		-	3.00E-02	U	-		1	0.1	1	-	7.52E-08	1.10E+01	1.38E+03	-	1.36E+09	2.26E+01	ca**
Strontium Chromate	7789-06-2	Yes	No	5.00E-01	U	1.50E-01	U	2.00E-02	U	2.00E-04	U	0.025	-	- 1	-	-	1.06E+03	-	-	1.36E+09	2.96E-01	ca
	•	-			-									-								

			voc	Ingestion SF	SFO	Inhalation Unit Risk	IUR		Chronic RfD	RfC	Chronic RfC				Volatilization Factor	Henry's Law Constant	S	K _{oc}	Soil Saturation Concentration	Particulate Emission Factor	Screening Level	
Chemical	CAS Number			(mg/kg-day) ⁻¹	Ref	(ug/m³) ⁻¹	Ref	· • • • • ·	Ref	(mg/m³)	Ref	GIABS	ABS	RBA	(m³/kg)	(unitless)	(mg/L)	(cm3/g)	(mg/kg)	(m³/kg)	(mg/kg)	[basis]
Strontium, Stable	7440-24-6	No	No				-	6.00E-01	U	-		1	<u> </u>	1	-	-	-		-	1.36E+09	4.69E+03	nc
Strychnine	57-24-9	No	No				-	3.00E-04	U	-		1	0.1	1	-	3.09E-12	1.60E+02	5.40E+03	-	1.36E+09	1.90E+00	nc
Styrene	100-42-5	No	Yes				-	2.00E-01	U	1.00E+00	U	1	-	1	9.36E+03	1.12E-01	3.10E+02	4.46E+02	8.67E+02	1.36E+09	6.01E+02	nc
Styrene-Acrylonitrile (SAN) Trimer	NA	No	No				-	3.00E-03	U	-		1	0.1	1	-	-	8.49E+01	-	-	1.36E+09	1.90E+01	nc
Sulfate	14808-79-8	No	No				-	-		-		1	-	1	-	-	1.00E+06	-	-	1.36E+09		
Sulfide	18496-25-8	No	No				-	-		-		1	-	1	-	-	-	-	-	1.36E+09		
Sulfite	14265-45-3	No	No				-	-		-		1	-	1	-	-	-	-	-	1.36E+09		
Sulfolane	126-33-0	No	No				-	1.00E-03	U	2.00E-03	U	1	0.1	1	-	1.98E-04	1.00E+06	9.08E+00	-	1.36E+09	6.32E+00	nc
Sulfonylbis(4-chlorobenzene), 1,1'-	80-07-9	No	No				-	8.00E-04	U	-		1	0.1	1	-	5.60E-06	2.39E+00	2.86E+03	-	1.36E+09	5.06E+00	nc
Sulfur	7704-34-9	No	No	-			-	-		-		1	-	1	-	-	-	-	-	1.36E+09		
Sulfur Dioxide	7446-09-5	No	Yes	-			-	-		-		1	-	1	-	3.31E-02	1.07E+05	-	-	1.36E+09		
Sulfur Mustard	505-60-2	No	Yes	-			-	-		-		1	-	1	8.78E+04	1.00E-03	6.84E+02	2.40E+02	1.05E+03	1.36E+09		
Sulfur Trioxide	7446-11-9	No	Yes	-			-	-		1.00E-03	U	1	-	1	-		-	-	-	1.36E+09	1.42E+05	cm
Sulfuric Acid	7664-93-9	No	No				-	-		1.00E-03	U	1	-	1	-		1.00E+06	-	-	1.36E+09	1.42E+05	cm
Sulfurous acid, 2-chloroethyl 2-[4-(1,1-																						
dimethylethyl)phenoxy]-1-methylethyl ester	140-57-8	No	No	2.50E-02	U	7.10E-06	_	5.00E-02	U	-		1	0.1	1	-	7.77E-06	5.90E-01	5.55E+03	-	1.36E+09	2.17E+01	ca*
TCDD, 2,3,7,8-	1746-01-6	No	Yes	1.30E+05	U	3.80E+01		7.00E-10	U	4.00E-08	U	1	0.03	1	1.96E+06	2.04E-03	2.00E-04	2.49E+05	-	1.36E+09	4.77E-06	ca**
TCDF, 2,3,7,8-	51207-31-9	No	Yes	1.30E+04	U	3.80E+00	U	7.00E-09	U	4.00E-07	U	1	0.03	1	2.49E+06	6.83E-04	6.92E-04	1.40E+05	-	1.36E+09	4.80E-05	ca**
TCMTB	21564-17-0	No	No				-	3.00E-02	U	-		1	0.1	1	-	2.65E-10	1.25E+02	3.37E+03	-	1.36E+09	1.90E+02	nc
Tebuthiuron	34014-18-1	No	No				-	7.00E-02	U	-		1	0.1	1	-	4.91E-09	2.50E+03	4.24E+01	-	1.36E+09	4.42E+02	nc
Technetium	7440-26-8	No	No	-			-	-		-		1	-	1	-	-	-	-	-	1.36E+09		
Tellurium	13494-80-9	No	No	-			-	-		-		1	-	1	-	-	0.00E+00	-	-	1.36E+09		
Temephos	3383-96-8	No	No	-			-	2.00E-02	U	-		1	0.1	1	-	8.01E-08	2.70E-01	9.51E+04	-	1.36E+09	1.26E+02	nc
Terbacil	5902-51-2	No	No	-			-	1.30E-02	U	-		1	0.1	1	-	4.91E-09	7.10E+02	5.01E+01	-	1.36E+09	8.22E+01	nc
Terbufos	13071-79-9	No	Yes	-			-	2.50E-05	U	-		1	-	1	2.64E+05	9.81E-04	5.07E+00	9.99E+02	3.09E+01	1.36E+09	1.96E-01	nc
Terbutryn	886-50-0	No	No	-			-	1.00E-03	U	-		1	0.1	1	-	8.79E-07	2.50E+01	6.07E+02	-	1.36E+09	6.32E+00	nc
Test Chemical	NA	No	No	-			-	-		-		-	-	1	-	-	-	-	-	1.36E+09		
Tetrabromodiphenyl ether, 2,2',4,4'- (BDE-47)	5436-43-1	No	No	-			-	1.00E-04	U	-		1	0.1	1	-	1.21E-04	1.46E-03	1.32E+04	-	1.36E+09	6.32E-01	nc
Tetrabutyl Lead	1920-90-7	No	Yes	-			-	-		-		1	-	1	4.65E+03	3.25E+02	1.44E-02	7.88E+04	-	1.36E+09		
Tetrachloroaniline, 2,3,5,6-	3481-20-7	No	No	-			-	-		-		1	0.1	1	-	2.35E-05	9.49E+00	7.42E+03	-	1.36E+09		
Tetrachlorobenzene, 1,2,3,4-	634-66-2	No	Yes	-			-	-		-		1	-	1	5.99E+04	3.11E-02	5.92E+00	2.27E+03	-	1.36E+09		
Tetrachlorobenzene, 1,2,4,5-	95-94-3	No	Yes	-			-	3.00E-04	U	-		1	-	1	5.07E+04	4.09E-02	5.95E-01	2.22E+03	-	1.36E+09	2.35E+00	nc
Tetrachlorobiphenyl, 3,3',4,4'- (PCB 77)	32598-13-3	No	No	1.30E+01	U	3.80E-03	U	7.00E-06	U	4.00E-04	U	1	0.14	1	-	3.84E-04	5.69E-04	7.81E+04	-	1.36E+09	3.84E-02	ca**
Tetrachlorobiphenyl, 3,4,4',5- (PCB 81)	70362-50-4	No	Yes	3.90E+01	U	1.14E-02	U	2.33E-06	U	1.33E-04	U	1	0.14	1	5.09E+05	9.12E-03	3.22E-02	7.81E+04	-	1.36E+09	1.16E-02	ca**
Tetrachloroethane, 1,1,1,2-	630-20-6	No	Yes	2.60E-02	U	7.40E-06	U	3.00E-02	U	-		1	-	1	5.68E+03	1.02E-01	1.07E+03	8.60E+01	6.80E+02	1.36E+09	1.99E+00	са
Tetrachloroethane, 1,1,2,2-	79-34-5	No	Yes	2.00E-01	U	5.80E-05	U	2.00E-02	U	-		1	-	1	1.51E+04	1.50E-02	2.83E+03	9.49E+01	1.90E+03	1.36E+09	6.04E-01	ca
Tetrachloroethylene	127-18-4	No	Yes	2.10E-03	U	2.60E-07	U	6.00E-03	U	4.00E-02	U	1	-	1	2.35E+03	7.24E-01	2.06E+02	9.49E+01	1.66E+02	1.36E+09	8.10E+00	nc
Tetrachlorophenol, 2,3,4,5-	4901-51-3	No	No	-			-	-		-		1	0.1	1	-	6.91E-06	2.87E+01	4.74E+03	-	1.36E+09		
Tetrachlorophenol, 2,3,4,6-	58-90-2	No	No	-			-	3.00E-02	U	-		1	0.1	1	-	3.61E-04	2.30E+01	2.80E+02	-	1.36E+09	1.90E+02	nc
Tetrachlorophenols (total)	25167-83-3	No	No	-			-	-		_		1	0.1	1	-	3.61E-04	2.30E+01	2.97E+03	-	1.36E+09		
Tetrachloroterephthalate, 2,3,5,6-	2136-79-0	No	No	-			-	-		_		1	0.1	1	-	2.69E-11	1.75E+02	1.31E+03	-	1.36E+09		
Tetrachlorotoluene, p- alpha, alpha, alpha-	5216-25-1	No	Yes	2.00E+01	U		-	-		_		1	-	1	1.06E+05	7.89E-03	4.04E+00	1.61E+03	_	1.36E+09	3.48E-02	ca
Tetraethyl Dithiopyrophosphate	3689-24-5		No				-	5.00E-04	U	_		1	0.1	1	-	1.82E-04	3.00E+01	2.66E+02	_	1.36E+09	3.16E+00	nc
Tetraethyl Lead	78-00-2		Yes	-			-	1.00E-07	U	_		1		1	1.91E+03	2.32E+01	2.90E-01	6.48E+02	2.43E+00	1.36E+09	7.82E-04	nc
Tetrafluoroethane, 1,1,1,2-	811-97-2		Yes	-			_	-		8.00E+01	U	1		1	1.22E+03	2.04E+00	2.04E+03	8.60E+01	2.04E+03	1.36E+09	1.02E+04	cs
Tetrahydrofuran	109-99-9		Yes				_	9.00E-01	U	2.00E+00	U	1	0.03	1	1.20E+04	2.88E-03	1.00E+06	1.08E+01	1.65E+05	1.36E+09	1.81E+03	nc
Tetrahydrothiophene	110-01-0		Yes				_	5.55E 01		0000		1		1	8.24E+03	2.50E-03	3.73E+03	8.00E+01	2.18E+03	1.36E+09		
	1		. 55												5.2 (2 : 00		5 52 - 50	5.552.01				

Chemical	CAS Number	Mutagen?	VOC	Ingestion SF (mg/kg-day) ⁻¹	SFO Ref	Inhalation Unit Risk (ug/m³) ⁻¹	IUR Ref	Chronic RfD (mg/kg-day)	Chronic RfD Ref	Chronic RfC (mg/m³)	Chronic RfC Ref	GIABS	ABS	RBA	Volatilization Factor (m³/kg)	Henry's Law Constant (unitless)	S (mg/L)	K _{oc} (cm3/g)	Soil Saturation Concentration (mg/kg)	Particulate Emission Factor (m³/kg)	Screening Level (mg/kg)	[basis]
Tetramethyl Lead	75-74-1	No	Yes		_	(J. g. 111)		-		-		1	_	1	1.31E+03	2.49E+01	1.50E+01	4.39E+01	- (99)	1.36E+09	(mgmg)	
Tetramethylcyclohexane	30501-43-0	No	Yes		_	_		_		_		1		1			_	_	_	1.36E+09		
Tetrapotassium phosphate	7320-34-5	No	No		_	_		4.86E+01	U	_		1		1	_		_	_	-	1.36E+09	3.80E+05	cm
Tetrapropyl Lead	3440-75-3	No	Yes	_	_	_				_		1		1	2.65E+03	1.05E+02	5.82E-03	7.15E+03	_	1.36E+09	0.002 00	0111
Tetrasodium pyrophosphate	7722-88-5	No	No		_	_		4.86E+01	U	_		1		1			8.14E+04		_	1.36E+09	3.80E+05	cm
Tetryl (Trinitrophenylmethylnitramine)	479-45-8	No	No		_	_		2.00E-03	U	_		1	0.00065		_	1.11E-07	7.40E+01	4.61E+03	_	1.36E+09	1.56E+01	nc
Thallic Oxide	1314-32-5	No	No	_	_	_		2.00E-05	U	_		1		1	_				_	1.36E+09	1.56E-01	nc
Thallium (I) Nitrate	10102-45-1	No	No	_	_	_		1.00E-05	U	_		1		1	_		9.55E+04	_	_	1.36E+09	7.82E-02	nc
Thallium (Soluble Salts)	7440-28-0	No	No	_	_	_		1.00E-05	U	_		1		1	_		0.002 - 0 1	_	_	1.36E+09	7.82E-02	nc
Thallium Acetate	563-68-8	No	Yes			_		1.00E-05	U	_		1		1	_		2.80E+04	1.51E+00	_	1.36E+09	7.82E-02	nc
Thallium Carbonate	6533-73-9	No	Yes		_	_		2.00E-05	U	_		1		1	_		5.20E+04	2.88E+00	_	1.36E+09	1.56E-01	nc
Thallium Chloride	7791-12-0	No	No	_	_	_		1.00E-05	U	_		1		1	_		2.90E+03	2.002 100	_	1.36E+09	7.82E-02	nc
Thallium Selenite	12039-52-0	No	No		_	_		1.00E-05	U	_		1		1	_			_	_	1.36E+09	7.82E-02	nc
Thallium Sulfate	7446-18-6	No	No		_	_		2.00E-05	U	_		1		1	_		5.47E+04	_	_	1.36E+09	1.56E-01	nc
Thifensulfuron-methyl	79277-27-3	No	No		-	-		4.30E-02	U	_		1	0.1	1	_	1.67E-12	2.24E+03	5.08E+01	_	1.36E+09	2.72E+02	nc
Thiobencarb	28249-77-6	No	No		_	_		1.00E-02	U	_		1	0.1	1	_	1.09E-05	2.80E+01	1.63E+03	_	1.36E+09	6.32E+01	nc
Thiocyanates	NA	No	No	_	_	_		2.00E-04	U	_		1	-	1	_		2.002 - 01	-	_	1.36E+09	1.56E+00	nc
Thiocyanic Acid	463-56-9	No	Yes		_	_		2.00E-04	U	_		1	_	1	_		_	_	_	1.36E+09	1.56E+00	nc
Thiodiglycol	111-48-8	No	No		_	_		7.00E-02	U	_		1	0.0075	1	_	7.56E-08	1.00E+06	1.00E+00	_	1.36E+09	5.38E+02	nc
Thiofanox	39196-18-4	No	No		_	_		3.00E-04	U	_		1	0.1	1	_	3.84E-07	5.20E+03	7.24E+01	_	1.36E+09	1.90E+00	nc
Thiophanate, Methyl	23564-05-8	No	No	1.16E-02	U	_		2.67E-02	U	_		1	0.1	1	_	4.95E-08	2.66E+01	3.27E+02	_	1.36E+09	4.68E+01	ca**
Thiophene	110-02-1	No	Yes		_	_				_		1	-	1	4.18E+03	9.28E-02	3.01E+03	8.00E+01	1.80E+03	1.36E+09		
Thiram	137-26-8	No	No		_	_		1.50E-02	U	_		1	0.1	1		7.44E-06	3.00E+01	6.11E+02	-	1.36E+09	9.48E+01	nc
Thorium	7440-29-1	No	No		_	_		-		_		1		1	-	-	-	-	-	1.36E+09	01.102 01	
Thymol	89-83-8	No	No		_	_		_		_		1	0.1	1	_	1.97E-05	9.00E+02	1.47E+03	-	1.36E+09		
Tin	7440-31-5	No	No		_	_		6.00E-01	U	_		1		1	_	-	-	_	_	1.36E+09	4.69E+03	nc
Titanium	7440-32-6	No	No		_	_		_	_	_		1		1	_	_	_	_	-	1.36E+09		
Titanium Tetrachloride	7550-45-0	No	Yes		-	_		_		1.00E-04	U	1	_	1	_	_	_	_	-	1.36E+09	1.42E+04	nc
Toluene	108-88-3	No	Yes		-	-		8.00E-02	U	5.00E+00	U	1	-	1	4.29E+03	2.71E-01	5.26E+02	2.34E+02	8.18E+02	1.36E+09	4.89E+02	nc
Toluene-2,4-diisocyanate	584-84-9	No	Yes		-	1.10E-05	U	-		8.00E-06	U	1	-	1	7.61E+05	4.54E-04	3.76E+01	7.42E+03	_	1.36E+09	6.35E-01	nc
Toluene-2,5-diamine	95-70-5	No	No	1.80E-01	U	-		2.00E-04	U	-		1	0.1	1	-	3.04E-07	7.72E+04	5.54E+01	-	1.36E+09	1.26E+00	nc
Toluene-2,6-diisocyanate	91-08-7	No	Yes		-	1.10E-05	U	-		8.00E-06	U	1	-	1	6.32E+05	4.54E-04	3.76E+01	7.58E+03	1.71E+03	1.36E+09	5.27E-01	nc
Toluenediamine, 2,3-	2687-25-4	No	No		-	-		-		-		1	0.1	1	_	3.04E-07	2.46E+04	5.65E+01	-	1.36E+09		
Toluenediamine, 3,4-	496-72-0	No	No		_	-		-		-		1	0.1	1	_	3.06E-07	2.69E+04	5.54E+01	_	1.36E+09		
Toluidine, o- (Methylaniline, 2-)	95-53-4	No	No	1.60E-02	U	5.10E-05	U	-		-		1	0.1	1	_	8.09E-05	1.66E+04	1.15E+02	-	1.36E+09	3.39E+01	ca
Toluidine, p-	106-49-0	No	No	3.00E-02	U	-		4.00E-03	U	-		1	0.1	1	-	8.26E-05	6.50E+03	1.13E+02	-	1.36E+09	1.81E+01	ca**
Total Petroleum Hydrocarbons (Aliphatic High)	NA	No	Yes		-	-		3.00E+00	U	-		1		1	1.06E+03	3.34E+02	3.70E-03	4.82E+03	3.41E-01	1.36E+09	2.35E+04	cs
Total Petroleum Hydrocarbons (Aliphatic Low)	NA	No	Yes	-	-	-		-		6.00E-01	U	1	-	1	8.29E+02	7.36E+01	9.50E+00	1.32E+02	1.41E+02		5.19E+01	nc
	NA	No	Yes			_		1.00E-02	U	1.00E-01	U	1		1	1.04E+03	1.39E+02	2.20E-01	7.96E+02	6.86E+00	1.36E+09	9.56E+00	CS
Total Petroleum Hydrocarbons (Aripmatic Medium) Total Petroleum Hydrocarbons (Aripmatic Medium)	NA	No	No	_		-		4.00E-02	U	1.002-01	0	1	0.1	1	1.072100	3.62E-04	2.60E-01	5.55E+04	0.002100	1.36E+09	2.53E+02	nc
		No	Yes	_		-		4.00E-02 4.00E-03		3.00E-02	П	1		1	3.54E+03	2.27E-01	1.79E+03	1.46E+02	1.82E+03		8.18E+00	
Total Petroleum Hydrocarbons (Aromatic Low)	NA					-					U	1	-	1					1.025703			nc
Total Petroleum Hydrocarbons (Aromatic Medium)	NA 9001 35 3	No	Yes	1 105 : 00	-	2 205 04	11	4.00E-03	U	3.00E-03	U	•	0.1	I 4	5.24E+04	1.96E-02	2.78E+01	2.01E+03	-	1.36E+09	1.08E+01	nc
Tralements	8001-35-2	No	No	1.10E+00	U	3.20E-04	U	7 505 00		-		1	0.1	1	-	2.45E-04	5.50E-01	7.72E+04		1.36E+09	4.93E-01	ca
Tralomethrin	66841-25-6	No	No	<u> </u>	-	-		7.50E-03	U	-		1	0.1	1	2 265 102	1.61E-08	8.00E-02	1.91E+05			4.74E+01	nc
Tri-n-butyltin	688-73-3	No	Yes	_	-	-		3.00E-04	U	-		1	_	1	3.36E+03	6.21E+01	7.30E-03	8.09E+03	-	1.36E+09	2.35E+00	nc

						Inhalation										Henry's			Soil	Particulate		
			V00	Ingestion SF	250	Unit Risk		Chronic	Chronic	Chronic RfC	Chronic				Volatilization Factor	Law	_	V	Saturation	Emission	Screening	
Chemical	CAS Number	Mutagon?	VOC	(mg/kg-day) ⁻¹	SFO Ref	(ug/m ³) ⁻¹	IUR Ref	1	RfD Ref	(mg/m³)	RfC Ref	GIABS	ABS	RBA	(m³/kg)	Constant (unitless)	S (mg/L)	K _{oc} (cm3/g)	Concentration (mg/kg)	Factor (m³/kg)	Level (mg/kg)	[basis]
Triacetin	102-76-1	No	No	(ilig/kg-day)	IXGI	(ug/iii)	IXEI	8.00E+01	U	(ilig/ili /	IXGI	1	0.1	1	(III /kg)	5.03E-07	5.80E+04	4.07E+01	(Ilig/kg)	1.36E+09	5.06E+05	cm
Triadimefon	43121-43-3	No	No					3.40E-02	U	_		1	0.1	1		3.32E-09	7.15E+01	2.99E+02	_	1.36E+09	2.15E+02	nc
Triallate	2303-17-5	No	Yes	7.17E-02	U	<u>-</u>		2.50E-02	U	_		1	0.1	1	3.62E+05	4.91E-04	4.00E+00	1.01E+03	_	1.36E+09	9.70E+00	ca*
Trialuminum sodium tetra	2000-17-0	140	103	7.172-02				2.30L-02		_		·		1	3.02L103	4.51L-04	4.002.00	1.012.03	_	1.502 105	3.7 OL 100	- Ca
decahydrogenoctaorthophosphate (dihydrate)	15136-87-5	No	No	_		-		4.86E+01	U	_		1	-	1	_	-	_	_	_	1.36E+09	3.80E+05	cm
Triasulfuron	82097-50-5	No	No	_		-		1.00E-02	U	-		1	0.1	1	-	1.32E-11	3.20E+01	4.27E+02	-	1.36E+09	6.32E+01	nc
Triaziquone	68-76-8	No	No	-		-		-		-		1	0.1	1	-	3.78E-14	1.07E+05	1.07E+02	-	1.36E+09		
Tribenuron-methyl	101200-48-0	No	No	-		-		8.00E-03	U	-		1	0.1	1	-	4.17E-12	5.00E+01	9.47E+01	-	1.36E+09	5.06E+01	nc
Tribromobenzene, 1,2,4-	615-54-3	No	Yes	-		-		5.00E-03	U	-		1	-	1	4.84E+04	1.39E-02	4.90E+00	6.14E+02	-	1.36E+09	3.91E+01	nc
Tribromochloromethane	594-15-0	No	Yes	_		-		-		-		1	-	1	4.10E+04	1.62E-03	2.35E+02	4.39E+01	-	1.36E+09		
Tribromodiphenyl Ether	49690-94-0	No	Yes	-		-		-		-		1	-	1	7.79E+05	8.30E-04	2.68E-01	8.25E+03	-	1.36E+09		
Tribromophenol, 2,4,6-	118-79-6	No	No	-		-		9.00E-03	U	-		1	0.1	1	-	1.45E-06	7.00E+01	8.05E+02	-	1.36E+09	5.69E+01	nc
Tributyl Phosphate	126-73-8	No	No	9.00E-03	U	-		1.00E-02	U	-		1	0.1	1	-	5.76E-05	2.80E+02	2.35E+03	-	1.36E+09	6.03E+01	ca**
Tributyltin	56573-85-4	No	Yes	-		-		-		-		1	-	1	3.12E+03	5.27E+01	1.70E+01	1.21E+04	-	1.36E+09		
Tributyltin Compounds	NA	No	No	-		-		3.00E-04	U	-		1	0.1	1	-	-	-	-	-	1.36E+09	1.90E+00	nc
Tributyltin Oxide	56-35-9	No	No	_		-		3.00E-04	U	-		1	0.1	1	-	1.23E-05	1.95E+01	2.59E+07	-	1.36E+09	1.90E+00	nc
Tributyltin chloride	1461-22-9	No	Yes	-		-		-		-		1	-	1	1.67E+04	3.12E+00	1.70E+01	1.21E+04	1.25E+03	1.36E+09		
Tributyltin fluoride	1983-10-4	No	Yes	-		-		-		-		1	-	1	3.74E+03	3.39E+01	6.00E+00	1.21E+04	-	1.36E+09		
Tributyltin linoleate	24124-25-2	No	Yes	_		-		-		-		1	-	1	1.21E+05	1.71E+02	1.98E-07	2.55E+07	-	1.36E+09		
Tributyltin methacrylate	2155-70-6	No	Yes	_		-		-		-		1	-	1	1.02E+04	1.96E+00	1.27E+00	4.92E+03	-	1.36E+09		
Tributyltin naphthenate	85409-17-2	No	No	_		-		-		-		1	0.1	1	-	-	_	-	-	1.36E+09		
Tricaine Methanesulfonate	886-86-2	No	No	-		-		-		-		1	0.1	1	-	6.66E-07	1.00E+05	5.90E+01	-	1.36E+09		
Tricalcium phosphate	7758-87-4	No	No	-		-		4.86E+01	U	-		1	-	1	-	-	-	-	-	1.36E+09	3.80E+05	cm
Trichloro-1,2,2-trifluoroethane, 1,1,2-	76-13-1	No	Yes	-		-		3.00E+01	U	5.00E+00	U	1	-	1	1.29E+03	2.15E+01	1.70E+02	1.97E+02	9.10E+02	1.36E+09	6.68E+02	nc
Trichloro-2'-hydroxydiphenylether	3380-34-5	No	No	-		-		-		-		1	0.1	1	-	2.04E-07	1.00E+01	2.34E+04	-	1.36E+09		
Trichloroacetic Acid	76-03-9	No	No	7.00E-02	U	-		2.00E-02	U	-		1	0.1	1	-	5.52E-07	5.46E+04	3.23E+00	-	1.36E+09	7.75E+00	ca*
Trichloroaniline HCl, 2,4,6-	33663-50-2	No	No	2.90E-02	U	-		-		-		1	0.1	1	-	2.94E-12	2.10E+01	1.27E+03	-	1.36E+09	1.87E+01	ca
Trichloroaniline, 2,4,5-	636-30-6	No	No	_		-		-		-		1	0.1	1	-	3.17E-05	5.16E+01	6.67E+02	-	1.36E+09		
Trichloroaniline, 2,4,6-	634-93-5	No	No	7.00E-03	U	-		3.00E-05	U	-		1	0.1	1	-	5.48E-05	4.00E+01	4.44E+03	-	1.36E+09	1.90E-01	nc
Trichlorobenzene	12002-48-1	No	Yes	-		-		-		-		1	-	1	3.46E+04	7.73E-02	3.00E+01	1.33E+03	-	1.36E+09		
Trichlorobenzene, 1,2,3-	87-61-6	No	Yes	-		-		8.00E-04	U	-		1	-	1	3.22E+04	5.11E-02	1.80E+01	1.38E+03	-	1.36E+09	6.26E+00	nc
Trichlorobenzene, 1,2,4-	120-82-1	No	Yes	2.90E-02	U	-		1.00E-02	U	2.00E-03	U	1	-	1	2.99E+04	5.81E-02	4.90E+01	1.36E+03	4.05E+02	1.36E+09	5.78E+00	nc
Trichloroethane, 1,1,1-	71-55-6	No	Yes	-		-		2.00E+00	U	5.00E+00	U	1	-	1	1.65E+03	7.03E-01	1.29E+03	4.39E+01	6.40E+02	1.36E+09	8.15E+02	CS
Trichloroethane, 1,1,2-	79-00-5	No	Yes	5.70E-02	U	1.60E-05	U	4.00E-03	U	2.00E-04	U	1	-	1	7.22E+03	3.37E-02	4.59E+03	6.07E+01	2.16E+03	1.36E+09	1.50E-01	nc
Trichloroethylene	79-01-6	Yes	Yes	4.60E-02	U	4.10E-06	U	5.00E-04	U	2.00E-03	U	1	-	1	2.21E+03	4.03E-01	1.28E+03	6.07E+01	6.92E+02	1.36E+09	4.12E-01	nc
Trichlorofluoromethane	75-69-4	No	Yes	-		-		3.00E-01	U	-		1	-	1	1.04E+03	3.97E+00	1.10E+03	4.39E+01	1.23E+03	1.36E+09	2.35E+03	CS
Trichlorophenol, 2,4,5-	95-95-4	No	No			-		1.00E-01	U	-		1	0.1	1		6.62E-05	1.20E+03	1.60E+03	-	1.36E+09	6.32E+02	nc
Trichlorophenol, 2,4,6-	88-06-2	No	No	1.10E-02	U	3.10E-06	U	1.00E-03	U	-		1	0.1	1	-	1.06E-04	8.00E+02	3.81E+02	-	1.36E+09	6.32E+00	nc
Trichlorophenoxyacetic Acid, 2,4,5-	93-76-5	No	No	-		-		1.00E-02	U	-		1	0.1	1	-	3.55E-07	2.78E+02	1.07E+02	-	1.36E+09	6.32E+01	nc
Trichlorophenoxypropionic acid, -2,4,5	93-72-1	No	No	-		-		8.00E-03	U	-		1	0.1	1	-	3.70E-07	7.10E+01	1.75E+02	-	1.36E+09	5.06E+01	nc
Trichloropropane, 1,1,2-	598-77-6	No	Yes	-		-		5.00E-03	U	-		1	-	1	1.50E+04	1.30E-02	1.90E+03	9.49E+01	1.28E+03	1.36E+09	3.91E+01	nc
Trichloropropane, 1,2,3-	96-18-4	Yes	Yes	3.00E+01	U	-		4.00E-03	U	3.00E-04	U	1	-	1	1.57E+04	1.40E-02	1.75E+03	1.16E+02	1.40E+03	1.36E+09	5.10E-03	ca*
Trichloropropene, 1,2,3-	96-19-5	No	Yes	-		-		3.00E-03	U	3.00E-04	U	1	-	1	2.34E+03	7.20E-01	3.34E+02	1.16E+02	3.11E+02	1.36E+09	7.29E-02	nc
Trichlorotoluene, 2,3,6-	2077-46-5	No	Yes	-		-		-		-		1	-	1	4.23E+04	6.13E-02	6.97E+00	2.27E+03	-	1.36E+09		
Trichlorotoluene, alpha 2,6-	2014-83-7	No	Yes	-		-		-		-		1	-	1	7.03E+04	1.17E-02	1.30E+01	1.20E+03	-	1.36E+09		
Triclorophenols (total)	NA	No	No	-		-		-		-		1	0.1	1	-	-	-	-	-	1.36E+09		
Tricresyl Phosphate (TCP)	1330-78-5	No	No	-		-		2.00E-02	U	-		1	0.1	1	-	3.30E-05	3.60E-01	4.71E+04	-	1.36E+09	1.26E+02	nc

Chemical CAS Nui	nhor	Mutagen?	voc		SFO Ref		Chronic IUR RfD Ref (mg/kg-day	Chronic RfD Ref	Chronic RfC (mg/m³)	Chronic RfC Ref	GIABS	ABS	RBA	Volatilization Factor (m³/kg)	Henry's Law Constant (unitless)	S (mg/L)	K _{oc} (cm3/g)	Soil Saturation Concentration (mg/kg)	Emission Factor (m³/kg)	Screening Level (mg/kg)	[basis]
Tridiphane 58138-08			No	(mg/kg-day) ⁻¹	Kei	(ug/iii)	Ref (mg/kg-day) 3.00E-03	U	(IIIg/III)	Kei	1	0.1	1	(III /kg)	1.68E-05	1.14E+00	3.45E+03	(Ilig/kg)	1.36E+09	1.90E+01	nc
Tridymite 15468-32			No	-		-	3.00L-03		-		1	0.1	1	-	1.00L-03	1.142100	3.43L103	_	1.36E+09	1.902101	IIC
Triethyl Lead 5224-23-7			Yes			-			_		1		1	1.30E+03	1.40E+01	1.39E+03	2.21E+02	5.67E+03	1.36E+09		
Triethyl phosphorothioate [O,O,O-] 126-68-1			Yes			-		_	_		1		1	2.81E+04	1.40E-01	2.50E+02	1.38E+02	2.33E+02	1.36E+09		
Triethylamine 121-44-8			Yes	-		-		_	7.00E-03	U	1		1	1.58E+04	6.09E-03	6.86E+04	5.08E+01	2.78E+04	1.36E+09	1.15E+01	nc
Triethylene Glycol 112-27-6			No	<u>-</u>		-	2.00E+00	U	7.00E-03	- 0	1	0.1	1	1.36E+04	1.29E-09	1.00E+06	1.00E+01	2.702+04	1.36E+09	1.26E+04	nc
Trifluoroethane, 1,1,1- 420-46-2			Yes			-	2.00L100	- 0	2.00E+01	U	1	0.1	1	7.12E+02	3.15E+01	7.61E+02	4.39E+01	4.81E+03	1.36E+09	1.48E+03	nc
Trifluralin 1582-09-8			Yes	7.70E-03	U	-	7.50E-03	U	2.000-01	- 0	1		1	5.12E+05	4.21E-03	1.84E-01	1.64E+04	4.012+03	1.36E+09	5.87E+01	nc
Trimagnesium phosphate 7757-87-7			No	7.70E-03	0	-	4.86E+01	U	-		1		1	J. 12E+03	4.212-03	1.04E-01	1.046+04	-	1.36E+09	3.80E+05	
Trimethyl Lead 7442-13-9			Yes			-	4.00L+01	0	-		1		1	1.12E+03	5.97E+00	2.17E+02	3.18E+01	3.08E+02	1.36E+09	3.60E+03	cm
Trimethyl Phosphate 512-56-1			No	2.00E-02	U	-	1.00E-02	U	-		1	0.1	1	1.12E+03	2.94E-07	5.00E+05	1.06E+01	3.00L+02	1.36E+09	2.71E+01	ca**
Trimethyl-4-Propenylnaphthalene, 1,2,3- 26137-53				2.00E-02	U	-	1.00E-02	U	-		1	0.1	. 1	5.05E+05	9.55E-03	9.43E-02	3.94E+04	-	1.36E+09	2.7 12+01	Ua .
Trimethylbenzene, 1,2,3- 526-73-8			Yes Yes	-		-	1.00E-02	- U	6.00E-02	U	1	-	1	9.44E+03	9.55E-03 1.78E-01	9.43E-02 7.52E+01	3.94E+04 6.27E+02	2.93E+02	1.36E+09 1.36E+09	3.37E+01	nc
Trimethylbenzene, 1,2,4- 95-63-6						-	1.00E-02 1.00E-02	U	6.00E-02 6.00E-02	U	1	-	1		2.52E-01	7.52E+01 5.70E+01	6.27E+02 6.14E+02	2.93E+02 2.18E+02	1.36E+09 1.36E+09	3.37E+01 3.03E+01	nc
• • • • • • • • • • • • • • • • • • • •			Yes			-							1	7.91E+03							nc
Trimethylbenzene, 1,3,5- 108-67-8			Yes	-		-	1.00E-02	U	6.00E-02	U	1			6.61E+03	3.59E-01	4.82E+01	6.02E+02	1.82E+02	1.36E+09	2.70E+01	nc
Trimethylethyl Lead 1762-26-7			Yes	-		-		-	-		1		1	1.44E+03	1.44E+01	7.65E+00	8.60E+01	2.56E+01	1.36E+09		
Trimethylpentane, 2,2,4- 540-84-1			Yes	-		-	4.005.00		-		1	-	1	9.37E+02	1.24E+02	2.44E+00	2.40E+02	6.10E+01	1.36E+09	7.005 - 04	
Trimethylpentene, 2,4,4- 25167-70			Yes	-		-	1.00E-02	U	-		1	-	1	1.00E+03	3.05E+01	4.04E+00	2.40E+02	2.95E+01	1.36E+09	7.82E+01	CS
Trinitrobenzene, 1,3,5-			No	-		-	3.00E-02	U	-		1	0.019	1	-	2.66E-07	2.78E+02	1.68E+03	-	1.36E+09	2.25E+02	nc
Trinitrotoluene, 2,4,6- 118-96-7			No	3.00E-02	U	-	5.00E-04	U	-		1	0.032	1	-	8.50E-07	1.15E+02	2.81E+03	-	1.36E+09	3.63E+00	nc
Triphenylphosphine Oxide 791-28-6			No	-		-	2.00E-02	U	-		1	0.1	1	-	2.15E-08	6.28E+01	1.95E+03	-	1.36E+09	1.26E+02	nc
Triphenyltin 668-34-8			Yes	-		-		-	-		1	-	1	2.02E+06	3.21E-03	1.37E-01	3.36E+05	-	1.36E+09		
Tripotassium phosphate 7778-53-2			No	-		-	4.86E+01	U	-		1	-	1	-	-	-	-	-	1.36E+09	3.80E+05	cm
Tripropyl Lead 6618-03-7			Yes	-		-		-	-		1	-	1	1.67E+03	3.27E+01	2.15E-01	1.34E+03	3.08E+00	1.36E+09		
Tris(1,3-Dichloro-2-propyl) Phosphate 13674-87			No	-		-	2.00E-02	U	-		1	0.1	1	-	1.07E-07	7.00E+00	1.11E+04	-	1.36E+09	1.26E+02	nc
Tris(1-chloro-2-propyl)phosphate 13674-84			No	-		-	1.00E-02	U	-		1	0.1	1	-	2.44E-06	1.20E+03	1.60E+03	-	1.36E+09	6.32E+01	nc
Tris(2,3-dibromopropyl)phosphate 126-72-7	I	No	Yes	2.30E+00	U	6.60E-04	U	-	-		1	-	1	9.03E+05	8.91E-04	8.00E+00	9.71E+03	4.67E+02	1.36E+09	2.80E-01	ca
Tris(2-chloroethyl)phosphate 115-96-8			No	2.00E-02	U	-	7.00E-03	U	-		1	0.1	1	-	1.35E-04	7.00E+03	3.88E+02	-	1.36E+09	2.71E+01	ca**
Tris(2-ethylhexyl)phosphate 78-42-2			No	3.20E-03	U	-	1.00E-01	U	-		1	0.1	1	-	3.21E-06	6.00E-01	2.47E+06	-	1.36E+09	1.70E+02	ca**
Trisbutoxyethyl Phosphate 78-51-3		No	No	-		-		-	-		1	0.1	1	-	4.91E-10	1.10E+03	1.27E+03	-	1.36E+09		
Trisodium phosphate 7601-54-9)	No	No	-		-	4.86E+01	U	-		1	-	1	-	-	-	-	-	1.36E+09	3.80E+05	cm
Trithion 786-19-6	I	No	No	-		-		-	-		1	0.1	1	-	8.79E-06	6.30E-01	8.31E+03	-	1.36E+09		
Tungsten 7440-33-7			No	-		-	8.00E-04	U	-		1	-	1	-	-	-	-	-	1.36E+09	6.26E+00	nc
Uranium (Soluble Salts) NA			No	-		-	2.00E-04	U	4.00E-05	U	1	-	1	-	-	-	-	-	1.36E+09	1.56E+00	nc
Urea 57-13-6			No	-		-		-	-		1	0.1	1	-	1.38E-05	5.45E+05	3.15E+00	-	1.36E+09		
Urethane 51-79-6			No	1.00E+00	U	2.90E-04	U	-	-		1	0.1	1	-	2.63E-06	4.80E+05	1.21E+01	-	1.36E+09	1.22E-01	ca
Vanadium Pentoxide 1314-62-1		No	No	-		8.30E-03	U 9.00E-03	U	7.00E-06	U	0.026	-	1	-	-	7.00E+02	-	-	1.36E+09	6.57E+01	nc
Vanadium Sulfate 36907-42	·3 I	No	No	-		-		-	-		0.026	-	1	-		-	-	-	1.36E+09		
Vanadium and Compounds 7440-62-2	! I	No	No	-		-	5.04E-03	U	1.00E-04	U	0.026	-	1	-	-	-	-	-	1.36E+09	3.93E+01	nc
Vanadyl Sulfate 27774-13	·6 I	No	No	-				-	-		1	-	1	-		-	-	-	1.36E+09		
Vernolate 1929-77-7	'	No	Yes	-		-	1.00E-03	U	-		1	-	1	1.23E+05	1.26E-03	9.00E+01	2.99E+02	-	1.36E+09	7.82E+00	nc
Vinclozolin 50471-44	·8 I	No	No	-		-	1.20E-03	U	-		1	0.1	1	-	7.11E-07	2.60E+00	2.84E+02	-	1.36E+09	7.59E+00	nc
Vinyl Acetate 108-05-4	I	No	Yes	-		-	1.00E+00	U	2.00E-01	U	1	-	1	4.40E+03	2.09E-02	2.00E+04	5.58E+00	2.75E+03	1.36E+09	9.06E+01	nc
Vinyl Bromide 593-60-2	I	No	Yes	-		3.20E-05	U	-	3.00E-03	U	1	-	1	1.37E+03	5.03E-01	7.60E+03	2.17E+01	2.47E+03	1.36E+09	1.20E-01	ca**
Vinyl Chloride 75-01-4	,	Yes	Yes	7.20E-01	U	4.40E-06	U 3.00E-03	U	1.00E-01	U	1	-	1	9.55E+02	1.14E+00	8.80E+03	2.17E+01	3.92E+03	1.36E+09	5.92E-02	ca
Warfarin 81-81-2	I	No	No	-		-	3.00E-04	U	-		1	0.1	1	-	1.13E-07	1.70E+01	4.26E+02	-	1.36E+09	1.90E+00	nc
Xylene, P- 106-42-3	I	No	Yes	-		-	2.00E-01	U	1.00E-01	U	1	-	1	5.58E+03	2.82E-01	1.62E+02	3.75E+02	3.89E+02	1.36E+09	5.62E+01	nc

Site-specific

Resident Screening Levels (RSL) for Soil

Key: I = IRIS; P = PPRTV; D = DWSHA; O = OPP; A = ATSDR; C = Cal EPA; X = APPENDIX PPRTV SCREEN (See FAQ #27); H = HEAST; F = See user guide Section 2.3.5; L = see user guide on lead; M = mutagen; S = see user guide Section 5; V = volatile; R = RBA applied (See User Guide for Arsenic notice); c = cancer; n = noncancer; * = where: n SL < 100X c SL; *** = where n SL < 100X c SL; ** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; ** = where n SL <

			voc	Ingestion SF SFC	Inhalation Unit Risk	IUR	Chronic RfD	Chronic RfD	Chronic RfC	Chronic RfC				Volatilization Factor	Henry's Law Constant	s	K _{oc}	Soil Saturation Concentration	Particulate Emission Factor	Screening Level	
Chemical	CAS Number	Mutagen?	?	(mg/kg-day) ⁻¹ Ref	(ug/m³) ⁻¹	Ref	(mg/kg-day)	Ref	(mg/m³)	Ref	GIABS	ABS	RBA	(m³/kg)	(unitless)	(mg/L)	(cm3/g)	(mg/kg)	(m³/kg)	(mg/kg)	[basis]
Xylene, m-	108-38-3	No	Yes	-		-	2.00E-01	U	1.00E-01	U	1		- 1	5.46E+03	2.94E-01	1.61E+02	3.75E+02	3.87E+02	1.36E+09	5.50E+01	nc
Xylene, o-	95-47-6	No	Yes	-		-	2.00E-01	U	1.00E-01	U	1		- 1	6.45E+03	2.12E-01	1.78E+02	3.83E+02	4.34E+02	1.36E+09	6.45E+01	nc
Xylenes	1330-20-7	No	Yes	-		-	2.00E-01	U	1.00E-01	U	1		- 1	5.74E+03	2.71E-01	1.06E+02	3.83E+02	2.60E+02	1.36E+09	5.76E+01	nc
Ytterbium	7440-64-4	No	No	-		-	-		-		1		- 1	-	-	-	-	-	1.36E+09		
Yttrium	7440-65-5	No	No	-		-	-		-		1		- 1	-	-	-	-	-	1.36E+09		
Zinc Cyanide	557-21-1	No	No	-		-	5.00E-02	U	-		1		- 1	-	-	4.70E+00	-	-	1.36E+09	3.91E+02	nc
Zinc Phosphide	1314-84-7	No	No	-		-	3.00E-04	U	-		1		- 1	-	-	-	-	-	1.36E+09	2.35E+00	nc
Zinc and Compounds	7440-66-6	No	No	-		-	3.00E-01	U	-		1		- 1	-	-	-	-	-	1.36E+09	2.35E+03	nc
Zineb	12122-67-7	No	No	-		-	5.00E-02	U	-		1	0.1	1	-	1.11E-07	1.00E+01	1.35E+03	-	1.36E+09	3.16E+02	nc
Zirconium	7440-67-7	No	No	-		-	8.00E-05	U	-		1		- 1	-	-	-	-	-	1.36E+09	6.26E-01	nc

Output generated 05MAY2017:11:57:51

Site-specific Composite Worker Equation Inputs for Soil

Variable	Value
TR (target cancer risk) unitless	0.000001
THQ (target hazard quotient) unitless	0.1
AT _w (averaging time)	365
EF _w (exposure frequency) d/yr	250
ED _w (exposure duration) yr	25
ET _w (exposure time) hr	8
LT (lifetime) yr	70
BW _w (body weight)	80
IR _w (soil ingestion rate) mg/day	100
SA _w (surface area) cm²/day	3527
AF _w (skin adherence factor) mg/cm ²	0.12
City _{PEF} (Climate Zone) Selection	Default
A _s (acres)	0.5
Q/C _{wp} (inverse of the ratio of the geometric mean air concentration to the emission flu	93.77
PEF (particulate emission factor) m³/kg	1359344438
A (PEF Dispersion Constant)	16.2302
B (PEF Dispersion Constant)	18.7762
C (PEF Dispersion Constant)	216.108
V (fraction of vegetative cover) unitless	0.5
U _m (mean annual wind speed) m/s	4.69
U _t (equivalent threshold value)	11.32
$F(x)$ (function dependant on U_m/U_t) unitless	0.194
City _{VF} (Climate Zone) Selection	Default
A _s (acres)	0.5
Q/C _{vol} (inverse of the ratio of the geometric mean air concentration to the emission flu	68.18
foc (fraction organic carbon in soil) g/g	0.006
p _b (dry soil bulk density) g/cm ³	1.5
p _s (soil particle density) g/cm ³	2.65
n (total soil porosity) L _{pore} /L _{soil}	0.43396
a (air-filled soil porosity) L _{air} /L _{soil}	0.28396
w (water-filled soil porosity) Lwater/Lsoil	0.15
T (exposure interval) s	819936000
A (VF Dispersion Constant)	11.911
B (VF Dispersion Constant)	18.4385
C (VF Dispersion Constant)	209.7845
City _{VF mass-loading} (Climate Zone) Selection	Default
VF _{ml} (volitization factor - mass-limit) m ³ /kg	
Q/C _{vol} (inverse of the ratio of the geometric mean air concentration to the emission fl	68.18
A _s (acres)	0.5
T (exposure interval) yr	26
d _s (depth of source) m	
p _b (dry soil bulk density) g/cm ³	1.5
A (VF Dispersion Constant - Mass Limit)	11.911
B (VF Dispersion Constant - Mass Limit)	18.4385
C (VF Dispersion Constant - Mass Limit)	209.7845

Output generated 05MAY2017:12:14:59

Site-specific

Composite Worker Screening Levels (RSL) for Soil

Key: I = IRIS; P = PPRTV; D = DWSHA; O = OPP; A = ATSDR; C = Cal EPA; X = APPENDIX PPRTV SCREEN (See FAQ #27); H = HEAST; F = See user guide Section 2.3.5; L = see user guide on lead; M = mutagen; S = see user guide Section 5; V = volatile; R = RBA applied (See User Guide for Arsenic notice); c = cancer; n = noncancer; * = where: n SL < 100X c SL; *** = where n SL < 10X c SL; SSL values are based on DAF=1; m = Concentration may exceed Csat (See User Guide)

Chemical	CAS Number	Mutagen?	VOC?	Ingestion SF (mg/kg-day) ⁻¹		Inhalation Unit Risk (ug/m³) ⁻¹	IUR Ref	, , ,	Chronic RfD Ref	Chronic RfC (mg/m³)	Chronic RfC Ref	GIABS	ABS	RBA	Volatilization Factor (m³/kg)	Henry's Law Constant (unitless)	Soil Saturation Concentratio n (mg/kg)	S (mg/L)	Koc (cm3/g)	Particulate Emission Factor (m³/kg)	Screening Level (mg/kg)	[basis]
Acenaphthene	83-32-9	No	Yes	_			-	6.00E-02	U	_		1	0.13	1	1.41E+05	7.52E-03	_	3.90E+00	5.03E+03	1.36E+09	4.52E+03	nc
Acenaphthylene	208-96-8	No	Yes	-			-	-		-		1	0.13	1	1.89E+05	4.66E-03	-	1.61E+01	5.03E+03	1.36E+09		
Acephate	30560-19-1	No	No	-			-	1.20E-03	U	-		1	0.1	1	-	2.05E-11	-	8.18E+05	1.00E+01	1.36E+09	9.85E+01	nc
Acetaldehyde	75-07-0	No	Yes	-		2.20E-06	U	-		9.00E-03	U	1	-	1	8.70E+03	2.73E-03	1.07E+05	1.00E+06	1.00E+00	1.36E+09	3.43E+01	nc
Acetochlor	34256-82-1	No	No	-			-	2.00E-02	U	-		1	0.1	1	-	9.12E-07	-	2.23E+02	2.98E+02	1.36E+09	1.64E+03	nc
Acetone	67-64-1	No	Yes	-			-	9.00E-01	U	3.09E+01	U	1	-	1	1.37E+04	1.43E-03	1.14E+05	1.00E+06	2.36E+00	1.36E+09	6.70E+04	nc
Acetone Cyanohydrin	75-86-5	No	No	-			-	-		2.00E-03	U	1	0.1	1	-	8.05E-08	-	1.00E+06	1.00E+00	1.36E+09	1.19E+06	cm
Acetonitrile	75-05-8	No	Yes	-			-	-		6.00E-02	U	1	-	1	1.30E+04	1.41E-03	1.28E+05	1.00E+06	4.67E+00	1.36E+09	3.41E+02	nc
Acetophenone	98-86-2	No	Yes	-			-	1.00E-01	U	-		1	-	1	5.98E+04	4.25E-04	2.52E+03	6.13E+03	5.19E+01	1.36E+09	1.17E+04	cs
Acetylaminofluorene, 2-	53-96-3	No	No	3.80E+00	U	1.30E-03	U	-		-		1	0.1	1	-	7.85E-09	-	5.53E+00	2.21E+03	1.36E+09	6.05E-01	ca
Acifluorofen	50594-66-6	No	No	_			-	-		_		1	0.1	1	-	2.47E-09	-	1.20E+02	3.88E+03	1.36E+09		
Acridine	260-94-6	No	No	-			-	-		-		1	0.1	1	-	1.62E-05	-	3.84E+01	1.64E+04	1.36E+09		
Acrolein	107-02-8	No	Yes	-			-	5.00E-04	U	2.00E-05	U	1	-	1	6.90E+03	4.99E-03	2.27E+04	2.12E+05	1.00E+00	1.36E+09	6.04E-02	nc
Acrylamide	79-06-1	Yes	No	5.00E-01	U	1.00E-04	U	2.00E-03	U	6.00E-03	U	1	0.1	1	-	6.95E-08	-	3.90E+05	5.69E+00	1.36E+09	4.60E+00	ca*
Acrylic Acid	79-10-7	No	Yes	-			-	5.00E-01	U	1.00E-03	U	1	-	1	9.53E+04	1.51E-05	1.09E+05	1.00E+06	1.44E+00	1.36E+09	4.17E+01	nc
Acrylonitrile	107-13-1	No	Yes	5.40E-01	U	6.80E-05	U	4.00E-02	U	2.00E-03	U	1	-	1	7.68E+03	5.64E-03	1.13E+04	7.45E+04	8.51E+00	1.36E+09	1.13E+00	ca**
Adiponitrile	111-69-3	No	No	-			-	-		6.00E-03	U	1	0.1	1	-	4.95E-08	-	8.00E+04	2.02E+01	1.36E+09	3.57E+06	cm
Alachlor	15972-60-8	No	No	5.60E-02	U		-	1.00E-02	U	-		1	0.1	1	-	3.40E-07	-	2.40E+02	3.12E+02	1.36E+09	4.10E+01	ca*
Aldicarb	116-06-3	No	No	-			-	1.00E-03	U	-		1	0.1	1	-	5.89E-08	-	6.03E+03	2.46E+01	1.36E+09	8.21E+01	nc
Aldicarb Sulfone	1646-88-4	No	No	-			-	1.00E-03	U	-		1	0.1	1	-	1.38E-07	-	1.00E+04	1.00E+01	1.36E+09	8.21E+01	nc
Aldicarb sulfoxide	1646-87-3	No	No	-			-	-		-		1	0.1	1	-	3.96E-08	-	2.80E+04	1.00E+01	1.36E+09		
Aldrin	309-00-2	No	Yes	1.70E+01	U	4.90E-03	U	3.00E-05	U	-		1	-	1	1.72E+06	1.80E-03	-	1.70E-02	8.20E+04	1.36E+09	1.84E-01	ca*
Aliphatic Chlorinated Hydrocarbons (each)	NA	No	No	-			-	-		-		1	0.1	1	-		-	-	-	1.36E+09		
Aliphatic Chlorinated Hydrocarbons (total)	NA	No	No	_			-	_		_		1	0.1	1	_	-	_	_	_	1.36E+09		
Alizarin Red Compounds	NA	No	No	-			-	-		-		1	0.1	1	-		-	-		1.36E+09		
Allyl Alcohol	107-18-6	No	Yes	-			-	5.00E-03	U	1.00E-04	U	1	-	1	3.41E+04	2.04E-04	1.11E+05	1.00E+06	1.90E+00	1.36E+09	1.49E+00	nc
Allyl Chloride	107-05-1	No	Yes	2.10E-02	U	6.00E-06	U	_		1.00E-03	U	1	_	1	1.58E+03	4.50E-01	1.42E+03	3.37E+03	3.96E+01	1.36E+09	6.93E-01	nc
Aluminum	7429-90-5	No	No	-			-	1.00E+00	U	5.00E-03	U	1	-	1	-	-	-	-	-	1.36E+09	1.12E+05	cm
Aluminum Phosphide	20859-73-8	No	No	_			-	4.00E-04	U	-		1	_	1	-		-	_	-	1.36E+09	4.67E+01	nc

Composite Worker Screening Levels (RSL) for Soil

Chemical	CAS Number	Mutagen?	VOC?	Ingestion SF (mg/kg-day) ⁻¹		Inhalation Unit Risk (ug/m³) ⁻¹	IUR Ref	Chronic RfD (mg/kg- day)	Chronic RfD Ref	Chronic RfC (mg/m³)	Chronic RfC Ref	GIABS	ABS	RBA	Volatilization Factor (m³/kg)	Henry's Law Constant (unitless)	Soil Saturation Concentratio n (mg/kg)	S (mg/L)	Koc (cm3/g)	Particulate Emission Factor (m³/kg)	Screening Level (mg/kg)	[basis]
Aluminum metaphosphate	13776-88-0	No	No	-		-		4.86E+01	U		-	1	-	1	-	-	_	-	-	1.36E+09	5.68E+06	cm
Ametryn	834-12-8	No	No	_				9.00E-03	U		_	1	0.1	1	_	9.93E-08	_	2.09E+02	4.28E+02	1.36E+09	7.39E+02	nc
Amino-4-chlorobenzotrifluoride, 3-	121-50-6	No	Yes	-				-			-	1	-	1	2.67E+05	5.03E-04	-	1.12E+02	7.90E+02	1.36E+09		
Aminoazobenzene, p-	60-09-3	No	No	-				-			-	1	0.1	1	-	3.56E-09	-	3.20E+01	1.81E+03	1.36E+09		
Aminobiphenyl, 4-	92-67-1	No	No	2.10E+01	U	6.00E-03	U	-			-	1	0.1	1	-	5.97E-06	-	2.24E+02	2.47E+03	1.36E+09	1.09E-01	ca
Aminophenol, m-	591-27-5	No	No	-				8.00E-02	U		-	1	0.1	1	-	8.09E-09	-	2.70E+04	9.02E+01	1.36E+09	6.57E+03	nc
Aminophenol, o-	95-55-6	No	No	-				4.00E-03	U		-	1	0.1	1	-	8.09E-09	-	2.00E+04	9.20E+01	1.36E+09	3.28E+02	nc
Aminophenol, p-	123-30-8	No	No	-				2.00E-02	U		-	1	0.1	1	-	1.47E-08	-	1.60E+04	9.02E+01	1.36E+09	1.64E+03	nc
Aminopyridine, 4-	504-24-5	No	No	-				_			-	1	0.1	1	-	1.15E-07	-	8.33E+04	3.46E+01	1.36E+09		
Amitraz		No	No	_				2.50E-03	U		-	1	0.1	1	_	4.04E-04		1.00E+00		1.36E+09	2.05E+02	nc
Ammonium Perchlorate		No	No	_				7.00E-04	U		-	1	_	1	_	_		2.45E+05	-	1.36E+09	8.18E+01	nc
Ammonium Sulfamate		No	No	-				2.00E-01	U		-	1	_	1	_			1.34E+06	_	1.36E+09	2.34E+04	nc
Ammonium polyphosphate		No	No	_				4.86E+01	U			1	_	1	_		_	_	_	1.36E+09	5.68E+06	cm
Amyl Alcohol, tert-	75-85-4	No	Yes	_				-		3.00E-03	U	1	_	1	2.62E+04	5.64E-04	1.37E+04	1.10E+05	4 14F+00		3.45E+01	nc
7 a.r.y. 7 a.co. 10.1										0.002 00						0.012 01					002 0.	1.0
Aniline	62-53-3	No	No	5.70E-03	U	1.60E-06	U	7.00E-03	U	1.00E-03	U	1	0.1	1	-	8.26E-05	-	3.60E+04	7.02E+01	1.36E+09	4.03E+02	ca**
Anilinobenzothiazole	1843-21-6	No	No	-				-			-	1	0.1	1	-	-	-	-	-	1.36E+09		
Anthracene	120-12-7	No	Yes	-				3.00E-01	U		-	1	0.13	1	5.24E+05	2.27E-03	-	4.34E-02	1.64E+04	1.36E+09	2.26E+04	nc
Anthraquinone, 9,10-	84-65-1	No	No	4.00E-02	U			2.00E-03	U		-	1	0.1	1	_	9.61E-07	_	1.35E+00	5.01E+03	1.36E+09	5.74E+01	ca**
Antimony (metallic)	7440-36-0	No	No	-				4.00E-04	U		-	0.15	_	1	_		-	_	_	1.36E+09	4.67E+01	nc
Antimony Pentoxide	1314-60-9	No	No	-				5.00E-04	U		_	0.15	_	1	_		-	3.00E+03	_		5.84E+01	nc
Antimony Potassium Tartrate		No	No	_							_	1	0.1	1	_			5.26E+04	1.34F+01	1.36E+09	0.0.2	
Antimony Tetroxide		No	No	_				4.00E-04	U		_	0.15	-	1	_		_	-	-	1.36E+09	4.67E+01	nc
Antimony Trichloride	10025-91-9		No	_							_	1	_	1	_		_	6.02E+06	_	1.36E+09		
-		No								2.00E-04	U	0.15		1				0.022 00			1 105 : 05	200
Antimony Trioxide Aroclor 1016	1309-64-4 12674-11-2		No	7.00E-02	U	2.00E-05		7.00E-05	U	2.00E-04	U	0.15	0.14	1	7.13E+05	8.18E-03	-	4.20E-01	4 775 + 04	1.36E+09 1.36E+09	1.19E+05 5.13E+00	cm
Aroclor 1221			Yes		U		-	7.00⊑-05	U		-	1	0.14	1				1.50E+01		1.36E+09 1.36E+09	8.32E-01	nc
	11104-28-2		Yes	2.00E+00	-	5.71E-04	-	-			-	1	0.14	1	2.04E+05	9.32E-03					7.19E-01	ca
Arcelor 1232	11141-16-5		Yes	2.00E+00	U	5.71E-04	-	-			-	1	0.14	1	1.12E+05	3.01E-02		1.45E+00		1.36E+09	9.50E-01	ca
Aroclor 1242 Aroclor 1248	53469-21-9 12672-29-6		Yes Yes	2.00E+00 2.00E+00	_	5.71E-04 5.71E-04					-	1	0.14	1	5.91E+05 6.24E+05	1.40E-02 1.80E-02		2.77E-01 1.00E-01		1.36E+09 1.36E+09	9.54E-01	ca
Aroclor 1246 Aroclor 1254	11097-69-1		Yes					2.00E-05	U		-	1	0.14	1	8.44E+05	1.00E-02 1.16E-02				1.36E+09		ca**
							_	2.00⊑-03	U		-	1										
Aroclor 1260 Aroclor 5460	11096-82-5 11126-42-4		Yes	2.00E+00	U	5.71E-04	U	6.005.04	11		-	1	0.14	1	1.32E+06	1.37E-02			3.50E+05		9.91E-01	ca
Arsenic Salts	NA	No	Yes	-		•		6.00E-04	U		-	1	0.14	1	9.56E+05	5.11E-03	-	5.32E-02			4.40E+01	nc
		No	No	1.50E+00	- 11	4.30E-03		3 005 04	U	1.50E-05	- U	1	0.03	0.6	-		-	-		1.36E+09	3.005+00	0.0*
Arsina		No	No	1.50=+00	U	4.30⊑-03	U	3.00E-04	U			1	0.03	0.6	-		-	2.005.05			3.00E+00	ca*
Arsine			No	-		•		3.50E-06		5.00E-05	U	1	0.1	1	-	6.005.11		2.00E+05		1.36E+09	4.09E-01	nc
Asulam		No	No	2 205 04	11	•	-	3.60E-02	U		-	I 	0.1	1	-	6.99E-11					2.95E+03	nc
Atrazine		No	No	2.30E-01	U	2 505 04		3.50E-02	U		-	1	0.1	1	-	9.65E-08				1.36E+09	9.99E+00	ca
Auramine	492-80-8	No	No	8.80E-01	U	2.50E-04	U	4.005.04			-	1	0.1	1	-	1.49E-07					2.61E+00	ca
Avermectin B1	65195-55-3		No	-		•	-	4.00E-04	U	4.005.00	-	1	0.1	1	-	5.40E-26					3.28E+01	nc
Azinphos-methyl		No	No	- 1 10= 01				3.00E-03	U	1.00E-02	U	1	0.1	1		9.77E-07			5.19E+01		2.46E+02	nc
Azobenzene		No	Yes	1.10E-01	U	3.10E-05	U	4 00= ==			-	1	-	1	5.23E+05	5.52E-04			3.76E+03		2.60E+01	ca
Azodicarbonamide		No	No	-		-		1.00E+00	U	7.00E-06	U	1	0.1	1	-	3.35E-11	-	3.50E+01			3.97E+03	nc
Barium	7440-39-3	No	No	-		•	-	2.00E-01	U	5.00E-04	U	0.07	-	1	-	-	-	-	-	1.36E+09	2.1/E+04	nc

Composite Worker Screening Levels (RSL) for Soil

Chemical	CAS Number	Mutagen?	VOC?	Ingestion SF (mg/kg-day) ⁻¹	J . J		IUR Ref	Chronic RfD (mg/kg- day)	Chronic RfD Ref	Chronic RfC (mg/m³)	Chronic RfC Ref	GIABS	ABS	RBA	Volatilization Factor (m³/kg)	Henry's Law Constant (unitless)	Soil Saturation Concentratio n (mg/kg)	S (mg/L)	Koc (cm3/g)	Particulate Emission Factor (m³/kg)	Screening Level (mg/kg)	[basis]
Barium Chromate	10294-40-3	Yes	No	5.00E-01	U	1.50E-01	U	2.00E-02	U	2.00E-04	U	0.025	-	1	-	-	-	2.60E+00	-	1.36E+09	6.18E+00	ca
Barium Cyanide	542-62-1	No	No	-			-	-			-	0.07	-	1	-	-	-	1.71E+04	-	1.36E+09		
Benfluralin	1861-40-1	No	Yes	-			-	5.00E-03	U		-	1	-	1	3.07E+05	1.19E-02	-	1.00E-01	1.64E+04	1.36E+09	5.84E+02	nc
Benomyl	17804-35-2	No	No	-			-	5.00E-02	U		-	1	0.1	1	-	2.02E-10	-	3.80E+00	3.36E+02	1.36E+09	4.10E+03	nc
Bensulfuron-methyl	83055-99-6	No	No	-			-	2.00E-01	U	-	-	1	0.1	1	-	1.55E-13	-	1.20E+02	2.78E+01	1.36E+09	1.64E+04	nc
Bentazon	25057-89-0	No	No	-			-	3.00E-02	U		-	1	0.1	1	-	8.91E-08	-	5.00E+02	1.00E+01	1.36E+09	2.46E+03	nc
Benz[a]anthracene	56-55-3	Yes	Yes	1.00E-01	U	6.00E-05	U	-			-	1	0.13	1	4.41E+06	4.91E-04	-	9.40E-03	1.77E+05	1.36E+09	2.06E+01	ca
Benzaldehyde	100-52-7	No	Yes	4.00E-03	U		-	1.00E-01	U		-	1	-	1	2.25E+04	1.09E-03	1.16E+03	6.95E+03	1.11E+01	1.36E+09	8.18E+02	ca*
Benzamide, N,N-diethyl-3-methyl (DEET)	134-62-3	No	No	-			-	-		-	-	1	0.1	-	-	8.50E-07	-	0.00E+00	1.13E+02	1.36E+09		
Benzene	71-43-2	No	Yes	5.50E-02	U	7.80E-06	U	4.00E-03	U	3.00E-02	U	1	_	1	3.54E+03	2.27E-01	1.82E+03	1.79E+03	1.46E+02	1.36E+09	5.09E+00	ca**
Benzene, Ethyldimethyl	29224-55-3	No	Yes	-			_	-			-	1	-	1	9.13E+03	4.17E-01	1.31E+02	1.77E+01	1.20E+03	1.36E+09		
Benzene, Ethylmethyl		No	Yes	_			-	-			-	1	_	1	1.78E+04	2.05E-01		7.45E+01		1.36E+09		
Benzene, Methylpropenyl		No	Yes	_			-	-			-	1	_	1	1.15E+04	2.78E-01		5.00E+01		1.36E+09		
Benzene, Methylpropyl		No	No	-				-			-	1	0.1	1	-	-	_	-	-	1.36E+09		
Benzene, Trimethyl		No	Yes	-				_		-		1	-	1	1.23E+04	3.59E-01	1.82E+02	4.82E+01	6.02E+02	1.36E+09		
Benzenediamine-2-methyl sulfate, 1,4-	6369-59-1	No	No	1.00E-01	U	_		3.00E-04	U	_		1	0.1	1	_	8.86E-22	_	1.00E+06	3.84E+01	1.36E+09	2.30E+01	ca**
Benzenethiol	108-98-5	No	Yes	-			-	1.00E-03	U		-	1	_	1	1.94E+04	1.37E-02	1.26E+03	8.35E+02	2.34E+02	1.36E+09	1.17E+02	nc
Benzidine	92-87-5	Yes	No	2.30E+02	U	6.70E-02	U	3.00E-03	U			1	0.1	1	-	2.11E-09	-	3.22E+02	1.19E+03	1.36E+09	9.99E-03	ca
Benzo(i)fluoranthene	205-82-3	No	No	1.20E+00	U	1.10E-04		-				1	0.13	1	-	8.30E-06	-	2.50E-03	5.99E+05	1.36E+09	1.76E+00	ca
Benzo[a]pyrene	50-32-8	Yes	No	1.00E+00	U	6.00E-04	U	3.00E-04	U	2.00E-06	U	1	0.13	1	-	1.87E-05	_	1.62E-03	5.87E+05	1.36E+09	2.11E+00	ca*
Benzo[b]fluoranthene	205-99-2	Yes	No	1.00E-01	U	6.00E-05	U	-			-	1	0.13	1	-	2.69E-05	-	1.50E-03	5.99E+05	1.36E+09	2.11E+01	ca
Benzo[g,h,i]perylene	191-24-2	No	No	-				-			-	1	0.13	1	-	1.35E-05	-	2.60E-04	1.95E+06	1.36E+09		
Benzo[k]fluoranthene	207-08-9	Yes	No	1.00E-02	U	6.00E-06	U	-			-	1	0.13	1	-	2.39E-05	-	8.00E-04	5.87E+05	1.36E+09	2.11E+02	ca
Benzofluoranthenes, total	NA	No	No	_				-				1	0.1	1	-	-	_	-	-	1.36E+09		
Benzofluorene, 2,3-	243-17-4	No	No	-			-	-		-	-	1	0.1	1	-	1.60E-04	-	4.00E-03	9.70E+04	1.36E+09		
Benzoic Acid	65-85-0	No	No	_				4.00E+00	U		-	1	0.1	1	_	1.56E-06	_	3.40E+03	6.00E-01	1.36E+09	3.28E+05	cm
Benzoic acid, 3,5-dichloro-	51-36-5	No	No	_			-	-			-	1	0.1	1	-	2.43E-06		1.47E+02		1.36E+09		
Benzoic acid, 4-hydroxy-, methyl ester	99-76-3	No	No	_				-				1	0.1	1	_	9.12E-08		2.50E+03		1.36E+09		
Benzothiazole	95-16-9	No	No	_			-	-			-	1	0.1	1	-	1.53E-05		4.30E+03		1.36E+09		
Benzotrichloride	98-07-7	No	Yes	1.30E+01	U		-	-			-	1	_	1	6.77E+04	1.06E-02	3.23E+02	5.30E+01		1.36E+09	2.52E-01	ca
Benzyl Alcohol	100-51-6	No	No	-				1.00E-01	U	-		1	0.1	1	-	1.38E-05		4.29E+04		1.36E+09	8.21E+03	nc
Benzyl Chloride	100-44-7	No	Yes	1.70E-01	U	4.90E-05	U	2.00E-03	U	1.00E-03	U	1	_	1	2.55E+04	1.68E-02	1.46E+03	5.25E+02	4.46E+02	1.36E+09	4.79E+00	ca**
Beryllium and compounds		No	No	-		2.40E-03		2.00E-03	U	2.00E-05	U	0.007	_	1	-	-	-	-			2.29E+02	nc
Bifenox	42576-02-3		No	_				9.00E-03	U			1	0.1	1	-	4.42E-06	_	3.98E-01		1.36E+09	7.39E+02	nc
Biphenthrin	82657-04-3		No	_			-	1.50E-02	U		-	1	0.1	1	-	4.09E-05		1.00E-03		1.36E+09	1.23E+03	nc
Biphenyl, 1,1'-	92-52-4	No	Yes	8.00E-03	U			5.00E-01	U	4.00E-04	U	1	-	1	1.14E+05	1.26E-02				1.36E+09	1.99E+01	nc
Bis(2-chloro-1-methylethyl) ether	108-60-1	No	Yes	_			-	4.00E-02	U			1	_	1	3.50E+04	3.03E-03				1.36E+09	4.67E+03	CS
Bis(2-chloroethoxy)methane	111-91-1	No	No	_			-	3.00E-03	U			1	0.1	1	_	1.57E-04				1.36E+09	2.46E+02	nc
Bis(2-chloroethyl)ether	111-44-4	No	Yes	1.10E+00	U	3.30E-04	U	-				1	-	1	4.25E+04	6.95E-04			3.22E+01		1.03E+00	ca
Bis(2-ethylhexyl)phthalate	117-81-7	No	No	1.40E-02	U	2.40E-06		2.00E-02	U	-	-	1	0.1	1	-	1.10E-05				1.36E+09	1.64E+02	ca*
Bis(Octanoyloxy)Di-N-Butyl Stannane		No	Yes	-	_			-			-	1		1	6.15E+04	6.83E-01		1.01E-03		1.36E+09		
Bis(chloromethyl)ether		No	Yes	2.20E+02	U	6.20E-02	U	-			-	1	_	1	1.88E+03	1.78E-01		2.20E+04		1.36E+09	3.62E-04	ca
Bis(oleoyloxy)dibutyl tin		No	Yes					_			-	1	_	1	1.91E+06	1.53E+02		1.43E-13		1.36E+09		
Bisphenol A	80-05-7	No	No	-			-	5.00E-02	U		-	1	0.1	1		4.09E-10		1.20E+02			4.10E+03	nc
Boron And Borates Only		No	No	_			_	2.00E-01	U	2.00E-02	U	1	-	1	_		_			1.36E+09	2.33E+04	nc
20.5.17 the Boretoo Offing	1 770-72-0		140					2.00L-01		2.00L-02		'		<u>'</u>	1		<u> </u>				2.002.07	110

Composite Worker Screening Levels (RSL) for Soil

Chemical	CAS Number	Mutagen?		Ingestion SF (mg/kg-day) ⁻¹		2 1	IUR Ref	Chronic RfD (mg/kg- day)	Chronic RfD Ref	Chronic RfC (mg/m³)	Chronic RfC Ref	GIABS	ABS	RBA	Volatilization Factor (m³/kg)	Henry's Law Constant (unitless)	Soil Saturation Concentratio n (mg/kg)	S (mg/L)	Koc (cm3/g)	Particulate Emission Factor (m³/kg)	Screening Level (mg/kg)	[basis]
Boron Trichloride	10294-34-5	No	Yes	_		_		2.00E+00	U	2.00E-02	U	1	_	1	_	7.48E-01	_	_	_	1.36E+09	2.29E+05	cm
Boron Trifluoride	7637-07-2	No	Yes	-		-		4.00E-02	U	1.30E-02	U	1		1	-	-		3.32E+06	-	1.36E+09	4.67E+03	nc
Bromacil	314-40-9	No	No	-		-		-		-		1	0.1	1	-	5.27E-09	-	8.15E+02	6.66E+01	1.36E+09		
Bromate	15541-45-4	No	No	7.00E-01	U	-		4.00E-03	U	_		1		1	-	-		-	-	1.36E+09	4.67E+00	ca
Bromine	7726-95-6	No	Yes	-		-		-		-		1	_	1	-	-	2.55E+05	3.36E+04	-	1.36E+09		
Bromo-2-chloroethane, 1-	107-04-0	No	Yes	2.00E+00	U	6.00E-04	U	-		-		1	_	1	5.92E+03	3.72E-02	2.38E+03	6.90E+03	3.96E+01	1.36E+09	1.13E-01	ca
Bromo-3-fluorobenzene, 1-	1073-06-9	No	Yes	-		-		-		-		1	_	1	1.12E+04	1.02E-01	8.96E+02	3.78E+02	3.75E+02	1.36E+09		
Bromo-4-Ethylbenzene, 1-	1585-07-5	No	Yes	-		-		-		_		1	-	1	1.54E+04	1.28E-01	1.03E+02	2.33E+01	7.16E+02	1.36E+09		
Bromoacetic acid	79-08-3	No	No	-		-		-		-		1	0.1	1	-	2.67E-07	-	1.75E+06	1.44E+00	1.36E+09		
Bromoacetophenone, 3-	2142-63-4	No	No	-		-		-		-		1	0.1	1	-	1.60E-04	-	3.44E+02	8.32E+01	1.36E+09		
Bromobenzene	108-86-1	No	Yes	-		-		8.00E-03	U	6.00E-02	U	1	-	1	8.37E+03	1.01E-01	6.79E+02	4.46E+02	2.34E+02	1.36E+09	1.78E+02	nc
Bromochloromethane	74-97-5	No	Yes	-		-		-		4.00E-02	U	1	-	1	3.58E+03	5.97E-02	4.03E+03	1.67E+04	2.17E+01	1.36E+09	6.27E+01	nc
Bromodichloromethane	75-27-4	No	Yes	6.20E-02	U	3.70E-05	U	2.00E-02	U	-		1	-	1	3.96E+03	8.67E-02	9.31E+02	3.03E+03	3.18E+01	1.36E+09	1.28E+00	ca
Bromodiphenyl Ether, p-	101-55-3	No	Yes	-		-		-		-		1	-	1	1.86E+05	4.78E-03	2.69E+01	1.45E+00	3.08E+03	1.36E+09		
Bromofluorobenzene, p-	460-00-4	No	Yes	-		-		-		-		1	-	1	1.14E+04	1.02E-01	3.22E+02	1.36E+02	3.75E+02	1.36E+09		
Bromoform	75-25-2	No	Yes	7.90E-03	U	1.10E-06	U	2.00E-02	U	-		1	-	1	9.70E+03	2.19E-02	9.14E+02	3.10E+03	3.18E+01	1.36E+09	8.57E+01	ca*
Bromomethane	74-83-9	No	Yes	-		-		1.40E-03	U	5.00E-03	U	1	-	1	1.40E+03	3.00E-01	3.59E+03	1.52E+04	1.32E+01	1.36E+09	3.01E+00	nc
Bromophenol, p-	106-41-2	No	No	-		-		-		-		1	0.1	1	-	6.17E-06	-	1.40E+04	3.00E+02	1.36E+09		
Bromophenyl-phenyl phthalate, 4-	NA	No	No	-		-		-		-		1	0.1	1	-	-		-	-	1.36E+09		
Bromophos	2104-96-3	No	Yes	-		-		5.00E-03	U	-		1	-	1	1.24E+05	8.38E-03	-	3.00E-01	2.02E+03	1.36E+09	5.84E+02	nc
Bromopropane, 1-	106-94-5	No	Yes	-		-		-		-		1	-	1	2.14E+03	2.99E-01	9.66E+02	2.45E+03	3.96E+01	1.36E+09		
Bromopyridine, 2-	109-04-6	No	No	-		-		-		-		1	0.1	1	-	3.15E-04	-	2.08E+04	1.15E+02	1.36E+09		
Bromotrichloromethane	75-62-7	No	Yes	-		-		-		-		1	-	1	1.30E+04	1.52E-02	3.18E+02	8.69E+02	4.39E+01	1.36E+09		
Bromoxynil	1689-84-5	No	No	1.03E-01	U	-		1.50E-02	U	-		1	0.1	1	-	5.40E-09	-	1.30E+02	3.30E+02	1.36E+09	2.23E+01	ca*
Bromoxynil Octanoate	1689-99-2	No	Yes	-		-		1.50E-02	U	-		1	-	1	4.75E+05	1.30E-03	-	8.00E-02	4.25E+03	1.36E+09	1.75E+03	nc
Butadiene, 1,3-	106-99-0	No	Yes	3.40E+00	U	3.00E-05	U	-		2.00E-03	U	1	-	1	8.67E+02	3.01E+00	6.67E+02	7.35E+02	3.96E+01	1.36E+09	2.59E-01	ca**
Butanediol, 2,3-	513-85-9	No	No	-		-		-		-		1	0.1	1	-	1.18E-06	-	1.00E+06	1.00E+00	1.36E+09		
Butanoic acid, 4-(2,4-dichlorophenoxy)-	94-82-6	No	No	-		-		3.00E-02	U	-		1	0.1	1	-	9.36E-08	-	4.60E+01	3.70E+02	1.36E+09	2.46E+03	nc
Butanol	35296-72-1	No	Yes	-		-		-		-		1	-	1	4.12E+04	3.70E-04	1.47E+04	1.25E+05	2.92E+00	1.36E+09		
Butanol, N-	71-36-3	No	Yes	-		-		1.00E-01	U	-		1	-	1	3.00E+04	3.60E-04	7.64E+03	6.32E+04	3.47E+00	1.36E+09	1.17E+04	CS
Butanone-2, 4-chloro-4,4-difluoro	1515-16-8	No	No	-		-		-		-		1	0.1	1	-	-	-	-	-	1.36E+09		
Butyl Alcohol, t-	75-65-0	No	Yes	-		-		-		-		1	-	1	2.87E+04	3.70E-04	-	1.00E+06	2.11E+00	1.36E+09		
Butyl Benzyl Phthalate	85-68-7	No	No	1.90E-03	U	-		2.00E-01	U	-		1	0.1	1	-	5.15E-05	-	2.69E+00	7.16E+03	1.36E+09	1.21E+03	ca*
Butyl Formate, tert-	762-75-4	No	Yes	-		-		-		-		1		1	4.35E+03	2.82E-02	1.71E+03	1.12E+04		1.36E+09		
Butyl alcohol, sec-		No	Yes	-		-		2.00E+00	U	3.00E+01	U	1		1	2.92E+04	3.70E-04		1.81E+05		1.36E+09	1.45E+05	CS
Butylacetate		No	Yes	-		-		-		-		1		1	8.55E+03	1.15E-02		8.40E+03		1.36E+09		
Butylate		No	Yes	-		-		5.00E-02	U	-		1		1	8.64E+04	3.45E-03		4.50E+01		1.36E+09	5.84E+03	nc
Butylated hydroxyanisole		No	No	2.00E-04		5.70E-08	U	-		-		1	0.1	1	-	4.78E-05		2.13E+02		1.36E+09	1.15E+04	ca
Butylated hydroxytoluene		No	No	3.60E-03	U	-		3.00E-01	U	-		1	0.1	1	-	1.68E-04		6.00E-01		1.36E+09	6.38E+02	ca*
Butylbenzene, n-	104-51-8	No	Yes	-		-		5.00E-02	U	-		1		1	8.14E+03	6.50E-01		1.18E+01		1.36E+09	5.84E+03	cs
Butylbenzene, sec-	135-98-8	No	Yes	-		-		1.00E-01	U	-		1		1	7.34E+03	7.20E-01		1.76E+01		1.36E+09	1.17E+04	cs
Butylbenzene, tert-	98-06-6	No	Yes	-		-		1.00E-01	U	-		1		1	7.35E+03	5.40E-01		2.95E+01		1.36E+09	1.17E+04	cs
Butylchloride, t-		No	Yes	-		-		-		-		1		1	1.70E+03	5.23E-01		2.88E+03		1.36E+09		
Butylphthalyl Butylglycolate		No	No	-		-		1.00E+00	U	-		1	0.1	1	-	8.42E-07	-	8.80E+00	1.12E+04	1.36E+09	8.21E+04	nc
Butyltin	NA	No	No	-		-		-		-		1	0.1	1	-	-	-	-	-	1.36E+09		
Cacodylic Acid	75-60-5	No	No	-		-		2.00E-02	U	-		1	0.1	1	-	7.36E-13	-	2.00E+06	4.39E+01	1.36E+09	1.64E+03	nc
Cadmium (Diet)	7440-43-9	No	No	-		1.80E-03	U	1.00E-03	U	1.00E-05	U	0.025	0.001	1	-	-	-	-	-	1.36E+09	9.82E+01	nc

Composite Worker Screening Levels (RSL) for Soil

Chemical	CAS Number	Mutagen?	VOC?	Ingestion SF (mg/kg-day) ⁻¹		Inhalation Unit Risk IUI (ug/m³)-1 Re	\ 3 3	Chronic RfD Ref	Chronic RfC (mg/m³)	Chronic RfC Ref	GIABS	ABS	RBA	Volatilization Factor (m³/kg)	Henry's Law Constant (unitless)	Soil Saturation Concentratio n (mg/kg)	S (mg/L)	Koc (cm3/g)	Particulate Emission Factor (m³/kg)	Screening Level (mg/kg)	[basis]
Calcium	7440-70-2	No	No	-		-		-			1	-	. 1	-	-				1.36E+09		
Calcium Chromate	13765-19-0	Yes	No	5.00E-01	U	1.50E-01 U	2.00E-02	U	2.00E-04	U	0.025	-	. 1	-	-	-	-		1.36E+09	6.18E+00	ca
Calcium Cyanide	592-01-8	No	No	-		-	1.00E-03	U			1	-	. 1	-	-	-	-		1.36E+09	1.17E+02	nc
Calcium pyrophosphate	7790-76-3	No	No	_		_	4.86E+01	U			1		. 1				_		1.36E+09	5.68E+06	cm
Caprolactam	105-60-2	No	No	_		_	5.00E-01	U	2.20E-03	U	1	0.1	1	_	1.03E-06	_	7.72E+05	2.45F+01	1.36E+09	3.98E+04	nc
Captafol	2425-06-1	No	No	1.50E-01	U	4.30E-05 U		U	2.202 00		1	0.1	1	_	2.01E-07			7.83E+02	1.36E+09	1.53E+01	ca*
Captan	133-06-2	No	No	2.30E-03	U	6.60E-07 U	_	U			1	0.1	1	_	2.86E-07			2.52E+02	1.36E+09	9.99E+02	ca*
Carbaryl	63-25-2	No	No	2.002 00		0.002 07 0	1.00E-01	U			1	0.1	1	_	1.34E-07			3.55E+02	1.36E+09	8.21E+03	nc
Carbazole	86-74-8	No	No	_		_	1.002 01	-			<u>'</u> 1	0.1	1		4.74E-06			9.16E+03	1.36E+09	0.212.00	110
Carbofuran	1563-66-2	No	No	_		_	5.00E-03	U			1	0.1	1	_	1.26E-07		3.20E+02		1.36E+09	4.10E+02	nc
Carbon Disulfide	75-15-0	No	Yes	_		_	1.00E-01	U	7.00E-01	U	1	0.1	. 1	1.17E+03	5.89E-01			2.17E+01	1.36E+09	3.48E+02	nc
Carbon Tetrachloride	56-23-5	No	Yes	7.00E-02	U	6.00E-06 U		U	1.00E-01	U	1	_	. 1	1.49E+03	1.13E+00			4.39E+01	1.36E+09	2.87E+00	ca*
Carbonyl Sulfide	463-58-1	No	Yes	7.002 02		0.002 00 0	1.002 00	_	1.00E-01	U	1	_	. 1	6.45E+02	2.49E+01	5.88E+03		1.00E+00	1.36E+09	2.83E+01	nc
Carbosulfan	55285-14-8		No	_		_	1.00E-02	U	1.002 01		1	0.1	1	0.102.02	2.09E-05			1.20E+04	1.36E+09	8.21E+02	nc
Carboxin	5234-68-4	No	No	_		_	1.00E-01	U			1	0.1	1	_	1.31E-08			1.69E+02	1.36E+09	8.21E+03	nc
Catechol	120-80-9	No	No	_		_		_			1	0.1	1	_	4.91E-08			2.45E+02	1.36E+09	0.2.2	
	120 00 0	110	110								· ·	0.1			1.012 00		1.012.00	Z. IOZ · OZ	1.002 - 00		
Ceric oxide	1306-38-3	No	No	-		-		-	9.00E-04	U	1	-	. 1	-	-	-	-	-	1.36E+09	5.36E+05	cm
Cerium, Stable	7440-45-1	No	No	-		-		-		-	1	-	1	-	-	-	-	-	1.36E+09		
Chloral	75-87-6	No	Yes	-		-		-		-	1	-	1	1.55E+05	1.19E-07	3.39E+03	3.00E+04	2.14E+00	1.36E+09		
Chloral Hydrate	302-17-0	No	Yes	-		-	1.00E-01	U		-	1	-	1	1.45E+05	2.33E-07	-	7.93E+05	1.00E+00	1.36E+09	1.17E+04	nc
Chloramben	133-90-4	No	No	-		-	1.50E-02	U		-	1	0.1	1	-	1.58E-09	-	7.00E+02	2.14E+01	1.36E+09	1.23E+03	nc
Chloramine	127-65-1	No	No	-		-		-		-	1	-	1	-	-	-	-	-	1.36E+09		
Chloranil	118-75-2	No	No	4.03E-01	U	-		-		-	1	0.1	1	-	1.34E-08	-	2.50E+02	3.08E+02	1.36E+09	5.70E+00	ca
Chlorate (CIO3) as	14866-68-3	No	No	-		-		-		-	1	-	. 1	-	-	-	-	-	1.36E+09		
Chlordane	12789-03-6	No	Yes	3.50E-01	U	1.00E-04 U	5.00E-04	U	7.00E-04	U	1	0.04	1	1.53E+06	1.99E-03	-	5.60E-02	6.75E+04	1.36E+09	7.66E+00	ca**
Chlordane (alpha)	5103-71-9	No	Yes	-		-		-		-	1	-	1	1.48E+06	1.99E-03	-	5.60E-02	6.75E+04	1.36E+09		
Chlordane (gamma)	5103-74-2	No	Yes	-		-		-		-	1	-	1	1.48E+06	1.99E-03	-	5.60E-02	6.75E+04	1.36E+09		
Chlordecone (Kepone)	143-50-0	No	No	1.00E+01	U	4.60E-03 U	3.00E-04	U	-	-	1	0.1	1	-	2.20E-06	-	2.70E+00	1.75E+04	1.36E+09	2.30E-01	ca
Chlorfenvinphos	470-90-6	No	No	-		-	7.00E-04	U		-	1	0.1	1	-	1.18E-06	-	1.24E+02	1.26E+03	1.36E+09	5.74E+01	nc
Chloride	16887-00-6	No	No	-		-		-		-	1	-	1	-	-	-	-	-	1.36E+09		
Chlorimuron, Ethyl-	90982-32-4	No	No	-		-	9.00E-02	U		-	1	0.1	1	-	7.44E-14	-	1.20E+03	7.18E+01	1.36E+09	7.39E+03	nc
Chlorinated Hydrocarbons (total)	NA	No	No	-		-		-		-	1	0.1	1	-	-	-	-	-	1.36E+09		
Chlorine	7782-50-5	No	Yes	-		-	1.00E-01	U	1.45E-04	U	1	-	1	1.22E+03	4.78E-01	2.78E+03	6.30E+03	-	1.36E+09	7.76E-02	nc
Chlorine Dioxide	10049-04-4		Yes	-		-	3.00E-02	U	2.00E-04	U	1	-	1	-	1.64E+00	-	-	-	1.36E+09	3.40E+03	nc
Chlorite	14998-27-7	No	No	-		-		-		-	1	-	1	-	-	-	-	-	1.36E+09		
Chlorite (Sodium Salt)	7758-19-2	No	No	-		-	3.00E-02	U		-	1	-	1	-	-	-	6.40E+05	-	1.36E+09	3.50E+03	nc
Chloro-1,1-difluoroethane, 1-	75-68-3	No	Yes	-		-		-	5.00E+01	U	1	-	1	1.03E+03	2.40E+00	1.14E+03	1.40E+03	4.39E+01	1.36E+09	2.25E+04	CS
Chloro-1,3-butadiene, 2-	126-99-8	No	Yes	-		3.00E-04 U	2.00E-02	U	2.00E-02	U	1	-	1	1.08E+03	2.29E+00	7.86E+02	8.75E+02	6.07E+01	1.36E+09	4.41E-02	ca
Chloro-2-methylaniline HCl, 4-	3165-93-3	No	No	4.60E-01	U	-		-		-	1	0.1	1	-	6.38E-05	-	9.54E+02	3.52E+02	1.36E+09	5.00E+00	ca
Chloro-2-methylaniline, 4-	95-69-2	No	No	1.00E-01	U	7.70E-05 U	3.00E-03	U		-	1	0.1	1	-	8.14E-05	-	9.54E+02	1.85E+02	1.36E+09	2.30E+01	ca*
Chloro-2-methylphenol, 4-	1570-64-5	No	No	-		-		-		-	1	0.1	1	-	4.62E-05	-	4.00E+03	4.92E+02	1.36E+09		
Chloro-4-methylphenol	35421-08-0	No	No	-		-		-		-	1	0.1	1	-	-	-		-	1.36E+09		
Chloro-6-fluorophenol, 2-	2040-90-6	No	No	-		-		-		-	1	0.1	1	-		-		-	1.36E+09		
Chloroacetaldehyde, 2-	107-20-0	No	Yes	2.70E-01	U	-		-		-	1		1	1.62E+04	9.77E-04	1.18E+04	1.11E+05	1.00E+00	1.36E+09	1.21E+01	ca
Chloroacetamide	79-07-2	No	No	-				-		-	1	0.1	1	-	1.61E-07	-	9.00E+04	5.69E+00	1.36E+09		
Chloroacetic Acid	79-11-8	No	No	-		-		-		-	1	0.1	1	-	3.79E-07	-	8.58E+05	1.44E+00	1.36E+09		

Composite Worker Screening Levels (RSL) for Soil

Chemical	CAS Number	Mutagen?	VOC?	Ingestion SF (mg/kg-day) ⁻¹	J	Inhalation Unit Risk (ug/m³) ⁻¹	IUR Ref	, , , ,	Chronic RfD Ref	Chronic RfC (mg/m³)	Chronic RfC Ref	GIABS	ABS	RBA	Volatilization Factor (m ³ /kg)	Henry's Law Constant (unitless)	Soil Saturation Concentratio n (mg/kg)	S (mg/L)	Koc (cm3/g)	Particulate Emission Factor (m³/kg)	Screening Level (mg/kg)	[basis]
Chloroacetophenone, 2-	532-27-4	No	No	-			-	-		3.00E-05	U	1	0.1	1	-	1.41E-04	-	1.10E+03	9.89E+01	1.36E+09	1.79E+04	nc
Chloroaniline	27134-26-5	No	No	-			-	-			-	1	0.1	1	-	2.20E-04	-	8.16E+03	1.15E+02	1.36E+09		
Chloroaniline, 3-	108-42-9	No	No	-			-	-			-	1	0.1	1	-	4.09E-05	-	5.40E+03	1.13E+02	1.36E+09		
Chloroaniline, p-	106-47-8	No	No	2.00E-01	U		-	4.00E-03	U		-	1	0.1	1	-	4.74E-05	-	3.90E+03	1.13E+02	1.36E+09	1.15E+01	ca*
Chlorobenzene	108-90-7	No	Yes	-			-	2.00E-02	U	5.00E-02	U	1	-	1	6.45E+03	1.27E-01	7.61E+02	4.98E+02	2.34E+02	1.36E+09	1.33E+02	nc
Chlorobenzene sulfonic acid, p-	98-66-8	No	No	-			-	1.00E-01	U		-	1	0.1	1	-	7.60E-08	-	3.06E+05	1.61E+01	1.36E+09	8.21E+03	nc
Chlorobenzenes (total)	NA	No	No	-			-	-			-	1	0.1	1	-	-	-	-	-	1.36E+09		
Chlorobenzilate	510-15-6	No	No	1.10E-01	U	3.10E-05	U	2.00E-02	U		-	1	0.1	1	-	2.96E-06	-	1.30E+01	1.54E+03	1.36E+09	2.09E+01	ca*
Chlorobenzoic Acid, 2-	118-91-2	No	No	-			-	-			-	1	0.1	-	-	2.66E-06	-	2.09E+03	2.71E+01	1.36E+09		
Chlorobenzoic Acid, p-	74-11-3	No	No	-			-	3.00E-02	U		-	1	0.1	1	-	3.28E-06	-	7.20E+01	2.66E+01	1.36E+09	2.46E+03	nc
Chlorobenzotrifluoride, 3-nitro-4-	121-17-5	No	Yes	-			-	-			-	1	-	1	1.55E+05	5.60E-03	5.48E+02	3.56E+01	2.55E+03	1.36E+09		
Chlorobenzotrifluoride, 4-	98-56-6	No	Yes	-			-	3.00E-03	U	3.00E-01	U	1	-	1	6.77E+03	1.42E+00	2.91E+02	2.90E+01	1.61E+03	1.36E+09	2.51E+02	nc
Chlorobiphenyl, p-	2051-62-9	No	Yes	-			-	-			-	1	-	1	1.29E+05	2.34E-02	-	1.34E+00	8.23E+03	1.36E+09		
Chlorobutane, 1-	109-69-3	No	Yes	-			-	4.00E-02	U		-	1	-	1	1.76E+03	6.83E-01	7.29E+02	1.10E+03	7.22E+01	1.36E+09	4.67E+03	CS
Chlorobutane, 2-	78-86-4	No	Yes	-			-	-			-	1	-	1	1.46E+03	9.85E-01	6.51E+02	1.00E+03	6.07E+01	1.36E+09		
Chlorocyclopentadiene	41851-50-7	No	Yes	-			-	-			-	1	-	1	1.88E+03	9.16E-01	1.01E+03	9.70E+02	1.28E+02	1.36E+09		
Chlorodibromoethane	73506-94-2	No	No	-			-	-			-	1	0.1	1	-	-	-	-	-	1.36E+09		
Chlorodifluoromethane	75-45-6	No	Yes	-			-	-		5.00E+01	U	1	-	1	9.40E+02	1.66E+00	1.68E+03	2.77E+03	3.18E+01	1.36E+09	2.06E+04	CS
Chloroethanol, 2-	107-07-3	No	Yes	-			-	2.00E-02	U		-	1	-	1	7.81E+04	3.11E-05	1.11E+05	1.00E+06	1.90E+00	1.36E+09	2.34E+03	nc
Chloroethylvinyl ether, 2-	110-75-8	No	Yes	-			-	-			-	1	-	1	1.60E+03	3.58E-01	1.18E+02	4.29E+02	1.77E+01	1.36E+09		
Chloroform	67-66-3	No	Yes	3.10E-02	U	2.30E-05	U	1.00E-02	U	9.77E-02	U	1	-	1	2.63E+03	1.50E-01	2.54E+03	7.95E+03	3.18E+01	1.36E+09	1.38E+00	ca*
Chloromethane	74-87-3	No	Yes	-			-	-		9.00E-02	U	1	-	1	1.17E+03	3.61E-01	1.32E+03	5.32E+03	1.32E+01	1.36E+09	4.63E+01	nc
Chloromethyl Methyl Ether	107-30-2	No	Yes	2.40E+00	U	6.90E-04	U	_			-	1	-	1	5.33E+03	1.24E-02	9.32E+03	6.94E+04	5.32E+00	1.36E+09	8.86E-02	ca
Chloronaphthalene, Beta-	91-58-7	No	Yes	-			-	8.00E-02	U		-	1	0.13	1	7.99E+04	1.31E-02	-	1.17E+01	2.48E+03	1.36E+09	6.03E+03	nc
Chloronaphthalene, alpha-	90-13-1	No	Yes	-			-	-			-	1	-	1	7.59E+04	1.45E-02	2.66E+02	1.74E+01	2.53E+03	1.36E+09		
Chloronitrobenzene, o-	88-73-3	No	No	3.00E-01	U		-	3.00E-03	U	1.00E-05	U	1	0.1	1	-	3.80E-04	-	4.41E+02	3.71E+02	1.36E+09	7.66E+00	ca*
					Ī																	
Chloronitrobenzene, p-	100-00-5	No	No	6.00E-02	U		-	7.00E-04	U	2.00E-03	U	1	0.1	1	-	2.00E-04		2.25E+02		1.36E+09	3.83E+01	ca**
Chlorooctadecane, 1-	1 1 1 1 1 1	No	Yes	-			-				-	1	-	-	2.48E+04	4.13E+01		0.00E+00		1.36E+09		
Chlorophenol, 2-	95-57-8	No	Yes	-			-	5.00E-03	U		-	1	-	1	1.39E+05	4.58E-04	2.74E+04	1.13E+04		1.36E+09	5.84E+02	nc
Chlorophenol, 3-	108-43-0	No	No	-			-	-			-	1	0.1	1	-	1.41E-05		2.60E+04		1.36E+09		
Chlorophenol, 4-		No	No	-			-	-			-	1	0.1	1	-	2.56E-05	-	2.40E+04	3.00E+02	1.36E+09		
Chlorophenols (total)	NA	No	No	-			-	-			-	1	0.1	1	-		-	-		1.36E+09		
Chlorophenyl Methyl Sulfide, p-		No	Yes	-			-	-			-	1	-	1	6.92E+04	4.74E-03		1.19E+02				
Chlorophenyl Methyl Sulfoxide	934-73-6	No	No	-			-	-			-	1	0.1	1	-	3.00E-07		7.07E+03		1.36E+09		
Chlorophenyl phenyl ether, 4-		No	Yes	-			-	-			-	1	-	1	2.16E+05	3.68E-03		3.30E+00				
Chloropicrin	76-06-2	No	Yes	-			-	-		4.00E-04	U	1	-	1	4.68E+03	8.38E-02				1.36E+09	8.20E-01	nc
Chloropropane, 2-	75-29-6	No	Yes	-			-	-			-	1	-	1	1.30E+03	7.15E-01	1.32E+03	3.10E+03	3.18E+01	1.36E+09		
Chlorothalonil	1897-45-6	No	No	3.10E-03	U	8.90E-07	U	1.50E-02	U		_	1	0.1	1	_	8.18E-05	_	8.10E-01	1.04E+03	1.36E+09	7.41E+02	ca**
Chlorotoluene, o-	95-49-8	No	Yes	-			-	2.00E-02	U		-	1	-	1	8.12E+03	1.46E-01		3.74E+02			2.34E+03	CS
Chlorotoluene, p-		No	Yes	-			-	2.00E-02	U	<u> </u>	-	1	_	1	7.29E+03	1.79E-01				1.36E+09	2.34E+03	CS
Chlorozotocin	54749-90-5		No	2.40E+02	U	6.90E-02	U	-	_	<u> </u>	-	1	0.1	1	-	1.50E-20				1.36E+09	9.57E-03	ca
Chlorpropham		No	No	<u> </u>			-	5.00E-02	U		-	1	0.1	1	_	2.33E-05					4.10E+03	nc
Chlorpyrifos		No	No	-			-	1.00E-03	U		_	1	0.1	1	_	1.20E-04		1.12E+00			8.21E+01	nc
Chlorpyrifos Methyl		No	No	-			-	1.00E-02	U	<u> </u>	-	1	0.1	1	_	1.53E-04		4.76E+00			8.21E+02	nc
Chlorsulfuron	64902-72-3		No	_			-	2.00E-02	U		-	1	0.1	1	_	1.40E-14		3.10E+04			1.64E+03	nc
Chlorthal-dimethyl		No	No	-			-	1.00E-02	U	<u> </u>	-	1	0.1	1	_	8.91E-05					8.21E+02	nc
	1.001.02.1	1										<u> </u>	V. 1	<u> </u>		5.5 . L 55		3.00= 01				

Composite Worker Screening Levels (RSL) for Soil

Chemical	CAS Number	Mutagen?	VOC?	Ingestion SF (mg/kg-day) ⁻¹		Inhalation Unit Risk (ug/m³) ⁻¹	IUR Ref	Chronic RfD (mg/kg- day)	Chronic RfD Ref	Chronic RfC (mg/m³)	Chronic RfC Ref	GIABS	ABS	RBA	Volatilization Factor (m ³ /kg)	Henry's Law Constant (unitless)	Soil Saturation Concentratio n (mg/kg)	S (mg/L)	Koc (cm3/g)	Particulate Emission Factor (m³/kg)	Screening Level (mg/kg)	[basis]
Chlorthiophos	60238-56-4	No	No	-		-		8.00E-04	U			1	0.1	1	-	4.91E-05			1.28E+04	1.36E+09	6.57E+01	nc
Chromium(III), Insoluble Salts	16065-83-1	No	No	-				1.50E+00	U			0.013	-	1	-	-	-	-	-	1.36E+09	1.75E+05	cm
Chromium(VI)	18540-29-9	Yes	No	5.00E-01	U	8.40E-02	U	3.00E-03	U	1.00E-04	U	0.025	-	1	-	-	-	1.69E+06	-	1.36E+09	6.33E+00	ca*
Chromium, Total	7440-47-3	No	No	- 4 005 00				-		•	•	0.013		1	-		-	-	1.045.05	1.36E+09	0.445.00	
Chrysene	218-01-9	Yes	No	1.00E-03	U	6.00E-07	U	1 005 00		•	•	1	0.13	1	-	2.14E-04		2.00E-03		1.36E+09	2.11E+03	ca
Clofentezine	74115-24-5	No	No	-		0.005.00		1.30E-02	U	0.005.00		1	0.1	1	-	1.59E-08	-	1.00E+00	3.02E+04	1.36E+09	1.07E+03	nc
Cobalt	7440-48-4	No	No	-		9.00E-03	U	3.00E-04	U	6.00E-06	U	1	-	1	-	-	-	-	-	1.36E+09	3.47E+01	nc
Complex Mixtures of Aliphatic and Aromatic Hydrocarbons	NA	No	No	_		_		_				1	0.1	1	_	_	_	_	_	1.36E+09		
Copper	7440-50-8	No	No	_		_		4.00E-02	U			1	0.1	1	_			_	_	1.36E+09	4.67E+03	nc
Copper Cyanide	544-92-3	No	No	_		_		5.00E-03	U			1	_	. 1	_			_	_	1.36E+09	5.84E+02	nc
Coronene	191-07-1	No	No	-		_		- 0.002				1	0.13	1	_	8.67E-07	_	1.40E-04	6.35E+06	1.36E+09	0.012 - 02	110
Creosote	8001-58-9	No	No	_		_		_				1	0.1	1	_			-	-	1.36E+09		
Cresol, m-	108-39-4	No	No	_		_		5.00E-02	U	6.00E-01	U	1	0.1	1	_	3.50E-05	_	2.27E+04	3 00F+02	1.36E+09	4.10E+03	nc
Cresol, o-	95-48-7	No	No	_		_		5.00E-02	U	6.00E-01	U	1	0.1	1	_	4.91E-05		2.59E+04		1.36E+09	4.10E+03	nc
Cresol, p-	106-44-5	No	No	_		_		1.00E-01	U	6.00E-01	U	1	0.1	1	_	4.09E-05		2.15E+04		1.36E+09	8.21E+03	nc
Cresol, p-chloro-m-	59-50-7	No	No	_		_		1.00E-01	U			1	0.1	1	_	1.00E-04		3.83E+03		1.36E+09	8.21E+03	nc
Cresols	1319-77-3	No	No	_		_		1.00E-01	U	6.00E-01	U	1	0.1	1	_	2.53E-05		9.07E+03		1.36E+09	8.21E+03	nc
Crotonaldehyde	4170-30-3	No	Yes	_		_		-				1	-	1	1.89E+04	7.93E-04	2.01E+04	1.81E+05		1.36E+09	0.2.2	
Crotonaldehyde, trans-	123-73-9	No	Yes	1.90E+00	U	_		1.00E-03	U			1	_	1	1.89E+04	7.93E-04	1.66E+04	1.50E+05		1.36E+09	1.72E+00	ca*
Cumene	98-82-8	No	Yes	_		_		1.00E-01	U	4.00E-01	U	1	_	1	6.21E+03	4.70E-01	2.68E+02	6.13E+01		1.36E+09	9.95E+02	CS
Cupferron	135-20-6	No	No	2.20E-01	U	6.30E-05	U	-				1	0.1	1	-	1.48E-07		6.08E+05		1.36E+09	1.04E+01	ca
Cyanazine	21725-46-2	No	No	8.40E-01	U	-		2.00E-03	U			1	0.1	1	-	1.05E-10	-	1.70E+02	1.34E+02	1.36E+09	2.74E+00	ca*
Cyanide (CN-)	57-12-5	No	Yes	-		-		6.00E-04	U	8.00E-04	U	1	-	. 1	5.33E+04	4.15E-03	9.54E+05	9.54E+04	-	1.36E+09	1.47E+01	nc
Cyanide (total complex)	NA	No	No	-		_		-				1	-	. 1	-	-		-	-	1.36E+09		
Cyanogen	460-19-5	No	Yes	-		_		1.00E-03	U			1	_	1	-	2.21E-01	-	8.00E+03	-	1.36E+09	1.17E+02	nc
Cyanogen Bromide	506-68-3	No	Yes	-		_		9.00E-02	U			1	_	1	-	1.00E+00	-	-	-	1.36E+09	1.05E+04	nc
Cyanogen Chloride	506-77-4	No	Yes	-		-		5.00E-02	U			1	-	1	-	7.87E-02	-	6.00E+04	-	1.36E+09	5.84E+03	nc
Cyclohexane	110-82-7	No	Yes	-		_		-		6.00E+00	U	1	-	1	1.04E+03	6.13E+00	1.18E+02	5.50E+01	1.46E+02	1.36E+09	2.74E+03	CS
Cyclohexane, 1,2,3,4,5-pentabromo-6-chloro-	87-84-3	No	No	2.00E-02	U	-		2.00E-02	U			1	0.1	1	-	3.92E-05	-	5.50E-02	2.81E+03	1.36E+09	1.15E+02	ca*
Cyclohexanone	108-94-1	No	Yes	-		-		5.00E+00	U	7.00E-01	U	1	-	1	4.17E+04	3.68E-04	5.11E+03	2.50E+04	1.74E+01	1.36E+09	1.25E+04	CS
Cyclohexene	110-83-8	No	Yes	-		-		5.00E-03	U	1.00E+00	U	1	-	1	1.46E+03	1.86E+00	2.83E+02	2.13E+02	1.46E+02	1.36E+09	3.06E+02	CS
Cyclohexylamine	108-91-8	No	Yes	-		-		2.00E-01	U			1	-	1	7.46E+04	1.70E-04	2.93E+05	1.00E+06	3.22E+01	1.36E+09	2.34E+04	nc
Cyclopentadiene	542-92-7	No	Yes	-		-		-				1	-	1	1.49E+03	8.59E-01	1.34E+03	1.80E+03	8.00E+01	1.36E+09		
Cyfluthrin	68359-37-5	No	No	-		-		2.50E-02	U			1	0.1	1	-	1.19E-06	-	3.00E-03	1.31E+05	1.36E+09	2.05E+03	nc
Cyhalothrin	68085-85-8	No	No	-		-		1.00E-03	U		-	1	0.1	1	-	6.05E-05	-	5.00E-03	3.41E+05	1.36E+09	8.21E+01	nc
Cypermethrin	52315-07-8	No	No	-		-		6.00E-02	U		-	1	0.1	1	-	1.72E-05	-	4.00E-03	7.98E+04	1.36E+09	4.92E+03	nc
Cyromazine	66215-27-8	No	No	-		-		1.50E-02	U			1	0.1	1	-	2.31E-12	-	1.30E+04	2.87E+01	1.36E+09	1.23E+03	nc
DDD	72-54-8	No	No	2.40E-01	U	6.90E-05	U	-				1	0.1	1	-	2.70E-04	-	9.00E-02	1.18E+05	1.36E+09	9.57E+00	ca
DDD, o,p'-	53-19-0	No	No	-		-		-			-	1	0.1	1	-	3.34E-04	-	1.00E-01	1.20E+05	1.36E+09		
DDE, p,p'-	72-55-9	No	Yes	3.40E-01	U	9.70E-05	U	-			-	1	-	1	2.11E+06	1.70E-03	-	4.00E-02	1.18E+05	1.36E+09	9.28E+00	ca
DDT	50-29-3	No	No	3.40E-01	U	9.70E-05	U	5.00E-04	U			1	0.03	1	-	3.40E-04	_	5.50E-03	1.69E+05	1.36E+09	8.53E+00	ca**
DDT, o,p'-	789-02-6	No	No	-		-		-			-	1	0.1	1	-	3.03E-04	-	8.50E-02	1.72E+05	1.36E+09		
DDT/DDE/DDD (total)	NA	No	No	-		-		-			-	1	0.1	1	-	-		-	-	1.36E+09		
Dalapon	75-99-0	No	No	-		-		3.00E-02	U		-	1	0.1	1	-	2.31E-06	-	5.02E+05	3.23E+00		2.46E+03	nc
Daminozide	1596-84-5	No	No	1.80E-02	U	5.10E-06	U	1.50E-01	U		-	1	0.1	1	-	1.73E-08	-	1.00E+05	1.00E+01	1.36E+09	1.28E+02	ca*

Composite Worker Screening Levels (RSL) for Soil

Chemical	CAS Number	Mutagen?	VOC?	Ingestion SF (mg/kg-day) ⁻¹		Inhalation Unit Risk (ug/m³) ⁻¹	IUR Ref	Chronic RfD (mg/kg- day)	Chronic RfD Ref	Chronic RfC (mg/m³)	Chronic RfC Ref	GIABS	ABS	RBA	Volatilization Factor (m³/kg)	Henry's Law Constant (unitless)	Soil Saturation Concentratio n (mg/kg)	S (mg/L)	Koc (cm3/g)	Particulate Emission Factor (m³/kg)	Screening Level (mg/kg)	[basis]
Decabromodiphenyl ether, 2,2',3,3',4,4',5,5',6,6'-		NI.	NI.	7.00E-04	l			7.005.00				4	0.4	_		4.075.07		4 005 04	0.705.05	4.005.00	5.74E+00	
· /	1163-19-5	No	No	7.00E-04	U	'	-	7.00E-03	U		-	1	0.1	1	4.425.02	4.87E-07		1.00E-04		1.36E+09	5.74E+02	nc
Decane	124-18-5	No	Yes	-			-	-			-	1	-	1	1.13E+03	2.11E+02	2.53E+00	5.20E-02		1.36E+09		
·		No	Yes	-	1	'	-	-			-	1	- 0.4	1	6.32E+04	1.31E-03		3.70E+01		1.36E+09		
		No	No	-	1	'	-	4 005 05			-	1	0.1	1	-	2.04E-04		2.00E-03	7.98E+04	1.36E+09	2.005.00	
		No	No	4.005.00		,	-	4.00E-05	U		-	1	0.1	1	-	1.56E-04		6.66E+02	0.005.04	1.36E+09	3.28E+00	nc
		No	No	1.20E-03	U		-	6.00E-01	U	-	-	1	0.1	1	- 0.005.04	1.77E-05		7.80E-01		1.36E+09	1.91E+03	ca*
, ,		No	Yes	-		,	-	-			-	1	- 0.4	1	9.38E+04	9.08E-01		4.81E-03		1.36E+09		
, ,		No	No	-		,	-	-			-	1	0.1	1	-	1.42E-08		6.05E+00		1.36E+09		
Di-n-butyltin bis(n-butyl maleate)		No	No	-		,	-	-			-	1	0.1	1	- 0.405.05	7.81E-08		5.26E-03				
	77-58-7	No	Yes	-		,	-	-			-	1	-	1	3.19E+05	6.58E+00		3.00E+00		1.36E+09		
		No	Yes	-			-	-		•	-	1	-	1	1.69E+06	1.97E+02		5.75E-14		1.36E+09		
		No	Yes	- 105.00	ļ	'	-	-		•	-	1	-	1	9.65E+05	1.05E-03	3.85E+00	5.00E-02		1.36E+09	0.775 : 04	
Diallate	2303-16-4	No	No	6.10E-02	U		-	-		•	-	1	0.1	1	-	1.55E-04	-	1.40E+01	6.44E+02	1.36E+09	3.77E+01	ca
Diammonium phosphate	7783-28-0	No	No	-			-	4.86E+01	U		-	1	-	1	-	-	-	-	-	1.36E+09	5.68E+06	cm
Diazinon	333-41-5	No	No	-			-	7.00E-04	U		-	1	0.1	1	-	4.62E-06	-	4.00E+01	3.03E+03	1.36E+09	5.74E+01	nc
Dibenz[a,h]anthracene	53-70-3	Yes	No	1.00E+00	U	6.00E-04	U	-			-	1	0.13	1	-	5.76E-06	-	2.49E-03	1.91E+06	1.36E+09	2.11E+00	ca
Dibenzo(a,e)pyrene	192-65-4	No	No	1.20E+01	U	1.10E-03	U	-			-	1	0.13	1	-	5.76E-07	-	8.02E-05	6.48E+06	1.36E+09	1.76E-01	ca
Dibenzofuran	132-64-9	No	Yes	-			-	1.00E-03	U		-	1	0.03	1	1.56E+05	8.71E-03	-	3.10E+00	9.16E+03	1.36E+09	1.04E+02	nc
Dibenzothiophene	132-65-0	No	Yes	-			-	1.00E-02	U		-	1	-	1	5.25E+05	1.38E-03	-	1.47E+00	9.16E+03	1.36E+09	1.17E+03	nc
Dibromo-3-chloropropane, 1,2-	96-12-8	Yes	Yes	8.00E-01	U	6.00E-03	U	2.00E-04	U	2.00E-04	U	1	-	1	3.20E+04	6.01E-03	9.80E+02	1.23E+03	1.16E+02	1.36E+09	6.44E-02	ca*
Dibromoacetic acid	631-64-1	No	No	-			-	-			-	1	0.1	1	-	1.81E-07	-	2.11E+06	2.25E+00	1.36E+09		
Dibromobenzene, 1,3-	108-36-1	No	Yes	-			-	4.00E-04	U		-	1	-	1	1.93E+04	5.07E-02	1.59E+02	6.75E+01	3.75E+02	1.36E+09	4.67E+01	nc
Dibromobenzene, 1,4-	106-37-6	No	Yes	-			-	1.00E-02	U		-	1	-	1	2.20E+04	3.65E-02	-	2.00E+01	3.75E+02	1.36E+09	1.17E+03	nc
Dibromochloromethane	124-48-1	No	Yes	8.40E-02	U		-	2.00E-02	U		-	1	-	1	7.95E+03	3.20E-02	8.02E+02	2.70E+03	3.18E+01	1.36E+09	3.89E+01	ca*
Dibromodichloromethane	594-18-3	No	Yes	-			-	-			-	1	-	1	2.32E+04	4.95E-03	-	4.79E+02	4.39E+01	1.36E+09		
Dibromodiphenyl Ether, p,p'-	2050-47-7	No	Yes	-			-	-			-	1	-	1	6.05E+05	7.65E-04	-	1.80E-01	4.94E+03	1.36E+09		
Dibromoethane, 1,2-	106-93-4	No	Yes	2.00E+00	U	6.00E-04	U	9.00E-03	U	9.00E-03	U	1	-	1	8.64E+03	2.66E-02	1.34E+03	3.91E+03	3.96E+01	1.36E+09	1.59E-01	ca
Dibromomethane (Methylene Bromide)	74-95-3	No	Yes	-			-	-		4.00E-03	U	1	-	1	5.65E+03	3.36E-02	2.82E+03	1.19E+04	2.17E+01	1.36E+09	9.89E+00	nc
Dibutoxy di-n-butyltin	3349-36-8	No	Yes	-			-	-			-	1	-	1	5.98E+04	3.02E+00	-	4.45E+00	2.62E+05	1.36E+09		
Dibutyl Phthalate	84-74-2	No	No	-			-	1.00E-01	U		-	1	0.1	1	-	7.40E-05	-	1.12E+01	1.16E+03	1.36E+09	8.21E+03	nc
	85702-74-5	No	No	-			-	-			-	1	0.1	1	-	-		-	-	1.36E+09		
Dibutylbis(octadeca-9(Z),12(Z),15(Z)-trienoyloxy)stannane	95873-60-2	No	Yes	_			-	-			-	1	-	1	2.46E+06	9.16E+01	-	7.88E-07	8.27E+09	1.36E+09		
Dibutylbis(octadeca-9(Z),12(Z)-dienoyloxy)stannane	85391-79-3	No	No	_			_	_			-	1	0.1	1	_	-		_	-	1.36E+09		
Dibutylbis(palmitoyloxy)stannane	13323-63-2	No	Yes	-			-	-			-	1	-	1	8.73E+05	6.38E+01	-	7.44E-07	7.50E+08	1.36E+09		
Dibutyltin Compounds	NA	No	No	-			-	3.00E-04	U		-	1	0.1	1	-	-		-	-	1.36E+09	2.46E+01	nc
Dibutyltin diacetate	1067-33-0	No	Yes	-			-	-			-	1	-	1	1.27E+04	2.28E-02	1.86E+00	6.00E+00	3.44E+01	1.36E+09		
Dibutyltin dichloride	683-18-1	No	Yes	-			-	-			-	1	-	1	3.10E+04	1.25E-01	-	9.20E+01	1.86E+03	1.36E+09		
Dibutyltin oxide	818-08-6	No	Yes	-			-	-			-	1	-	1	-	-	-	6.73E-01	1.28E+03	1.36E+09		
Dicalcium phosphate	7757-93-9	No	No	_			_	4.86E+01	U		_	1	_	1	_	-	_	_	_	1.36E+09	5.68E+06	cm
		No	No	<u> </u>			-	3.00E-02	U		-	1	0.1	1	-	8.91E-08	_	8.31E+03	2.90E+01		2.46E+03	nc
		No	Yes	-		4.20E-03	U	-	_	<u> </u>	-	1	_	1	3.21E+03	3.48E-01		5.80E+02			9.39E-03	ca
		No	Yes	-		4.20E-03	U	-			-	1	_	1	1.11E+04	2.71E-02				1.36E+09	3.25E-02	ca
		No	Yes	†		4.20E-03		-		1 .	-	1	-	1	1.12E+04	2.71E-02				1.36E+09		ca

Composite Worker Screening Levels (RSL) for Soil

Chemical	CAS Number	Mutagen?	VOC?	Ingestion SF (mg/kg-day) ⁻¹	J . J	Inhalation Unit Risk (ug/m³) ⁻¹	IUR Ref	Chronic RfD (mg/kg- day)	Chronic RfD Ref	Chronic RfC (mg/m³)	Chronic RfC Ref	GIABS	ABS	RBA	Volatilization Factor (m³/kg)	Henry's Law Constant (unitless)	Soil Saturation Concentratio n (mg/kg)	S (mg/L)	Koc (cm3/g)	Particulate Emission Factor (m³/kg)	Screening Level (mg/kg)	[basis]
Dichloroacetic Acid	79-43-6	No	No	5.00E-02	U			4.00E-03	U	_		1	0.1	1	_	3.43E-07	_	1.00E+06	2 25F+00	1.36E+09	4.60E+01	ca**
Dichloroaniline. 2.4-	554-00-7	No	No	0.002 02				1.002 00		_		1	0.1	1	_	6.46E-05		6.20E+02		1.36E+09	1.002 - 01	
Dichloroaniline, 3,4-	95-76-1	No	Yes	_			_	_		_		1	-	1	1.01E+05	5.97E-04		9.20E+01				
Dichlorobenzene		No	Yes	_			_	_		_		1		1	2.03E+04	7.85E-02		8.00E+01				
Dichlorobenzene, 1,2-	95-50-1	No	Yes	_			_	9.00E-02	U	2.00E-01	U	1	_	1	1.17E+04	7.85E-02	3.76E+02	1.56E+02			9.33E+02	CS
Dichlorobenzene, 1,3-	541-73-1	No	Yes	_			_	0.002 02		2.002 01		1	_	1	9.91E+03	1.08E-01	2.96E+02	1.25E+02		1.36E+09	0.002 - 02	
Dichlorobenzene. 1.4-	106-46-7	No	Yes	5.40E-03	U	1.10E-05	U	7.00E-02	U	8.00E-01	U	1		1	1.04E+04	9.85E-02		8.13E+01		1.36E+09	1.14E+01	ca
Dichlorobenzidine, 3,3'-	91-94-1	No	No	4.50E-01		3.40E-04		7.00L-02		0.00L-01	0	1	0.1	1	1.046.04	1.16E-09		3.10E+00			5.11E+00	ca
Dichlorobenzoic acid, -3,5	51-36-5	No	No	4.50L-01	0	J.40L-04	+ -	_		_		1	0.1	1	_	2.43E-06		1.47E+02		1.36E+09	J.11L100	- Ca
Dichlorobenzophenone, 4,4'-	90-98-2	No	No	-		•	-	9.00E-03	U	_		1	0.1	1	-	4.37E-05		8.29E-01		1.36E+09	7.39E+02	l no
Dichlorobenzotrifluoride, 3,4-	328-84-7	No	Yes	-		•	-	9.00E-03	- 0	_		1	0.1	1	1.15E+04	1.05E+00	3.02E+02	1.88E+01		1.36E+09	7.392+02	nc
Dichlorodifluoromethane	75-71-8	No	Yes	-		•	-	2.00E-01	U	1.00E-01	U	1	-	1	8.41E+02	1.03E+00 1.40E+01		2.80E+02		1.36E+09	3.68E+01	l no
				-			-	2.00E-01	<u> </u>	1.00E-01	U	1									3.00=+01	nc
Dichlorodiisopropyl ether, 2,2'-		No	Yes			4 005 00	-	2.005.04		-		1	-	1	1.31E+04	1.36E-02	2.35E+02	6.23E+02		1.36E+09	4.555.04	
Dichloroethane, 1,1-	75-34-3	No	Yes	5.70E-03	U	1.60E-06	U	2.00E-01	U	_		1	-	1	2.08E+03	2.30E-01	1.69E+03	5.04E+03	3.18E+01	1.36E+09	1.55E+01	ca
Dichloroethane, 1,2-	107-06-2	No	Yes	9.10E-02	υ	2.60E-05	U	6.00E-03	U	7.00E-03	U	1	_	1	4.58E+03	4.82E-02	2.98E+03	8.60E+03	3 96F+01	1.36E+09	2.04E+00	ca**
Dichloroethylene, 1,1-	75-35-4	No	Yes	0.102 02		2.002 00		5.00E-02	U	2.00E-01	U	1	_	1	1.15E+03	1.07E+00		2.42E+03			9.94E+01	nc
Dichloroethylene, 1,2-cis-	156-59-2	No	Yes	_				2.00E-03	U	2.002 01		1	_	1	2.50E+03	1.67E-01		6.41E+03		1.36E+09	2.34E+02	nc
Dichloroethylene, 1,2-trans-	156-60-5	No	Yes	_				2.00E-03	U	_		1		1	1.75E+03	3.83E-01		4.52E+03		1.36E+09	2.34E+03	CS
Dichlorophenol, 2,3-	576-24-9	No	No					Z.00L-0Z				1	0.1	1	1.732.100	1.26E-05		3.60E+03		1.36E+09	2.042100	
Dichlorophenol, 2,4-	120-83-2	No	No	-				3.00E-03	U	_		1	0.1	1	_	1.75E-04		5.55E+03			2.46E+02	nc
Dichlorophenol, 2,5-	583-78-8	No	No	_				3.00L-03				1	0.1	1	_	1.75E-04 1.26E-05		2.00E+03			2.402102	110
Dichlorophenol, 2,6-	87-65-0	No	No	-			-	-		_		1	0.1	1	-	1.20E-03 1.09E-04		1.90E+03				
Dichlorophenol, 3,4-	95-77-2	No	No	-			-	_		_		1	0.1	1	-	1.09E-04 1.26E-05		9.26E+03				
·				-			-	-		-		1			-	1.20E-05	-	9.200+03	4.926+02			
Dichlorophenols (total)	NA	No	No	-			-	4 005 00		-		1	0.1	1	-	4.455.00	-	- - -	2.005.04	1.36E+09	0.045+00	
Dichlorophenoxy Acetic Acid, 2,4-	94-75-7	No	No	-		•	-	1.00E-02	U	-		1	0.05	1	-	1.45E-06	-	6.77E+02	2.90E+01	1.36E+09	9.64E+02	nc
Dichloropropane, 1,2-	78-87-5	No	Yes	3.70E-02	U	3.70E-05	U	4.00E-02	U	4.00E-03	U	1	-	1	3.79E+03	1.15E-01	1.36E+03	2.80E+03	6.07E+01	1.36E+09	1.24E+00	ca**
Dichloropropane, 1,3-	142-28-9	No	Yes	-			-	2.00E-02	U	_		1	-	1	6.76E+03	3.99E-02	1.49E+03	2.75E+03	7.22E+01	1.36E+09	2.34E+03	CS
Dichloropropane, 2,2-	594-20-7	No	Yes	-			-	-		-		1	-	1	1.60E+03	6.58E-01	1.91E+02	3.91E+02	4.39E+01	1.36E+09		
Dichloropropanol, 2,3-	616-23-9	No	No	-			-	3.00E-03	U	_		1	0.1	1	-	1.47E-07	-	6.42E+04	5.57E+00	1.36E+09	2.46E+02	nc
Dichloropropene, 1,1-	563-58-6	No	Yes	-			-	-		-		1	-	-	1.18E+03	2.04E+00	-	7.49E+02	6.07E+01	1.36E+09		
Dichloropropene, 1,3-	542-75-6	No	Yes	1.00E-01	U	4.00E-06	U	3.00E-02	U	2.00E-02	U	1	-	1	3.56E+03	1.45E-01	1.57E+03	2.80E+03	7.22E+01	1.36E+09	8.18E+00	ca**
Dichloropropene, 2,3-	78-88-6	No	Yes	-			-	-		-		1	-	1	3.09E+03	1.70E-01	1.07E+03	2.15E+03	6.07E+01	1.36E+09		
Dichloropropene, cis-1,3-	10061-01-5	No	Yes	-			-	-		_		1	-	1	4.04E+03	1.11E-01	1.21E+03	2.18E+03	7.22E+01	1.36E+09		
Dichloropropene, trans-1,3-	10061-02-6		Yes	-			-	-		-		1	-	1	7.04E+03	3.56E-02				1.36E+09		
Dishlanga	62.72.7	No	No	2.005.01		0.205.05	T.,	E 00F 04	U	E 00E 04		1	0.1	4		2.255.05		0.005.03	E 40E : 01	1 265 100	7.025.00	ca**
Dichlorvos Dicrotophos	62-73-7 141-66-2	No No	No No	2.90E-01	U	8.30E-05	U	5.00E-04 7.00E-05	U	5.00E-04	U	1	0.1	1	-	2.35E-05 2.06E-09		8.00E+03 1.00E+06		1.36E+09 1.36E+09	7.92E+00 5.74E+00	
<u> </u>				-				7.00E-05	U	-		1	0.1	1							5.74E+00	nc
Dicyclohexylamine	101-83-7	No	Yes	-		•	-	0.005.00		2.005.04		1		1	6.25E+04	2.25E-03				1.36E+09	E 40E 04	
Dicyclopentadiene	77-73-6	No	Yes	4.005.04		4.005.00	·	8.00E-02	U	3.00E-04	U	1	-	1	4.11E+03	2.56E+00				1.36E+09	5.40E-01	nc
Dieldrin	60-57-1	No	No	1.60E+01	U	4.60E-03	U	5.00E-05	U	-		1	0.1	1	4.405:05	4.09E-04				1.36E+09	1.44E-01	ca*
Diepoxybutane		No	Yes	-			-	-		0.00= = :		1	-	1	1.46E+05	1.45E-06		1.00E+06			1.04= 65	
Diethanolamine	111-42-2	No	No	-		•	-	2.00E-03	U	2.00E-04	U	1	0.1	1	-	1.58E-09		1.00E+06		1.36E+09	1.64E+02	nc
Diethyl Phthalate	84-66-2	No	No	-			-	8.00E-01	U	-		1	0.1	1	-	2.49E-05		1.08E+03			6.57E+04	nc
Diethyl sulfate	64-67-5	No	No	-			-	-		-		1	0.1	1	-	2.51E-04		7.00E+03				
Diethyl-p-nitrophenylphosphate	311-45-5	No	No	-			-	-		-		1	0.1	1	-	4.46E-09	-	3.64E+03	1.31E+02	1.36E+09		

Composite Worker Screening Levels (RSL) for Soil

Chemical	CAS Number	Mutagen?	VOC?	Ingestion SF SF (mg/kg-day) ⁻¹ R	-	IUR	Chronic RfD (mg/kg- day)	Chronic RfD Ref	Chronic RfC (mg/m³)	Chronic RfC Ref	GIABS	ABS	RBA	Volatilization Factor (m³/kg)	Henry's Law Constant (unitless)	Soil Saturation Concentratio n (mg/kg)	S (mg/L)	Koc (cm3/g)	Particulate Emission Factor (m³/kg)	Screening Level (mg/kg)	[basis]
Diethylene Glycol Dinitrate (DEGDN)	693-21-0	No	No	-	, ,	-	-		-		1	0.1	1	-	1.59E-05		` • /	3.22E+01	1.36E+09	, ,	
Diethylene Glycol Monobutyl Ether	112-34-5	No	No	-		-	3.00E-02	U	1.00E-04	U	1	0.1	1	_	2.94E-07	- 1	.00E+06	1.00E+01	1.36E+09	2.36E+03	nc
Diethylene Glycol Monoethyl Ether	111-90-0	No	No	-		-	6.00E-02	U	3.00E-04	U	1	0.1	1	_	9.12E-07	- 1	.00E+06	1.00E+00	1.36E+09	4.79E+03	nc
Diethylene-glycol	111-46-6	No	No	-		-	_		_		1	0.1	1	_	1.22E-08	- 1	.00E+06	1.00E+00	1.36E+09		
Diethylformamide	617-84-5	No	Yes	-		-	1.00E-03	U	_		1	-	1	1.39E+05	5.31E-06	1.12E+05 1	.00E+06	2.06E+00	1.36E+09	1.17E+02	nc
Diethylphosphorodithioate	298-06-6	No	Yes	_		-	_		_		1	_	1	1.30E+04	1.52E-02	2.15E-02 6	3.40E-02	3.88E+01	1.36E+09		
Diethylstilbestrol	56-53-1	No	No	3.50E+02 L	J 1.00E-0	1 U	_		_		1	0.1	1	_	2.37E-10			2.74E+05	1.36E+09	6.57E-03	ca
Difenzoquat	43222-48-6	No	No	_		-	8.30E-02	U	_		1	0.1	1	-				7.84E+04	1.36E+09	6.81E+03	nc
Diflubenzuron		No	No	_		_	2.00E-02	U	_		1	0.1	1	_	1.88E-07			4.63E+02	1.36E+09	1.64E+03	nc
Difluoroethane. 1.1-	75-37-6	No	Yes	-		-	_		4.00E+01	U	1	-	1	1.15E+03	8.30E-01			3.18E+01	1.36E+09	2.01E+04	CS
Difluoropropane, 2,2-	420-45-1	No	Yes	-		-	_		_		1	_	1	7.58E+02	2.10E+01			4.39E+01	1.36E+09		
Dihydrosafrole	94-58-6	No	Yes	4.40E-02 L	J 1.30E-0	5 U	_		_		1	_	1	1.23E+05	4.99E-04			2.07E+02	1.36E+09	4.53E+01	ca
Diisopropyl Ether	108-20-3	No	Yes	-		-	_		7.00E-01	U	1	_	1	3.05E+03	1.05E-01			2.28E+01	1.36E+09	9.36E+02	nc
Diisopropyl Methylphosphonate	1445-75-6	No	Yes	-		-	8.00E-02	U	_		1	_	1	3.81E+04	1.79E-03			4.22E+01	1.36E+09	9.34E+03	CS
Dimagnesium phosphate	7782-75-4	No	No	_		_	4.86E+01	U	_		1	_	1	_			_	_	1.36E+09	5.68E+06	cm
Dimethipin		No	No	_		_	2.18E-02	U	_		1	0.1	1	_	9.40E-10	- 4	60F+03	1.00E+01	1.36E+09	1.79E+03	nc
Dimethoate	60-51-5	No	No	_		_	2.20E-03	U	_		1	0.1	1	_	9.93E-09			1.28E+01	1.36E+09	1.81E+02	nc
Dimethoxybenzidine. 3.3'-	119-90-4	No	No	1.60E+00 L	J	_			_		1	0.1	1	_	1.92E-09			5.09E+02	1.36E+09	1.44E+00	ca
Dimethyl Sulfate	77-78-1	No	No	-		_	_		_		1	0.1	1	_	1.64E-04			8.49E+00	1.36E+09		
Dimethyl Sulfide	75-18-3	No	Yes	_		_	_		_		1	-	1	2.97E+03	6.58E-02			2.17E+01	1.36E+09		
Billioury Guillac	70 10 0	110	100								· ·			2.072 * 00	0.002 02	0.012100 2	.202 - 0 1	2.172.01	1.002 - 00		
Dimethyl methylphosphonate	756-79-6	No	No	1.70E-03 l	J	-	6.00E-02	U	-		1	0.1	1	-	5.56E-06	- 1	.00E+06	5.41E+00	1.36E+09	1.35E+03	ca**
Dimethylamino azobenzene [p-]	60-11-7	No	No	4.60E+00 l	J 1.30E-0	3 U	-		-		1	0.1	1	-	1.64E-08	- 2	2.30E-01	2.03E+03	1.36E+09	5.00E-01	ca
Dimethylaniline HCl, 2,4-	21436-96-4	No	No	5.80E-01 l	J	-	-		-		1	0.1	1	-	9.48E-05	- 3	.65E+03	3.52E+02	1.36E+09	3.96E+00	ca
Dimethylaniline, 2,4-	95-68-1	No	No	2.00E-01 L	J	-	2.00E-03	U	-		1	0.1	1	-	1.02E-04	- 6	.07E+03	1.85E+02	1.36E+09	1.15E+01	ca*
Dimethylaniline, N,N-	121-69-7	No	Yes	2.70E-02 l	J	-	2.00E-03	U	_		1	-	1	3.13E+04	2.32E-03	8.30E+02 1	.45E+03	7.87E+01	1.36E+09	1.21E+02	ca**
Dimethylbenz(a)anthracene, 7,12-	57-97-6	Yes	No	2.50E+02 l	J 7.10E-0	2 U	-		-		1	0.13	1	-	1.54E-04	- 6	6.10E-02	4.94E+05	1.36E+09	8.44E-03	ca
Dimethylbenzidine, 3,3'-	119-93-7	No	No	1.10E+01 l	J	-	-		-		1	0.1	1	-	2.57E-09	- 1	.30E+03	3.19E+03	1.36E+09	2.09E-01	ca
Dimethylcyclohexylamine, n,n-	98-94-2	No	Yes	-		-	-		-		1	-	1	3.79E+04	9.61E-04	- 1.	.05E+04	3.60E+01	1.36E+09		
Dimethylethyl Lead	107584-40-7	No	No	-		-	-		-		1	0.1	1	-	-	-	-	-	1.36E+09		
Dimethylformamide	68-12-2	No	Yes	-		-	1.00E-01	U	3.00E-02	U	1	-	1	1.27E+05	3.02E-06	1.06E+05 1	.00E+06	1.00E+00	1.36E+09	1.46E+03	nc
Dimethylhydrazine, 1,1-	57-14-7	No	Yes	-		-	1.00E-04	U	2.00E-06	U	1	-	1	2.77E+04	5.27E-04	1.72E+05 1	.00E+06	1.20E+01	1.36E+09	2.42E-02	nc
Dimethylhydrazine, 1,2-	540-73-8	No	Yes	5.50E+02 l	J 1.60E-0	1 U	-		-		1	-	1	1.68E+05	2.84E-06	1.89E+05 1	.00E+06	1.49E+01	1.36E+09	4.06E-03	ca
Dimethylmercury	593-74-8	No	Yes	-		-	-		-		1	-	1	4.26E+03	8.71E-02	2.19E+03 8	.86E+03	2.17E+01	1.36E+09		
Dimethylphenethylamine	122-09-8	No	No	-		-	-		-		1	0.1	1	-	5.85E-05	- 1	.86E+04	1.08E+03	1.36E+09		
Dimethylphenol, 2,4-	105-67-9	No	No	-		-	2.00E-02	U	-		1	0.1	1	-	3.89E-05	- 7	.87E+03	4.92E+02	1.36E+09	1.64E+03	nc
Dimethylphenol, 2,6-	576-26-1	No	No	-		-	6.00E-04	U	-		1	0.1	1	-	2.72E-04	- 6	.05E+03	5.02E+02	1.36E+09	4.92E+01	nc
Dimethylphenol, 3,4-	95-65-8	No	No	-		-	1.00E-03	U	-		1	0.1	1	-	1.70E-05	- 4	.76E+03	4.92E+02	1.36E+09	8.21E+01	nc
Dimethylphthalate	131-11-3	No	No	-		-	-		-		1	0.1	1	-	8.05E-06	- 4	.00E+03	3.16E+01	1.36E+09		
Dimethylterephthalate	120-61-6	No	Yes	-		-	1.00E-01	U	-		1	-	1	2.14E+04	5.48E-03	- 1	.90E+01	3.10E+01	1.36E+09	1.17E+04	nc
Dimethylvinylchloride	513-37-1	No	Yes	4.50E-02 l	J 1.30E-0	5 U	-		-		1	-	1	5.48E+03	4.84E-02	4.73E+02 1	.00E+03	6.07E+01	1.36E+09	4.83E+00	ca
Dinitro-o-cresol, 4,6-	534-52-1	No	No	-		-	8.00E-05	U	-		1	0.1	1	-	5.72E-05	- 1	.98E+02	7.54E+02	1.36E+09	6.57E+00	nc
Dinitro-o-cyclohexyl Phenol, 4,6-	131-89-5	No	No	-		-	2.00E-03	U	-		1	0.1	1		2.26E-06	- 1	.50E+01	1.65E+04	1.36E+09	1.64E+02	nc
Dinitroaniline, 3,5-	618-87-1	No	No	-		-	-		-		1	0.1	1	-	1.21E-09	- 1	.29E+03	1.69E+02	1.36E+09		
Dinitrobenzene, 1,2-	528-29-0	No	No	-		-	1.00E-04	U	-		1	0.1	1	-	2.18E-06	- 1	.33E+02	3.59E+02	1.36E+09	8.21E+00	nc
Dinitrobenzene, 1,3-	99-65-0	No	No	-		-	1.00E-04	U	-		1	0.1	1	-	2.00E-06	- 5	.33E+02	3.52E+02	1.36E+09	8.21E+00	nc
Dinitrobenzene, 1,4-	100-25-4	No	No	-		-	1.00E-04	U	-		1	0.1	1	-	3.43E-06	- 6	.90E+01	3.52E+02	1.36E+09	8.21E+00	nc

Composite Worker Screening Levels (RSL) for Soil

Chemical	CAS Number	Mutagen?	VOC?	Ingestion SF (mg/kg-day) ⁻¹	SFO Ref			Chronic RfD (mg/kg- day)	Chronic RfD Ref	Chronic RfC (mg/m³)	Chronic RfC Ref	GIABS	ABS	RBA	Volatilization Factor (m³/kg)	Henry's Law Constant (unitless)	Soil Saturation Concentratio n (mg/kg)	S (mg/L)	Koc (cm3/g)	Particulate Emission Factor (m³/kg)	Screening Level (mg/kg)	[basis]
Dinitrophenol, 2,4-	51-28-5	No	No	-		-	2	2.00E-03	U	-		1	0.1	1	-	3.52E-06	-	2.79E+03	4.61E+02	1.36E+09	1.64E+02	nc
Dinitrophenols	25550-58-7	No	No	-		-		-		-		1	0.1	1	-	1.13E-06	-	5.60E+00	4.70E+02	1.36E+09		
Dinitrosopentamethylenetetramine, N,N-	101-25-7	No	No	-		-		-		-		1	0.1	1	-	2.02E-04	-	5.70E-03	5.80E+01	1.36E+09		
Dinitrotoluene Mixture, 2,4/2,6-	NA	No	No	6.80E-01	U	-		-		-		1	0.1	1	-	1.62E-05	-	2.70E+02	5.87E+02	1.36E+09	3.38E+00	ca
Dinitrotoluene, 2,3-	602-01-7	No	No	-		-		-		-	-	1	0.1	-		3.79E-06	-	2.70E+02	5.87E+02	1.36E+09		
Dinitrotoluene, 2,4-	121-14-2	No	No	3.10E-01	U	8.90E-05	U 2	2.00E-03	U	-	-	1	0.102	1	-	2.21E-06	-	2.00E+02	5.76E+02	1.36E+09	7.37E+00	ca*
Dinitrotoluene, 2,5-	619-15-8	No	No	-		-		-		-		1	0.1	-		3.79E-06	-	2.20E+02	5.76E+02	1.36E+09		
Dinitrotoluene, 2,6-	606-20-2	No	No	1.50E+00	U	-	3	3.00E-04	U	-		1	0.099	1	-	3.05E-05	-	1.82E+02	5.87E+02	1.36E+09	1.54E+00	ca*
Dinitrotoluene, 2-Amino-4,6-	35572-78-2	No	No	-		-	2	2.00E-03	U	-		1	0.006	1	-	1.34E-09	-	1.22E+03	2.83E+02	1.36E+09	2.28E+02	nc
Dinitrotoluene, 3,4-	610-39-9	No	No	-		-		-		-		1	0.1	-		3.79E-06	-	1.79E+02	5.76E+02	1.36E+09		
Dinitrotoluene, 3,5-	618-85-9	No	No	-		-		-		-		-	-	-		3.79E-06	-	1.45E+02	5.64E+02	1.36E+09		
Dinitrotoluene, 4-Amino-2,6-	19406-51-0	No	No	-		-	2	2.00E-03	U			1	0.009	1	-	1.34E-09	-	1.22E+03	2.83E+02	1.36E+09	2.25E+02	nc
Dinitrotoluene, Technical grade	25321-14-6	No	No	4.50E-01	U	-	9	9.00E-04	U			1	0.1	1	-	3.79E-06	-	2.70E+02	5.87E+02	1.36E+09	5.11E+00	ca*
Dinoseb	88-85-7	No	No	-		-	1	1.00E-03	U			1	0.1	1	-	1.86E-05	-	5.20E+01	4.29E+03	1.36E+09	8.21E+01	nc
Dioxane, 1,4-	123-91-1	No	Yes	1.00E-01	U	5.00E-06	U 3	3.00E-02	U	3.00E-02	U	1	-	1	3.97E+04	1.96E-04	1.16E+05	1.00E+06	2.63E+00	1.36E+09	2.45E+01	ca*
Diphenamid	957-51-7	No	No	_		_		3.00E-02	U	_		1	0.1	1	-	1.48E-09			4.80E+03	1.36E+09	2.46E+03	nc
Diphenyl Sulfone	127-63-9	No	No	_		_		3.00E-04	U	_		1	0.1	1	-	1.02E-05			1.11E+03	1.36E+09	6.57E+01	nc
Diphenylamine	122-39-4	No	No	_		_		1.00E-01	U			1	0.1	1	_	1.10E-04		5.30E+01		1.36E+09	8.21E+03	nc
Diphenylhydrazine, 1,2-	122-66-7	No	No	8.00E-01	U	2.20E-04		_		_		1	0.1	1	_	1.95E-05			1.51E+03	1.36E+09	2.87E+00	ca
Dipotassium phosphate	7758-11-4	No	No	-		-		1.86E+01	U	-		1	- 0.4	1	-			7.005.05	- 0.075.00	1.36E+09	5.68E+06	cm
Diquat	85-00-7	No	No	7.405.00		4 405 04		2.20E-03	U	-	•	1	0.1	1	-	5.81E-12		7.08E+05		1.36E+09	1.81E+02	nc
Direct Black 38	1937-37-7	No	No	7.10E+00	U		U	-		-		1	0.1	1	-	3.36E-38			2.42E+08	1.36E+09	3.23E-01	ca
Direct Blue 6	2602-46-2	No	No	7.40E+00	U		U	-		-		1	0.1	1	-	3.72E-42			7.91E+08	1.36E+09	3.10E-01	ca
Direct Brown 95	16071-86-6	No	No	6.70E+00	U	1.40E-01	U	-		-	•	1	0.1	1	-	<u> </u>		1.00E+06		1.36E+09	3.42E-01	ca
Direct Sky Blue	2610-05-1	No	No	-		-		-		-	•	1	0.1	1	-	3.50E-42	-	4.00E+04	2.88E+08	1.36E+09	F 00F 100	
Disodium phosphate	7558-79-4	No	No	-		-		1.86E+01	U	-	•	1	-	1	-		-	4.005.04		1.36E+09	5.68E+06	cm
Disulfoton	298-04-4	No	No	-		-		4.00E-05	U	-	•	1	0.1	1		8.83E-05		1.63E+01		1.36E+09	3.28E+00	nc
Dithiane, 1,4-	505-29-3	No	Yes	-		-	1	1.00E-02	U	-		1	-	1	4.54E+04	1.72E-03			1.46E+02	1.36E+09	1.17E+03	nc
Diundecyl Phthalate	3648-20-2	No	Yes	-		-		-		-	•	1	-	-	1.47E+07	2.29E-03		1.11E+00		1.36E+09		
Diuron	330-54-1	No	No	-		-		2.00E-03	U	-		1	0.1	1	-	2.06E-08			1.09E+02	1.36E+09	1.64E+02	nc
Dodine	2439-10-3	No	No	-		-		2.00E-02	U	-		1	0.1	1	-	3.68E-09		6.30E+02		1.36E+09	1.64E+03	nc
EPTC	759-94-4	No	Yes	-		-		5.00E-02	U	-		1	-	1	1.17E+05	6.50E-04			1.64E+02	1.36E+09	5.84E+03	nc
Endosulfan	115-29-7	No	Yes	-		-	6	6.00E-03	U	-	•	1	-	1	4.09E+05	2.66E-03			6.76E+03		7.01E+02	nc
Endosulfan I	959-98-8	No	No	-		-		-		-	•	1	-	1	-	2.90E-04			6.76E+03			
Endosulfan II	33213-65-9	No	No	-		-		-		-		1	-	1	-	1.60E-05			6.76E+03	1.36E+09		
Endosulfan Sulfate	1031-07-8	No	No	-		-		-		-		11	0.1	1	-	1.33E-05				1.36E+09		
Endothall	145-73-3	No	No	-		-		2.00E-02	U	-	•	1	0.1	1	-	1.57E-14			1.94E+01	1.36E+09	1.64E+03	nc
Endrin	72-20-8	No	No	-		-	3	3.00E-04	U	-		1	0.1	1	-	2.60E-04	-	2.50E-01	2.01E+04	1.36E+09	2.46E+01	nc
Endrin aldehyde	7421-93-4	No	No	-		-		-		-	-	1	0.1	1	-	1.71E-04	-	2.40E-02	3.27E+03	1.36E+09		
Endrin ketone	53494-70-5	No	No	-		-		-		-		1	0.1	1	-	8.26E-07			9.72E+03	1.36E+09		
Epichlorohydrin	106-89-8	No	Yes	9.90E-03	U	1.20E-06	U 6	6.00E-03	U	1.00E-03	U	1	-	1	1.89E+04	1.24E-03	1.05E+04	6.59E+04	9.91E+00	1.36E+09	8.18E+00	nc
Epoxybutane, 1,2-	106-88-7	No	Yes	-		-		-		2.00E-02	U	1	-	1	7.66E+03	7.36E-03	1.53E+04	9.50E+04	9.91E+00	1.36E+09	6.71E+01	nc
Ethanol	64-17-5	No	Yes	-		-		-				1	-	1	3.14E+04	2.04E-04	1.06E+05	1.00E+06	1.05E+00	1.36E+09		
Ethanol, 2-(2-methoxyethoxy)-	111-77-3	No	No	-		-	4	4.00E-02	U	-		1	0.1	1	-	6.75E-10		1.00E+06	1.00E+00	1.36E+09	3.28E+03	nc
Ethephon	16672-87-0		No	-		-		5.00E-03	U			1	0.1	1	_	2.33E-10			5.03E+00	1.36E+09	4.10E+02	nc
Ethion	563-12-2	No	No	<u> </u>		-		5.00E-04	U	1 -		1	0.1	1	-	1.55E-05					4.10E+01	nc
	1		1			1	1 7	-	_	1	1		1				1					

Composite Worker Screening Levels (RSL) for Soil

Chemical	CAS Number	Mutagen?	VOC?	Ingestion SF (mg/kg-day) ⁻¹		Inhalation Unit Risk (ug/m³) ⁻¹	IUR Ref	Chronic RfD (mg/kg- day)	Chronic RfD Ref	Chronic RfC (mg/m³)	Chronic RfC Ref	GIABS	ABS	RBA	Volatilization Factor (m ³ /kg)	Henry's Law Constant (unitless)	Soil Saturation Concentratio n (mg/kg)	S (mg/L)	Koc (cm3/g)	Particulate Emission Factor (m³/kg)	Screening Level (mg/kg)	[basis]
Ethoxy Propanol	52125-53-8	No	Yes	-		-		-			-	1	-	1	1.46E+05	3.02E-06	3.96E+04	3.66E+05	1.36E+00	1.36E+09		
Ethoxyethanol Acetate, 2-	111-15-9	No	Yes	-		-		1.00E-01	U	6.00E-02	U	1	-	1	6.14E+04	1.31E-04	2.38E+04	1.87E+05		1.36E+09	1.42E+03	nc
Ethoxyethanol, 2-	110-80-5	No	Yes	-		-		9.00E-02	U	2.00E-01	U	1	-	1	9.84E+04	1.92E-05	1.06E+05	1.00E+06	1.00E+00	1.36E+09	4.74E+03	nc
Ethyl Acetate	141-78-6	No	Yes	-		-		9.00E-01	U	7.00E-02	U	1	-	1	8.62E+03	5.48E-03	1.08E+04	8.00E+04	5.58E+00	1.36E+09	2.64E+02	nc
Ethyl Acrylate	140-88-5	No	Yes	-		-		5.00E-03	U	8.00E-03	U	1	-	1	6.34E+03	1.39E-02	2.50E+03	1.50E+04	1.07E+01	1.36E+09	2.14E+01	nc
Ethyl Chloride	75-00-3	No	Yes	-		-	-	-		1.00E+01	U	1	-	1	1.29E+03	4.54E-01	2.12E+03	6.71E+03	2.17E+01	1.36E+09	5.66E+03	cs
Ethyl Ether	60-29-7	No	Yes	-		-		2.00E-01	U		-	1	-	1	3.13E+03	5.03E-02	1.01E+04	6.04E+04		1.36E+09	2.34E+04	CS
Ethyl Methacrylate	97-63-2	No	Yes	-		-		-		3.00E-01	U	1	-	1	5.78E+03	2.34E-02		5.40E+03		1.36E+09	7.59E+02	nc
Ethyl methane sulfonate	62-50-0	No	No	-		-		-			-	1	0.1	1	-	1.06E-05	-	1.35E+05	7.89E+00	1.36E+09		
Ethyl-p-nitrophenyl Phosphonate	2104-64-5	No	No	-		-	-	1.00E-05	U		-	1	0.1	1	-	1.82E-05	-	3.11E+00	1.55E+04	1.36E+09	8.21E-01	nc
Ethylbenzene	100-41-4	No	Yes	1.10E-02	U	2.50E-06	U	1.00E-01	U	1.00E+00	U	1	-	1	5.67E+03	3.22E-01	4.79E+02	1.69E+02	4.46E+02	1.36E+09	2.54E+01	ca*
Ethylene Cyanohydrin	109-78-4	No	No	-		-		7.00E-02	U		-	1	0.1	1	-	3.07E-07	-	1.00E+06	1.00E+00	1.36E+09	5.74E+03	nc
Ethylene Diamine	107-15-3	No	Yes	-		-		9.00E-02	U		-	1	-	1	1.80E+05	7.07E-08	1.89E+05	1.00E+06	1.49E+01	1.36E+09	1.05E+04	nc
Ethylene Glycol	107-21-1	No	No	-		-		2.00E+00	U	4.00E-01	U	1	0.1	1	-	2.45E-06		1.00E+06		1.36E+09	1.64E+05	cm
Ethylene Glycol Monobutyl Ether	111-76-2	No	No	-		-		1.00E-01	U	1.60E+00	U	1	0.1	1	-	6.54E-05	-	1.00E+06		1.36E+09	8.21E+03	nc
Ethylene Oxide	75-21-8	Yes	Yes	3.10E-01	U	3.00E-03	U	-		3.00E-02	U	1	-	1	6.09E+03	6.05E-03	1.21E+05	1.00E+06		1.36E+09	2.48E-02	ca
Ethylene Thiourea	96-45-7	No	No	4.50E-02	U	1.30E-05	U	8.00E-05	U		-	1	0.1	1	-	5.56E-10	-	2.00E+04		1.36E+09	6.57E+00	nc
Ethyleneimine	151-56-4	No	Yes	6.50E+01	U	1.90E-02	U	-			-	1	-	1	2.39E+04	4.95E-04	1.54E+05	1.00E+06	9.04E+00	1.36E+09	1.18E-02	ca
Ethylphenol, 4-	123-07-9	No	No	-		-		-			-	1	0.1	1	-	3.16E-05	-	4.90E+03	5.73E+02	1.36E+09		
Ethylphthalyl Ethyl Glycolate	84-72-0	No	No	-		-		3.00E+00	U		-	1	0.1	1	-	2.71E-07		2.17E+02		1.36E+09	2.46E+05	cm
Famphur	52-85-7	No	No	-		-		-			-	1	0.1	1	-	6.58E-07		1.09E+02		1.36E+09		
Fenamiphos	22224-92-6	No	No	-		-		2.50E-04	U		-	1	0.1	1	-	4.95E-08		3.29E+02		1.36E+09	2.05E+01	nc
Fenpropathrin	39515-41-8	No	No	-		-		2.50E-02	U		-	1	0.1	1	-	3.12E-04		3.30E-01		1.36E+09	2.05E+03	nc
Fenvalerate		No	No	-		-		2.50E-02	U		-	1	0.1	1	-	1.41E-06		2.40E-02		1.36E+09	2.05E+03	nc
Fluometuron	2164-17-2	No	No	-		-		1.30E-02	U		-	1	0.1	1	-	1.07E-07		1.10E+02		1.36E+09	1.07E+03	nc
Fluoranthene	206-44-0	No	No	-		-		4.00E-02	U		-	1	0.13	1	-	3.62E-04		2.60E-01		1.36E+09	3.01E+03	nc
Fluorene	86-73-7	No	Yes	-		-		4.00E-02	U		-	1	0.13	1	2.81E+05	3.93E-03		1.69E+00	9.16E+03	1.36E+09	3.01E+03	nc
Fluoride		No	No	-		-		4.00E-02	U	1.30E-02	U	1	-	1	-	-		1.69E+00	-	1.36E+09	4.67E+03	nc
Fluorine (Soluble Fluoride)	7782-41-4	No	No	-		-		6.00E-02	U	1.30E-02	U	1	-	1	-			1.69E+00	-	1.36E+09	7.00E+03	nc
Fluorobenzene	462-06-6	No	Yes	-		-		-			-	1	-	1	4.71E+03	2.56E-01	2.39E+03	1.54E+03		1.36E+09		
Fluorobiphenyl, 2-	321-60-8	No	Yes	-		-		-			-	1	-	1	1.24E+05	1.97E-02		1.39E+01		1.36E+09		
Fluorophenol, 2-	367-12-4	No	Yes	-		-	-				-	1	-	1	2.12E+05	1.32E-04	2.74E+04	1.41E+04		1.36E+09	0.575.00	
Fluridone	59756-60-4		No	-		-	-	8.00E-02	U		-	1	0.1	1	-	3.31E-07					6.57E+03	nc
Flurprimidol	56425-91-3		No	-		-	•	1.50E-02	U		-	1	0.1	1	-	5.36E-08				1.36E+09	1.23E+03	nc
Flusilazole	85509-19-9		No	-		-	-	2.00E-03	U		-	1	0.1	1	-	9.20E-08		5.40E+01		1.36E+09	1.64E+02	nc
Flutolanil	66332-96-5		No	-		-	-	5.00E-01	U		-	1	0.1	1	-	1.30E-07		6.53E+00			4.10E+04	nc
Fluvalinate	69409-94-5		No	-		-	-	1.00E-02	U		-	1	0.1	1	-	5.93E-07					8.21E+02	nc
Folpet		No	No	-		-		9.00E-02	U		-	1	0.1	1	-	3.13E-06				1.36E+09	7.39E+03	nc
Fomesafen	72178-02-0		No	-		-	-	2.50E-03	U		-	1	0.1	1	-	3.08E-11				1.36E+09	2.05E+02	nc
Fonofos	944-22-9	No	No	-		-	•	2.00E-03	U		-	1	0.1	1	-	2.85E-04	-	1.5/⊑+01	ช.56E+02	1.36E+09	1.64E+02	nc
Formaldehyde		No	Yes	-		1.30E-05	U	2.00E-01	U	9.83E-03	U	1	-	1	7.77E+04	1.38E-05	4.24E+04	4.00E+05			7.33E+01	ca**
Formic Acid	64-18-6	No	Yes	-		-		9.00E-01	U	3.00E-04	U	1	-	1	9.30E+04	6.83E-06	1.06E+05	1.00⊑+06	1.00⊨+00	1.36E+09	1.22E+01	nc
Fosetyl-AL	39148-24-8	No	No					2.50E+00	U		-	1	0.1	1		1.29E-12		1.11E+05	6.49E+03	1.36E+09	2.05E+05	cm
Fuel Oil Number 2	68476-30-2	No	No	-		-		-			-	1	0.1	1	-		-	-	-	1.36E+09		
Furan	110-00-9	No	Yes	-		-		1.00E-03	U		-	1	0.03	1	2.62E+03	2.21E-01	6.22E+03	1.00E+04	8.00E+01	1.36E+09	1.04E+02	nc

Composite Worker Screening Levels (RSL) for Soil

Chemical	CAS Number	Mutagen?	VOC?	Ingestion SF (mg/kg-day) ⁻¹			IUR Ref	Chronic RfD (mg/kg- day)	Chronic RfD Ref	Chronic RfC (mg/m³)	Chronic RfC Ref	GIABS	ABS	RBA	Volatilization Factor (m³/kg)	Henry's Law Constant (unitless)	Soil Saturation Concentratio n (mg/kg)	S (mg/L)	Koc (cm3/g)	Particulate Emission Factor (m³/kg)	Screening Level (mg/kg)	[basis]
Furazolidone	67-45-8	No	No	3.80E+00	U	-		-		-	-	1	0.1	1	-	1.33E-09		4.00E+01		1.36E+09	6.05E-01	ca
Furfural	98-01-1	No	Yes		-	-		3.00E-03	U	5.00E-02	U	1		- 1	4.86E+04	1.54E-04		7.41E+04		1.36E+09	2.64E+02	nc
Furium	531-82-8	No	No	1.50E+00	U	4.30E-04	U	-		-	-	1	0.1	1	-	5.44E-14	-	4.21E+03	5.78E+02	1.36E+09	1.53E+00	ca
Furmecyclox	60568-05-0	No	No	3.00E-02	U	8.60E-06	U	-		-	-	1	0.1	1	-	2.82E-07	-	3.00E-01	4.29E+02	1.36E+09	7.66E+01	ca
Gadolinium	7440-54-2	No	No		-	-		-		-	-	1		- 1	-	-	-	-	-	1.36E+09		
Gallium	7440-55-3	No	No		-	-		-		-	-	1		- 1	-	-	-	-	-	1.36E+09		
Germanium	7440-56-4	No	No		-	-		-		-	-	1		- 1	-	-	-	-	-	1.36E+09		
Glufosinate, Ammonium	77182-82-2	No	No		-	-		6.00E-03	U	-	-	1	0.1	1	-	1.81E-12	-	1.37E+06	1.00E+01	1.36E+09	4.92E+02	nc
Glutaraldehyde	111-30-8	No	No		-	-		-		8.00E-05	U	1	0.1	1	-	1.35E-06	-	2.24E+05	1.00E+00	1.36E+09	4.76E+04	nc
Glycerol	56-81-5	No	No		-	-		-		-		1	0.1	1	-	7.07E-07	-	1.00E+06	1.00E+00	1.36E+09		
Glycidyl	765-34-4	No	Yes		-	-		4.00E-04	U	1.00E-03	U	1		- 1	8.44E+04	2.09E-05	1.06E+05	1.00E+06	1.00E+00	1.36E+09	2.06E+01	nc
Glyphosate	1071-83-6	No	No		-	-		1.00E-01	U	-		1	0.1	1	-	8.59E-11	-	1.05E+04	2.10E+03	1.36E+09	8.21E+03	nc
Guanidine	113-00-8	No	Yes		-	-		1.00E-02	U	-		1		- 1	1.45E+05	9.57E-10	-	1.84E+03	1.20E+01	1.36E+09	1.17E+03	nc
Guanidine Chloride	50-01-1	No	No		-	-		2.00E-02	U	-	-	1	0.1	1	-	8.87E-17	-	1.00E+06	-	1.36E+09	1.64E+03	nc
Guanidine Nitrate	506-93-4	No	No		-	-		3.00E-02	U	-	-	1	0.1	1	-	3.66E-17	-	1.00E+06	2.28E+01	1.36E+09	2.46E+03	nc
HCDD, 1,2,3,4,6,7,8,-	35822-46-9	No	Yes	1.30E+03	U	3.80E-01	U	1.00E-06	U	4.00E-06	U	1	0.03	1	2.43E+06	7.15E-03	-	2.40E-06	1.16E+06	1.36E+09	2.17E-03	ca*
Haloacetic acids	NA	No	No		-	-		-		-		1	0.1	1	-	_	-	-	-	1.36E+09		
Haloxyfop, Methyl	69806-40-2	No	No		-	-		5.00E-05	U	-		1	0.1	1	-	1.30E-05	-	9.30E+00	5.45E+03	1.36E+09	4.10E+00	nc
Heptachlor	76-44-8	No	Yes	4.50E+00	U	1.30E-03	U	5.00E-04	U	-		1		- 1	4.80E+05	1.20E-02	_	1.80E-01	4.13E+04	1.36E+09	6.26E-01	ca*
Heptachlor Epoxide	1024-57-3	No	Yes	9.10E+00	U	2.60E-03	U	1.30E-05	U	-		1		- 1	8.42E+05	8.59E-04	-	2.00E-01	1.01E+04	1.36E+09	3.30E-01	ca**
Heptachlorobiphenyl, 2,3,3',4,4',5,5'- (PCB 189)		No	Yes	3.90E+00	U	1.14E-03	U	2.33E-05	U	1.33E-03	U	1	0.14	1	2.43E+06	2.07E-03		7.53E-04		1.36E+09	5.16E-01	ca**
Heptachlorodibenzofuran, 1,2,3,4,6,7,8-	67562-39-4	No	Yes	1.30E+03	U	3.80E-01	U	7.00E-08	U	4.00E-06	U	1	0.03	1	6.28E+06	5.76E-04		1.35E-06		1.36E+09	2.21E-03	ca**
Heptanal, n-	111-71-7	No	Yes		-	-		-		-	-	1		- 1	7.82E+03	1.10E-02	2.09E+02	1.25E+03	1.09E+01	1.36E+09		
Heptane, N-	142-82-5	No	Yes		-	-		3.00E-04	U	4.00E-01	U	1		- 1	8.95E+02	8.18E+01	5.79E+01	3.40E+00	2.40E+02	1.36E+09	2.86E+01	nc
Heptanol, n-	111-70-6	No	Yes		-	-		-		-	-	1		- 1	3.43E+04	7.69E-04	3.78E+02	1.67E+03	2.10E+01	1.36E+09		
Hexabromobenzene Hexabromodiphenyl ether, 2,2',4,4',5,5'- (BDE-	87-82-1	No	Yes		-	-		2.00E-03	U	-	-	1		- 1	3.80E+05	1.15E-03	-	1.60E-04	2.81E+03	1.36E+09	2.34E+02	nc
153)	68631-49-2	No	No		-	-		2.00E-04	U	-	-	1	0.1	1	-	-	_	9.00E-04	-	1.36E+09	1.64E+01	nc
Hexachlorobenzene	118-74-1	No	Yes	1.60E+00	U	4.60E-04	U	8.00E-04	U	-	-	1		- 1	6.80E+04	6.95E-02	-	6.20E-03	6.20E+03	1.36E+09	9.60E-01	ca*
Hexachlorobiphenyl, 2,3',4,4',5,5'- (PCB 167)	52663-72-6	No	Yes	3.90E+00	U	1.14E-03	U	2.33E-05	U	1.33E-03	U	1	0.14	1	1.58E+06	2.80E-03	-	2.23E-03	2.09E+05	1.36E+09	5.11E-01	ca**
Hexachlorobiphenyl, 2,3,3',4,4',5'- (PCB 157)	69782-90-7	No	Yes	3.90E+00	U	1.14E-03	U	2.33E-05	U	1.33E-03	U	1	0.14	1	1.04E+06	6.62E-03	-	1.65E-03	2.14E+05	1.36E+09	5.03E-01	ca**
Hexachlorobiphenyl, 2,3,3',4,4',5- (PCB 156)	38380-08-4	No	Yes	3.90E+00	U	1.14E-03	U	2.33E-05	U	1.33E-03	U	1	0.14	1	1.11E+06	5.85E-03	-	5.33E-03	2.14E+05	1.36E+09	5.04E-01	ca**
Hexachlorobiphenyl, 3,3',4,4',5,5'- (PCB 169)	32774-16-6	No	Yes	3.90E+03	U	1.14E+00	U	2.33E-08	U	1.33E-06	U	1	0.14	1	1.58E+06	2.80E-03	-	5.10E-04	2.09E+05	1.36E+09	5.11E-04	ca**
Hexachlorobutadiene	87-68-3	No	Yes	7.80E-02	U	2.20E-05	U	1.00E-03	U	-		1		- 1	1.08E+04	4.21E-01	1.68E+01	3.20E+00	8.45E+02	1.36E+09	5.26E+00	ca*
Hexachlorocyclohexane, Alpha-	319-84-6	No	No	6.30E+00	U	1.80E-03	U	8.00E-03	U	-		1	0.1	1	-	2.74E-04	-	2.00E+00	2.81E+03	1.36E+09	3.65E-01	ca
Hexachlorocyclohexane, Beta-	319-85-7	No	No	1.80E+00	U	5.30E-04	U	-		-		1	0.1	1	-	1.80E-05	-	2.40E-01	2.81E+03	1.36E+09	1.28E+00	ca
•	319-86-8	No	No		-	-		-		-		1	0.1	1	-	2.10E-04	-	3.14E+01	2.81E+03	1.36E+09		
Hexachlorocyclohexane, Epsilon	6108-10-7	No	No		_	-		-		-		1	0.1	1	-	2.10E-04		8.00E+00		1.36E+09		
Hexachlorocyclohexane, Gamma- (Lindane)	58-89-9	No	No	1.10E+00	U	3.10E-04	U	3.00E-04	U	-		1	0.04	1	_	2.10E-04		7.30E+00		1.36E+09	2.54E+00	ca*
Hexachlorocyclohexane, Technical	608-73-1	No	No	1.80E+00		5.10E-04		-		-		1	0.1	1	_	2.10E-04		8.00E+00		1.36E+09	1.28E+00	ca
Hexachlorocyclopentadiene	77-47-4	No	Yes			_		6.00E-03	U	2.00E-04	U	1	ļ	- 1	8.52E+03	1.10E+00		1.80E+00		1.36E+09	7.46E-01	nc
Hexachlorodibenzo-p-dioxin		No	No	1.30E+04	IJ	3.80E+00	U		U	4.00E-07	U	1	0.03	1		2.33E-04		4.00E-06		1.36E+09	2.23E-04	ca**
Hexachlorodibenzo-p-dioxin, 1,2,3,4,7,8-	39227-28-6		No	1.30E+04	_	3.80E+00			U	4.00E-07	U	1	0.03	1	_	1.61E-04		4.40E-06		1.36E+09	2.23E-04	ca**
Hexachlorodibenzo-p-dioxin, 1,2,5,4,7,6	NA	No	No	6.20E+03		1.30E+00						1	0.03	1		2.33E-04		4.00E-06		1.36E+09	4.68E-04	ca
Hexachlorodibenzofuran, 1,2,3,4,7,8-		No	Yes	1.30E+04		3.80E+00		7 00F-09	U	4.00E-07	U	1	0.03	1	2.88E+06	1.59E-03		2.98E-06			2.18E-04	ca**
Hexachloroethane	67-72-1	No	Yes	4.00E-02	U			7.00E-04	U	3.00E-02	U	1	0.00	1	8.01E+03	1.59E-03		5.00E+01		1.36E+09	8.05E+00	ca**
Hexachlorophene				4.00⊑-0∠	U	1.10⊏-05	U		U	J.UU⊑ - UZ	U	1	0.1	1	0.01ETU3						8.05E+00 2.46E+01	
пехаспіогорпене	70-30-4	No	No			_		3.00E-04	U			I	0.1	1	-	2.24E-11	_	1.40⊏+02	0.09⊑+05	1.36E+09	2.40⊑+01	nc

Composite Worker Screening Levels (RSL) for Soil

Chemical	CAS Number	Mutagen?	VOC?	Ingestion SF (mg/kg-day) ⁻¹		Inhalation Unit Risk (ug/m³) ⁻¹	IUR Ref	Chronic RfD (mg/kg- day)	Chronic RfD Ref	Chronic RfC (mg/m³)	Chronic RfC Ref	GIABS	ABS	RBA	Volatilization Factor (m³/kg)	Henry's Law Constant (unitless)	Soil Saturation Concentratio n (mg/kg)	S (mg/L)	Koc (cm3/g)	Particulate Emission Factor (m³/kg)	Screening Level (mg/kg)	[basis]
Hexachloropropene	1888-71-7	No	Yes	-		-	.	-			-	1	-	1	1.07E+04	1.92E-01	4.37E+01	1.70E+01	4.06E+02	1.36E+09		
Hexadecanoic Acid	57-10-3	No	Yes	-		-		-			-	1	-	1	5.55E+05	8.18E-04	-	4.00E-02	3.52E+03	1.36E+09		
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)	121-82-4	No	No	1.10E-01	U	-		3.00E-03	U		-	1	0.015	1	-	8.22E-10	-	5.97E+01	8.91E+01	1.36E+09	2.80E+01	ca*
Hexamethylene Diisocyanate, 1,6-	822-06-0	No	Yes	-		-		-		1.00E-05	U	1	-	1	3.01E+05	1.96E-03	3.40E+03	1.17E+02	4.82E+03	1.36E+09	1.32E+00	nc
Hexamethylphosphoramide	680-31-9	No	No	-		-		4.00E-04	U		-	1	0.1	1	-	8.18E-07	-	1.00E+06	1.00E+01	1.36E+09	3.28E+01	nc
Hexane, N-	110-54-3	No	Yes	-		-		-		7.00E-01	U	1	-	1	8.29E+02	7.36E+01	1.41E+02	9.50E+00	1.32E+02	1.36E+09	2.54E+02	cs
Hexanedioic Acid	124-04-9	No	No	_		_		2.00E+00	U		-	1	0.1	1	_	1.93E-10	_	3.08E+04	2.43E+01	1.36E+09	1.64E+05	cm
Hexanol, n-	111-27-3	No	Yes	-		-		-			-	1	-	1	2.92E+04	6.99E-04	9.98E+02	5.90E+03	1.15E+01	1.36E+09		
Hexanone, 2-	591-78-6	No	Yes	-		-		5.00E-03	U	3.00E-02	U	1	-	1	1.33E+04	3.81E-03	3.28E+03	1.72E+04	1.50E+01	1.36E+09	1.34E+02	nc
Hexazinone	51235-04-2	No	No	-		-		3.30E-02	U		-	1	0.1	1	-	9.24E-11	-	3.30E+04	1.29E+02	1.36E+09	2.71E+03	nc
Hexythiazox	78587-05-0	No	No	-		-		2.50E-02	U		-	1	0.1	1	-	9.69E-07	-	5.00E-01	2.12E+03	1.36E+09	2.05E+03	nc
HpCDD, 2,3,7,8-	37871-00-4	No	Yes	1.30E+03	U	3.80E-01	U	7.00E-08	U	4.00E-06	U	1	0.03	1	2.43E+06	7.15E-03	-	1.41E-06	1.16E+06	1.36E+09	2.17E-03	ca**
HpCDF, 1,2,3,4,7,8,9-	55673-89-7	No	Yes	1.30E+03	U	3.80E-01	U	7.00E-08	U	4.00E-06	U	1	0.03	1	6.28E+06	5.76E-04	-	1.35E-06	6.50E+05	1.36E+09	2.21E-03	ca**
HpCDF, 2,3,7,8-	38998-75-3	No	Yes	1.30E+03	U	3.80E-01	U	7.00E-08	U	4.00E-06	U	1	0.03	1	6.28E+06	5.76E-04	-	1.35E-06	6.50E+05	1.36E+09	2.21E-03	ca**
HxCDD, 1,2,3,6,7,8-	57653-85-7	No	No	1.30E+04	U	3.80E+00	U	7.00E-09	U	4.00E-07	U	1	0.03	1	-	7.93E-05	-	2.65E-05	6.95E+05	1.36E+09	2.23E-04	ca**
HxCDD, 1,2,3,7,8,9-	19408-74-3	No	No	1.30E+04	U	3.80E+00	U	7.00E-09	U	4.00E-07	U	1	0.03	1	-	7.93E-05	-	2.65E-05	6.95E+05	1.36E+09	2.23E-04	ca**
HxCDF, 1,2,3,6,7,8-	57117-44-9	No	Yes	1.30E+04	U	3.80E+00	U	7.00E-09	U	4.00E-07	U	1	0.03	1	2.88E+06	1.59E-03	-	3.49E-04	3.89E+05	1.36E+09	2.18E-04	ca**
HxCDF, 1,2,3,7,8,9-	72918-21-9	No	No	1.30E+04	U	3.80E+00	U	7.00E-09	U	4.00E-07	U	1	0.03	1	-	3.47E-04	-	1.56E-03	3.89E+05	1.36E+09	2.23E-04	ca**
HxCDF, 2,3,4,6,7,8-	60851-34-5	No	No	1.30E+04	U	3.80E+00	U	7.00E-09	U	4.00E-07	U	1	0.03	1	-	2.78E-04	-	5.89E-05	3.89E+05	1.36E+09	2.23E-04	ca**
HxCDF, 2,3,7,8-	55684-94-1	No	No	1.30E+04	U	3.80E+00	U	7.00E-09	U	4.00E-07	U	1	0.03	1	-	3.47E-04	-	1.56E-03	3.97E+05	1.36E+09	2.23E-04	ca**
Hydramethylnon	67485-29-4	No	No	-		-	.	1.70E-02	U		-	1	0.1	1	-	8.99E-05	-	6.00E-03	1.80E+08	1.36E+09	1.40E+03	nc
Hydrazine	302-01-2	No	Yes	3.00E+00	U	4.90E-03	U	-		3.00E-05	U	1	-	1	-	2.50E-05	-	1.00E+06	-	1.36E+09	1.09E+00	ca
Hydrazine Sulfate	10034-93-2	No	No	3.00E+00	U	4.90E-03	U	-			-	1	-	1	-		-	3.06E+04	-	1.36E+09	1.09E+00	ca
Hydrogen Chloride	7647-01-0	No	Yes	_		_		_		2.00E-02	U	1	_	1	_	8.34E+07	_	6.73E+05	-	1.36E+09	1.19E+07	cm
Hydrogen Cyanide	74-90-8	No	Yes	-		-		6.00E-04	U	8.00E-04	U	1	-	1	5.22E+04	5.44E-03	1.00E+07	1.00E+06	-	1.36E+09	1.45E+01	nc
Hydrogen Fluoride	7664-39-3	No	Yes	-		-		4.00E-02	U	1.40E-02	U	1	-	1	-	4.25E-03	-	1.00E+06	-	1.36E+09	4.67E+03	nc
Hydrogen Selenide	7783-07-5	No	Yes	-		-		-			-	1	-	1	-		-	-	-	1.36E+09		
Hydrogen Sulfate	12143-45-2	No	No	-		-		-			-	1	-	1	-			-	-	1.36E+09		
Hydrogen Sulfide	7783-06-4	No	Yes	_		_		_		2.00E-03	U	1	_	1	_	3.50E-01	-	3.74E+03	-	1.36E+09	1.19E+06	cm
Hydroquinone	123-31-9	No	No	6.00E-02	U	-		4.00E-02	U		-	1	0.1	1	-	1.93E-09	-	7.20E+04	2.41E+02	1.36E+09	3.83E+01	ca*
lmazalil	35554-44-0	No	No	6.11E-02	U	_		2.50E-03	U		_	1	0.1	1	_	1.06E-07	_	1.80E+02	8.50E+03	1.36E+09	3.76E+01	ca**
lmazaquin	81335-37-7	No	No	-		-		2.50E-01	U		-	1	0.1	1	-	2.83E-16	-	9.00E+01	2.39E+03	1.36E+09	2.05E+04	nc
Imazethapyr	81335-77-5	No	No	_		_		2.50E+00	U		_	1	0.1	1	_	4.25E-15	_	1.40E+03	3.39E+02	1.36E+09	2.05E+05	cm
Indeno[1,2,3-cd]pyrene		Yes	No	1.00E-01	U	6.00E-05	U	-				1	0.13	1	-	1.42E-05		1.90E-04			2.11E+01	ca
Indium		No	No	-		_		-			-	1	-	1	-			_	-	1.36E+09		
lodide	20461-54-5	No	No	-		-		-			-	1	-	1	-			-	-	1.36E+09		
Iodine	7553-56-2		No	-		-		1.00E-02	U		-	1	-	1	-			3.30E+02	-	1.36E+09	1.17E+03	nc
lodomethane	74-88-4	No	Yes	<u> </u>		-		-			-	1	-	1	1.85E+03	2.15E-01		1.38E+04	1.32E+01	1.36E+09		
Iodopropynyl Butylcarbamate (IPBC)	55406-53-6		No	-		-		_			-	1	0.1	1	-	4.91E-06		1.56E+02		1.36E+09		
Iprodione	36734-19-7		No	-		-		4.00E-02	U		-	1	0.1	1	-	1.28E-07		1.39E+01		1.36E+09	3.28E+03	nc
Iron		No	No	-		-		7.00E-01	U		-	1	-	1	-			_	-		8.18E+04	nc
Iron Sulfide	11126-12-8	No	No	-		-		-			-	1	-	1	-			_	-	1.36E+09		
Isobutyl Alcohol	78-83-1	No	Yes	-		-		3.00E-01	U		-	1	-	1	2.81E+04	4.00E-04	1.00E+04	8.50E+04	2.92E+00	1.36E+09	3.50E+04	CS
Isodrin	465-73-6	No	Yes	-		-		-			-	1	-	1	1.68E+06	1.80E-03	-	1.70E-02	8.20E+04	1.36E+09		

Composite Worker Screening Levels (RSL) for Soil

Chemical	CAS Number	Mutagen?	VOC?	Ingestion SF (mg/kg-day) ⁻¹		Inhalation Unit Risk (ug/m³) ⁻¹	IUR Ref	Chronic RfD (mg/kg- day)	Chronic RfD Ref	Chronic RfC (mg/m³)	Chronic RfC Ref	GIABS	ABS	RBA	Volatilization Factor (m³/kg)	Henry's Law Constant (unitless)	Soil Saturation Concentratio n (mg/kg)	S (mg/L)	Koc (cm3/g)	Particulate Emission Factor (m³/kg)	Screening Level (mg/kg)	[basis]
Isophorone	78-59-1	No	No	9.50E-04	U	-		2.00E-01	U	2.00E+00	U	1	0.1	1	_	2.71E-04	_	1.20E+04	6.52E+01	1.36E+09	2.42E+03	ca**
Isopropalin	33820-53-0	No	Yes	-		-		1.50E-02	U	-		1		- 1	4.19E+05	4.54E-03	-	1.10E-01	1.14E+04	1.36E+09	1.75E+03	nc
Isopropanol	67-63-0	No	Yes	-		-		2.00E+00	U	2.00E-01	U	1		- 1	2.77E+04	3.31E-04	1.09E+05	1.00E+06	1.53E+00	1.36E+09	2.41E+03	nc
Isopropyl Methyl Phosphonic Acid	1832-54-8	No	No	-		-		1.00E-01	U	-		1	0.1	1	-	2.81E-07	-	5.04E+04	7.71E+00	1.36E+09	8.21E+03	nc
Isopropyltoluene, p-	99-87-6	No	Yes	-		-		-		-		1		- 1	8.52E+03	4.50E-01	1.62E+02	2.34E+01	1.12E+03	1.36E+09		
Isosafrole	120-58-1	No	Yes	-		-		-		-		1		- 1	2.48E+03	1.47E+00	2.33E+02	1.44E+02	2.07E+02	1.36E+09		
Isoxaben	82558-50-7	No	No	-		-		5.00E-02	U	-		1	0.1	1	-	5.19E-08	-	1.42E+00	1.26E+03	1.36E+09	4.10E+03	nc
JP-4	50815-00-4	No	Yes	-		-		-		-		1		- 1	-	4.09E+02	-	5.70E+01	-	1.36E+09		
JP-5	NA	No	Yes	-		-		-		-		1		- 1	-	2.41E-03	5.40E-01	5.00E+00	1.25E+00	1.36E+09		
JP-7	NA	No	Yes	_		-		-		3.00E-01	U	1		- 1	_	4.09E-01	_	1.04E+01	-	1.36E+09	1.79E+08	cm
JP-8	NA	No	Yes	-		-		-		-		-		-		2.41E-03	1.34E+00	1.24E+01	1.25E+00	1.36E+09		
Kerosene	8008-20-6	No	Yes	-		-		-		-		1		- 1	-	4.09E-01	-	1.04E+01	-	1.36E+09		
Lactofen	77501-63-4	No	No	-		-		8.00E-03	U	-		1	0.1	1	-	1.93E-05	-	1.00E-01	2.30E+04	1.36E+09	6.57E+02	nc
Lactonitrile	78-97-7	No	No	-		-		-		-		1	0.1	1	-	4.01E-04	-	4.66E+05	1.00E+00	1.36E+09		
Lanthanum	7439-91-0	No	No	-		-		-		-		1		- 1	-	-	-	-	-	1.36E+09		
Lead Alkyls	NA	No	No	-		-		-		-		1	0.1	1	-	-	-	-	-	1.36E+09		
Lead Chromate	7758-97-6	Yes	No	5.00E-01	U	1.50E-01	U	2.00E-02	U	2.00E-04	U	0.025		- 1	-	-	-	1.70E-01	-	1.36E+09	6.18E+00	ca
Lead Phosphate	7446-27-7	No	No	8.50E-03	U	1.20E-05	U	-		-		1		- 1	-	-	-	0.00E+00	-	1.36E+09	3.85E+02	ca
Lead acetate	301-04-2	No	No	8.50E-03	U	1.20E-05	U	-		-		1	0.1	1	-	-	-	1.60E+03	1.00E+00	1.36E+09	2.70E+02	ca
Lead and Compounds	7439-92-1	No	No	-		-		-		-		1		- 1	-	-	-	-	-	1.36E+09		
Lead subacetate	1335-32-6	No	No	8.50E-03	U	1.20E-05	U	-		-		1	0.1	1	-	-	-	6.25E+04	1.04E+01	1.36E+09	2.70E+02	ca
Lewisite	541-25-3	No	Yes	-		-		5.00E-06	U	-		1		- 1	2.56E+04	8.91E-03	3.84E+02	5.00E+02	1.11E+02	1.36E+09	5.84E-01	nc
Linuron	330-55-2	No	No	-		-		7.70E-03	U	-		1	0.1	1	-	2.56E-07	-	7.50E+01	3.40E+02	1.36E+09	6.32E+02	nc
Lithium	7439-93-2	No	No	-		-		2.00E-03	U	-		1		- 1	-	-	-	-	-	1.36E+09	2.34E+02	nc
Lithium Perchlorate	7791-03-9	No	No	-		-		7.00E-04	U	-		1		- 1	-	-	-	5.87E+05	-	1.36E+09	8.18E+01	nc
Lutetium	7439-94-3	No	No	-		-		-		-		1		- 1	-	-	-	-	-	1.36E+09		
MCPA	94-74-6	No	No	-		-		5.00E-04	U	-		1	0.1	1	-	5.44E-08		6.30E+02		1.36E+09	4.10E+01	nc
МСРВ	94-81-5	No	No	-		-		4.40E-03	U	-		1	0.1	1	-	1.11E-07	-	4.80E+01	9.84E+01	1.36E+09	3.61E+02	nc
MCPP	93-65-2	No	No	-		-		1.00E-03	U	-		1	0.1	1	-	7.44E-07	-	6.20E+02	4.85E+01	1.36E+09	8.21E+01	nc
Magnesium	7439-95-4	No	No	-		-		-		-		1		- 1	-		-	-	-	1.36E+09		
Malathion	121-75-5	No	No	-		-		2.00E-02	U	-		1	0.1	1	-	2.00E-07		1.43E+02		1.36E+09	1.64E+03	nc
Maleic Anhydride	108-31-6	No	No	-		-		1.00E-01	U	7.00E-04	U	1	0.1	1	-	1.61E-04		1.63E+05		1.36E+09	8.05E+03	nc
Maleic Hydrazide	123-33-1	No	No	-		-		5.00E-01	U	-		1	0.1	1	-	1.08E-09					4.10E+04	nc
Malononitrile	109-77-3	No	No	-		-		1.00E-04	U	-		1	0.1	1	-	5.36E-06		1.33E+05			8.21E+00	nc
Mancozeb		No	No	-		-		3.00E-02	U	-		1	0.1	1	-	6.21E-10		6.20E+00		1.36E+09	2.46E+03	nc
Maneb	12427-38-2		No	-		-		5.00E-03	U	-		1	0.1	1	-	1.99E-07	-	6.00E+00	6.08E+02		4.10E+02	nc
Manganese (Non-diet)		No	No	-		-		2.40E-02	U	5.00E-05	U	0.04		- 1	-	-	-	-	-	1.36E+09	2.56E+03	nc
Mechlorethamine		No	No	-		-		-		-		1	0.1	1	-	1.19E-04		1.20E+04		1.36E+09		
Mephosfolan	950-10-7	No	No	-		-		9.00E-05	U	-		1	0.1	1	-	4.87E-09		5.70E+01		1.36E+09	7.39E+00	nc
Mepiquat Chloride	24307-26-4	No	No	-		-		3.00E-02	U	-		1	0.1	1	-	1.76E-10	-	5.00E+05	6.62E+01	1.36E+09	2.46E+03	nc
Mercaptobenzothiazole, 2-	149-30-4	No	No	1.10E-02	U	-		4.00E-03	U	-		1	0.1	1	-	1.48E-06		1.20E+02	1.36E+03	1.36E+09	2.09E+02	ca**
Mercuric Chloride	7487-94-7	No	No	-		-		3.00E-04	U	3.00E-04	U	0.07		- 1	-	-		6.90E+04	-	1.36E+09	3.50E+01	nc
Mercury (elemental)	7439-97-6	No	Yes	-		-		-		3.00E-04	U	1		- 1	3.47E+04	3.52E-01	3.13E+00	6.00E-02	-	1.36E+09	4.56E+00	CS
Merphos		No	Yes	-		-		3.00E-05	U	-		1		- 1	1.94E+06	9.28E-04		3.50E-03		1.36E+09	3.50E+00	nc
Merphos Oxide	78-48-8	No	No	-		-		1.00E-04	U	-		1	0.1	1	-	1.20E-05		2.30E+00		1.36E+09	8.21E+00	nc
Metalaxyl	57837-19-1	No	No	-		-		6.00E-02	U	-		1	0.1	1	-	1.21E-07	-	8.40E+03	3.86E+01	1.36E+09	4.92E+03	nc

Composite Worker Screening Levels (RSL) for Soil

Chemical	CAS Number	Mutagen?	VOC?	Ingestion SF (mg/kg-day) ⁻¹	SFO	halation Unit Risk ug/m³) ⁻¹	IUR Ref	Chronic RfD (mg/kg- day)	Chronic RfD Ref	Chronic RfC (mg/m³)	Chronic RfC Ref	GIABS	ABS	RBA	Volatilization Factor (m³/kg)	Henry's Law Constant (unitless)	Soil Saturation Concentratio n (mg/kg)	S (mg/L)	Koc (cm3/g)	Particulate Emission Factor (m³/kg)	Screening Level (mg/kg)	[basis]
Methacrylonitrile	126-98-7	No	Yes	-		-		1.00E-04	U	3.00E-02	U	1	-	1	6.80E+03	1.01E-02	4.59E+03	2.54E+04	1.31E+01	1.36E+09	1.03E+01	nc
Methamidophos		No	No	-		-		5.00E-05	U	-		1	0.1	1	-	3.55E-08		1.00E+06	5.41E+00	1.36E+09	4.10E+00	nc
Methanol	67-56-1	No	Yes	-		-		2.00E+00	U	2.00E+01	U	1	-	1	2.91E+04	1.86E-04	1.06E+05	1.00E+06	1.00E+00	1.36E+09	1.22E+05	CS
Methapyrilene	91-80-5	No	No	-		-		-		-		1	0.1	1	-	1.32E-10	-	6.01E+02	1.86E+03	1.36E+09		
Methidathion	950-37-8	No	No	-		-		1.50E-03	U	-		1	0.1	1	-	2.93E-07	-	1.87E+02	2.12E+01	1.36E+09	1.23E+02	nc
Methomyl	16752-77-5	No	No	-		-		2.50E-02	U	-		1	0.1	1	-	8.05E-10	-	5.80E+04	1.00E+01	1.36E+09	2.05E+03	nc
Methoxy-5-nitroaniline, 2-	99-59-2	No	No	4.90E-02	U 1.	.40E-05	U	-		-		1	0.1	1	-	5.11E-07	-	1.15E+02	7.13E+01	1.36E+09	4.69E+01	ca
Methoxychlor	72-43-5	No	No	-		-		5.00E-03	U	-		1	0.1	1	-	8.30E-06	-	1.00E-01	2.69E+04	1.36E+09	4.10E+02	nc
Methoxyethanol Acetate, 2-	110-49-6	No	Yes	-		-		8.00E-03	U	1.00E-03	U	1	-	1	1.24E+05	1.27E-05	1.15E+05	1.00E+06	2.49E+00	1.36E+09	5.12E+01	nc
Methoxyethanol, 2-	109-86-4	No	Yes	-		-		5.00E-03	U	2.00E-02	U	1	-	1	1.01E+05	1.35E-05	1.06E+05	1.00E+06	1.00E+00	1.36E+09	3.52E+02	nc
Methyl Acetate	79-20-9	No	Yes	-		-		1.00E+00	U	-		1	-	1	8.12E+03	4.70E-03	2.90E+04	2.43E+05	3.06E+00	1.36E+09	1.17E+05	CS
Methyl Acrylate	96-33-3	No	Yes	-		-		-		2.00E-02	U	1	-	1	6.97E+03	8.14E-03	6.75E+03	4.94E+04	5.84E+00	1.36E+09	6.11E+01	nc
Methyl Ethyl Ketone (2-Butanone)	78-93-3	No	Yes	-		-		6.00E-01	U	5.00E+00	U	1	-	1	1.22E+04	2.33E-03	2.84E+04	2.23E+05	4.51E+00	1.36E+09	1.93E+04	nc
Methyl Hydrazine	60-34-4	No	Yes	-	1.	.00E-03	U	1.00E-03	U	2.00E-05	U	1	-	1	5.04E+04	1.24E-04	1.80E+05	1.00E+06	1.33E+01	1.36E+09	4.40E-01	nc
Methyl Isobutyl Ketone (4-methyl-2-pentanone)	108-10-1	No	Yes	-		-		-		3.00E+00	U	1	-	1	1.06E+04	5.64E-03	3.36E+03	1.90E+04	1.26E+01	1.36E+09	1.39E+04	CS
Methyl Isocyanate	624-83-9	No	Yes	-		-		-		1.00E-03	U	1	-	1	4.40E+03	3.79E-02	1.01E+04	2.92E+04	3.96E+01	1.36E+09	1.93E+00	nc
Methyl Mercaptan	74-93-1	No	Yes	-		-		-		-		1	-	1	1.78E+03	1.28E-01	3.13E+03	1.54E+04	1.32E+01	1.36E+09		
Methyl Mercury	22967-92-6	No	No	-		-		1.00E-04	U	-		1	-	1	-	-	-	-	-	1.36E+09	1.17E+01	nc
Methyl Methacrylate	80-62-6	No	Yes	-		-		1.40E+00	U	7.00E-01	U	1	-	1	6.34E+03	1.30E-02	2.36E+03	1.50E+04	9.14E+00	1.36E+09	1.92E+03	nc
Methyl Parathion	298-00-0	No	No	-		-		2.50E-04	U	-		1	0.1	1	-	4.09E-06	-	3.77E+01	7.29E+02	1.36E+09	2.05E+01	nc
Methyl Phosphonic Acid	993-13-5	No	No	-		-		6.00E-02	U	-		1	0.1	1	-	4.99E-10	-	2.00E+04	1.41E+00	1.36E+09	4.92E+03	nc
Methyl Styrene (Mixed Isomers)	25013-15-4	No	Yes	-		-		6.00E-03	U	4.00E-02	U	1	-	1	2.43E+04	1.07E-01	3.93E+02	8.90E+01	7.16E+02	1.36E+09	2.65E+02	nc
Methyl dicyclohexylamine, n-	7560-83-0	No	Yes	-		-		-		-		1	-	1	4.74E+04	4.95E-03	-	3.19E+02	1.77E+02	1.36E+09		
Methyl methanesulfonate	66-27-3	No	No	9.90E-02	U 2.	.80E-05	U	-		-		1	0.1	1	-	1.65E-04	-	2.00E+05	4.33E+00	1.36E+09	2.32E+01	ca
Methyl tert-Butyl Ether (MTBE)	1634-04-4	No	Yes	1.80E-03	U 2.	.60E-07	U	-		3.00E+00	U	1	-	1	4.90E+03	2.40E-02	8.88E+03	5.10E+04	1.16E+01	1.36E+09	2.05E+02	ca*
Methyl-1,4-benzenediamine dihydrochloride, 2-	615-45-2	No	No	-		-		3.00E-04	U	-		1	0.1	1	-	2.61E-16	-	1.00E+06	2.02E+02	1.36E+09	2.46E+01	nc
Methyl-2-Pentanol, 4-	108-11-2	No	Yes	-		-		-		-		1	-	1	1.72E+04	1.82E-03	2.45E+03	1.64E+04	8.16E+00	1.36E+09		
Methyl-5-Nitroaniline, 2-	99-55-8	No	No	9.00E-03	U	-		2.00E-02	U	-		1	0.1	1	_	3.39E-07	_	1.00E+04	1.79E+02	1.36E+09	2.55E+02	ca**
Methyl-N-nitro-N-nitrosoguanidine, N-	70-25-7	No	No	8.30E+00	U 2.	.40E-03	U	-		-		1	0.1	1	-	4.99E-11	-	2.67E+05	7.20E+01	1.36E+09	2.77E-01	ca
Methylaniline Hydrochloride, 2-	636-21-5	No	No	1.30E-01	U 3.	.70E-05	U	-		-		1	0.1	1	-	8.59E-05	-	8.29E+03	1.15E+02	1.36E+09	1.77E+01	ca
Methylarsonic acid	124-58-3	No	No	-		-		1.00E-02	U	-		1	0.1	1	-	-	-	2.56E+05	4.39E+01	1.36E+09	8.21E+02	nc
,	75-55-8	No	Yes	-		-		-		-		1	-	1	3.20E+04	4.09E-04	1.87E+05	1.00E+06	1.45E+01	1.36E+09		
Methylbenzene,1-4-diamine monohydrochloride, 2-	74612-12-7	No	No	-		-		2.00E-04	U	_		1	0.1	1	-	-	-	-	-	1.36E+09	1.64E+01	nc
Methylbenzene-1,4-diamine sulfate, 2-	615-50-9	No	No	1.00E-01	U	-		3.00E-04	U	_		1	0.1	1	-	-	-	-	-	1.36E+09	2.30E+01	ca**
Methylcholanthrene, 3-	56-49-5	Yes	No	2.20E+01	U 6.	.30E-03	U	-		-		1	0.1	1	-	2.14E-04		2.90E-03		1.36E+09	1.04E-01	ca
Methylcyclohexane	108-87-2	No	Yes	-		-		-		-		1	-	1	9.90E+02	1.76E+01		1.40E+01		1.36E+09		
Methylcyclohexylamine, n-	100-60-7	No	Yes	-		-		-		-		1	-	1	3.18E+04	1.23E-03		1.75E+04		1.36E+09		
	96-37-7	No	Yes	-		-		-		-		1	-	1	8.86E+02	1.48E+01		4.20E+01		1.36E+09		
	75-09-2	Yes	Yes	2.00E-03				6.00E-03	U	6.00E-01	U	1	-	1	2.19E+03	1.33E-01					3.16E+02	nc
Methylene-bis(2-chloroaniline), 4,4'-	101-14-4	Yes	No	1.00E-01		.30E-04		2.00E-03	U	-		1	0.1	1	-	1.66E-09		1.39E+01		1.36E+09	2.30E+01	ca**
Methylene-bis(N,N-dimethyl) Aniline, 4,4'-	101-61-1	No	No	4.60E-02		.30E-05		-		-		1	0.1	1	-	4.37E-08		4.14E+00			5.00E+01	ca
Methylenebisbenzenamine, 4,4'-	101-77-9	No	No	1.60E+00	U 4.	.60E-04	U	-		2.00E-02	U	1	0.1	1	-	2.17E-09	-	1.00E+03	2.13E+03	1.36E+09	1.44E+00	ca
Methylenediphenyl Diisocyanate	101-68-8	No	No	-		-		-		6.00E-04	U	1	0.1	1	_	3.66E-05	-	8.29E-01	2.85E+05	1.36E+09	3.57E+05	cm

Composite Worker Screening Levels (RSL) for Soil

Chemical	CAS Number	Mutagen?	VOC?	Ingestion SF (mg/kg-day) ⁻¹		Inhalation Unit Risk (ug/m³) ⁻¹	IUR Ref	Chronic RfD (mg/kg- day)	Chronic RfD Ref	Chronic RfC (mg/m³)	Chronic RfC Ref	GIABS	ABS	RBA	Volatilization Factor (m³/kg)	Henry's Law Constant (unitless)	Soil Saturation Concentratio n (mg/kg)	S (mg/L)	Koc (cm3/g)	Particulate Emission Factor (m³/kg)	Screening Level (mg/kg)	[basis]
Methylisothiocyanate	556-61-6	No	Yes	-		-		-		-		1	-	- 1	1.48E+04	1.83E-03		7.60E+03		1.36E+09		
Methylnaphthalene	1321-94-4	No	Yes	-		-		-		-		1		- 1	5.86E+04	2.10E-02	-	2.50E+01	2.53E+03	1.36E+09		
Methylnaphthalene, 1-	90-12-0	No	Yes	2.90E-02	U	-		7.00E-02	U	-		1	0.13	1	5.86E+04	2.10E-02	3.94E+02	2.58E+01	2.53E+03	1.36E+09	7.27E+01	ca*
Methylnaphthalene, 2-	91-57-6	No	Yes	-		-		4.00E-03	U	-		1	0.13	1	5.80E+04	2.12E-02		2.46E+01		1.36E+09	3.01E+02	nc
Methylstyrene, Alpha-	98-83-9	No	Yes	-		-		7.00E-02	U	-		1	-	- 1	1.28E+04	1.04E-01		1.16E+02		1.36E+09	8.18E+03	CS
Methyltriethyl Lead	1762-28-3	No	Yes	-		-		-		-		1	-	- 1	1.63E+03	2.54E+01	1.32E+01	1.92E+00		1.36E+09		
Metolachlor	51218-45-2	No	No	-		-		1.50E-01	U	-		1	0.1	1	-	3.68E-07		5.30E+02		1.36E+09	1.23E+04	nc
Metribuzin	21087-64-9	No	No	-		-		2.50E-02	U	-		1	0.1	1	-	4.78E-09		1.05E+03		1.36E+09	2.05E+03	nc
Metsulfuron-methyl		No	No	-		-		2.50E-01	U	-		1	0.1	1	-	5.40E-15	-	9.50E+03		1.36E+09	2.05E+04	nc
Mineral oils	8012-95-1	No	Yes	-		-		3.00E+00	U	-		1		- 1	1.38E+03	3.34E+02	3.41E-01	3.70E-03		1.36E+09	3.50E+05	CS
Mirex	2385-85-5	No	Yes	1.80E+01	U	5.10E-03	U	2.00E-04	U	-		1	-	- 1	8.57E+05	3.32E-02		8.50E-02		1.36E+09	1.67E-01	ca
Molinate	2212-67-1	No	No	-		-		2.00E-03	U	-		1	0.1	1	-	1.68E-04	-	9.70E+02	1.82E+02	1.36E+09	1.64E+02	nc
Molybdenum	7439-98-7	No	No	-		-		5.00E-03	U	-		1	-	- 1	-		-	-	-	1.36E+09	5.84E+02	nc
Monoaluminum phosphate	13530-50-2	No	No	-		-		4.86E+01	U	-		1		- 1	-	-		-	-	1.36E+09	5.68E+06	cm
Monoammonium phosphate	7722-76-1	No	No	-		-	-	4.86E+01	U	_		1		- 1	-			_	-	1.36E+09	5.68E+06	cm
Monobutyltin Compounds	NA	No	No	-		-		-		-		1	0.1	1	-			-	-	1.36E+09		
Monocalcium phosphate	7758-23-8	No	No	_		_		4.86E+01	U	_		1		- 1	_			_	_	1.36E+09	5.68E+06	cm
Monochloramine	10599-90-3	No	No	-		-		1.00E-01	U	-		1		- 1	-			-	-	1.36E+09	1.17E+04	nc
Monochlorobutanes	25154-42-1	No	No	-		-		-		-		1	0.1	1	-			-	-	1.36E+09		
Monochlorophenols (total)	NA	No	No	-		-		-		-		1	0.1	1	-			-	-	1.36E+09		
Monocyclic aromatic hydrocarbons (total)	NA	No	No	-		-		-		-		1	0.1	1	-		-	-	-	1.36E+09		
Monomagnesium phosphate	7757-86-0	No	No	-		_		4.86E+01	U	_		1		- 1	-			_	_	1.36E+09	5.68E+06	cm
Monomethylaniline	100-61-8	No	No	-		-		2.00E-03	U	-		1	0.1	1	-	3.63E-04	-	5.62E+03	8.21E+01	1.36E+09	1.64E+02	nc
Monopotassium phosphate	7778-77-0	No	No	-		-		4.86E+01	U	-		1	-	- 1	-			-	-	1.36E+09	5.68E+06	cm
Monosodium phosphate	7558-80-7	No	No	_		_		4.86E+01	U	_		1		- 1	_			4.87E+05	-	1.36E+09	5.68E+06	cm
Myclobutanil	88671-89-0	No	No	-		-		2.50E-02	U	-		1	0.1	1	-	1.75E-07	-	1.42E+02	6.08E+03	1.36E+09	2.05E+03	nc
N,N'-Diphenyl-1,4-benzenediamine	74-31-7	No	No	-		-		3.00E-04	U	-		1	0.1	1	-	8.38E-09	-	7.35E+00	5.19E+04	1.36E+09	2.46E+01	nc
N-Methyl dithiocarbamate	137-42-8	No	No	-		-		-		-		1	0.1	1	-			7.22E+05	5.87E+01	1.36E+09		
Naled	300-76-5	No	Yes	-		-		2.00E-03	U	-		1		- 1	5.70E+04	2.66E-03	-	1.50E+00	1.27E+02	1.36E+09	2.34E+02	nc
Naphtha, High Flash Aromatic (HFAN)	64742-95-6	No	Yes	-		-		3.00E-02	U	1.00E-01	U	1		- 1	-	1.80E-02	-	3.10E+01	-	1.36E+09	3.50E+03	nc
Naphthalene	91-20-3	No	Yes			3.40E-05	U	2.00E-02	U	3.00E-03	U	1	0.13	1	4.63E+04	1.80E-02		3.10E+01	1.54E+03	1.36E+09	1.67E+01	ca**
Naphthol, 2-	135-19-3	No	No	-		-		-		-		1	0.1	1	-	1.12E-06		7.55E+02		1.36E+09		
Naphthoquinone, 1,4-	130-15-4	No	No	-		-	-	-		-		1	0.1	1	-	8.05E-08	-	6.68E+02	4.54E+02	1.36E+09		
Naphthylamine, 1-	134-32-7	No	No	-		-		-		-		1	0.1	1	-	4.54E-06	-	1.70E+03	2.53E+03	1.36E+09		
Naphthylamine, 2-	91-59-8	No	No	1.80E+00	U	0.00E+00	U	-		-		1	0.1	1	-	3.31E-06	-	1.89E+02	2.48E+03	1.36E+09	1.28E+00	ca
Napropamide	15299-99-7	No	No	-		-		1.20E-01	U	-		1	0.1	1	-	3.44E-08	-	7.30E+01	3.22E+03	1.36E+09	9.85E+03	nc
Neodymium Chloride (Stable, Nonradioactive)	10024-93-8		No	-		-		-		-		1		- 1	-			1.00E+06	-	1.36E+09		
Niagara Blue 4B		No	No	-		-		-		-		1	0.1	1	-	3.50E-42		5.89E-03		1.36E+09		
Nickel Acetate	373-02-4	No	No	-				1.10E-02	U	1.40E-05	U	1	0.1	1	-	•		1.66E+05	1.00E+00	1.36E+09	8.15E+02	nc
Nickel Carbonate		No	No	-				1.10E-02	U	1.40E-05	U	1	0.1	1	-			9.30E+01	-	1.36E+09	8.15E+02	nc
Nickel Carbonyl	13463-39-3		Yes	-				1.10E-02	U	1.40E-05	U	1		- 1	-	2.04E+01	-	1.80E+02	-	1.36E+09	1.11E+03	nc
Nickel Hydroxide	12054-48-7	No	No	-		2.60E-04	U	1.10E-02	U	1.40E-05	U	0.04		- 1	-		-	-	-	1.36E+09	1.11E+03	nc

Composite Worker Screening Levels (RSL) for Soil

Chemical	CAS Number	Mutagen?	VOC?	Ingestion SF (mg/kg-day) ⁻¹		Inhalation Unit Risk (ug/m³) ⁻¹	IUR Ref	, , ,	Chronic RfD Ref	Chronic RfC (mg/m³)	Chronic RfC Ref	GIABS	ABS	RBA	Volatilization Factor (m ³ /kg)	Henry's Law Constant (unitless)	Soil Saturation Concentratio n (mg/kg)	S (mg/L)	Koc (cm3/g)	Particulate Emission Factor (m³/kg)	Screening Level (mg/kg)	[basis]
Nickel Oxide	1313-99-1	No	No			2.60E-04	U	1.10E-02	U	2.00E-05	U	0.04		- 1	-	-	-	-	-	1.36E+09	1.16E+03	nc
Nickel Refinery Dust	NA	No	No	-		2.40E-04	U	1.10E-02	U	1.40E-05	U	0.04		- 1	-	-	-	-	-	1.36E+09	1.11E+03	nc
Nickel Soluble Salts	7440-02-0	No	No	-		2.60E-04	U	2.00E-02	U	9.00E-05	U	0.04		- 1	-	-	-	-	-	1.36E+09	2.24E+03	nc
Nickel Subsulfide	12035-72-2	No	No	1.70E+00	U	4.80E-04	U	1.10E-02	U	1.40E-05	U	0.04		- 1	-	-		-	-	1.36E+09	1.92E+00	ca
Nickelocene	1271-28-9	No	No	-		2.60E-04	U	1.10E-02	U	1.40E-05	U	1	0.1	1	-	-		-	-	1.36E+09	8.15E+02	nc
Nicotinonitrile	100-54-9	No	No	-		-	-	-			-	1	0.1	1	-	1.12E-05	-	1.35E+05	4.72E+01	1.36E+09		
Niobium	7440-03-1	No	No			-		-			-	1		- 1	-	-	-	-	-	1.36E+09		
Nitrate	14797-55-8	No	No			_		1.60E+00	U		_	1		- 1	_		_	_	_	1.36E+09	1.87E+05	cm
Nitrate + Nitrite (as N)	NA	No	No			-		-				1		- 1	-	-		-	-	1.36E+09		
Nitric Acid	7697-37-2	No	Yes			_		-				1		- 1	-	-		-	-	1.36E+09		
Nitric Oxide	10102-43-9	No	Yes			-		-			-	1		- 1	-	-		9.49E+04	-	1.36E+09		
Nitrite	14797-65-0	No	No			-		1.00E-01	U		-	1		- 1	-	-		-	-	1.36E+09	1.17E+04	nc
Nitroaniline, 2-	88-74-4	No	No	-		_		1.00E-02	U	5.00E-05	U	1	0.1	1	-	2.41E-06	-	1.47E+03	1.11E+02	1.36E+09	7.99E+02	nc
Nitroaniline, 3-	99-09-2	No	No			-		-			-	1	0.1	1	-	3.23E-07	-	1.20E+03	1.09E+02	1.36E+09		
Nitroaniline, 4-	100-01-6	No	No	2.00E-02	U	-		4.00E-03	U	6.00E-03	U	1	0.1	1	-	5.15E-08	-	7.28E+02	1.09E+02	1.36E+09	1.15E+02	ca**
Nitrobenzene	98-95-3	No	Yes	_		4.00E-05	U	2.00E-03	U	9.00E-03	U	1		- 1	7.31E+04	9.81E-04	3.04E+03	2.09E+03	2.26E+02	1.36E+09	2.24E+01	ca**
Nitrobiphenyl, 4-	92-93-3	No	No			-		-			-	1	0.1	1	-	1.45E-04	-	1.23E+00	7.97E+03	1.36E+09		
Nitrocellulose	9004-70-0	No	No	-		-		3.00E+03	U		-	1	0.1	1	-	1.35E-21		1.00E+06		1.36E+09	2.46E+08	cm
Nitrodiphenylamine, 2-	119-75-5	No	No	-		-		-			-	1	0.1	1	-	3.71E-06		2.77E+01		1.36E+09		
Nitrofurantoin	67-20-9	No	No	-				7.00E-02	U		-	1	0.1	1	-	5.44E-11		7.95E+01		1.36E+09	5.74E+03	nc
Nitrofurazone	59-87-0	No	No	1.30E+00	U	3.70E-04	U	-			-	1	0.1	1	-	1.27E-11	-	2.10E+02	3.50E+02	1.36E+09	1.77E+00	ca
Nitrogen Dioxide	10102-44-0	No	Yes	-		-		-			-	1		- 1	-		-	-	-	1.36E+09		
Nitroglycerin	55-63-0	No	No	1.70E-02	U	-		1.00E-04	U		-	1	0.1	1	-	3.54E-06		1.38E+03		1.36E+09	8.21E+00	nc
Nitroguanidine	556-88-7	No	No	-		-	•	1.00E-01	U		-	1	0.1	1	-	1.82E-14	-	4.40E+03	2.07E+01	1.36E+09	8.21E+03	nc
Nitromethane	75-52-5	No	Yes	-		8.80E-06	U	-		5.00E-03	U	1		- 1	1.69E+04	1.17E-03	1.80E+04	1.11E+05		1.36E+09	2.36E+01	ca**
Nitrophenol, 2-	88-75-5	No	Yes	-		-		-			•	1		- 1	1.20E+05	5.23E-04		2.50E+03		1.36E+09		
Nitrophenol, 2-amino-4-	99-57-0	No	No	-		-		-			•	1	0.1	1	-	9.12E-11		9.25E+02		1.36E+09		
Nitrophenol, 3-	554-84-7	No	No	-		-		-			•	1	0.1	1	-	8.18E-08		1.35E+04		1.36E+09		
Nitrophenol, 4-	100-02-7	No	No	•		-		-			-	1	0.1	1	-	1.70E-08		1.16E+04		1.36E+09		
Nitrophenol, 4-amino-2-	119-34-6	No	No	•		0.705.00		-		0.005.00	-	1	0.1	1	4.045.04	9.12E-11		1.10E+04		1.36E+09	5.00F.00	
Nitropropane, 2-	79-46-9	No	Yes	4.005.00		2.70E-03 1.10E-04		-		2.00E-02	U	1	0.40	- 1	1.31E+04	4.87E-03		1.70E+04		1.36E+09	5.96E-02	ca
Nitropyrene, 4- Nitroquinoline-1-oxide. 4-	57835-92-4 56-57-5	No	No No	1.20E+00	U	1.10⊑-04	U	-			-	1	0.13	1	-	1.00E-06 1.11E-12		6.79E-02	4.01E+04	1.36E+09 1.36E+09	1.76E+00	ca
Nitroso-N-ethylurea, N-	759-73-9	No Yes	No	2.70E+01	11	7.70E-03	-	-		'	-	1	0.1	1	-	5.40E-09		1.30E+04		1.36E+09	8.51E-02	ca
Nitroso-N-methylurea, N-	684-93-5	Yes	No	1.20E+02	U	3.40E-02		<u>-</u>				1	0.1	1	-	4.05E-09		1.44E+04		1.36E+09	1.91E-02	ca
Nitroso-di-N-butylamine, N-	924-16-3	No	Yes	5.40E+00	U	1.60E-03		_			_	1	0.1	- 1	2.43E+05	5.40E-04			9.15E+02	1.36E+09	4.57E-01	ca
Nitroso-di-N-propylamine, N-	621-64-7	No	No	7.00E+00	U	2.00E-03		_			_	1	0.1	1	2.402.100	2.20E-04		1.30E+04		1.36E+09	3.28E-01	ca
Nitrosodiethanolamine, N-	1116-54-7	No	No	2.80E+00	U	8.00E-04		_			_	1	0.1	1	_	1.98E-10		1.00E+06		1.36E+09	8.21E-01	ca
Nitrosodiethylamine, N-	55-18-5	Yes	No	1.50E+02	U	4.30E-02		_			_	1	0.1	1		1.48E-04		1.00E+05		1.36E+09	1.53E-02	ca
Nitrosodimethylamine, N-	62-75-9	Yes	Yes	5.10E+01	U			8.00E-06	U	4.00E-05	U	1	0.1	- 1	8.23E+04	7.44E-05		1.00E+05		1.36E+09	3.39E-02	ca*
Nitrosodiphenylamine, N-	86-30-6	No	No	4.90E-03	U	2.60E-06		J.JUL-00		1.302-00		1	0.1	1	5.202.04	4.95E-05		3.50E+01		1.36E+09	4.69E+02	ca
Nitrosomethylethylamine, N-		No	Yes	2.20E+01	U	6.30E-03		_			-	1	3.1	- 1	1.21E+05	5.89E-05		3.00E+05		1.36E+09	9.12E-02	ca
Nitrosomethylvinylamine, N-	4549-40-0	No	Yes			-		_			-	1		- 1	8.09E+04	1.47E-04		3.00E+04		1.36E+09		
Nitrosomorpholine [N-]	59-89-2	No	No	6.70E+00	U	1.90E-03	U	-			-	1	0.1	1	-	1.00E-06			2.25E+01		3.43E-01	ca

Composite Worker Screening Levels (RSL) for Soil

Chemical	CAS Number	Mutagen?	VOC?	Ingestion SF (mg/kg-day) ⁻¹		Inhalation Unit Risk (ug/m³) ⁻¹	IUR Ref	Chronic RfD (mg/kg- day)	Chronic RfD Ref	Chronic RfC (mg/m³)	Chronic RfC Ref	GIABS	ABS	RBA	Volatilization Factor (m³/kg)	Henry's Law Constant (unitless)	Soil Saturation Concentratio n (mg/kg)	S (mg/L)	Koc (cm3/g)	Particulate Emission Factor (m³/kg)	Screening Level (mg/kg)	[basis]
Nitrosopiperidine [N-]	100-75-4	No	No	9.40E+00	U	2.70E-03	U	-		-		1	0.1	1	-	3.45E-05	-	7.65E+04	1.68E+02	1.36E+09	2.44E-01	ca
Nitrosopyrrolidine, N-	930-55-2	No	No	2.10E+00	U	6.10E-04	U	-		-		1	0.1	1	-	2.00E-06	-	1.00E+06	9.19E+01	1.36E+09	1.09E+00	ca
Nitrotoluene, 4-Amino-2-	119-32-4	No	No	-			-	-		-		1	0.1	1	-	3.39E-07	-	1.40E+03	1.79E+02	1.36E+09		
Nitrotoluene, m-	99-08-1	No	No	-			-	1.00E-04	U	-		1	0.1	1	-	3.80E-04	-	5.00E+02	3.63E+02	1.36E+09	8.21E+00	nc
Nitrotoluene, o-	88-72-2	No	Yes	2.20E-01	U		-	9.00E-04	U	-		1	-	1	1.37E+05	5.11E-04	1.51E+03	6.50E+02	3.71E+02	1.36E+09	1.49E+01	ca**
Nitrotoluene, p-	99-99-0	No	No	1.60E-02	U		-	4.00E-03	U	_		1	0.1	1	-	2.30E-04	-	4.42E+02	3.63E+02	1.36E+09	1.44E+02	ca**
Nonachlor, trans-	39765-80-5	No	Yes	-			-	-		-		1	-	1	2.71E+06	1.01E-03	-	1.04E-02	1.13E+05	1.36E+09		
Nonane, n-	111-84-2	No	Yes	-			-	3.00E-04	U	2.00E-02	U	1	-	1	1.04E+03	1.39E+02	6.86E+00	2.20E-01	7.96E+02	1.36E+09	7.25E+00	CS
Nonanol, n-	143-08-8	No	Yes	-			-	-		-		1	-	1	4.65E+04	1.26E-03	7.27E+01	1.40E+02	6.98E+01	1.36E+09		
Norflurazon	27314-13-2	No	No	-			-	1.50E-02	U	-		1	0.1	1	-	1.40E-08	-	3.37E+01	3.12E+03	1.36E+09	1.23E+03	nc
OCDD	1 1 1 1 1	No	No	3.90E+01	U	1.14E-02	U	2.33E-06	U	1.33E-04	U	1	0.03	1	-	2.76E-04		2.29E-07		1.36E+09	7.44E-02	ca**
OCDF	39001-02-0	No	No	3.90E+01	U	1.14E-02	U	2.33E-06	U	1.33E-04	U	1	0.03	1	-	7.73E-05	-	4.09E-07	1.09E+06	1.36E+09	7.44E-02	ca**
Octabromodiphenyl Ether	32536-52-0	No	No	-			-	3.00E-03	U	-		1	0.1	1	-	3.06E-06	-	1.11E-08	9.90E+04	1.36E+09	2.46E+02	nc
Octachlorostyrene	29082-74-4	No	Yes	-			-	-		-		1	-	1	6.09E+05	9.40E-03	-	1.74E-03	5.51E+04	1.36E+09		
Octadecanoic Acid	57-11-4	No	No	-			-	-		-		1	0.1	1	-	1.95E-05	-	5.97E-01	1.17E+04	1.36E+09		
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine																						
(HMX)	2691-41-0	No	No	-			-	5.00E-02	U	-	•	1	0.006	1	-	3.54E-08		5.00E+00		1.36E+09	5.70E+03	nc
Octahydrotrimethylmethylethylphenanthrenol	511-15-9	No	No	-			-	-		-	•	1	0.1	1	-	2.40E-05		1.15E-01		1.36E+09		
Octamethylpyrophosphoramide	152-16-9	No	No	-			-	2.00E-03	U	-	•	1	0.1	1	-	1.54E-08		1.00E+06			1.64E+02	nc
Octanol, n-	111-87-5	No	Yes	-			-	-		-	•	1	-	1	3.88E+04	1.00E-03		5.40E+02		1.36E+09		
Octanone, 2-	111-13-7	No	Yes	-			-	-		-	•	1	-	1	1.54E+04	7.69E-03		8.99E+02		1.36E+09		
Octanone, 3-	106-68-3	No	Yes	-			-	-		-		1	-	1	1.88E+04	5.31E-03		2.60E+03		1.36E+09		
Octyl Phthalate, di-N-	117-84-0	No	No	-			-	1.00E-02	U	-	•	1	0.1	1	-	1.05E-04		2.20E-02		1.36E+09	8.21E+02	nc
Oleic acid	112-80-1	No	Yes	-			-	-		-	•	1	-	1	6.92E+05	1.83E-03	8.08E-01	1.15E-02	1.17E+04	1.36E+09		
Oleum		No	No	-			-	-		-		1	-	1	-		-	-	-	1.36E+09		
Oryzalin		No	No	7.79E-03	U		-	1.40E-01	U	-	•	1	0.1	1	-	7.81E-08		2.50E+00		1.36E+09	2.95E+02	ca*
Oxadiazon		No	No	-			-	5.00E-03	U	-		1	0.1	1	-	2.97E-06		7.00E-01		1.36E+09	4.10E+02	nc
Oxamyl		No	No	-			-	2.50E-02	U	-		1	0.1	1	-	9.69E-09		2.80E+05		1.36E+09	2.05E+03	nc
Oxychlordane		No	No	-			-	-		-		1	0.1	1	-	3.52E-06		2.30E-02		1.36E+09		
Oxyfluorfen	42874-03-3		No	7.32E-02	U		-	3.00E-02	U	-		1	0.1	1	-	3.35E-05		1.16E-01	3.99E+04	1.36E+09	3.14E+01	ca*
Ozone		No	No	-			-	-		-		1	-	1	-			4.94E+03	-	1.36E+09		
Paclobutrazol		No	No	-			-	1.30E-02	U	-		1	0.1	1	-	3.39E-09		2.60E+01			1.07E+03	nc
Paraquat Dichloride	14.4	No	No	-			-	4.50E-03	U	-		1	0.1	1	-	1.32E-11		6.20E+05		1.36E+09	3.69E+02	nc
Parathion		No	No	-			-	6.00E-03	U	-		1	0.1	1	-	1.22E-05		1.10E+01			4.92E+02	nc
PeCDD, 2,3,7,8-	36088-22-9		No	1.30E+05		3.80E+01	_		U	4.00E-08	U	1	0.03	1	-	8.99E-05		1.20E-04			2.23E-05	ca**
PeCDF, 1,2,3,7,8-	57117-41-6		No	3.90E+03		1.14E+00		2.33E-08	U	1.33E-06	U	1	0.03	1	-	2.05E-04		2.35E-04			7.44E-04	ca**
PeCDF, 2,3,4,7,8-	57117-31-4		No	3.90E+04	U	1.14E+01	U	2.33E-09	U	1.33E-07	U	1	0.03	1	-	2.05E-04		2.35E-04			7.44E-05	ca**
Pebulate	1114-71-2		Yes	-			-	5.00E-02	U	-	-	1	-	1	4.49E+04	9.69E-03	-	1.00E+02	2.99E+02	1.36E+09	5.84E+03	nc
Pendimethalin	40487-42-1		No	-			-	3.00E-02	U	-		1	0.1	1	-	3.50E-05		3.30E-01			2.46E+03	nc
Pentabromodiphenyl Ether	32534-81-9	No	Yes	-			-	2.00E-03	U	-	-	1	-	1	5.14E+05	4.42E-03	3.13E-01	2.40E-03	2.17E+04	1.36E+09	2.34E+02	CS
Pentabromodiphenyl ether, 2,2',4,4',5- (BDE-	00046 00 6							4 00= 0:				_	0.1			4.00=.0=		7.005.05	0.475 0:	4 005 00	0.045.00	
99)	60348-60-9		No	-			-	1.00E-04	U	-	-	1	0.1	1	-	4.82E-05		7.86E-05			8.21E+00	nc
Pentachloroaniline		No	No	-			-	-		-	•	1	0.1	1	-	1.74E-05		2.98E-02		1.36E+09		
Pentachlorobenzene		No	Yes	-			-	8.00E-04	U	-		1	-	1	8.13E+04	2.87E-02		8.31E-01			9.34E+01	nc
Pentachlorobiphenyl, 2',3,4,4',5- (PCB 123)	65510-44-3		Yes	3.90E+00	_	1.14E-03		2.33E-05	U	1.33E-03	U	1	0.14	1	7.35E+05	7.77E-03		1.60E-02			4.94E-01	ca**
Pentachlorobiphenyl, 2,3',4,4',5- (PCB 118)	31508-00-6		Yes	3.90E+00	U				U	1.33E-03	U	1	0.14	1	5.89E+05	1.18E-02				1.36E+09	4.86E-01	ca**
Pentachlorobiphenyl, 2,3,3',4,4'- (PCB 105)	32598-14-4	No	Yes	3.90E+00	U	1.14E-03	U	2.33E-05	U	1.33E-03	U	1	0.14	1	6.01E+05	1.16E-02	-	3.40E-03	1.31E+05	1.36E+09	4.87E-01	ca**

Composite Worker Screening Levels (RSL) for Soil

Chemical	CAS Number	Mutagen?	VOC?	Ingestion SF (mg/kg-day) ⁻¹	SFO Ref	Inhalation Unit Risk (ug/m³)-1 Ro	\ \ 3	Chronic	Chronic RfC (mg/m³)	Chronic RfC Ref	GIABS	ABS	RBA	Volatilization Factor (m ³ /kg)	Henry's Law Constant (unitless)	Soil Saturation Concentratio n (mg/kg)	S (mg/L)	Koc (cm3/g)	Particulate Emission Factor (m³/kg)	Screening Level (mg/kg)	[basis]
Pentachlorobiphenyl, 2,3,4,4',5- (PCB 114)	74472-37-0	No	Yes	3.90E+00		1.14E-03 L)5 U	1.33E-03	U	1	0.14	1	1.05E+06	3.78E-03		1.60E-02	, ,,	1.36E+09	5.03E-01	ca**
, , , ,	57465-28-8	No	Yes	1.30E+04		3.80E+00 L			4.00E-07	U	1	0.14	1	7.26E+05	7.77E-03	-	7.33E-03	1.28E+05	1.36E+09	1.48E-04	ca**
, ,		No	Yes	-		-		-	-		1	_	1	1.42E+04	2.45E-01	-	1.01E+01	9.41E+02	1.36E+09		
Pentachlorodibenzo-p-dioxin, 1,2,3,7,8-	40321-76-4	No	No	1.30E+05	U	3.80E+01 L	7.00E-	10 U	4.00E-08	U	1	0.03	1	-	1.07E-04	-	1.53E-04	4.16E+05	1.36E+09	2.23E-05	ca**
Pentachloroethane	76-01-7	No	Yes	9.00E-02	U	-		-			1	-	1	9.64E+03	7.93E-02	4.56E+02	4.90E+02	1.36E+02	1.36E+09	3.63E+01	ca
Pentachloronitrobenzene	82-68-8	No	Yes	2.60E-01	U	-	3.00E-)3 U	-		1	_	1	4.31E+05	1.81E-03	-	4.40E-01	6.00E+03	1.36E+09	1.26E+01	ca*
Pentachlorophenol	87-86-5	No	No	4.00E-01	U	5.10E-06 L	5.00E-)3 U			1	0.25	1	-	1.00E-06	-	1.40E+01	5.92E+02	1.36E+09	3.97E+00	ca*
Pentaerythritol tetranitrate (PETN)	78-11-5	No	No	4.00E-03	U	-	2.00E-)3 U			1	0.1	1	-	5.40E-08	-	4.30E+01	6.48E+02	1.36E+09	1.64E+02	nc
Pentamethyl dipropylenetriamine	3855-32-1	No	No	-		-		-			1	0.1	1	-	2.00E-09	-	1.00E+06	1.21E+02	1.36E+09		
Pentane, n-	109-66-0	No	Yes	-		-		-	1.00E+00	U	1	-	1	7.79E+02	5.11E+01	3.88E+02	3.80E+01	7.22E+01	1.36E+09	3.41E+02	nc
Pentyl Alcohol, N-	71-41-0	No	Yes	-		-		-			1	-	1	2.84E+04	5.31E-04	3.04E+03	2.20E+04	6.33E+00	1.36E+09		
Perchlorate and Perchlorate Salts	14797-73-0	No	No	-		-	7.00E-)4 U			1	-	1	-	-	-	2.45E+05	-	1.36E+09	8.18E+01	nc
Perfluorobutane Sulfonate (PFBS)	375-73-5	No	No	-		-	2.00E-)2 U	-		1	0.1	1	-	-	-	5.66E+04	6.17E+01	1.36E+09	1.64E+03	nc
Perfluorooctane Sulfonate (PFOS)	1763-23-1	No	No	-		-	2.00E-)5 U	-		1	0.1	1	-	-	-	6.80E+02	3.72E+02	1.36E+09	1.64E+00	nc
Perfluorooctanoic acid (PFOA)	335-67-1	No	No	7.00E-02	U	-	2.00E-)5 U			1	0.1	1	-	-	-	9.50E+03	1.15E+02	1.36E+09	1.64E+00	nc
Permethrin	52645-53-1	No	No	-		-	5.00E-)2 U			1	0.1	1	-	7.65E-05	-	6.00E-03	1.19E+05	1.36E+09	4.10E+03	nc
Perylene	198-55-0	No	No	-		-		-	-		1	0.13	1	-	1.49E-04	-	4.00E-04	5.99E+05	1.36E+09		
Pesticides (total)	NA	No	No	-		-		-			1	0.1	1	-	-	-	-	-	1.36E+09		
Pesticides, organochlorinated (each)	NA	No	No	-		-		-	-		1	0.1	1	-	-	_	-	-	1.36E+09		
Pesticides, organochlorinated (total)	NA	No	No	-		-		-	-		1	0.1	1	-	-	_	-	-	1.36E+09		
Phenacetin	62-44-2	No	No	2.20E-03	U	6.30E-07 L	ı	-	-		1	0.1	1	-	8.71E-09	-	7.66E+02	4.10E+01	1.36E+09	1.04E+03	ca
Phenanthrene	85-01-8	No	Yes	-		-		-	-		1	0.13	1	6.43E+05	1.73E-03	-	1.15E+00	1.67E+04	1.36E+09		
Phenmedipham	13684-63-4	No	No	-		-	2.40E-)1 U	-		1	0.1	1	-	3.44E-11	-	4.70E+00	2.59E+03	1.36E+09	1.97E+04	nc
Phenol	108-95-2	No	No	-		-	3.00E-)1 U	2.00E-01	U	1	0.1	1	-	1.36E-05		8.28E+04		1.36E+09	2.46E+04	nc
Phenol, 2-(1-methylethoxy)-, methylcarbamate	114-26-1	No	No				4.00E-)3 U			1	0.1	1		5.85E-08	_	1.86E+03	6.00E±01	1.36E+09	3.28E+02	nc
3,1	92-84-2	No	No			_	5.00E-				1	0.1	1		1.14E-06		1.59E+00		1.36E+09	4.10E+01	nc
	103-72-0	No	Yes	-		-	2.00E-		<u> </u>		1	0.1	1	7.08E+03	1.14L-00 1.21E-01		8.99E+01		1.36E+09	2.34E+01	nc
, ,	103-72-0	No	No	-		-	6.00E-				1	0.1	1	7.00L+03	5.11E-08		2.38E+05		1.36E+09	4.92E+02	nc
	95-54-5	No	No	1.20E-01	U	_	4.00E-				1	0.1	1	-	2.94E-07		4.04E+04		1.36E+09	1.91E+01	ca*
·	106-50-3	No	No	1.20L-01	-	-	1.00E-	-	<u> </u>		1	0.1	1	-	2.75E-08		3.70E+04		1.36E+09	8.21E+01	nc
	62-38-4	No	No	-		-	8.00E-		-		1	0.1	1	-	2.73E-08 2.31E-08		4.37E+03		1.36E+09	6.57E+00	nc
	90-43-7	No	No	1.94E-03	U	-	0.00E-)3 U	-		1	0.1	1	-	4.29E-05		7.00E+02		1.36E+09	1.18E+03	
	298-02-2	No	No	1.34E-U3	U	-	2.00E-	-)4 U	-		1 1	0.1	1	-	4.29E-05 1.79E-04		5.00E+02		1.36E+09 1.36E+09	1.16E+03 1.64E+01	nc
				-		-	2.00E-) 4	3.00E-04	11	1	0.1	1	9.81E+02	6.83E-01			1.00E+02	1.36E+09	1.04E+01 1.29E-01	
	75-44-5 732-11-6	No No	Yes	-		-	2.00E-	-)2 U	3.00⊑-04	U	1	0.1	1	9.01E+02	3.43E-07		2.44E+01		1.36E+09 1.36E+09	1.64E+03	nc
			No	-		-			3 00E 04	U	1	0.1	1	-				1.00⊑+01			nc
·		No	Yes	-		-	3.00E-		3.00E-04	U	ı	-	I	-	9.98E-01		2.60E+05	-	1.36E+09	3.50E+01	nc
·	7664-38-2	No	No	-		-	4.86E+	01 U	1.00E-02	U	1	-	1	-	-	-	5.48E+06	-		2.91E+06	cm
	NA	No	No	-		-		-	-		1	-	1	-	-	-	-	-	1.36E+09		
	1314-56-3	No	No	-		-		-	-		1	-	1	-	-	-	-	-	1.36E+09		
	7723-14-0	No	Yes	-		-	2.00E-)5 U	-		1	-	1	6.92E+03	8.60E-02	-	3.00E+00	1.12E+03	1.36E+09	2.34E+00	nc
, ,	NA	No	No	-		-		-	-		1	0.1	1	-		-	-	-	1.36E+09		
Phthalic Acid, P-	100-21-0	No	No	-		-	1.00E+	00 U	-		1	0.1	1	-	1.59E-11	-	1.50E+01	7.92E+01	1.36E+09	8.21E+04	nc
Phthalic Acid, m-	121-91-5	No	No	-		-		-	-		1	0.1	1	-	1.59E-11	-	1.30E+02	7.92E+01	1.36E+09		
Phthalic Acid, o-	88-99-3	No	No	-		-		-	-		1	0.1	1	-	8.18E-10	-	6.97E+03	8.09E+01	1.36E+09		
Phthalic Anhydride	85-44-9	No	No	_		_	2.00E+		2.00E-02	U	1	0.1	1	_	6.66E-07		6.20E+03	1.00E+01	1.36E+09	1.62E+05	cm
Picloram	1918-02-1	No	No	-		-	7.00E-)2 U			1	0.1	1	-	2.18E-12	-	4.30E+02	3.88E+01	1.36E+09	5.74E+03	nc

Composite Worker Screening Levels (RSL) for Soil

						Inhalation		Chronic								Henry's	Soil Saturation			Particulate		
					_	Unit		RfD	Chronic	Chronic	Chronic				Volatilization	Law	Concentratio			Emission	Screening	
	CAS			Ingestion SF			IUR	, , ,	RfD	RfC	RfC				Factor	Constant	n	S	Koc	Factor	Level	
Chemical	Number	Mutagen?		(mg/kg-day)	Ref	(ug/m ³) ⁻¹	Ref	day)	Ref	(mg/m ³)	Ref	GIABS	ABS	RBA	(m³/kg)	(unitless)	(mg/kg)	(mg/L)	(cm3/g)	(m³/kg)	(mg/kg)	[basis]
Picoline, 2-	109-06-8	No	Yes		-	-	-	-		-		1	-	1	7.64E+04	4.07E-04	7.90E+05	1.00E+06		1.36E+09	2.215.22	
Picramic Acid (2-Amino-4,6-dinitrophenol)	96-91-3	No	No		-	-	-	1.00E-04	U	-		1	0.1	1	-	3.99E-10		1.40E+03		1.36E+09	8.21E+00	nc
Picric Acid (2,4,6-Trinitrophenol)	88-89-1	No	No		-	-	-	9.00E-04	U	-		1	0.1	1	-	6.95E-10		1.27E+04		1.36E+09	7.39E+01	nc
Piperidine	110-89-4	No	Yes		-	-	-	-		-		1	-	1	8.11E+04	1.82E-04		1.00E+06		1.36E+09		
Pirimiphos, Methyl		No	No		-		-	6.67E-05	U	-		1	0.1	1	-	2.87E-05	-	8.60E+00	3.75E+02	1.36E+09	5.47E+00	nc
Polybrominated Biphenyls	59536-65-1	No	No	3.00E+01	U	8.60E-03	_	7.00E-06	U	-		1	0.1	1	-	-	-	-	-	1.36E+09	7.66E-02	ca**
Polychlorinated Biphenyls (high risk)	1336-36-3	No	Yes	2.00E+00	U	5.71E-04	U	-		-		1	0.14	1	5.32E+05	1.70E-02	-	7.00E-01	7.81E+04	1.36E+09	9.42E-01	ca
Polycyclic aromatic hydrocarbons (PAH), Total Polycyclic aromatic hydrocarbons (PAH), Total	NA	No	No		-	-	-	-		_		1	0.13	1	-	-	_	-	-	1.36E+09		
(high molecular weight)	NA	No	No		-	-	-	-		-		1	0.13	1	-	-	_	-	-	1.36E+09		
Polycyclic aromatic hydrocarbons (PAH), Total (low molecular weight)	NA	No	No		_		_	_		_		1	0.13	1	_		_	_	_	1.36E+09		
Polycyclic chlorinated hydrocarbons (total)	NA	No	No		_	_	-	_		_		1	0.10	1	_		_	_	_	1.36E+09		
Polymeric Methylene Diphenyl Diisocyanate			1.10				+						Ų. i	•								
(PMDI)	9016-87-9	No	No		-	-	-	-		6.00E-04	U	1	0.1	1	-	5.40E-10	-	1.76E-06	1.00E+10	1.36E+09	3.57E+05	cm
Polyphosphoric acid	8017-16-1	No	No		-	-	-	4.86E+01	U	-		1	-	1	-	-	_	-	-	1.36E+09	5.68E+06	cm
Potassium	7440-09-7	No	No		-	-	-	-		-		1	-	1	-	-	-	-	-	1.36E+09		
Potassium Cyanide	151-50-8	No	No		-		-	2.00E-03	U	-		1	-	1	-	-	-	7.20E+05	-	1.36E+09	2.34E+02	nc
Potassium Perchlorate	7778-74-7	No	No		-		-	7.00E-04	U	-		1	-	1	-	-	-	1.50E+04	-	1.36E+09	8.18E+01	nc
Potassium Perfluorobutane Sulfonate	29420-49-3	No	No		-	-	-	2.00E-02	U	-		1	0.1	1	-	3.59E-11	-	4.62E+04	-	1.36E+09	1.64E+03	nc
Potassium Perfluorooctane Sulfonate	2795-39-3	No	No		-	-	-	2.00E-05	U	-		1	0.1	1	-	8.18E-05	-	6.80E+02	-	1.36E+09	1.64E+00	nc
Potassium Silver Cyanide	506-61-6	No	No		-	-	-	5.00E-03	U	-		0.04	-	1	-	-	-	-	-	1.36E+09	5.84E+02	nc
	10015.00.0		Ī																			
Potassium tripolyphosphate		No	No		-	-		4.86E+01	U	-		1	-	1	-	-	-	-	-	1.36E+09	5.68E+06	cm
Praseodymium	7440-10-0	No	No		-	-	-	-		-		1	-	1	-	-	-	-	-	1.36E+09		
Praseodymium Chloride (Stable, Nonradioactive)	10361-79-2	No	No			_		_				1		1	_	_		9.61E+05	_	1.36E+09		
Prochloraz	67747-09-5		No	1.50E-01	U			9.00E-03	U	_		1	0.1	1	_	6.70E-07		3.40E+01	2 43E+03	1.36E+09	1.53E+01	ca*
Profluralin		No	Yes	1.50L-01				6.00E-03	U	_		1	0.1	1	4.19E+05	1.19E-02		1.00E-01		1.36E+09	7.01E+02	nc
Promethium		No	No					0.00L-03	0			1		1	4.192103	1.19L-02	_	1.00L-01	3.03L 104	1.36E+09	7.012102	110
Prometon	1610-18-0	No	No		-			1.50E-02	U	_		1	0.1	1	_	3.72E-08	_	7.50E+02	1 37F±02	1.36E+09	1.23E+03	nc
Prometryn	7287-19-6	No	No		-			4.00E-02	U	_		1	0.1	1	_	4.87E-07		3.30E+01		1.36E+09	3.28E+03	nc
Propachlor	1918-16-7	No	No		-			1.30E-02	U	_		1	0.1	1	_	1.47E-05		5.80E+02		1.36E+09	1.07E+03	nc
Propanil	709-98-8	No	No				_	5.00E-03	U			1	0.1	1	_	6.99E-08		1.52E+02		1.36E+09	4.10E+02	nc
Propanii Propanoic acid, 2-(2,4-dichlorophenoxy)-	120-36-5	No	No		_		_	J.UUL-UJ	J	_		1	0.1	1	-	3.55E-09		3.50E+02		1.36E+09	4.10L10Z	110
Propargite	2312-35-8	No	No	3.27E-02	U		_	4.00E-02	U	_		1	0.1	1	-	2.62E-05		2.15E-01		1.36E+09	7.03E+01	ca*
Propargyl Alcohol	107-19-7	No	Yes	0.21 L-02	_	_	-	2.00E-02	U	_		1	0.1	1	6.28E+04	4.70E-05		1.00E+06			2.34E+02	nc
Propagine	139-40-2	No	No		_			2.00E-03 2.00E-02	U			1	0.1	1	0.202704	1.88E-07				1.36E+09	1.64E+03	nc
Propham	122-42-9	No	No		1	_		2.00E-02 2.00E-02	U	_		1	0.1	1	-	7.52E-06		1.79E+02			1.64E+03	nc
Propiconazole		No	No		1	_		1.00E-02	U	_		1	0.1	1	-	7.03E-08		1.79E+02 1.10E+02			8.21E+03	nc
Propionaldehyde	123-38-6	No	Yes		_	_		1.00L-01	J	8.00E-03	U	1	U. I	1	8.96E+03	3.00E-03		3.06E+05			3.14E+01	nc
Propionitrile	107-12-0	No	Yes		_		-			0.000		1		1	1.50E+04	1.51E-03		1.03E+05		1.36E+09	0.142101	1.5
Propionitrile, 3-(NN-dimethylamino)	1738-25-6	No	Yes		_		-					1		1	1.89E+05	8.22E-07		1.00E+06		1.36E+09		
Propyl Alcohol, n-	71-23-8	No	Yes		_		_	_				1		1	2.91E+04	3.03E-04		1.00E+06		1.36E+09		
Propyl benzene	103-65-1	No	Yes				_	1.00E-01	U	1.00E+00	U	1		1	6.99E+03	4.29E-01		5.22E+01		1.36E+09	2.43E+03	CS
Propylene	115-07-1	No	Yes			_	_	1.00L=01	U	3.00E+00	U	1	_	1	7.03E+02	8.01E+00		2.00E+02				CS
Поручене	110-07-1	140	103			_		_		J.00L+00	3	1	_	ı	7.002+02	0.016700	J.#3L*UZ	2.00L+02	Z. 17 LTU1	1.500-108	J.Z4L TUZ	- 03
Propylene Glycol	57-55-6	No	No		-	-	-	2.00E+01	U	-		1	0.1	1	-	5.27E-07	-	1.00E+06	1.00E+00	1.36E+09	1.64E+06	cm

Composite Worker Screening Levels (RSL) for Soil

Propylene Glycol Monoethyl Ether 1569-02-4 No Yes	E+09 E+09 3.7		g) [basis
Propylene Glycol Monoethyl Ether 1569-02-4 No Yes 7.00E-01 U 2.00E+00 U 1 - 1 7.46E+05 3.02E-06 3.95E+04 3.66E+05 1.00E+00 Propylene Glycol Monomethyl Ether 107-95-2 No Yes 7.00E-01 U 2.00E+00 U 1 - 1 7.83E+04 3.76E-05 1.06E+05 1.00E+00 Propylene Glycol Monomethyl Ether 107-95-2 No Yes 2.40E-01 U 3.70E-06 U 3.00E-02 U 1 - 1 1.03E+04 2.85E-05 1.06E+05 1.00E+00 Propylene Glycol Monomethyl Ether 1048-45-8 No	E+09 E+09 3.7	1.62E+05	5 cm
Propylene Glycol Monomethyl Ether 107-98-2 No Yes - 107-98-0 V 198 2.40E-01 U 3.70E-06 U - 7.00E-01 U 2.00E+00 U 1 0 - 1 1.03E+04 3.76E-05 1.06E+05 1.00E+00 1.00E+00 Propylene Oxide 75-56-9 No Yes 2.40E-01 U 3.70E-06 U - 3.00E-02 U 1 0 - 1 1.03E+04 2.85E-03 7.77E-04 5.90E+05 5.19E+00 Propylene Oxide 29950-85-5 No No No - 1 - 7.50E-02 U 0 NE-02 U 1 0 - 1 1.03E+04 2.85E-03 7.77E-04 5.90E+05 5.19E+00 No No - 1 - 7.50E-02 U 0 NE-02 U 1 0 - 1 1.03E+04 2.85E-03 7.77E-04 5.90E+05 5.19E+00 No No - 1 - 7.50E-02 U 0 NE-02 U 1 0 - 1 1.03E+04 2.85E-03 7.77E-04 5.90E+05 5.19E+00 No	E+09 3.7		-
Propylene Oxide		3.73E+04	4 nc
Propyzamide		9.73E+00	
Prussian Blue (Ferric Ferrocyanide) 14038-43-8 No No No	E+09 6.1	6.15E+03	
Pyrazinyl phosphorothioate, O,O-diethyl O-2- 297-97-2 No	E+09	01102 00	
Pyrene 129-00-0	E+09		
Pyridine		2.26E+03	3 nc
Quinalphos 13593-03-8 No No No - 5.00E-04 U - 1 0.1 1 - 1.90E-06 - 2.20E+01 4.19E+03 Quinoline 91-22-5 No No No No - - - - 1 0.1 1 - 6.83E-05 - 6.11E+03 1.54E+03 Quizalofop-ethyl 76578-14-8 No No No - - 9.00E-03 U - 1 0.1 1 - 4.33E-07 - 3.00E-01 7.74E+03 Refractory Ceramic Fibers NA No No No - - - - 1 0.1 1 - 4.33E-07 - 3.00E-01 7.74E+03 Resmethrin 10453-86-8 No No No - - 3.00E-02 U - 1 0.1 1 - 5.44E-06 - 3.79E-02 3.11E+05 Resme		1.17E+02	
Quinoline 91-22-5 No No 3.00E+00 U - - - 1 0.1 1 - 6.83E-05 - 6.11E+03 1.54E+03 Quizalofop-ethyl 76578-14-8 No No No - - 9.00E-03 U - 1 0.1 1 - 4.33E-07 - 3.00E-01 7.74E+03 Refractory Ceramic Fibers NA No No - - - - 3.00E-02 U 1 - 1 - 4.33E-07 - 3.00E-01 7.74E+03 Responsibility NA No No No - - - 3.00E-02 U 1 - 1 - <t< td=""><td></td><td>4.10E+01</td><td></td></t<>		4.10E+01	
Quizalofop-ethyl 76578-14-8 No No - - 9.00E-03 U - 1 0.1 1 - 4.33E-07 - 3.00E-01 7.74E+03 Refractory Ceramic Fibers NA No No - - - - 3.00E-02 U 1 - 1 -		7.66E-01	
Refractory Ceramic Fibers NA No		7.39E+02	
Resmethrin 10453-86-8 No No No - - 3.00E-02 U - 1 0.1 1 - 5.44E-06 - 3.79E-02 3.11E+05 Resorcinol 108-46-3 No No No - - - - - 1 0.1 1 - 4.04E-09 - 7.17E+05 2.41E+02 Ronnel 299-84-3 No Yes - - 5.00E-02 U - 1 4.64E+05 1.31E-03 - 1.00E+00 4.46E+03 Rotenone 83-79-4 No No No - - 4.00E-03 U - 1 0.1 1 - 4.58E-12 - 2.00E-01 2.61E+05 Rubidium 7440-17-7 No No - - - - 1 1 - 1 - - - - - - - - - - -	2.00	7.002 - 02	- 110
Resorcinol 108-46-3 No No No - - - - - 1 0.1 1 - 4.04E-09 - 7.17E+05 2.41E+02 Ronnel 299-84-3 No Yes - - 5.00E-02 U - 1 4.64E+05 1.31E-03 - 1.00E+00 4.46E+03 Rotenone 83-79-4 No No No - - 4.00E-03 U - 1 0.1 1 - 4.58E-12 - 2.00E-01 2.61E+05 Rubidium 7440-17-7 No No - - - - 1 - 1 -		1.79E+07	
Ronnel 299-84-3 No Yes - 5.00E-02 U - 1 - 1 4.64E+05 1.31E-03 - 1.00E+00 4.46E+03 Rotenone 83-79-4 No No No - - 4.00E-03 U - 1 0.1 1 - 4.58E-12 - 2.00E-01 2.61E+05 Rubidium 7440-17-7 No No - - - - 1 - 1 - - - - - Rubidium Chloride 7791-11-9 No No - - - - - 1 - 1 - </td <td></td> <td>2.46E+03</td> <td>3 nc</td>		2.46E+03	3 nc
Rotenone 83-79-4 No No - - 4.00E-03 U - 1 0.1 1 - 4.58E-12 - 2.00E-01 2.61E+05 Rubidium 7440-17-7 No No - - - - 1 - 1 - <td>E+09</td> <td></td> <td></td>	E+09		
Rubidium 7440-17-7 No No - - - - 1 - - - - - Rubidium Chloride 7791-11-9 No No - - - - 1 - 1 - - - 9.39E+07 -		5.84E+03	
Rubidium Chloride 7791-11-9 No No 1 - 1 - 1 9.39E+07 -	E+09 3.2	3.28E+02	2 nc
	E+09		
Dubition 11 december 14 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	E+09		
· · · · · · · · · · · · · · · · · · ·	E+09		
	E+09		
	E+09 1.0	1.04E+01	1 ca
Samarium Chloride (Stable, Nonradioactive) 10361-82-7 No No - - - 1 - 1 - - 9.38E+05 -	E+09		
Samarium Nitrate (Stable, Nonradioactive) 10361-83-8 No No 1.44E+06 -	E+09		
Scandium 7440-20-2 No No 1 - 1 - 1	E+09		
Selenious Acid 7783-00-8 No No 5.00E-03 U - 1 - 1 9.00E+05 -	E+09 5.8	5.84E+02	2 nc
Selenite 14124-67-5 No No 1 - 1 - 1	E+09		
Selenium 7782-49-2 No No 5.00E-03 U 2.00E-02 U 1 - 1	E+09 5.8	5.84E+02	2 nc
Selenium Sulfide 7446-34-6 No No - - 5.00E-03 U 2.00E-02 U 1 - 1 -	E+09 5.8	5.84E+02	2 nc
Selenourea 630-10-4 No Yes 1.72E+05 1.00E+06 1.20E+01	E+09		
Sethoxydim 74051-80-2 No No - - 1.40E-01 U - 1 0.1 1 - 8.83E-10 - 2.50E+01 4.37E+03	E+09 1.	1.15E+04	4 nc
Silica (crystalline, respirable) 7631-86-9 No No 3.00E-03 U 1 - 1	6E+09 1.7	1.79E+06	6 cm
	E+09		
		5.84E+02	2 nc
		1.17E+04	
Simazine 122-34-9 No No 1.20E-01 U - 5.00E-03 U - 1 0.1 1 - 3.85E-08 - 6.20E+00 1.47E+02		1.91E+01	
	E+09		
Sodium Acifluorfen 62476-59-9 No No 1.30E-02 U - 1 0.1 1 - 2.47E-09 - 2.50E+05 3.88E+03		1.07E+03	3 nc
		4.67E+02	
		1.17E+02	
·		6.18E+00	
Sodium Diethyldithiocarbamate 148-18-5 No No 2.70E-01 U - 3.00E-02 U - 1 0.1 1 3.64E+05 2.05E+02		8.51E+00	
·		5.84E+03	
Sodium Fluoroacetate 62-74-8 No No - - 2.00E-05 U - 1 0.1 1 - 4.46E-05 - 1.11E+06 1.44E+00		1.64E+00	
	·LTU3 📕		التناسيد
Sodium Metavanadate 13718-26-8 No No - - 1.00E-03 U - 1 -	E+09 1.6		

Composite Worker Screening Levels (RSL) for Soil

	CAS			Ingestion SF	SEO	Inhalation Unit Risk	IUR	Chronic RfD (mg/kg-	Chronic RfD	Chronic RfC	Chronic RfC				Volatilization Factor	Henry's Law Constant	Soil Saturation Concentratio	s	Koc	Particulate Emission Factor	Screening Level	
Chemical	Number	Mutagen?	VOC?	(mg/kg-day) ⁻¹			Ref	, , ,	Ref	(mg/m³)	Ref	GIABS	ABS	RBA	(m³/kg)	(unitless)	(mg/kg)	(mg/L)	(cm3/g)	(m³/kg)	(mg/kg)	[basis]
Sodium Perchlorate	7601-89-0	No	No	-		-		7.00E-04	U	-		1	-	1	-	-		2.10E+06	-	1.36E+09	8.18E+01	nc
Sodium Tungstate	13472-45-2	No	No	-		-		8.00E-04	U	-		1	-	1	-	-	-	7.42E+05	-	1.36E+09	9.34E+01	nc
Sodium Tungstate Dihydrate	10213-10-2	No	No	-		-	-	8.00E-04	U	-		1	-	1	-	-	-	7.42E+05	-	1.36E+09	9.34E+01	nc
Sodium acid pyrophosphate	7758-16-9	No	No	_				4.86E+01	U	_		1	_	1	-	_	_	_	_	1.36E+09	5.68E+06	cm
Sodium aluminum phosphate (acidic)	7785-88-8	No	No	-		_		4.86E+01	U	-		1	-	1	-	-	_	-	-	1.36E+09	5.68E+06	cm
Sodium aluminum phosphate (anhydrous)	10279-59-1	No	No	_		-		4.86E+01	U	_		1	-	1	-	_	_	-	-	1.36E+09	5.68E+06	cm
Sodium aluminum phosphate (tetrahydrate)	10305-76-7	No	No	_		-	-	4.86E+01	U	-		1	-	1	-	_	-	-	-	1.36E+09	5.68E+06	cm
Sodium hexametaphosphate	10124-56-8	No	No	-		-	-	4.86E+01	U	-		1	-	1	-	-	_	-	-	1.36E+09	5.68E+06	cm
Sodium polyphosphate	68915-31-1	No	No	-		-	-	4.86E+01	U	-		1	-	1	-	_	_	-	-	1.36E+09	5.68E+06	cm
Sodium trimetaphosphate	7785-84-4	No	No	-		-	-	4.86E+01	U	-		1	-	1	-	-	_	-	-	1.36E+09	5.68E+06	cm
Sodium tripolyphosphate	7758-29-4	No	No	_		_	-	4.86E+01	U	_		1	_	1	_	_	_	_	_	1.36E+09	5.68E+06	cm
Stearyl Acetate	822-23-1	No	Yes	-		-	-	-		-		1	-	1	8.74E+04	8.87E-01	-	5.57E-04	8.27E+04	1.36E+09		
Stirofos (Tetrachlorovinphos)	961-11-5	No	No	2.40E-02	U	-	-	3.00E-02	U	-		1	0.1	1	-	7.52E-08	-	1.10E+01	1.38E+03	1.36E+09	9.57E+01	ca*
Strontium Chromate	7789-06-2	Yes	No	5.00E-01	U	1.50E-01	U	2.00E-02	U	2.00E-04	U	0.025	-	1	-	-	-	1.06E+03	-	1.36E+09	6.18E+00	ca
Strontium, Stable	7440-24-6	No	No	-		-	-	6.00E-01	U	-		1	-	1	-	-	-	-	-	1.36E+09	7.01E+04	nc
Strychnine	57-24-9	No	No	-		-	-	3.00E-04	U	-		1	0.1	1	-	3.09E-12	-	1.60E+02	5.40E+03	1.36E+09	2.46E+01	nc
Styrene	100-42-5	No	Yes	-		-	-	2.00E-01	U	1.00E+00	U	1	-	1	9.36E+03	1.12E-01	8.67E+02	3.10E+02	4.46E+02	1.36E+09	3.49E+03	cs
Styrene-Acrylonitrile (SAN) Trimer	NA	No	No	-		-	-	3.00E-03	U	-		1	0.1	1	-	-	-	8.49E+01	-	1.36E+09	2.46E+02	nc
Sulfate	14808-79-8	No	No	-		-	-	-		-		1	-	1	-	-	-	1.00E+06	-	1.36E+09		
Sulfide	18496-25-8	No	No	-		-	-	-		-		1	-	1	-	-	-	-	-	1.36E+09		
Sulfite	14265-45-3	No	No	-		-	-	-		-		1	-	1	-	_	-	-	-	1.36E+09		
Sulfolane	126-33-0	No	No	-		-	-	1.00E-03	U	2.00E-03	U	1	0.1	1	-	1.98E-04	-	1.00E+06	9.08E+00	1.36E+09	8.21E+01	nc
Sulfonylbis(4-chlorobenzene), 1,1'-	80-07-9	No	No	-		-	-	8.00E-04	U	-		1	0.1	1	-	5.60E-06	-	2.39E+00	2.86E+03	1.36E+09	6.57E+01	nc
Sulfur	7704-34-9	No	No	-		-	-	-		-		1	-	1	-	-	-	-	-	1.36E+09		
Sulfur Dioxide	7446-09-5	No	Yes	-		-	-	-		-		1	-	1	-	3.31E-02	-	1.07E+05	-	1.36E+09		
Sulfur Mustard	505-60-2	No	Yes	-		-	-	-		-		1	-	1	8.78E+04	1.00E-03	1.05E+03	6.84E+02	2.40E+02	1.36E+09		
Sulfur Trioxide	7446-11-9	No	Yes	-			-	-		1.00E-03	U	1	-	1	-	-	_	-	-	1.36E+09	5.95E+05	cm
Sulfuric Acid Sulfurous acid, 2-chloroethyl 2-[4-(1,1-	7664-93-9	No	No	-		-	-	-		1.00E-03	U	1	-	1	-	_	_	1.00E+06	-	1.36E+09	5.95E+05	cm
dimethylethyl)phenoxy]-1-methylethyl ester	140-57-8	No	No	2.50E-02	U	7.10E-06	U	5.00E-02	U	_		1	0.1	1	_	7.77E-06	_	5.90E-01	5.55F+03	1.36E+09	9.19E+01	ca*
TCDD, 2,3,7,8-		No	Yes	1.30E+05		3.80E+01			U	4.00E-08	U	1	0.03	1	1.96E+06	2.04E-03		2.00E-04			2.16E-05	ca**
TCDF, 2,3,7,8-	51207-31-9		Yes	1.30E+04		3.80E+00			U	4.00E-07	U	1	0.03	1	2.49E+06	6.83E-04		6.92E-04		1.36E+09	2.17E-04	ca**
TCMTB	21564-17-0		No			5.002.00		3.00E-02	U	-		1	0.1	1	-	2.65E-10		1.25E+02		1.36E+09	2.46E+03	nc
Tebuthiuron	34014-18-1		No					7.00E-02	U	_		1	0.1	1	_	4.91E-09		2.50E+03			5.74E+03	nc
Technetium		No	No					7.002-02		_		1	-	1		7.01L-00	_		2-72-101	1.36E+09	J.74L 100	110
Tellurium	13494-80-9		No					_		_		1	_	1			_	0.00E+00		1.36E+09		
Temephos		No	No	-			_	2.00E-02	U	_		1	0.1	1	-	8.01E-08		2.70E-01	9 51F+04	1.36E+09	1.64E+03	nc
Terbacil	5902-51-2		No					1.30E-02	U	_		1	0.1	1	-	4.91E-09		7.10E+02		1.36E+09	1.04E+03 1.07E+03	nc
Terbufos	13071-79-9		Yes	_		_		2.50E-05	U	_		1	U. I	1	2.64E+05	9.81E-04		5.07E+00		1.36E+09	2.92E+00	nc
Terbutryn	886-50-0	No	No	<u> </u>		_		1.00E-03	U	_		1	0.1	1	2.07L 100	8.79E-07		2.50E+01		1.36E+09	8.21E+01	nc
Test Chemical	NA	No	No	-		_		1.000-03	0	_		ı	U. I	1	-	0.73L-07	_	2.50⊑⊤01	0.07 ETUZ	1.36E+09	0.Z1L+01	110
1 COL OTICITIICAI	INA	INO	INU				·			_		_	-	ı			_	_	-	1.30⊑+09		

Composite Worker Screening Levels (RSL) for Soil

Chemical	CAS Number	Mutagen?	VOC?	Ingestion SF (mg/kg-day) ⁻¹	J	Inhalation Unit Risk (ug/m³) ⁻¹	IUR Ref	, , ,	Chronic RfD Ref	Chronic RfC (mg/m³)	Chronic RfC Ref	GIABS	ABS	RBA	Volatilization Factor (m³/kg)	Henry's Law Constant (unitless)	Soil Saturation Concentratio n (mg/kg)	S (mg/L)	Koc (cm3/g)	Particulate Emission Factor (m³/kg)	Screening Level (mg/kg)	[basis]
Tetrabromodiphenyl ether, 2,2',4,4'- (BDE-47)	5436-43-1	No	No	-		, ,	-	1.00E-04	U		-	1	0.1	1	-	1.21E-04	-		1.32E+04	1.36E+09	8.21E+00	nc
Tetrabutyl Lead	1920-90-7	No	Yes	-			-	-			-	1	-	1	4.65E+03	3.25E+02	-	1.44E-02	7.88E+04	1.36E+09		
Tetrachloroaniline, 2,3,5,6-	3481-20-7	No	No	-			-	-			-	1	0.1	1	-	2.35E-05	-	9.49E+00	7.42E+03	1.36E+09		
Tetrachlorobenzene, 1,2,3,4-	634-66-2	No	Yes	-			-	-			-	1	-	1	5.99E+04	3.11E-02	-	5.92E+00	2.27E+03	1.36E+09		
Tetrachlorobenzene, 1,2,4,5-	95-94-3	No	Yes	-			-	3.00E-04	U		-	1	-	1	5.07E+04	4.09E-02	-	5.95E-01	2.22E+03	1.36E+09	3.50E+01	nc
Tetrachlorobiphenyl, 3,3',4,4'- (PCB 77)	32598-13-3	No	No	1.30E+01	U	3.80E-03	U	7.00E-06	U	4.00E-04	U	1	0.14	1	-	3.84E-04		5.69E-04		1.36E+09	1.58E-01	ca**
Tetrachlorobiphenyl, 3,4,4',5- (PCB 81)		No	Yes	3.90E+01	U	1.14E-02	U	2.33E-06	U	1.33E-04	U	1	0.14	1	5.09E+05	9.12E-03		3.22E-02		1.36E+09	4.80E-02	ca**
Tetrachloroethane, 1,1,1,2-	630-20-6	No	Yes	2.60E-02	U	7.40E-06	U	3.00E-02	U		-	1	-	1	5.68E+03	1.02E-01	6.80E+02	1.07E+03	8.60E+01	1.36E+09	8.76E+00	ca
Tetrachloroethane, 1,1,2,2-	79-34-5	No	Yes	2.00E-01	U	5.80E-05	U	2.00E-02	U		-	1	-	1	1.51E+04	1.50E-02	1.90E+03	2.83E+03	9.49E+01	1.36E+09	2.67E+00	ca
Tetrachloroethylene	127-18-4	No	Yes	2.10E-03	U	2.60E-07	U	6.00E-03	U	4.00E-02	U	1	-	1	2.35E+03	7.24E-01	1.66E+02	2.06E+02	9.49E+01	1.36E+09	3.88E+01	nc
Tetrachlorophenol, 2,3,4,5-	4901-51-3	No	No	-			-	-			-	1	0.1	1	-	6.91E-06	-	2.87E+01	4.74E+03	1.36E+09		
Tetrachlorophenol, 2,3,4,6-	58-90-2	No	No	-			-	3.00E-02	U		-	1	0.1	1	-	3.61E-04	-	2.30E+01	2.80E+02	1.36E+09	2.46E+03	nc
Tetrachlorophenols (total)	25167-83-3	No	No	-			-	-			-	1	0.1	1	-	3.61E-04	-	2.30E+01	2.97E+03	1.36E+09		
Tetrachloroterephthalate, 2,3,5,6-	2136-79-0	No	No	-			-	-			-	1	0.1	1	-	2.69E-11	-	1.75E+02	1.31E+03	1.36E+09		
Tetrachlorotoluene, p- alpha, alpha, alpha-	5216-25-1	No	Yes	2.00E+01	U		-	-			-	1	-	1	1.06E+05	7.89E-03	-	4.04E+00	1.61E+03	1.36E+09	1.64E-01	ca
Tetraethyl Dithiopyrophosphate	3689-24-5	No	No	-			-	5.00E-04	U		-	1	0.1	1	-	1.82E-04	-	3.00E+01	2.66E+02	1.36E+09	4.10E+01	nc
Tetraethyl Lead	78-00-2	No	Yes	-			-	1.00E-07	U		-	1	-	1	1.91E+03	2.32E+01	2.43E+00	2.90E-01	6.48E+02	1.36E+09	1.17E-02	nc
Tetrafluoroethane, 1,1,1,2-	811-97-2	No	Yes	-			-	-		8.00E+01	U	1	-	1	1.22E+03	2.04E+00	2.04E+03	2.04E+03	8.60E+01	1.36E+09	4.28E+04	CS
Tetrahydrofuran	109-99-9	No	Yes	-			-	9.00E-01	U	2.00E+00	U	1	0.03	1	1.20E+04	2.88E-03	1.65E+05	1.00E+06		1.36E+09	9.43E+03	nc
Tetrahydrothiophene	110-01-0	No	Yes	_			-	_			-	1	_	1	8.24E+03	2.50E-02	2.18E+03	3.73E+03		1.36E+09		
Tetramethyl Lead	75-74-1	No	Yes	-			-	-			-	1	_	1	1.31E+03	2.49E+01		1.50E+01		1.36E+09		
Tetramethylcyclohexane	30501-43-0	No	Yes	-			-	-			-	1	_	1	-	-	_	-	-	1.36E+09		
Tetrapotassium phosphate	7320-34-5	No	No	-			-	4.86E+01	U		-	1	-	1	-	-	-	-	-	1.36E+09	5.68E+06	cm
Tetrapropyl Lead	3440-75-3	No	Yes	-			-	-			-	1	-	1	2.65E+03	1.05E+02	-	5.82E-03	7.15E+03	1.36E+09		
Tetrasodium pyrophosphate	7722-88-5	No	No	-			-	4.86E+01	U		-	1	-	1	-	-	_	8.14E+04	-	1.36E+09	5.68E+06	cm
Tetryl (Trinitrophenylmethylnitramine)	479-45-8	No	No	-			-	2.00E-03	U		-	1	0.00065	1	-	1.11E-07	-	7.40E+01	4.61E+03	1.36E+09	2.33E+02	nc
Thallic Oxide	1314-32-5	No	No	-			-	2.00E-05	U		-	1	-	1	-	-	_	-	-	1.36E+09	2.34E+00	nc
Thallium (I) Nitrate	10102-45-1	No	No	-			-	1.00E-05	U		-	1	-	1	-	-	_	9.55E+04	-	1.36E+09	1.17E+00	nc
Thallium (Soluble Salts)	7440-28-0	No	No	-			-	1.00E-05	U		-	1	-	1	-	-	-	-	-	1.36E+09	1.17E+00	nc
Thallium Acetate	563-68-8	No	Yes	-			-	1.00E-05	U		-	1	-	1	-	-	-	2.80E+04	1.51E+00	1.36E+09	1.17E+00	nc
Thallium Carbonate	6533-73-9	No	Yes	-			-	2.00E-05	U		-	1	-	1	-	-	-	5.20E+04	2.88E+00	1.36E+09	2.34E+00	nc
Thallium Chloride		No	No	-			-	1.00E-05	U		-	1	-	1	-	-	-	2.90E+03	-	1.36E+09	1.17E+00	nc
Thallium Selenite	12039-52-0	No	No	-			-	1.00E-05	U		-	1	-	1	-	-	-	-	-	1.36E+09	1.17E+00	nc
Thallium Sulfate	7446-18-6	No	No	-			-	2.00E-05	U		-	1	-	1	-	-	_	5.47E+04	-	1.36E+09	2.34E+00	nc
Thifensulfuron-methyl	79277-27-3	No	No	-			-	4.30E-02	U		-	1	0.1	1	-	1.67E-12	-	2.24E+03	5.08E+01	1.36E+09	3.53E+03	nc
Thiobencarb	28249-77-6	No	No	-			-	1.00E-02	U		-	1	0.1	1	-	1.09E-05	-	2.80E+01	1.63E+03	1.36E+09	8.21E+02	nc
Thiocyanates	NA	No	No	-			-	2.00E-04	U		-	1	-	1	-	-	-	-	-	1.36E+09	2.34E+01	nc
Thiocyanic Acid	463-56-9	No	Yes	-			-	2.00E-04	U		-	1	-	1	-	-	-	-	-	1.36E+09	2.34E+01	nc
Thiodiglycol	111-48-8	No	No	-			-	7.00E-02	U		-	1	0.0075	1	-	7.56E-08	-	1.00E+06	1.00E+00	1.36E+09	7.92E+03	nc
Thiofanox	39196-18-4	No	No	-			-	3.00E-04	U		-	1	0.1	1	-	3.84E-07	-	5.20E+03	7.24E+01	1.36E+09	2.46E+01	nc
Thiophanate, Methyl	23564-05-8	No	No	1.16E-02	U		-	2.67E-02	U		-	1	0.1	1	-	4.95E-08	-	2.66E+01	3.27E+02	1.36E+09	1.98E+02	ca*
Thiophene	110-02-1	No	Yes	-			-	-			-	1	-	1	4.18E+03	9.28E-02	1.80E+03	3.01E+03	8.00E+01	1.36E+09		
Thiram	137-26-8	No	No	-			-	1.50E-02	U		-	1	0.1	1	-	7.44E-06	-	3.00E+01	6.11E+02	1.36E+09	1.23E+03	nc
Thorium	7440-29-1	No	No	-			-	-			-	1	-	1	-		-	-	-	1.36E+09		
Thymol	89-83-8	No	No	-			-	-			-	1	0.1	1	-	1.97E-05	-	9.00E+02	1.47E+03	1.36E+09		
Tin	7440-31-5	No	No	-			-	6.00E-01	U		-	1	-	1	-	-	-	-	-	1.36E+09	7.01E+04	nc

Composite Worker Screening Levels (RSL) for Soil

	CAS			Ingestion SF		Inhalation Unit Risk	IUR	(55	Chronic RfD	Chronic RfC	Chronic RfC				Volatilization Factor	Henry's Law Constant	Soil Saturation Concentratio	S	Koc	Particulate Emission Factor	Screening Level	
Chemical	Number	Mutagen?	VOC?	(mg/kg-day) ⁻¹	Ret	(ug/m ³) ⁻¹	Ref	day)	Ref	(mg/m ³)	Ref	GIABS	ABS	RBA	(m³/kg)	(unitless)	(mg/kg)	(mg/L)	(cm3/g)	(m³/kg)	(mg/kg)	[basis]
Titanium Titanium	7440-32-6	No	No	-		-		-		4.005.04		1	-	1	-	-	-	-	-	1.36E+09	5.055.04	
Titanium Tetrachloride	7550-45-0	No	Yes	-		-		8.00E-02	U	1.00E-04	U	1	-	1	4.29E+03	2.745.04	0.405.00	5.26E+02	- 245.00	1.36E+09 1.36E+09	5.95E+04	nc
Toluene	108-88-3	No	Yes	-	1	4 405 05	1.	8.00E-02	U	5.00E+00	U	1	-	1		2.71E-01	8.18E+02				4.69E+03	CS
Toluene-2,4-diisocyanate	584-84-9	No	Yes	-	1	1.10E-05	U	-		8.00E-06	U	1	-	1	7.61E+05	4.54E-04	-	3.76E+01	7.42E+03	1.36E+09	2.67E+00	nc
Toluene-2,5-diamine	95-70-5	No	No	1.80E-01	U	_		2.00E-04	U	_		1	0.1	1	_	3.04E-07	_	7.72E+04	5 54F+01	1.36E+09	1.28E+01	ca**
Toluene-2,6-diisocyanate	91-08-7	No	Yes			1.10E-05	U			8.00E-06	U	1	_	1	6.32E+05	4.54E-04	1.71E+03	3.76E+01		1.36E+09	2.21E+00	nc
Toluenediamine, 2,3-	2687-25-4	No	No	_				_		-	_	1	0.1	1	-	3.04E-07		2.46E+04		1.36E+09		
Toluenediamine, 3,4-	496-72-0	No	No	_		-		_		_		1	0.1	1	-	3.06E-07		2.69E+04		1.36E+09		
Toluidine, o- (Methylaniline, 2-)	95-53-4	No	No	1.60E-02	U	5.10E-05	U	_		_		1	0.1	1	_	8.09E-05		1.66E+04		1.36E+09	1.44E+02	ca
, (), /														-								
Toluidine, p-	106-49-0	No	No	3.00E-02	U	-		4.00E-03	U	-		1	0.1	1	-	8.26E-05	-	6.50E+03	1.13E+02	1.36E+09	7.66E+01	ca**
Total Petroleum Hydrocarbons (Aliphatic High)	NA	No	Yes	-		-		3.00E+00	U	-		1	-	1	1.06E+03	3.34E+02	3.41E-01	3.70E-03	4.82E+03	1.36E+09	3.50E+05	cs
Total Petroleum Hydrocarbons (Aliphatic Low)	NA	No	Yes	-		_		_		6.00E-01	U	1	-	1	8.29E+02	7.36E+01	1.41E+02	9.50E+00	1.32E+02	1.36E+09	2.18E+02	cs
Total Petroleum Hydrocarbons (Aliphatic Medium)	NA	No	Yes	-		_		1.00E-02	U	1.00E-01	U	1	_	1	1.04E+03	1.39E+02	6.86E+00	2.20E-01	7.96E+02	1.36E+09	4.40E+01	cs
Total Petroleum Hydrocarbons (Aromatic High)	NA	No	No	_		-		4.00E-02	U	_		1	0.1	1	-	3.62E-04	_	2.60E-01	5.55E+04	1.36E+09	3.28E+03	nc
Total Petroleum Hydrocarbons (Aromatic Low)	NA	No	Yes	-		_		4.00E-03	U	3.00E-02	U	1	-	1	3.54E+03	2.27E-01	1.82E+03	1.79E+03	1.46E+02	1.36E+09	4.23E+01	nc
Total Petroleum Hydrocarbons (Aromatic Medium)	NA	No	Yes	_		_		4.00E-03	U	3.00E-03	U	1	_	1	5.24E+04	1.96E-02	_	2.78E+01	2.01E+03	1.36E+09	6.00E+01	nc
Toxaphene	8001-35-2	No	No	1.10E+00	U	3.20E-04	U	-		-		1	0.1	1	-	2.45E-04	-	5.50E-01	7.72E+04	1.36E+09	2.09E+00	ca
Tralomethrin	66841-25-6	No	No	-		-		7.50E-03	U	-		1	0.1	1	-	1.61E-08		8.00E-02		1.36E+09	6.15E+02	nc
Tri-n-butyltin	688-73-3	No	Yes	-		-		3.00E-04	U	-		1	-	1	3.36E+03	6.21E+01		7.30E-03		1.36E+09	3.50E+01	nc
Triacetin	102-76-1	No	No	_		_		8.00E+01	U	_		1	0.1	1	_	5.03E-07	_	5.80E+04	4.07E+01	1.36E+09	6.57E+06	cm
Triadimefon	43121-43-3	No	No	_		-		3.40E-02	U	_		1	0.1	1	-	3.32E-09	_	7.15E+01	2.99E+02	1.36E+09	2.79E+03	nc
Triallate		No	Yes	7.17E-02	U			2.50E-02	U	_		1	-	1	3.62E+05	4.91E-04				1.36E+09	4.56E+01	ca*
Trialuminum sodium tetra decahydrogenoctaorthophosphate (dihydrate)	15136-87-5	No	No					4.86E+01	U	_		1		1			_	_		1.36E+09	5.68E+06	cm
Triasulfuron	82097-50-5		No					1.00E-02	U	_		1	0.1	1	-	1.32E-11	_	3.20E+01	4 27E±02		8.21E+02	nc
Triaziquone	68-76-8	No	No	_		_		1.00L-02	0	-		1	0.1	1	-	3.78E-14		1.07E+05		1.36E+09	0.212102	110
Tribenuron-methyl	101200-48-0		No					8.00E-03	U	_		1	0.1	1	-	4.17E-12		5.00E+01		1.36E+09	6.57E+02	nc
Tribromobenzene, 1,2,4-	615-54-3	No	Yes	-				5.00E-03	U	_		1	0.1	1	4.84E+04	1.39E-02					5.84E+02	nc
Tribromochloromethane	1 1 1 1	No	Yes					0.00L-00				1	_	1	4.10E+04	1.62E-03			4.39E+01		0.012102	-113
Tribromodiphenyl Ether	49690-94-0		Yes							_		1	_	1	7.79E+05	8.30E-04				1.36E+09		
Tribromophenol, 2,4,6-		No	No	_		-		9.00E-03	U	-		1	0.1	1	-	1.45E-06				1.36E+09	7.39E+02	nc
Tributyl Phosphate	126-73-8	No	No	9.00E-03	U	-		1.00E-02	U	_		1	0.1	1	_	5.76E-05	_	2.80E+02	2.35E+03	1.36E+09	2.55E+02	ca**
Tributyltin		No	Yes	-		-		-		-		1	-	1	3.12E+03	5.27E+01	-	1.70E+01	1.21E+04			
Tributyltin Compounds	NA	No	No	-		-		3.00E-04	U	-		1	0.1	1	-	_	-	-	-	1.36E+09	2.46E+01	nc
Tributyltin Oxide		No	No	-		-		3.00E-04	U	-		1	0.1	1	-	1.23E-05	-	1.95E+01		1.36E+09	2.46E+01	nc
Tributyltin chloride		No	Yes	-		-		-		-		1	-	1	1.67E+04	3.12E+00			1.21E+04			
Tributyltin fluoride		No	Yes	† -		-		-		-		1	-	1	3.74E+03	3.39E+01				1.36E+09		
Tributyltin linoleate	24124-25-2		Yes	† -		-		-		-		1	-	1	1.21E+05	1.71E+02		1.98E-07		1.36E+09		
Tributyltin methacrylate		No	Yes	† -		-		-		-		1	-	1	1.02E+04	1.96E+00				1.36E+09		
Tributyltin naphthenate	85409-17-2		No	† -		-		-		-		1	0.1	1	-	-	-	-		1.36E+09		
Tricaine Methanesulfonate		No	No	-		-		-		-		1	0.1	1	-	6.66E-07	-	1.00E+05	5.90E+01			

Composite Worker Screening Levels (RSL) for Soil

Chemical	CAS Number	Mutagen?	VOC?	Ingestion SF (mg/kg-day) ⁻¹	SFO	Inhalation Unit Risk (ug/m³) ⁻¹	IUR Ref	Chronic RfD (mg/kg- day)	Chronic RfD Ref	Chronic RfC (mg/m³)	Chronic RfC Ref	GIABS	ABS	RBA	Volatilization Factor (m³/kg)	Henry's Law Constant (unitless)	Soil Saturation Concentratio n (mg/kg)	S (mg/L)	Koc (cm3/g)	Particulate Emission Factor (m³/kg)	Screening Level (mg/kg)	[basis]
Tricalcium phosphate	7758-87-4	No	No					4.86E+01	U			1		1		_	_			1.36E+09	5.68E+06	cm
Trichloro-1,2,2-trifluoroethane, 1,1,2-	76-13-1	No	Yes	-				3.00E+01	U	5.00E+00	U	1		1	1.29E+03	2.15E+01	9.10E+02	1.70E+02	1 07F±02	1.36E+09	2.81E+03	CS
Trichloro-2'-hydroxydiphenylether		No	No					J.00L 101	0	3.00L100	_	1	0.1	1	1.232.103	2.04E-07		1.00E+01		1.36E+09	2.012100	03
Trichloroacetic Acid	76-03-9	No	No	7.00E-02	U			2.00E-02	U			1	0.1	1	_	5.52E-07		5.46E+04		1.36E+09	3.28E+01	ca*
Trichloroaniline HCl. 2.4.6-		No	No	2.90E-02	U			Z.00L-02	0			1	0.1	1	_	2.94E-12		2.10E+01		1.36E+09	7.92E+01	ca
Trichloroaniline. 2.4.5-	636-30-6	No	No	2.90L-02	-			-			-	1	0.1	1	-	3.17E-05		5.16E+01		1.36E+09	7.922+01	Ca
Trichloroaniline, 2,4,6-	634-93-5	No	No	7.00E-03	U			3.00E-05	U			1	0.1	1	-	5.48E-05		4.00E+01		1.36E+09	2.46E+00	nc
Trichlorobenzene		No	Yes	7.00L-03				3.00L-03	0			1	0.1	1	3.46E+04	7.73E-02		3.00E+01		1.36E+09	2.402100	110
Trichlorobenzene. 1.2.3-	87-61-6	No	Yes	-				8.00E-04	U		-	1	-	1	3.46E+04 3.22E+04	5.11E-02		1.80E+01		1.36E+09	9.34E+01	nc
Trichlorobenzene, 1,2,4-	120-82-1	No	Yes	2.90E-02	U			1.00E-02	U	2.00E-03	U	1	-	1	2.99E+04	5.81E-02	4.05E+02	4.90E+01		1.36E+09	2.57E+01	nc
Trichloroethane, 1,1,1-	71-55-6	No	Yes	2.90L-02	-			2.00E+00	U	5.00E+00	U	1	-	1	1.65E+03	7.03E-01	6.40E+02	1.29E+03		1.36E+09	3.56E+03	CS
Trichloroethane, 1,1,2-	79-00-5	No	Yes	5.70E-02	U	1.60E-05	U	4.00E-03	U	2.00E-04	U	1	_	1	7.22E+03	3.37E-02	2.16E+03	4.59E+03		1.36E+09	6.31E-01	nc
Trichloroethylene	79-00-5	Yes	Yes	4.60E-02	-	4.10E-06	-	5.00E-03	II.	2.00E-04 2.00E-03	U	1	_	1	2.21E+03	4.03E-01	6.92E+02		6.07E+01	1.36E+09	1.87E+00	nc
Trichlorofluoromethane	75-69-4	No	Yes	4.00L-02	-	4. IUL-00	U	3.00E-04 3.00E-01	U	2.00L-03		1	_	1	1.04E+03	3.97E+00	1.23E+03	1.10E+03		1.36E+09	3.50E+04	CS
Trichlorophenol, 2,4,5-	95-95-4	No	No	_				1.00E-01	U			1	0.1	1	1.042103	6.62E-05		1.20E+03		1.36E+09	8.21E+03	nc
Trichlorophenol, 2,4,6-	88-06-2	No	No	1.10E-02	11	3.10E-06	11	1.00E-01	U		-	1	0.1	1	-	1.06E-04		8.00E+02		1.36E+09	8.21E+01	nc
Trichlorophenoxyacetic Acid. 2.4.5-	93-76-5	No	No	1.10L-02	-	3. TOL-00	U	1.00E-03	U		-	1	0.1	1	-	3.55E-07	-	2.78E+02		1.36E+09	8.21E+01	nc
Trichlorophenoxypropionic acid, -2,4,5	93-70-3	No	No	-				8.00E-02	U		-	1	0.1	1	-	3.70E-07		7.10E+01		1.36E+09	6.57E+02	nc
Trichloropropane, 1,1,2-	598-77-6	No	Yes	-				5.00E-03	U		-	1	0.1	1	1.50E+04	1.30E-02	1.28E+03	1.90E+03		1.36E+09	5.84E+02	nc
Trichloropropane, 1,2,3-	96-18-4	Yes	Yes	3.00E+01	U			4.00E-03	U	3.00E-04	U	1	-	1	1.57E+04	1.30E-02 1.40E-02	1.40E+03	1.75E+03		1.36E+09	1.09E-01	ca*
Trichloropropene, 1,2,3-	96-19-5	No	Yes	3.00⊑₹01	U			3.00E-03	U	3.00E-04 3.00E-04	U	1	-	1	2.34E+03	7.20E-01	3.11E+02	3.34E+02		1.36E+09	3.07E-01	nc
Trichlorotoluene, 2,3,6-	2077-46-5	No	Yes	-				3.00⊑-03	U	3.00⊑-04	U	1	-	1	4.23E+04	6.13E-02	-	6.97E+00		1.36E+09	3.07 = 01	TIC
		No		-	-	<u>-</u>		-			-	1	-	1	7.03E+04	1.17E-02		1.30E+01		1.36E+09 1.36E+09		
Trichlorotoluene, alpha 2,6-	2014-63-7 NA	No	Yes	-		-		-			-	1	0.4		7.03E+04	1.17E-02	-	1.30⊑+01	1.20=+03			
Triclorophenols (total)	1 1 1	111	No	-	-			2.005.02	U		-	1	0.1	1	-	3 30F 0F	-	2 605 01	4.715.04	1.36E+09	1 645 102	200
Tricresyl Phosphate (TCP)		No	No	-				2.00E-02	U		•	1	0.1	1	-	3.30E-05		3.60E-01	-	1.36E+09	1.64E+03	nc
Tridiphane		No	No	-				3.00E-03	U		•	1	0.1	1	-	1.68E-05	-	1.14E+00	3.45E+03	1.36E+09	2.46E+02	nc
Tridymite		No	No	-		-		-			-	1	-	1	4.005.00	4.405.04	- - -	4.005.00	- 0.045.00	1.36E+09		
Triethyl Lead		No	Yes	-		-		-			-	1	-	1	1.30E+03	1.40E+01	5.67E+03	1.39E+03		1.36E+09		
Triethyl phosphorothioate [O,O,O-]	126-68-1	No	Yes	-		-		-		7.005.00	-	1	-	1	2.81E+04	1.10E-02	2.33E+02	2.50E+02		1.36E+09	4.055.04	
Triethylamine	121-44-8	No	Yes	-		-		-		7.00E-03	U	1	-	1	1.58E+04	6.09E-03	2.78E+04	6.86E+04	5.08E+01	1.36E+09	4.85E+01	nc
Triethylene Glycol	112-27-6	No	No	_		_		2.00E+00	U		_	1	0.1	1	_	1.29E-09	_	1.00E+06	1 00F+01	1.36E+09	1.64E+05	cm
Trifluoroethane, 1,1,1-	420-46-2	No	Yes	_						2.00E+01	U	1	-	1	7.12E+02	3.15E+01		7.61E+02		1.36E+09	6.23E+03	CS
Trifluralin		No	Yes	7.70E-03	U			7.50E-03	U			1	_	1	5.12E+05	4.21E-03		1.84E-01			4.25E+02	ca**
Trimagnesium phosphate		No	No	_				4.86E+01	U			1	_	1	_		_	_	_		5.68E+06	cm
Trimethyl Lead		No	Yes	-				7.00E 101			_	1		1	1.12E+03	5.97E+00	3.08E+02	2.17E+02	3 18F+01	1.36E+09	0.002.00	011
Trimethyl Phosphate		No	No	2.00E-02	U			1.00E-02	U			1	0.1	1	1.12L103	2.94E-07		5.00E+05		1.36E+09	1.15E+02	ca**
Trimethyl-4-Propenylnaphthalene, 1,2,3-		No	Yes	Z.00L=0Z	-			1.00L=02	J		_	1	0.1	1	5.05E+05	9.55E-03		9.43E-02		1.36E+09	1.132+02	- Ga
Trimethylbenzene, 1,2,3-			Yes	-				1.005.02	U	6 00E 02	U	1	_	1							2.05E+02	no
Trimethylbenzene, 1,2,4-		No No	Yes	-		-		1.00E-02	U	6.00E-02 6.00E-02	U	1	-		9.44E+03	1.78E-01 2.52E-01		7.52E+01 5.70E+01			1.76E+02	nc
				-		-		1.00E-02	_			1	-	1	7.91E+03					1.36E+09		nc
Trimethylethyl Load		No	Yes	-		-	-	1.00E-02	U	6.00E-02	U	1	-	1	6.61E+03	3.59E-01		4.82E+01		1.36E+09	1.51E+02	nc
Trimethylethyl Lead		No	Yes	-		-	-	-			-	1	-	1	1.44E+03	1.44E+01		7.65E+00		1.36E+09		
Trimethylpentane, 2,2,4-		No	Yes	-		-		1 005 00	11		-	1	-	1	9.37E+02	1.24E+02		2.44E+00			1 175 - 00	
Trimethylpentene, 2,4,4-		No	Yes	-		-		1.00E-02	U		-	1	0.010	1	1.00E+03	3.05E+01		4.04E+00			1.17E+03	CS
Trinitrobenzene, 1,3,5-	99-35-4	No	No	-		-		3.00E-02	U	'	-	1	0.019	1	-	2.66E-07	-	2.78E+02	1.68⊑+03	1.36E+09	3.24E+03	nc

Composite Worker Screening Levels (RSL) for Soil

Key: I = IRIS; P = PPRTV; D = DWSHA; O = OPP; A = ATSDR; C = Cal EPA; X = APPENDIX PPRTV SCREEN (See FAQ #27); H = HEAST; F = See user guide Section 2.3.5; L = see user guide on lead; M = mutagen; S = see user guide Section 5; V = volatile; R = RBA applied (See User Guide for Arsenic notice); c = cancer; n = noncancer; * = where: n SL < 100X c SL; *** = where n SL < 10X c SL; SSL values are based on DAF=1; m = Concentration may exceed Csat (See User Guide)

Chamical	CAS	Mutagan2	VOCA	Ingestion SF			IUR	, , ,	Chronic RfD	Chronic RfC	Chronic RfC	CIADO	ADC	DDA	Volatilization Factor (m³/kg)	Henry's Law Constant	Soil Saturation Concentratio	S (mg/l)	Koc	Particulate Emission Factor (m³/kg)	Screening Level	[hasia]
Chemical Trinitrotoluene, 2,4.6-	Number 118-96-7	Mutagen?	VOC?	(mg/kg-day) ⁻¹ 3.00E-02	U	(ug/m)	Ref	day) 5.00E-04	Ref	(mg/m³)	Ref	GIABS	ABS 0.032	RBA	(m /kg)	(unitless) 8.50E-07	(mg/kg)	(mg/L) 1.15E+02	(cm3/g)	1.36E+09	(mg/kg) 5.14E+01	[basis]
Triphenylphosphine Oxide	791-28-6	No	No	3.00E-02	U		-	2.00E-04 2.00E-02	U		-	1	0.032	1	-	2.15E-08		6.28E+01		1.36E+09	1.64E+03	nc
Triphenyltin	668-34-8	No	Yes	-		•	-	2.00L-02	U		-	1	0.1	1	2.02E+06	3.21E-03		1.37E-01		1.36E+09	1.04L+03	110
Прпепушп	000-34-0	INO	165	-		•	-	-			-	1	-	ı	2.02E+00	3.212-03	-	1.37 = 01	3.30⊑+03	1.30=+09		
Tripotassium phosphate	7778-53-2	No	No	-			-	4.86E+01	U		-	1	-	1	-	-	-	-	-	1.36E+09	5.68E+06	cm
Tripropyl Lead	6618-03-7	No	Yes	-			-	-			-	1	-	1	1.67E+03	3.27E+01	3.08E+00	2.15E-01	1.34E+03	1.36E+09		
Tris(1,3-Dichloro-2-propyl) Phosphate	13674-87-8	No	No	-			-	2.00E-02	U		-	1	0.1	1	-	1.07E-07	-	7.00E+00	1.11E+04	1.36E+09	1.64E+03	nc
Tris(1-chloro-2-propyl)phosphate	13674-84-5	No	No	-			-	1.00E-02	U		-	1	0.1	1	-	2.44E-06	-	1.20E+03	1.60E+03	1.36E+09	8.21E+02	nc
Tris(2,3-dibromopropyl)phosphate	126-72-7	No	Yes	2.30E+00	U	6.60E-04	U	-			-	1	-	1	9.03E+05	8.91E-04	4.67E+02	8.00E+00	9.71E+03	1.36E+09	1.31E+00	ca
Tris(2-chloroethyl)phosphate	115-96-8	No	No	2.00E-02	U		-	7.00E-03	U		-	1	0.1	1	_	1.35E-04	_	7.00E+03	3.88E+02	1.36E+09	1.15E+02	ca**
Tris(2-ethylhexyl)phosphate	78-42-2	No	No	3.20E-03	U		-	1.00E-01	U		-	1	0.1	1	-	3.21E-06	-	6.00E-01	2.47E+06	1.36E+09	7.18E+02	ca*
Trisbutoxyethyl Phosphate	78-51-3	No	No	-			-	-			-	1	0.1	1	-	4.91E-10	-	1.10E+03	1.27E+03	1.36E+09		
Trisodium phosphate	7601-54-9	No	No	-				4.86E+01	U		-	1	_	1	-	-		_	-	1.36E+09	5.68E+06	cm
Trithion	786-19-6	No	No	-			-	-			-	1	0.1	1	-	8.79E-06	-	6.30E-01	8.31E+03	1.36E+09		
Tungsten	7440-33-7	No	No	-			-	8.00E-04	U		-	1	_	1	-	-		-	-	1.36E+09	9.34E+01	nc
Uranium (Soluble Salts)	NA	No	No	-			-	2.00E-04	U	4.00E-05	U	1	-	1	-	-		-	-	1.36E+09	2.33E+01	nc
Urea	57-13-6	No	No	-			_	-			-	1	0.1	1	-	1.38E-05	-	5.45E+05	3.15E+00	1.36E+09		
Urethane	51-79-6	Yes	No	1.00E+00	U	2.90E-04	U	_			-	1	0.1	1	-	2.63E-06		4.80E+05		1.36E+09	2.30E+00	ca
Vanadium Pentoxide	1314-62-1	No	No	-		8.30E-03	U	9.00E-03	U	7.00E-06	U	0.026	-	1	-	-		7.00E+02	-	1.36E+09	8.39E+02	nc
Vanadium Sulfate	36907-42-3	No	No	-			_	-			-	0.026	-	1	-	-		-	-	1.36E+09		
Vanadium and Compounds	7440-62-2	No	No	-			_	5.04E-03	U	1.00E-04	U	0.026	-	1	-	-		-	-	1.36E+09	5.83E+02	nc
Vanadyl Sulfate	27774-13-6	No	No	-			-	-			-	1	_	1	-	-		-	-	1.36E+09		
Vernolate	1929-77-7	No	Yes	-			-	1.00E-03	U		-	1	-	1	1.23E+05	1.26E-03	-	9.00E+01	2.99E+02	1.36E+09	1.17E+02	nc
Vinclozolin	50471-44-8	No	No	-			-	1.20E-03	U		-	1	0.1	1	-	7.11E-07	-	2.60E+00	2.84E+02	1.36E+09	9.85E+01	nc
Vinyl Acetate	108-05-4	No	Yes	-			-	1.00E+00	U	2.00E-01	U	1	_	1	4.40E+03	2.09E-02	2.75E+03	2.00E+04	5.58E+00	1.36E+09	3.84E+02	nc
Vinyl Bromide	593-60-2	No	Yes	-		3.20E-05	U	-		3.00E-03	U	1	-	1	1.37E+03	5.03E-01	2.47E+03	7.60E+03	2.17E+01	1.36E+09	5.25E-01	ca**
Vinyl Chloride	75-01-4	Yes	Yes	7.20E-01	U	4.40E-06	U	3.00E-03	U	1.00E-01	U	1	-	1	9.55E+02	1.14E+00	3.92E+03	8.80E+03	2.17E+01	1.36E+09	1.68E+00	ca*
Warfarin	81-81-2	No	No	-			-	3.00E-04	U		-	1	0.1	1	-	1.13E-07	-	1.70E+01	4.26E+02	1.36E+09	2.46E+01	nc
Xylene, P-	106-42-3	No	Yes	-			-	2.00E-01	U	1.00E-01	U	1	-	1	5.58E+03	2.82E-01	3.89E+02	1.62E+02	3.75E+02	1.36E+09	2.42E+02	nc
Xylene, m-	108-38-3	No	Yes	-			-	2.00E-01	U	1.00E-01	U	1	-	1	5.46E+03	2.94E-01	3.87E+02	1.61E+02	3.75E+02	1.36E+09	2.37E+02	nc
Xylene, o-	95-47-6	No	Yes	-			-	2.00E-01	U	1.00E-01	U	1	-	1	6.45E+03	2.12E-01	4.34E+02	1.78E+02	3.83E+02	1.36E+09	2.79E+02	nc
Xylenes	1330-20-7	No	Yes	-			-	2.00E-01	U	1.00E-01	U	1	-	1	5.74E+03	2.71E-01	2.60E+02	1.06E+02	3.83E+02	1.36E+09	2.49E+02	nc
Ytterbium	7440-64-4	No	No	-			-	-			-	1	-	1	-	-		-	-	1.36E+09		
Yttrium	7440-65-5	No	No	-			-	-			-	1	-	1	-	-	-	-	-	1.36E+09		
Zinc Cyanide	557-21-1	No	No	-			-	5.00E-02	U		-	1	-	1	-	-	-	4.70E+00	-	1.36E+09	5.84E+03	nc
Zinc Phosphide	1314-84-7	No	No	-			-	3.00E-04	U		-	1	-	1	-	-		-	-	1.36E+09	3.50E+01	nc
Zinc and Compounds	7440-66-6		No	-			-	3.00E-01	U	<u> </u>	-	1	-	1	-	-		-		1.36E+09		nc
Zineb	12122-67-7		No	-			-	5.00E-02	U	<u> </u>	-	1	0.1	1	-	1.11E-07	-	1.00E+01	1.35E+03	1.36E+09	4.10E+03	nc
Zirconium	7440-67-7		No	-			-	8.00E-05	U		-	1	-	1	-	-		-		1.36E+09		nc

Output generated 05MAY2017:13:41:45

Site-specific Equation Inputs for Soil to Groundwater

Variable	Value
THQ (target hazard quotient) unitless	0.1
TR (target risk) unitless	0.000001
LT (lifetime) years	70
K (volatilization factor of Andelman) L/m³	0.5
I _{sc} (apparent thickness of stratum corneum) cm	0.001
ED _{res} (exposure duration - resident) years	26
ED _{res-c} (exposure duration - child) years	6
ED _{res-a} (exposure duration - adult) years	20
ED ₀₋₂ (mutagenic exposure duration first phase) years	2
ED ₂₋₆ (mutagenic exposure duration second phase) years	4
ED ₆₋₁₆ (mutagenic exposure duration third phase) years	10
ED ₁₆₋₂₆ (mutagenic exposure duration fourth phase) years	10
EF _{res} (exposure frequency) days/year	350
EF _{res-c} (exposure frequency - child) days/year	350
EF _{res-a} (exposure frequency - adult) days/year	350
EF ₀₋₂ (mutagenic exposure frequency first phase) days/year	350
EF ₂₋₆ (mutagenic exposure frequency second phase) days/year	350
EF ₆₋₁₆ (mutagenic exposure frequency third phase) days/year	350
EF ₁₆₋₂₆ (mutagenic exposure frequency fourth phase) days/year	350
ET _{event res-adj} (age-adjusted exposure time) hours/event	0.67077
ET _{res-madj} (mutagenic age-adjusted exposure time) hours/event	0.67077
ET _{res} (exposure time) hours/day	24
ET _{res-c} (dermal exposure time - child) hours/event	0.54
ET _{res-a} (dermal exposure time - adult) hours/event	0.71
ET _{res-c} (inhalation exposure time - child) hours/day	24
ET _{res-a} (inhalation exposure time - adult) hours/day	24
ET ₀₋₂ (mutagenic inhalation exposure time first phase) hours/day	24
ET ₂₋₆ (mutagenic inhalation exposure time second phase) hours/day	24
ET ₆₋₁₆ (mutagenic inhalation exposure time third phase) hours/day	24
ET ₁₆₋₂₆ (mutagenic inhalation exposure time fourth phase) hours/day	24
ET ₀₋₂ (mutagenic dermal exposure time first phase) hours/event	0.54
ET ₂₋₆ (mutagenic dermal exposure time second phase) hours/event	0.54
ET ₆₋₁₆ (mutagenic dermal exposure time third phase) hours/event	0.71
ET ₁₆₋₂₆ (mutagenic dermal exposure time fourth phase) hours/event	0.71
BW _{res-a} (body weight - adult) kg	80
BW _{res-c} (body weight - child) kg	15 15
BW ₀₋₂ (mutagenic body weight) kg	15
BW ₂₋₆ (mutagenic body weight) kg	80
BW ₆₋₁₆ (mutagenic body weight) kg	
BW ₁₆₋₂₆ (mutagenic body weight) kg IFW _{res-adj} (adjusted intake factor) L/kg	80 327.95
IFW _{res-adj} (adjusted intake factor) L/kg IFW _{res-adj} (adjusted intake factor) L/kg	327.95
IFWM _{res-adj} (adjusted intake factor) L/kg IFWM _{res-adj} (mutagenic adjusted intake factor) L/kg	1019.9
	1019.9
IFWM _{res-adj} (mutagenic adjusted intake factor) L/kg	0.78
IRW _{res-c} (water intake rate - child) L/day	2.5
IRW _{res-a} (water intake rate - adult) L/day	L. U

Site-specific Equation Inputs for Soil to Groundwater

Variable	Value
IRW ₀₋₂ (mutagenic water intake rate) L/day	0.78
IRW ₂₋₆ (mutagenic water intake rate) L/day	0.78
IRW ₆₋₁₆ (mutagenic water intake rate) L/day	2.5
IRW ₁₆₋₂₆ (mutagenic water intake rate) L/day	2.5
EV _{res-a} (events - adult) per day	1
EV _{res-c} (events - child) per day	1
EV ₀₋₂ (mutagenic events) per day	1
EV ₂₋₆ (mutagenic events) per day	1
EV ₆₋₁₆ (mutagenic events) per day	1
EV ₁₆₋₂₆ (mutagenic events) per day	1
DFW _{res-adj} (age-adjusted dermal factor) cm ² -event/kg	2610650
DFWM _{res-adj} (mutagenic age-adjusted dermal factor) cm ² -event/kg	8191633
DFW _{res-adj} (age-adjusted dermal factor) cm ² -event/kg	2610650
DFWM _{res-adj} (mutagenic age-adjusted dermal factor) cm ² -event/kg	8191633
SA _{res-c} (skin surface area - child) cm ²	6365
SA _{res-a} (skin surface area - adult) cm ²	19652
SA ₀₋₂ (mutagenic skin surface area) cm ²	6365
SA ₂₋₆ (mutagenic skin surface area) cm ²	6365
SA ₆₋₁₆ (mutagenic skin surface area) cm ²	19652
SA ₁₆₋₂₆ (mutagenic skin surface area) cm ²	19652
DAF (dilution attenuation factor)	1
w (water-filled soil porosity) L _{water} /L _{soil}	0.3
p _b (dry soil bulk density) kg/L	1.5
DAF (dilution attenuation factor - calculated; used to calculate C _w)	1
d _s (depth of source) m - site-specific	
d _a (aquifer thickness) m - site-specific	
d (mixing zone depth) m - site-specific	
L (source length parallel to ground water flow) m	
i (hydraulic gradient) m/m	_
K (aquifer hydraulic conductivity) m/yr	_
I (infiltration rate) m/yr	0.18
t (time) yr	
ED _{res} (exposure duration) yr	70
foc (fraction organic carbon in soil) g/g	0.002
p _s (soil particle density) kg/L	2.65

Output generated 06MAY2017:14:08:04

Screening Levels (RSL) for Soil to Groundwater

Chemical	CAS Number	Mutagen?	VOC?	Ingestion SF (mg/kg-day) ⁻¹	SFO Ref	Inhalation Unit Risk (ug/m³) ⁻¹	IUR Ref	Chronic RfD (mg/kg-day)	Chronic RfD Ref	Chronic RfC (mg/m³)	Chronic RfC Ref	K _d	K _{oc}	H,	Dilution Attenuation Factor (DAF) (unitless)	MCL-based SL (mg/kg)	Risk-Based SL (mg/kg)
Acephate	30560-19-1	No	No		-		-	1.20E-03	OP	-		2.00E-02 1		2.05E-11	1		- 5.29E-04
Acetaldehyde	75-07-0	No	Yes		-	2.20E-06	I	-		9.00E-03	IR	2.00E-03 1	.00E+00	2.73E-03	1		- 3.80E-04
Acetochlor	34256-82-1	No	No		-		-	2.00E-02	IR	-		5.97E-01 2	2.98E+02	9.12E-07	1		- 2.81E-02
Acetone	67-64-1	No	Yes		-		-	9.00E-01	IR	3.09E+01	AT	4.73E-03 2	2.36E+00	1.43E-03	1		- 2.88E-01
Acetone Cyanohydrin	75-86-5	No	No		-		-	-		2.00E-03	SC	2.00E-03 1	.00E+00	8.05E-08	1		-
Acetonitrile	75-05-8	No	Yes		-		-	-		6.00E-02	IR	9.34E-03 4	.67E+00	1.41E-03	1		- 2.62E-03
Acetophenone	98-86-2	No	Yes		-		-	1.00E-01	IR	-		1.04E-01 5	5.19E+01	4.25E-04	1		- 5.84E-02
Acetylaminofluorene, 2-	53-96-3	No	No	3.80E+00	С	1.30E-03	С	-		-		4.41E+00 2	2.21E+03	7.85E-09	1		- 7.23E-05
Acifluorofen	50594-66-6	No	No		-		-	-		-		7.76E+00 3	3.88E+03	2.47E-09	1		-
Acridine	260-94-6	No	No		-		-	-		-		3.27E+01 1	.64E+04	1.62E-05	1		-
Acrolein	107-02-8	No	Yes		-		-	5.00E-04	IR	2.00E-05	IR	2.00E-03 1	.00E+00	4.99E-03	1		- 8.41E-07
Acrylamide	79-06-1	Yes	No	5.00E-01	I	1.00E-04	I	2.00E-03	IR	6.00E-03	IR	1.14E-02 5	5.69E+00	6.95E-08	1		- 1.06E-05
Acrylic Acid	79-10-7	No	Yes		-		-	5.00E-01	IR	1.00E-03	IR	2.88E-03 1	.44E+00	1.51E-05	1		- 4.23E-05
Acrylonitrile	107-13-1	No	Yes	5.40E-01	I	6.80E-05	I	4.00E-02	AT	2.00E-03	IR	1.70E-02 8	3.51E+00	5.64E-03	1		- 1.14E-05
Adiponitrile	111-69-3	No	No		-		-	-		6.00E-03	PP	4.04E-02 2	2.02E+01	4.95E-08	1		
Alachlor	15972-60-8	No	No	5.60E-02	С		-	1.00E-02	IR	-		6.25E-01 3	3.12E+02	3.40E-07	1	1.65E-03	8.73E-04
Daminozide	1596-84-5	No	No	1.80E-02	С	5.10E-06	С	1.50E-01	IR	-		2.00E-02 1	.00E+01	1.73E-08	1		- 9.52E-04
Aldicarb	116-06-3	No	No		-		-	1.00E-03	IR	-		4.93E-02 2	2.46E+01	5.89E-08	1	7.48E-04	4.93E-04
Aldicarb Sulfone	1646-88-4	No	No		-		-	1.00E-03	IR	-		2.00E-02 1	.00E+01	1.38E-07	1	4.40E-04	4.41E-04
Aldicarb sulfoxide	1646-87-3	No	No		-		-	-		-		2.00E-02 1	.00E+01	3.96E-08	1	8.80E-04	
Aldrin	309-00-2	No	Yes	1.70E+01	ı	4.90E-03	I	3.00E-05	IR	-		1.64E+02 8	3.20E+04	1.80E-03	1		- 1.51E-04
Aliphatic Chlorinated Hydrocarbons (each)	NA	No	No		-		-	-		-		-	-	-	1		_
Aliphatic Chlorinated Hydrocarbons (total)	NA	No	No		-		-	-		-		-	-	-	1		_
Alizarin Red Compounds	NA	No	No		-		-	-		-		-	-	-	1		_
Allyl Alcohol	107-18-6	No	Yes		-		-	5.00E-03	IR	1.00E-04	SC	3.81E-03 1	.90E+00	2.04E-04	1		- 4.24E-06
Allyl Chloride	107-05-1	No	Yes	2.10E-02	С	6.00E-06	С	-		1.00E-03	IR	7.92E-02 3	3.96E+01	4.50E-01	1		- 6.66E-05
Aluminum	7429-90-5	No	No		-		-	1.00E+00	PP	5.00E-03	PP	1.50E+03	-	0.00E+00	1		- 3.00E+03
Aluminum Phosphide	20859-73-8	No	No		-		-	4.00E-04	IR	-		-	-	0.00E+00	1		_
Hydramethylnon	67485-29-4	No	No		-		-	1.70E-02	OP	-		3.59E+05 1	.80E+08	8.99E-05	1		- 1.21E+04
Ametryn	834-12-8	No	No		-		-	9.00E-03	IR	-		8.56E-01 4	.28E+02	9.93E-08	1		- 1.61E-02
Amino-4-chlorobenzotrifluoride, 3-	121-50-6	No	Yes		-		-	-		-		1.58E+00 7	.90E+02	5.03E-04	1		
Aminoazobenzene, p-	60-09-3	No	No		-		-	-		-		3.62E+00 1	.81E+03	3.56E-09	1		
Aminobiphenyl, 4-	92-67-1	No	No	2.10E+01	С	6.00E-03	С	-		-		4.94E+00 2	2.47E+03	5.97E-06	1		- 1.53E-05
Aminophenol, m-	591-27-5	No	No		-		-	8.00E-02	PP	-		1.80E-01 9	0.02E+01	8.09E-09	1		- 6.07E-02
Aminophenol, o-	95-55-6	No	No		-		-	4.00E-03	SC	-		1.84E-01 9			1		- 3.05E-03
Aminophenol, p-	123-30-8	No	No		-		-	2.00E-02	PP	-		1.80E-01 9			1		- 1.52E-02
Aminopyridine, 4-	504-24-5	No	No		-		-	-		-		6.91E-02 3			1		
Amitraz	33089-61-1	No	No		-		-	2.50E-03	IR	-		5.15E+02 2			1		- 4.21E-01
Ammonium Sulfamate	7773-06-0	No	No		-		-	2.00E-01	IR	-		-		0.00E+00	1		
Amyl Alcohol, tert-	75-85-4	No	Yes		-		-	-		3.00E-03	SC	8.28E-03 4			1		- 1.30E-04
Aniline	62-53-3	No	No	5.70E-03	ı	1.60E-06	С	7.00E-03	PP	1.00E-03	IR	1.40E-01 7			1		- 4.56E-03
Anilinobenzothiazole	1843-21-6	No	No		-		-	-		-		-	-	-	<u>.</u> 1		
Anthraquinone, 9,10-	84-65-1	No	No	4.00E-02	Р			2.00E-03	SC	_		1.00E+01 5	5.01E+03	9.61F-07	1		- 1.44E-02
Antimony (metallic)	7440-36-0	No	No		_			4.00E-04	IR	_		4.50E+01		0.00E+00	1	2.71E-01	3.52E-02
Antimony Pentoxide	1314-60-9	No	No		_			5.00E-04	HE	_				0.00E+00	1	,_ 0,	
Antimony Potassium Tartrate	11071-15-1	No	No		_					_		2.68E-02 1			1		
Antimony Tetroxide	1332-81-6	No	No		_			4.00E-04	HE			2.002 02 1		0.00E+00	1		
, and the real online	1002 01-0	110	140			<u> </u>		∓.00L-0 1	112	_				J.00E 100	1		

Screening Levels (RSL) for Soil to Groundwater

			No.	Ingestion SF	SFO	Inhalation Unit Risk	IUR	Chronic RfD	Chronic RfD	Chronic RfC	Chronic RfC				Dilution Attenuation Factor (DAF)	MCL-based SL	Risk-Based SL
Chemical Antimony Trioxide	1309-64-4	Mutagen?	VOC?	(mg/kg-day) ⁻¹	Ref	(ug/m ³) ⁻¹	Ref	(mg/kg-day)	Ref	(mg/m³)	Ref IR	K _d	K _{oc}	H,	(unitless)	(mg/kg)	(mg/kg)
Antimony Trichloride	10025-91-9	No No	No No		-	-	-	-	•	2.00E-04	IK	-		0.00E+00 0.00E+00	1 1		-
Clofentezine	74115-24-5	No	No		-	•	-	1.30E-02	IR	<u>-</u>		6.04E+01			1		- 1.41E+00
Arsenic Salts	NA	No	No		-	•	-	1.30E-02	IIX	-		2.90E+01		0.00E+00	1		- 1.412+00
Arsenic, Inorganic	7440-38-2	No	No	1.50E+00	-	4.30E-03	-	3.00E-04	IR	1.50E-05	CA	2.90E+01		0.00E+00	1	2.92E-01	1.51E-03
Arsine	7784-42-1	No	No	1.301100	<u>'</u>	4.30L-03	. '	3.50E-04	CA	5.00E-05	IR	2.301101		0.00E+00	1	2.92L-01	1.31L-03
Asulam	3337-71-1	No	No					3.60E-02	OP	3.00L-03	IIX	5 56F-02		6.99E-11	1		- 1.84E-02
Atrazine	1912-24-9	No	No	2.30E-01	С			3.50E-02	IR	_					1	1.95E-03	1.96E-04
Auramine	492-80-8	No	No	8.80E-01	C	2.50E-04	С	3.30L-02		_				1.49E-07	1	1.55L-05	- 6.07E-04
Avermectin B1	65195-55-3	No	No	0.00L-01	_	2.00L-04	_	4.00E-04	IR	_				5.40E-26	1		- 1.41E+00
Azobenzene	103-33-3	No	Yes	1.10E-01	1	3.10E-05	1	4.002-04		_					1		- 9.29E-04
Azodicarbonamide	123-77-3	No	No	1.102-01	_ '	3.10L-03	_ '	1.00E+00	PP	7.00E-06	PP		6.96E+01		1		- 6.80E-01
Barium	7440-39-3	No	No				_	2.00E-01	IR	5.00E-04	HE	4.10E+01		0.00E+00	1	8.24E+01	1.55E+01
Barium Chromate	10294-40-3	Yes	No	5.00E-01	C	1.50E-01	С	2.00E-01 2.00E-02	CA	2.00E-04	CA	T. 10L 101		0.00E+00	1	0.246101	-
Cyfluthrin	68359-37-5	No	No	3.00L-01	_	1.502-01	_	2.50E-02	IR	2.002-04	OA .	2.61E+02			1		- 3.13E+00
Benfluralin	1861-40-1	No	Yes					5.00E-03	OP	_				1.19E-02	1		- 9.39E-02
Benomyl	17804-35-2	No	No					5.00E-03	IR	_				2.02E-10	1		- 8.47E-02
Bentazon	25057-89-0	No	No		-	•		3.00E-02	IR	<u>-</u>				8.91E-08	1		- 1.24E-02
Benzaldehyde	100-52-7	No	Yes	4.00E-03	- P			1.00E-01	IR	_				1.09E-03	1		- 4.15E-03
Benzamide, N,N-diethyl-3-methyl (DEET)	134-62-3	No	No	4.00L-03	1			1.002-01	IIX	_				8.50E-07	1		4.132-03
Benzene	71-43-2	No	Yes	5.50E-02	-	7.80E-06	-	4.00E-03	IR	3.00E-02	IR	2.27E-01 2.92E-01		2.27E-01	1	2.56E-03	2.33E-04
Benzene, Ethyldimethyl	29224-55-3	No	Yes	3.30L-02	' '	7.00L-00		4.002-03	IIX	3.00L-02	IIX			4.17E-01	1	2.30L-03	2.33L=04
Benzene, Ethylmethyl	25550-14-5	No	Yes							_				2.05E-01	1		
Benzene, Methylpropenyl	768-00-3	No	Yes							_		2.66E+00			1		
Benzene, Methylpropyl	28729-54-6	No	No									2.001100	1.001100	2.70L-01	1		
Benzene, Trimethyl	25551-13-7	No	Yes							_		1 20F+00	6.02E+02	3 50F ₋ 01	1		
Benzenediamine-2-methyl sulfate, 1,4-	6369-59-1	No	No	1.00E-01	X			3.00E-04	SC	_				8.86E-22	1		- 1.67E-04
Benzenethiol	108-98-5	No	Yes	1.00L-01	_ ^			1.00E-03	PP					1.37E-02	1		- 1.12E-03
Benzidine	92-87-5	Yes	No	2.30E+02	1	6.70E-02	1	3.00E-03	IR	_				2.11E-09	1		- 2.75E-07
Benzofluoranthenes, total	NA	No	No	2.501.02	_ '	0.70L-02	_ '	3.00L-03		_		2.302.100	1.132.03	2.112-03	1		
Benzofluorene. 2.3-	243-17-4	No	No							_		1 0/E±02	0.70E±04	1.60E-04	1		
Benzoic Acid	65-85-0	No	No					4.00E+00	IR					1.56E-06	1		- 1.51E+00
Benzoic acid, 3,5-dichloro-	51-36-5	No	No				_	4.00L 100		_				2.43E-06	1		-
Benzoic acid, 4-hydroxy-, methyl ester	99-76-3	No	No							_				9.12E-08	1		_
Benzothiazole	95-16-9	No	No		_									1.53E-05	1		_
Benzotrichloride	98-07-7	No	Yes	1.30E+01	1					_				1.06E-02	1		- 6.59E-06
Benzyl Alcohol	100-51-6	No	No	1.0001	_ '		_	1.00E-01	PP					1.38E-05	1		- 4.76E-02
Benzyl Chloride	100-31-0	No	Yes	1.70E-01	1	4.90E-05	С	2.00E-03	PP	1.00E-03	PP	1 1		1.68E-02	1		- 9.76E-05
Beryllium and compounds	7440-41-7	No	No	52 01	_ '	2.40E-03	I	2.00E-03	IR	2.00E-05	IR	7.90E+02		0.00E+00	1	3.16E+00	1.95E+00
Dicrotophos	141-66-2	No	No		_		<u> </u>	7.00E-05	OP	502 00				2.06E-09	1	3.102.00	- 3.27E-05
Bifenox	42576-02-3	No	No		_		_	9.00E-03	PP	_				4.42E-06	1		- 7.64E-02
Biphenthrin	82657-04-3	No	No		_		_	1.50E-02	IR	_				4.09E-05	1		- 1.37E+02
Biphenyl, 1,1'-	92-52-4	No	Yes	8.00E-03	I			5.00E-01	IR	4.00E-04	SC			1.26E-02	1		- 8.72E-04
Bis(2-chloroethoxy)methane	111-91-1	No	No	3.03E 00	_ '			3.00E-01	PP	1.002 04	30			1.57E-04	1		- 1.35E-03
Bis(2-chloroethyl)ether	111-44-4	No	Yes	1.10E+00	ı	3.30E-04	ı	J.55E 55		_				6.95E-04	1		- 3.61E-06
Bis(2-chloro-1-methylethyl) ether	108-60-1	No	Yes	1.132.00		0.002 07		4.00E-02	IR	_				3.03E-03	1		- 2.61E-02
Bis(chloromethyl)ether	542-88-1	No	Yes	2.20E+02	ı	6.20E-02	ı			_				1.78E-01	1		- 1.69E-08
2.5(55) 51104131/54151	0.2.00 1	. 10	1.00	2.202.02	•	0.202 02	•		!			1.0 / 2 02	3.7 32 . 00	52 01	•		

Screening Levels (RSL) for Soil to Groundwater

Chemical	CAS Number	Mutagen?	VOC?	Ingestion SF (mg/kg-day) ⁻¹	SFO Ref	Inhalation Unit Risk (ug/m³) ⁻¹	IUR Ref	Chronic RfD (mg/kg-day)	Chronic RfD Ref	Chronic RfC (mg/m³)	Chronic RfC Ref	K _d	K _{oc}	H'	Dilution Attenuation Factor (DAF) (unitless)	MCL-based SL (mg/kg)	Risk-Based SL (mg/kg)
Bisphenol A	80-05-7	No	No	-		-		5.00E-02	IR	-					1	(3 3/	- 5.79E+00
Boron And Borates Only	7440-42-8	No	No	_				2.00E-01	IR	2.00E-02	HE	3.00E+00		0.00E+00	1		- 1.28E+00
Boron Trifluoride	7637-07-2	No	Yes	_		_		4.00E-02	CA	1.30E-02	CA	-		0.00E+00	1		
Boron Trichloride	10294-34-5	No	Yes	_				2.00E+00	PP	2.00E-02	PP	_		0.00E+00	1		-
Bromacil	314-40-9	No	No	-		-		-		_		1.33E-01	6.66E+01		1		_
Bromate	15541-45-4	No	No	7.00E-01	1	-		4.00E-03	IR	_		7.50E+00		0.00E+00	1	7.70E-02	8.52E-04
Bromine	7726-95-6	No	Yes					-		_		7.50E+00		0.00E+00	1		
Bromo-2-chloroethane, 1-	107-04-0	No	Yes	2.00E+00	Х	6.00E-04	X			_			3.96E+01		1		- 2.10E-06
Bromo-3-fluorobenzene, 1-	1073-06-9	No	Yes							_		-	3.75E+02	-	1		
Bromo-4-Ethylbenzene, 1-	1585-07-5	No	Yes	-						_			7.16E+02		1		_
Bromoacetic acid	79-08-3	No	No	_						_					1		_
Bromoacetophenone, 3-	2142-63-4	No	No										8.32E+01		1		
Bromobenzene	108-86-1	No	Yes					8.00E-03	IR	6.00E-02	IR		2.34E+02		1		- 4.21E-03
Bromochloromethane	74-97-5	No	Yes					0.00E - 03	IIX	4.00E-02	SC		2.34E+02 2.17E+01		1		- 4.21E-03 - 2.08E-03
Bromodichloromethane	75-27-4	No	Yes	6.20E-02	ı	3.70E-05	С	2.00E-02	IR	4.00E-02	30		3.18E+01		1	2.17E-02	3.65E-05
	101-55-3			0.20E-02	1	3.70E-03	C	2.00E-02	IIX	<u>-</u>	·	1 1 1 1	3.18E+01		1	2.17 = -02	3.03E-03
Bromodiphenyl Ether, p-		No	Yes	-		-				<u>-</u>	·		3.75E+02		•		
Bromofluorobenzene, p-	460-00-4	No	Yes	7.005.00		4.405.00		2.005.02	ID	-					1	0.405.00	0.705.04
Bromoform	75-25-2	No	Yes	7.90E-03	I	1.10E-06	1	2.00E-02	IR	-	ID.				1	2.12E-02	8.73E-04
Bromomethane	74-83-9	No	Yes	-		-		1.40E-03	IR	5.00E-03	IR				1		- 1.91E-04
Bromophenol, p-	106-41-2	No	No	-						-	•		3.00E+02		1		-
Bromophos	2104-96-3	No	Yes	-				5.00E-03	HE	-	•				1		- 1.50E-02
Bromopropane, 1-	106-94-5	No	Yes	-		-		-		-			3.96E+01		1		
Bromopyridine, 2-	109-04-6	No	No	-		-		-		-			1.15E+02		1		-
Bromotrichloromethane	75-62-7	No	Yes	-						-					1		-
Bromoxynil	1689-84-5	No	No	1.03E-01	0			1.50E-02	OP	-					1		- 5.22E-04
Bromoxynil Octanoate	1689-99-2	No	Yes	-				1.50E-02	OP	-			4.25E+03		1		- 8.97E-02
Butadiene, 1,3-	106-99-0	No	Yes	3.40E+00	С	3.00E-05	I	-		2.00E-03	IR	7.92E-02	3.96E+01	3.01E+00	1		- 9.93E-06
Butanediol, 2,3-	513-85-9	No	No	-		-		-		-			1.00E+00		1		-
Butanol	35296-72-1	No	Yes	-		-	-	-		-		5.84E-03	2.92E+00	3.70E-04	1		-
Butanol, N-	71-36-3	No	Yes	-		-		1.00E-01	IR	-		6.94E-03	3.47E+00	3.60E-04	1		- 4.07E-02
Butanone-2, 4-chloro-4,4-difluoro	1515-16-8	No	No	-		-		-		-		_	-	-	1		-
Butyl alcohol, sec-	78-92-2	No	Yes	-		-		2.00E+00	PP	3.00E+01	PP	5.84E-03	2.92E+00	3.70E-04	1		- 4.99E-01
Butyl Alcohol, t-	75-65-0	No	Yes	-		-		-		-		4.22E-03	2.11E+00	3.70E-04	1		-
Butyl Formate, tert-	762-75-4	No	Yes	-		-	-	-		-		1.58E-02	7.91E+00	2.82E-02	1		-
Butylacetate	123-86-4	No	Yes	-		-		-		-		3.71E-02	1.85E+01	1.15E-02	1		-
Butylate	2008-41-5	No	Yes	-		-	-	5.00E-02	IR	-		7.71E-01	3.86E+02	3.45E-03	1		- 4.47E-02
Butylated hydroxyanisole	25013-16-5	No	No	2.00E-04	С	5.70E-08	С	-		-		1.68E+00	8.41E+02	4.78E-05	1		- 2.87E-01
Butylated hydroxytoluene	128-37-0	No	No	3.60E-03	Р	-		3.00E-01	PP	-		2.95E+01	1.48E+04	1.68E-04	1		- 1.01E-01
Butylbenzene, n-	104-51-8	No	Yes	-		-		5.00E-02	PP	-		2.96E+00	1.48E+03	6.50E-01	1		- 3.23E-01
Butylbenzene, sec-	135-98-8	No	Yes	-		-		1.00E-01	SC	-		2.66E+00	1.33E+03	7.20E-01	1		- 5.87E-01
Butylbenzene, tert-	98-06-6	No	Yes	-		-		1.00E-01	SC	-			1.00E+03		1		- 1.55E-01
Butylchloride, t-	507-20-0	No	Yes	-		-		-		-			4.39E+01		1		-
Butyltin	NA	No	No	-		-		-		-		-	_		1		-
Cacodylic Acid	75-60-5	No	No	-		-		2.00E-02	AT	_		8.78E-02	4.39E+01	7.36E-13	1		- 1.15E-02
Cadmium (Water)	7440-43-9	No	No	-		1.80E-03		5.00E-04	IR	1.00E-05	AT	7.50E+01		0.00E+00	1	3.76E-01	6.93E-02
Calcium	7440-70-2	No	No	-				-		-				0.00E+00	1		
Calcium Chromate	13765-19-0	Yes	No	5.00E-01	С	1.50E-01	С	2.00E-02	CA	2.00E-04	CA	+		0.00E+00	1		

Screening Levels (RSL) for Soil to Groundwater

Chemical	CAS Number	Mutagen?	VOC?	Ingestion SF (mg/kg-day) ⁻¹	SFO Ref	Inhalation Unit Risk (ug/m³) ⁻¹	IUR Ref	Chronic RfD (mg/kg-day)	Chronic RfD Ref	Chronic RfC (mg/m³)	Chronic RfC Ref	K _d	K _{oc}	H,	Dilution Attenuation Factor (DAF) (unitless)	MCL-based SL (mg/kg)	Risk-Based SL (mg/kg)
Caprolactam	105-60-2	No	No	(99)	_	(g)		5.00E-01	IR	2.20E-03	CA	-	2.45E+01		1	(9/9/	- 2.47E-01
Captafol	2425-06-1	No	No	1.50E-01	С	4.30E-05	С	2.00E-03	IR	-			7.83E+02		1		- 7.12E-04
Captan	133-06-2	No	No	2.30E-03	C	6.60E-07	С	1.30E-01	IR	_			2.52E+02		1		- 2.18E-02
Carbaryl	63-25-2	No	No		-	-		1.00E-01	IR	-		7.10E-01	3.55E+02	1.34E-07	1		- 1.68E-01
Carbazole	86-74-8	No	No		-	-		-		-			9.16E+03		1		_
Carbofuran	1563-66-2	No	No		-	-		5.00E-03	IR	-			9.53E+01		1	1.56E-02	3.66E-03
Carbon Disulfide	75-15-0	No	Yes		-	-		1.00E-01	IR	7.00E-01	IR	4.35E-02	2.17E+01	5.89E-01	1		- 2.40E-02
Carbon Tetrachloride	56-23-5	No	Yes	7.00E-02	I	6.00E-06	1	4.00E-03	IR	1.00E-01	IR	8.78E-02	4.39E+01	1.13E+00	1	1.94E-03	1.77E-04
Carbonyl Sulfide	463-58-1	No	Yes		-	-		-		1.00E-01	PP	2.00E-03	1.00E+00	2.49E+01	1		- 5.07E-02
Carbosulfan	55285-14-8	No	No		-	-		1.00E-02	IR	-		2.39E+01	1.20E+04	2.09E-05	1		- 1.24E-01
Carboxin	5234-68-4	No	No		-	-		1.00E-01	IR	-		3.39E-01	1.69E+02	1.31E-08	1		- 1.03E-01
Catechol	120-80-9	No	No		-	-		-		-		4.91E-01	2.45E+02	4.91E-08	1		_
Ceric oxide	1306-38-3	No	No		-	-		-		9.00E-04	IR	-		0.00E+00	1		_
Cerium, Stable	7440-45-1	No	No		-	-		-		-		8.50E+02		0.00E+00	1		_
Chloral	75-87-6	No	Yes		-	-		-		-		4.28E-03	2.14E+00	1.19E-07	1		_
Chloral Hydrate	302-17-0	No	Yes		-	-		1.00E-01	IR	-		2.00E-03	1.00E+00	2.33E-07	1		- 4.00E-02
Chloramben	133-90-4	No	No		-	-		1.50E-02	IR	-		4.27E-02	2.14E+01	1.58E-09	1		- 7.02E-03
Chloramine	127-65-1	No	No		-	-		-		-		-	-	0.00E+00	1		_
Chloranil	118-75-2	No	No	4.03E-01	Н	-		-		-		6.16E-01	3.08E+02		1		- 1.50E-04
Chlorate (CIO3) as	14866-68-3	No	No		-	-		-		-		-		0.00E+00	1		_
Chlordane	12789-03-6	No	Yes	3.50E-01	ı	1.00E-04	ı	5.00E-04	IR	7.00E-04	IR	1.35E+02	6.75E+04	1.99E-03	1	2.71E-01	2.71E-03
Chlordane (alpha)	5103-71-9	No	Yes		-	-		-		-		1.35E+02	6.75E+04	1.99E-03	1		_
Chlordane (gamma)	5103-74-2	No	Yes		-	-		-		-		1.35E+02	6.75E+04	1.99E-03	1		_
Chlordecone (Kepone)	143-50-0	No	No	1.00E+01	ı	4.60E-03	С	3.00E-04	IR	-		3.50E+01	1.75E+04	2.20E-06	1		- 1.24E-04
Chlorfenvinphos	470-90-6	No	No		-	-		7.00E-04	AT	-		2.53E+00	1.26E+03	1.18E-06	1		- 3.06E-03
Chloride	16887-00-6	No	No		-	-		-		-		_	_	0.00E+00	1		_
Chlorimuron, Ethyl-	90982-32-4	No	No		-	-		9.00E-02	OP	-		1.44E-01	7.18E+01	7.44E-14	1		- 6.04E-02
Chlorinated Hydrocarbons (total)	NA	No	No		-	-		-		-		-	_	_	1		_
Chlorine	7782-50-5	No	Yes		-	-		1.00E-01	IR	1.45E-04	AT	2.50E-01	-	0.00E+00	1		- 1.36E-05
Chlorine Dioxide	10049-04-4	No	Yes		-	_		3.00E-02	IR	2.00E-04	IR	-	-	0.00E+00	1		_
Chlorite	14998-27-7	No	No		-	-		-		-		-	_	0.00E+00	1		_
Chlorite (Sodium Salt)	7758-19-2	No	No		-	-		3.00E-02	IR	-		-	-	0.00E+00	1		-
Chloro-2-methylphenol, 4-	1570-64-5	No	No		-	-		-		-		9.84E-01	4.92E+02	4.62E-05	1		-
Chloro-4-methylphenol	35421-08-0	No	No		-	-		-		-		-	-	-	1		-
Chloro-1,1-difluoroethane, 1-	75-68-3	No	Yes		-	-		-		5.00E+01	IR	8.78E-02	4.39E+01	2.40E+00	1		- 5.24E+00
Chloro-1,3-butadiene, 2-	126-99-8	No	Yes		-	3.00E-04	I	2.00E-02	HE	2.00E-02	IR	1.21E-01	6.07E+01	2.29E+00	1		- 9.85E-06
Chloro-2-methylaniline HCl, 4-	3165-93-3	No	No	4.60E-01	Н	_		-		-		7.04E-01	3.52E+02	6.38E-05	1		- 1.53E-04
Chloro-2-methylaniline, 4-	95-69-2	No	No	1.00E-01	Р	7.70E-05	С	3.00E-03	SC	-		3.69E-01	1.85E+02	8.14E-05	1		- 3.97E-04
Chloro-6-fluorophenol, 2-	2040-90-6	No	No		-	-		-		-		-	-	-	1		-
Chloroacetaldehyde, 2-	107-20-0	No	Yes	2.70E-01	Х	-		-		-		2.00E-03	1.00E+00	9.77E-04	1		- 5.79E-05
Chloroacetamide	79-07-2	No	No		-	-		-		-		1.14E-02	5.69E+00	1.61E-07	1		-
Chloroacetic Acid	79-11-8	No	No		-	-		-		-			1.44E+00		1	1.22E-02	
Chloroacetophenone, 2-	532-27-4	No	No		-	-		-		3.00E-05	IR			1.41E-04	1		-
Chloroaniline	27134-26-5	No	No		-	-		-		-		2.30E-01	1.15E+02	2.20E-04	1		-
Chloroaniline, 3-	108-42-9	No	No		-	-		-		-		2.25E-01	1.13E+02	4.09E-05	1		_
Chloroaniline, p-	106-47-8	No	No	2.00E-01	Р	-		4.00E-03	IR	-				4.74E-05	1		- 1.55E-04
Chlorobenzene	108-90-7	No	Yes		-	-		2.00E-02	IR	5.00E-02	PP	4.68E-01	2.34E+02	1.27E-01	1	6.79E-02	5.28E-03
	:	:	-		-		-		-		:		:				

Screening Levels (RSL) for Soil to Groundwater

Chemical	CAS Number	Mutagen?	VOC?	Ingestion SF (mg/kg-day) ⁻¹	SFO Ref	Inhalation Unit Risk (ug/m³) ⁻¹	IUR Ref	Chronic RfD (mg/kg-day)	Chronic RfD Ref	Chronic RfC (mg/m³)	Chronic RfC Ref	K _d	K _{oc}	H,	Dilution Attenuation Factor (DAF) (unitless)	MCL-based SL (mg/kg)	Risk-Based SL (mg/kg)
Chlorobenzene sulfonic acid, p-	98-66-8	No	No		-			1.00E-01	SC				1.61E+01	7.60E-08	1	, , ,	- 4.65E-02
Chlorobenzenes (total)	NA	No	No		-	-		-	-	_		-	-	-	1		-
Chlorobenzilate	510-15-6	No	No	1.10E-01	С	3.10E-05	С	2.00E-02	IR	-		3.08E+00	1.54E+03	2.96E-06	1		- 1.03E-03
Chlorobenzoic Acid, 2-	118-91-2	No	No		-				-	-		5.42E-02	2.71E+01	2.66E-06	1		-
Chlorobenzoic Acid, p-	74-11-3	No	No		-	-		3.00E-02	SC	_		5.31E-02	2.66E+01	3.28E-06	1		- 1.29E-02
Chlorobenzotrifluoride, 3-nitro-4-	121-17-5	No	Yes		-	-		-	-	-		5.09E+00	2.55E+03	5.60E-03	1		-
Chlorobenzotrifluoride, 4-	98-56-6	No	Yes		-			3.00E-03	PP	3.00E-01	PP	3.21E+00	1.61E+03	1.42E+00	1		- 1.22E-02
Chlorobiphenyl, p-	2051-62-9	No	Yes		-			-	-	_		1.65E+01	8.23E+03	2.34E-02	1		-
Chlorobutane, 1-	109-69-3	No	Yes		-			4.00E-02	PP	_		1.44E-01	7.22E+01	6.83E-01	1		- 2.58E-02
Chlorobutane, 2-	78-86-4	No	Yes		-	-		-	-	_		1.21E-01	6.07E+01	9.85E-01	1		-
Chlorocyclopentadiene	41851-50-7	No	Yes		-					-		2.57E-01	1.28E+02	9.16E-01	1		_
Chlorodibromoethane	73506-94-2	No	No		-	-		-	-	-		_	-	_	1		-
Chlorodifluoromethane	75-45-6	No	Yes		-			-	-	5.00E+01	IR	6.36E-02	3.18E+01	1.66E+00	1		- 4.30E+00
Chloroethanol, 2-	107-07-3	No	Yes		-			2.00E-02	PP	-			1.90E+00		1		- 8.13E-03
Chloroethylvinyl ether, 2-	110-75-8	No	Yes		-			-	-	-			1.77E+01	3.58E-01	1		-
Chloroform	67-66-3	No	Yes	3.10E-02	С	2.30E-05	I	1.00E-02	IR	9.77E-02	AT	6.36E-02	3.18E+01	1.50E-01	1	2.22E-02	6.12E-05
Chloromethane	74-87-3	No	Yes		-			-	-	9.00E-02	IR	2.64E-02	1.32E+01	3.61E-01	1		- 4.86E-03
Chloromethyl Methyl Ether	107-30-2	No	Yes	2.40E+00	С	6.90E-04	С		-	-			5.32E+00		1		- 1.38E-06
Chloronaphthalene, alpha-	90-13-1	No	Yes		-	-		-	-	_		5.06E+00	2.53E+03	1.45E-02	1		
Chloronitrobenzene, o-	88-73-3	No	No	3.00E-01	Р			3.00E-03	PP	1.00E-05	SC	7.41E-01	3.71E+02	3.80E-04	1		- 2.22E-04
Chloronitrobenzene, p-	100-00-5	No	No	6.00E-02	P	-		7.00E-04	PP	2.00E-03	PP			2.00E-04	1		- 1.07E-03
Chlorooctadecane, 1-	3386-33-2	No	Yes		-				-	_		6.43E+02			1		
Chlorophenol, 2-	95-57-8	No	Yes		_			5.00E-03	IR	_				4.58E-04	1		- 8.91E-03
Chlorophenol, 3-	108-43-0	No	No		_	-			-	_				1.41E-05	1		-
Chlorophenol, 4-	106-48-9	No	No		-				-	_				2.56E-05	1		
Chlorophenols (total)	NA	No	No		-				-	_		-		_	1		
Chlorophenyl phenyl ether, 4-	7005-72-3	No	Yes		_	-		-	-	_		6.15E+00	3.08E+03	3.68E-03	1		
Chlorophenyl Methyl Sulfide, p-	123-09-1	No	Yes		-				-	_				4.74E-03	1		
Chlorophenyl Methyl Sulfoxide	934-73-6	No	No		-				-	_		1.47E-01			1		
Chloropicrin	76-06-2	No	Yes		_	-		-	_	4.00E-04	CA		4.42E+01		1		- 2.47E-05
Chloropropane, 2-	75-29-6	No	Yes		_				_					7.15E-01	<u>·</u> 1		-
Chlorothalonil	1897-45-6	No	No	3.10E-03	С	8.90E-07	С	1.50E-02	IR	_				8.18E-05	<u>·</u> 1		- 4.96E-02
Chlorotoluene, o-	95-49-8	No	Yes		-	- •-		2.00E-02	IR	_				1.46E-01	<u>.</u> 1		- 2.32E-02
Chlorotoluene, p-	106-43-4	No	Yes		_			2.00E-02	SC	_		7.51E-01			<u>.</u> 1		- 2.41E-02
Chlorozotocin	54749-90-5	No	No	2.40E+02	С	6.90E-02	С		-	_				1.50E-20	<u>·</u> 1		- 7.14E-08
Chlorpropham	101-21-3	No	No	 .	-			5.00E-02	OP	_		7.01E-01			<u>.</u> 1		- 6.42E-02
Chlorpyrifos	2921-88-2	No	No		-			1.00E-03	AT	_		1.46E+01			<u>.</u> 1		- 1.25E-02
Chlorpyrifos Methyl	5598-13-0	No	No		-			1.00E-02	HE	_		4.39E+00			<u>.</u> 1		- 5.45E-02
Chlorsulfuron	64902-72-3	No	No		-			2.00E-02	OP	_		6.44E-01			<u>.</u> 1		- 3.33E-02
Chlorthiophos	60238-56-4	No	No		-			8.00E-04	HE	_		2.56E+01			<u>.</u> 1		- 7.28E-03
Chromium(III), Insoluble Salts	16065-83-1	No	No		_			1.50E+00	IR	_		1.80E+06		0.00E+00	<u>.</u> 1		- 4.04E+06
Chromium(VI)	18540-29-9	Yes	No	5.00E-01	J	8.40E-02	S	3.00E-03	IR	1.00E-04	IR	1.90E+01		0.00E+00	1		- 6.72E-04
Chromium, Total	7440-47-3	No	No	5.55 <u>L</u> 51	_				,,			1.80E+06		0.00E+00	1	1.80E+05	3.1.22.01
Cobalt	7440-48-4	No	No		_	9.00E-03	Р	3.00E-04	PP	6.00E-06	PP	4.50E+01		0.00E+00	1		- 2.71E-02
Complex Mixtures of Aliphatic and Aromatic	7 1 10 10 1		110			0.002 00	•	0.002 07		5.55E 55		1.002.01		5.002.00			2.1 12 02
Hydrocarbons	NA	No	No		-	-		-	-	-		_	-	-	1		-
Copper	7440-50-8	No	No		-			4.00E-02	HE	-		3.50E+01	-	0.00E+00	1	4.58E+01	2.81E+00

Screening Levels (RSL) for Soil to Groundwater

Chemical	CAS Number	Mutagen?	VOC?	Ingestion SF (mg/kg-day) ⁻¹	SFO Ref	Inhalation Unit Risk (ug/m³) ⁻¹	IUR Ref	Chronic RfD (mg/kg-day)	Chronic RfD Ref	Chronic RfC (mg/m³)	Chronic RfC Ref	K _d	K _{oc}	нг	Dilution Attenuation Factor (DAF) (unitless)	MCL-based SL (mg/kg)	Risk-Based SL (mg/kg)
Creosote	8001-58-9	No	No		-			-	-	-		-	-	-	1		-
Cresol, m-	108-39-4	No	No		-			5.00E-02	IR	6.00E-01	CA	6.01E-01	3.00E+02	3.50E-05	1		- 7.41E-02
Cresol, o-	95-48-7	No	No		-			5.00E-02	IR	6.00E-01	CA	6.13E-01	3.07E+02	4.91E-05	1		- 7.53E-02
Cresol, p-	106-44-5	No	No		-			1.00E-01	AT	6.00E-01	CA	6.01E-01	3.00E+02	4.09E-05	1		- 1.49E-01
Cresol, p-chloro-m-	59-50-7	No	No		-		-	1.00E-01	AT	-		9.84E-01	4.92E+02	1.00E-04	1		- 1.71E-01
Cresols	1319-77-3	No	No		-			1.00E-01	AT	6.00E-01	CA	6.13E-01	3.07E+02	2.53E-05	1		- 1.25E-01
Crotonaldehyde	4170-30-3	No	Yes		-			-	-	-		3.59E-03	1.79E+00	7.93E-04	1		-
Crotonaldehyde, trans-	123-73-9	No	Yes	1.90E+00	Н			1.00E-03	PP	-		3.59E-03	1.79E+00	7.93E-04	1		- 8.23E-06
Cumene	98-82-8	No	Yes		-			1.00E-01	IR	4.00E-01	IR	1.40E+00	6.98E+02	4.70E-01	1		- 7.38E-02
Cupferron	135-20-6	No	No	2.20E-01	С	6.30E-05	С		-	-		1.52E+00	7.62E+02	1.48E-07	1		- 6.11E-04
Cyanazine	21725-46-2	No	No	8.40E-01	Н			2.00E-03	HE	-		2.68E-01	1.34E+02	1.05E-10	1		- 4.11E-05
Cyclohexane	110-82-7	No	Yes		-				-	6.00E+00	IR	2.92E-01	1.46E+02	6.13E+00	1		- 1.30E+00
Cyclohexane, 1,2,3,4,5-pentabromo-6-chloro-	87-84-3	No	No	2.00E-02	Х			2.00E-02	SC	-		5.61E+00	2.81E+03	3.92E-05	1		- 1.61E-02
Cyclohexanone	108-94-1	No	Yes		-			5.00E+00	IR	7.00E-01	PP	3.48E-02	1.74E+01	3.68E-04	1		- 3.38E-02
Cyclohexene	110-83-8	No	Yes		-			5.00E-03	PP	1.00E+00	SC	2.92E-01	1.46E+02	1.86E+00	1		- 4.58E-03
Cyclohexylamine	108-91-8	No	Yes		-			2.00E-01	IR	-		6.43E-02	3.22E+01	1.70E-04	1		- 1.02E-01
Cyclopentadiene	542-92-7	No	Yes		-				-	-		1.60E-01	8.00E+01	8.59E-01	1		_
Cyhalothrin	68085-85-8	No	No		-			1.00E-03	OP	-		6.83E+02	3.41E+05	6.05E-05	1		- 1.37E+00
Cypermethrin	52315-07-8	No	No		-			6.00E-02	OP	-		1.60E+02	7.98E+04	1.72E-05	1		- 1.92E+01
Cyromazine	66215-27-8	No	No		-			1.50E-02	OP	-		5.75E-02	2.87E+01	2.31E-12	1		- 7.65E-03
Barium Cyanide	542-62-1	No	No		-			-	-	-		-	-	0.00E+00	1		_
Calcium Cyanide	592-01-8	No	No		-			1.00E-03	IR	-		-		0.00E+00	1		_
Copper Cyanide	544-92-3	No	No		-			5.00E-03	IR	-		-		0.00E+00	1		_
Cyanide (CN-)	57-12-5	No	Yes		-			6.00E-04	IR	8.00E-04	SU	9.90E+00		0.00E+00	1	2.02E+00	1.48E-03
Cyanide (total complex)	NA	No	No		-				-	-		-		0.00E+00	1		_
Cyanogen	460-19-5	No	Yes		-			1.00E-03	IR	-		_		0.00E+00	1		_
Cyanogen Bromide	506-68-3	No	Yes		_			9.00E-02	IR	_		_		0.00E+00	1		_
Cyanogen Chloride	506-77-4	No	Yes		-			5.00E-02	IR	-		_		0.00E+00	1		_
Hydrogen Cyanide	74-90-8	No	Yes		-			6.00E-04	IR	8.00E-04	IR	9.90E+00		0.00E+00	1		- 1.48E-03
Chlorthal-dimethyl	1861-32-1	No	No		_			1.00E-02	IR	_			5.11E+02		1		- 1.52E-02
Dalapon	75-99-0	No	No		_			3.00E-02	IR	_		-	3.23E+00		1	4.13E-02	1.23E-02
DDD	72-54-8	No	No	2.40E-01	1	6.90E-05	С	0.002 02		_			1.18E+05		1		- 7.46E-03
DDD, o,p'-	53-19-0	No	No		_				-	_			1.20E+05		1		
DDT/DDE/DDD (total)	NA	No	No		_				_	_			-	-	1		_
DDE, p,p'-	72-55-9	No	Yes	3.40E-01		9.70E-05	С		-	_		2 35F+02	1.18E+05	1 70F-03	1		- 1.09E-02
DDT	50-29-3	No	No	3.40E-01	i	9.70E-05	I	5.00E-04	IR	_			1.69E+05		1		- 7.73E-02
DDT, o,p'-	789-02-6	No	No	002 0.	_			0.002 0.		_			1.72E+05		1		_
Decabromodiphenyl ether, 2,2',3,3',4,4',5,5',6,6'- (BDE-	. 55 52 5											01112 02		0.002 0 1			
209)	1163-19-5	No	No	7.00E-04	1			7.00E-03	IR	-		5.52E+02	2.76E+05	4.87E-07	1		- 7.76E+00
Decane	124-18-5	No	Yes		-			-	-	-		2.90E+00	1.45E+03	2.11E+02	1		-
Decanol, n-	112-30-1	No	Yes		-			-	-	-		2.54E-01	1.27E+02	1.31E-03	1		-
Deltamethrin	52918-63-5	No	No		-				-	-		1.60E+02	7.98E+04	2.04E-04	1		-
Demeton	8065-48-3	No	No		-			4.00E-05	IR	-		-		1.56E-04	1		-
Di(2-ethylhexyl)adipate	103-23-1	No	No	1.20E-03	I			6.00E-01	IR	-		7.20E+01	3.60E+04		1	2.89E+01	4.69E+00
Diallate	2303-16-4	No	No	6.10E-02	Н			-	-	-			6.44E+02		1		- 7.98E-04
Diazinon	333-41-5	No	No		-			7.00E-04	AT	-			3.03E+03		1		- 6.48E-03
Dibenzothiophene	132-65-0	No	Yes		-			1.00E-02	SC	-			9.16E+03		1		- 1.21E-01
Diserzonnohiene	132-03-0	INU	169			•		1.000-02	30	-		1.035701	J. 10E+03	1.30⊑-03	<u> </u>		- 1.21L-01

Screening Levels (RSL) for Soil to Groundwater

				Ingestion		Inhalation Unit		Chronic	Chronic	Chronic	Chronic			Dilution Attenuation Factor		Risk-Based
				SF	SFO	Risk	IUR	RfD	RfD	RfC	RfC			(DAF)	MCL-based SL	SL
Chemical	CAS Number	Mutagen?	VOC?	(mg/kg-day) ⁻¹	Ref	(ug/m³) ⁻¹	Ref	(mg/kg-day)	Ref	(mg/m³)	Ref	K _d K _{oc}	H`	(unitless)	(mg/kg)	(mg/kg)
Dibromo-3-chloropropane, 1,2-	96-12-8	Yes	Yes	8.00E-01	Р	6.00E-03	Р	2.00E-04	PP	2.00E-04	IR	2.32E-01 1.16E+02		1	8.64E-05	1.44E-07
Dibromoacetic acid	631-64-1	No	No	-		-		-		-		4.50E-03 2.25E+00		1		<u></u>
Dibromobenzene, 1,3-	108-36-1	No	Yes	-		-		4.00E-04	SC	-		7.51E-01 3.75E+02		1		- 5.07E-04
Dibromobenzene, 1,4-	106-37-6	No	Yes	-		-		1.00E-02	IR	-		7.51E-01 3.75E+02		1		- 1.24E-02
Dibromochloromethane	124-48-1	No	Yes	8.40E-02	I	-		2.00E-02	IR	-		6.36E-02 3.18E+01		1	2.13E-02	2.32E-04
Dibromodichloromethane	594-18-3	No	Yes	-		<u> </u>		-		-		8.78E-02 4.39E+01		1		<u> </u>
Dibromodiphenyl Ether, p,p'-	2050-47-7	No	Yes	-		-		-		-		9.87E+00 4.94E+03		1		<u> </u>
Dibromoethane, 1,2-	106-93-4	No	Yes	2.00E+00	I	6.00E-04	I	9.00E-03	IR	9.00E-03	IR	7.92E-02 3.96E+01		1	1.41E-05	2.10E-06
Dibromomethane (Methylene Bromide)	74-95-3	No	Yes	-		-	-	-		4.00E-03	SC	4.35E-02 2.17E+01		1		- 2.06E-04
Bis(Octanoyloxy)Di-N-Butyl Stannane	4731-77-5	No	Yes	-		-		-		-		1.01E+02 5.06E+04	6.83E-01	1		L
Bis(oleoyloxy)dibutyl tin	13323-62-1	No	Yes	-		-		-		-		1.65E+07 8.27E+09	1.53E+02	1		-
Di-n-butyltin bis(2-ethylhexanoate)	2781-10-4	No	Yes	-		-		-		-		1.63E+02 8.16E+04	9.08E-01	1		-
Di-n-butyltin bis(methyl maleate)	15546-11-9	No	No	-		-		-		-		6.02E-02 3.01E+01	1.42E-08	1		-
Di-n-butyltin bis(n-butyl maleate)	15546-16-4	No	No	-		-		-		-		2.21E+00 1.10E+03	7.81E-08	1		
Di-n-butyltin dilaurate	77-58-7	No	Yes	-		-		-		-		1.23E+04 6.16E+06	6.58E+00	1		-
Di-n-butyltin distearate	5847-55-2	No	Yes	-		-		-		-		1.65E+07 8.27E+09	1.97E+02	1		_
Dibutoxy di-n-butyltin	3349-36-8	No	Yes	-		-		-		-		5.24E+02 2.62E+05	3.02E+00	1		-
Dibutylbis((1-oxoisooctyl)oxy)stannane	85702-74-5	No	No	-		-		-		-				1		_
Dibutylbis(octadeca-9(Z),12(Z),15(Z)-																
trienoyloxy)stannane	95873-60-2	No	Yes	-		-	-	-		-		1.65E+07 8.27E+09	9.16E+01	1		<u> </u>
Dibutylbis(octadeca-9(Z),12(Z)-dienoyloxy)stannane	85391-79-3	No	No	-		-		-		-			-	1		<u> </u>
Dibutylbis(palmitoyloxy)stannane	13323-63-2	No	Yes	-		-		-		-		1.50E+06 7.50E+08	6.38E+01	1		
Dibutyltin Compounds	NA	No	No	-		-		3.00E-04	PP	-			-	1		-
Dibutyltin diacetate	1067-33-0	No	Yes	-		-	-	-		-		6.89E-02 3.44E+01	2.28E-02	1		-
Dibutyltin oxide	818-08-6	No	Yes	-		-	-	-		-		2.55E+00 1.28E+03	-	1		-
Dibutyltin dichloride	683-18-1	No	Yes	-		-	-	-		-		3.72E+00 1.86E+03	1.25E-01	1		-
Dicamba	1918-00-9	No	No	-		-		3.00E-02	IR	-		5.80E-02 2.90E+01	8.91E-08	1		- 1.47E-02
Dichloro-2-butene, cis-1,4-	1476-11-5	No	Yes	-		4.20E-03	Р	-		-		2.63E-01 1.32E+02	2.71E-02	1		- 6.22E-07
Dichloro-2-butene, trans-1,4-	110-57-6	No	Yes	-		4.20E-03	Р	-		-		2.63E-01 1.32E+02	2.71E-02	1		- 6.22E-07
Dichloro-2-butene, 1,4-	764-41-0	No	Yes	-		4.20E-03	Р	-		-		2.63E-01 1.32E+02	3.48E-01	1		- 6.61E-07
Dichloroacetic Acid	79-43-6	No	No	5.00E-02	ı	-		4.00E-03	IR	-		4.50E-03 2.25E+00	3.43E-07	1	1.23E-02	3.14E-04
Dichloroaniline, 2,4-	554-00-7	No	No	-		-		-		-		3.69E-01 1.85E+02		1		
Dichloroaniline, 3,4-	95-76-1	No	Yes	-		-		-		-		3.69E-01 1.85E+02		1		
Dichlorobenzene	25321-22-6	No	Yes	-		-		-		_		7.66E-01 3.83E+02		1		
Dichlorobenzene, 1,2-	95-50-1	No	Yes	-		-		9.00E-02	IR	2.00E-01	HE	7.66E-01 3.83E+02		1	5.84E-01	2.95E-02
Dichlorobenzene, 1,3-	541-73-1	No	Yes			-			`			7.51E-01 3.75E+02		1	2.0.2 01	_
Dichlorobenzene, 1,4-	106-46-7	No	Yes	5.40E-03	С	1.10E-05	С	7.00E-02	AT	8.00E-01	IR	7.51E-01 3.75E+02		1	7.20E-02	4.62E-04
Dichlorobenzidine, 3,3'-	91-94-1	No	No	4.50E-01	1	3.40E-04	C	- 1.002 02	7.1	-		6.38E+00 3.19E+03		1	1.202 02	- 8.24E-04
Dichlorobenzoic acid3.5	51-36-5	No	No	¬.∪∪∟-∪ I	<u> </u>	0.400-04						8.52E-02 4.26E+01		1		J.Z 1
Dichlorobenzophenone, 4,4'-	90-98-2	No	No	<u> </u>				9.00E-03	SC	-		5.85E+00 2.93E+03		1		- 4.70E-02
Dichlorobenzotrifluoride, 3,4-	328-84-7		Yes	-		-		9.00⊑-03	30	-		5.26E+00 2.63E+03		1		4.10L-02
		No		-		-		2.005.04	ID	1.005.01	00			· .		2.045.02
Dichlorodifluoromethane	75-71-8	No	Yes	<u> </u>		<u> </u>		2.00E-01	IR	1.00E-01	SC	8.78E-02 4.39E+01		1		- 3.04E-02
Dichlorodiisopropyl ether, 2,2'-	39638-32-9	No	Yes	- TOT 00		4.005.00		- 0.005.04	DD	-		9.16E-02 4.58E+01		1		7.005.04
Dichloroethane, 1,1-	75-34-3	No	Yes	5.70E-03	С	1.60E-06	С	2.00E-01	PP	7.005.00		6.36E-02 3.18E+01		1	4.405.00	- 7.82E-04
Dichloroethane, 1,2-	107-06-2	No	Yes	9.10E-02	I	2.60E-05	1	6.00E-03	SC	7.00E-03	PP	7.92E-02 3.96E+01		1	1.42E-03	4.84E-05
Dichloroethylene, 1,1-	75-35-4	No	Yes	-		-		5.00E-02	IR	2.00E-01	IR	6.36E-02 3.18E+01	1.0/E+00	1	2.51E-03	1.02E-02

Screening Levels (RSL) for Soil to Groundwater

Chemical	CAS Number	Mutagen?	VOC?	Ingestion SF (mg/kg-day) ⁻¹	SFO Ref	Inhalation Unit Risk (ug/m³) ⁻¹	IUR Ref	Chronic RfD (mg/kg-day)	Chronic RfD Ref	Chronic RfC (mg/m³)	Chronic RfC Ref	K _d	K _{oc}	н	Dilution Attenuation Factor (DAF) (unitless)	MCL-based SL (mg/kg)	Risk-Based SL (mg/kg)
Dichloroethylene, 1,2-cis-	156-59-2	No	Yes		-		-	2.00E-03	IR	-		7.92E-02	3.96E+01	1.67E-01	1	2.06E-02	1.06E-03
Dichloroethylene, 1,2-trans-	156-60-5	No	Yes		-		-	2.00E-02	IR	-		7.92E-02	3.96E+01	3.83E-01	1	3.13E-02	1.13E-02
Dichlorophenol, 2,6-	87-65-0	No	No		-		-		-	-		1.00E+00	5.02E+02	1.09E-04	1		-
Dichlorophenol, 3,4-	95-77-2	No	No		-		-		-	-		9.84E-01	4.92E+02	1.26E-05	1		-
Dichlorophenol, 2,3-	576-24-9	No	No		-		-		-	-		1.00E+00	5.02E+02	1.26E-05	1		-
Dichlorophenol, 2,4-	120-83-2	No	No		-		-	3.00E-03	IR	-		2.94E-01	1.47E+02	1.75E-04	1		- 2.26E-03
Dichlorophenol, 2,5-	583-78-8	No	No		-		-		-	-		9.84E-01	4.92E+02	1.26E-05	1		-
Dichlorophenols (total)	NA	No	No		-		-		-	-				-	1		-
Dichlorophenoxy Acetic Acid, 2,4-	94-75-7	No	No		-		-	1.00E-02	IR	-		5.93E-02	2.96E+01	1.45E-06	1	1.81E-02	4.53E-03
Butanoic acid, 4-(2,4-dichlorophenoxy)-	94-82-6	No	No		-		-	3.00E-02	OP	-		7.40E-01	3.70E+02	9.36E-08	1		- 4.24E-02
Dichloropropane, 1,2-	78-87-5	No	Yes	3.70E-02	Р	3.70E-05	Р	4.00E-02	PP	4.00E-03	IR	1.21E-01	6.07E+01	1.15E-01	1	1.66E-03	4.67E-05
Dichloropropane, 1,3-	142-28-9	No	Yes		-		-	2.00E-02	PP	-		1.44E-01	7.22E+01	3.99E-02	1		- 1.28E-02
Dichloropropane, 2,2-	594-20-7	No	Yes		-		-		-	-		8.78E-02	4.39E+01	6.58E-01	1		-
Dichloropropanol, 2,3-	616-23-9	No	No		-		-	3.00E-03	IR	-		1.11E-02	5.57E+00	1.47E-07	1		- 1.26E-03
Dichloropropene, 1,3-	542-75-6	No	Yes	1.00E-01	I	4.00E-06	1	3.00E-02	IR	2.00E-02	IR	1.44E-01	7.22E+01	1.45E-01	1		- 1.68E-04
Dichloropropene, 2,3-	78-88-6	No	Yes		-				-	-		1.21E-01	6.07E+01	1.70E-01	1		-
Dichloropropene, cis-1,3-	10061-01-5	No	Yes		-		-		-	_		1.44E-01	7.22E+01	1.11E-01	1		-
Dichloropropene, trans-1,3-	10061-02-6	No	Yes		-		-			-		1.44E-01	7.22E+01	3.56E-02	1		-
Dichloropropene, 1,1-	563-58-6	No	Yes		-		-		-	-		1.21E-01	6.07E+01	2.04E+00	1		_
Dichlorvos	62-73-7	No	No	2.90E-01		8.30E-05	С	5.00E-04	IR	5.00E-04	IR	1.08E-01			1		- 8.11E-05
Dicyclohexylamine	101-83-7	No	Yes		-					-		3.47E-01			1		
Dicyclopentadiene	77-73-6	No	Yes		-			8.00E-02	PP	3.00E-04	SC		1.51E+03		1		- 2.16E-04
Dieldrin	60-57-1	No	No	1.60E+01	1	4.60E-03	1	5.00E-05	IR	-		4.02E+01			<u>·</u> 1		- 7.08E-05
Diepoxybutane	1464-53-5	No	Yes		-			0.002 00		_		5.06E-03			<u>·</u> 1		_
Diethanolamine	111-42-2	No	No		-		-	2.00E-03	PP	2.00E-04	PP	2.00E-03			<u>·</u> 1		- 8.10E-04
Diethyl sulfate	64-67-5	No	No		_			2.002 00				5.64E-02			<u>·</u> 1		_
Diethyl-p-nitrophenylphosphate	311-45-5	No	No		_		_		-	_			1.31E+02		<u>·</u> 1		_
Diethylene-glycol	111-46-6	No	No		_				_	_		2.00E-03			<u>·</u> 1		_
Diethylene Glycol Dinitrate (DEGDN)	693-21-0	No	No		_		_		_	_		6.44E-02			<u>·</u> 1		_
Diethylene Glycol Monobutyl Ether	112-34-5	No	No		_			3.00E-02	PP	1.00E-04	PP	2.00E-02			<u>·</u>		- 1.31E-02
Diethylene Glycol Monoethyl Ether	111-90-0	No	No		_		_	6.00E-02	PP	3.00E-04	PP	2.00E-03			<u>'</u>		- 2.43E-02
Diethylformamide	617-84-5	No	Yes		_		_	1.00E-03	PP	0.002 04		4.12E-03		-	1		- 4.07E-04
Diethylphosphorodithioate	298-06-6	No	Yes		_		_	1.002 00		_		7.75E-02			<u>·</u> 1		-
Diethylstilbestrol	56-53-1	No	No	3.50E+02	С	1.00E-01	С		_	_			2.74E+05		<u>'</u> 1		- 2.79E-05
Difenzoquat	43222-48-6	No	No	0.002.02	_	1.002 01		8.30E-02	OP	_			7.84E+04	2.07 = 10	<u>'</u> 1		- 2.61E+01
Diflubenzuron	35367-38-5	No	No		_		_	2.00E-02	IR	_			4.63E+02	1.88F-07	<u>'</u> 1		- 3.27E-02
Difluoroethane, 1,1-	75-37-6	No	Yes					2.00L-02		4.00E+01	IR		3.18E+01		1		- 2.82E+00
Difluoropropane, 2,2-	420-45-1	No	Yes		-					4.00L101	IIX		4.39E+01		1		2.021100
Dihydrosafrole	94-58-6	No	Yes	4.40E-02	C	1.30E-05	С		_	_			2.07E+02		1		- 1.86E-04
Diisopropyl Ether	108-20-3	No	Yes	-TTUL-*UZ	_	1.502-505		<u> </u>	-	7.00E-01	PP		2.07E+02 2.28E+01		1		- 3.72E-02
Diisopropyl Methylphosphonate	1445-75-6	No	Yes				-	8.00E-02	IR	7.002-01	1.1		4.22E+01		1		- 4.51E-02
Dimethipin	55290-64-7	No	No		-		-	2.18E-02	OP	-			1.00E+01		1		- 9.60E-03
Dimethoate	60-51-5	No	No		-			2.10E-02 2.20E-03	OP	-			1.00E+01		1		- 9.89E-04
Dimethoxybenzidine, 3,3'-	119-90-4	No	No	1.60E+00	- P			Z.ZUL-UJ	OF .	<u>-</u>			5.09E+02		1		- 5.76E-05
• • • • • • • • • • • • • • • • • • • •	756-79-6	No	No	1.70E-03	P			6.00E-02	PP	-			5.09E+02 5.41E+00		1		- 9.65E-03
Dimethyl methylphosphonate			No	1./UE-US	P		-	0.00E-02	PP	-					1		- 9.05⊑-03
Dimethyl Sulfide	77-78-1	No			-		-	,	-	-			8.49E+00		·		
Dimethyl Sulfide	75-18-3	No	Yes		-		-		-	-		4.35E-02	2.17E+01	o.58E-02	1		-

Screening Levels (RSL) for Soil to Groundwater

				Ingestion SF	SFO	Inhalation Unit Risk	IUR	Chronic RfD	Chronic RfD	Chronic RfC	Chronic RfC				Dilution Attenuation Factor (DAF)	MCL-based SL	Risk-Based SL
Chemical	CAS Number	Mutagen?	VOC?	(mg/kg-day) ⁻¹	Ref	(ug/m³) ⁻¹	Ref	(mg/kg-day)	Ref	(mg/m³)	Ref	K _d	K _{oc}	H`	(unitless)	(mg/kg)	(mg/kg)
	60-11-7	No	No	4.60E+00	С	1.30E-03	С	-		-			2.03E+03		1		- 2.15E-05
	21436-96-4	No	No	5.80E-01	Н	-		-		-			3.52E+02		1		- 1.21E-04
Dimethylaniline, 2,4-	95-68-1	No	No	2.00E-01	P	-		2.00E-03	SC	-			1.85E+02		1		- 2.10E-04
Dimethylaniline, N,N-	121-69-7	No	Yes	2.70E-02	Р	-		2.00E-03	IR	-			7.87E+01		1		- 9.03E-04
Dimethylbenzidine, 3,3'-	119-93-7	No	No	1.10E+01	P	-		-		-			3.19E+03		1		- 4.30E-05
Dimethylcyclohexylamine, n,n-	98-94-2	No	Yes		-	<u>-</u>		-		-			3.60E+01		1		
Dimethylformamide	68-12-2	No	Yes	-	-			1.00E-01	PP	3.00E-02	IR				1		- 1.23E-03
	57-14-7	No	Yes		-	<u>-</u>		1.00E-04	SC	2.00E-06	SC		1.20E+01		1		- 9.32E-08
Dimethylhydrazine, 1,2-	540-73-8	No	Yes	5.50E+02	С	1.60E-01	С	-					1.49E+01		1		- 6.46E-09
Dimethylphenethylamine	122-09-8	No	No	•	-	-		-		-			1.08E+03		1		<u> </u>
Dimethylphenol, 2,4-	105-67-9	No	No	•	-			2.00E-02	IR	-			4.92E+02		1		- 4.21E-02
• • •	576-26-1	No	No	-	-			6.00E-04	IR				5.02E+02		1		- 1.27E-03
Dimethylphenol, 3,4-	95-65-8	No	No		-	-		1.00E-03	IR	-			4.92E+02		1		- 2.13E-03
Dimethylvinylchloride	513-37-1	No	Yes	4.50E-02	С	1.30E-05	С	-		-			6.07E+01		1		- 1.07E-04
Dinitro-o-cresol, 4,6-	534-52-1	No	No		-	-		8.00E-05	SC	-		1.51E+00	7.54E+02	5.72E-05	1		- 2.58E-04
Dinitro-o-cyclohexyl Phenol, 4,6-	131-89-5	No	No		-	-		2.00E-03	IR	-		3.31E+01	1.65E+04	2.26E-06	1		- 7.67E-02
Dinitroaniline, 3,5-	618-87-1	No	No	-	-	-		-		-		3.39E-01	1.69E+02	1.21E-09	1		-
Dinitrobenzene, 1,2-	528-29-0	No	No		-	-		1.00E-04	PP	-		7.18E-01	3.59E+02	2.18E-06	1		- 1.77E-04
Dinitrobenzene, 1,3-	99-65-0	No	No		-	-		1.00E-04	IR	-		7.03E-01	3.52E+02	2.00E-06	1		- 1.76E-04
Dinitrobenzene, 1,4-	100-25-4	No	No		-	_		1.00E-04	PP	-		7.03E-01	3.52E+02	3.43E-06	1		- 1.76E-04
Dinitrophenol, 2,4-	51-28-5	No	No			-		2.00E-03	IR	-		9.22E-01	4.61E+02	3.52E-06	1		- 4.36E-03
Dinitrophenols	25550-58-7	No	No			-		-		-		9.40E-01	4.70E+02	1.13E-06	1		_
Dinitrosopentamethylenetetramine, N,N-	101-25-7	No	No			_		-		-		1.16E-01	5.80E+01	2.02E-04	1		_
Dinitrotoluene Mixture, 2,4/2,6-	NA	No	No	6.80E-01	ı	_		-		-		1.17E+00	5.87E+02	1.62E-05	1		- 1.46E-04
Dinitrotoluene, 2,4-	121-14-2	No	No	3.10E-01	С	8.90E-05	С	2.00E-03	IR	-		1.15E+00	5.76E+02	2.21E-06	1		- 3.21E-04
Dinitrotoluene, 2,6-	606-20-2	No	No	1.50E+00	Р	-		3.00E-04	SC	-		1.17E+00	5.87E+02	3.05E-05	1		- 6.67E-05
Dinitrotoluene, 2-Amino-4,6-	35572-78-2	No	No			-		2.00E-03	SU	-		5.66E-01	2.83E+02	1.34E-09	1		- 2.96E-03
Dinitrotoluene, 4-Amino-2,6-	19406-51-0	No	No			-		2.00E-03	SU	-		5.66E-01	2.83E+02	1.34E-09	1		- 2.96E-03
Dinitrotoluene, 2,3-	602-01-7	No	No			_		-		_		1.17E+00	5.87E+02	3.79E-06	1		_
	619-15-8	No	No										5.76E+02		1		
	610-39-9	No	No										5.76E+02		1		_
	618-85-9	No	No										5.64E+02		1		
Dinitrotoluene, Technical grade	25321-14-6	No	No	4.50E-01	X			9.00E-04	SC				5.87E+02		1		- 1.43E-04
Dinoseb	88-85-7	No	No					1.00E-03	IR				4.29E+03		1	6.15E-02	1.29E-02
Dioxane, 1,4-	123-91-1	No	Yes	1.00E-01	1	5.00E-06		3.00E-02	IR	3.00E-02	IR		2.63E+00		1	0.102 02	- 9.42E-05
	957-51-7	No	No			-		3.00E-02	IR	-	.,,		4.80E+03		1		- 5.16E-01
Diphenyl Sulfone	127-63-9	No	No					8.00E-04	SC				1.11E+03		1		- 3.59E-03
Diphenylamine	122-39-4	No	No					1.00E-01	OP				8.26E+02		1		- 2.33E-01
Diphenylhydrazine, 1,2-	122-66-7	No	No	8.00E-01	1	2.20E-04	1	1.002-01	OI	<u>-</u>			1.51E+03		1		- 2.50E-04
Diquat	85-00-7	No	No	0.00L-01	-	Z.ZUL-UT	<u>'</u>	2.20E-03	IR				9.27E+03		1	3.75E-01	8.27E-02
Direct Black 38	1937-37-7	No	No	7.10E+00	С	1.40E-01	С	2.202-00	111				2.42E+08		1	0.73L-01	- 5.31E+00
	2602-46-2	No	No	7.10E+00 7.40E+00	C	1.40E-01	C	<u>-</u>		<u>-</u>			7.91E+08		1		- 1.67E+01
Direct Brown 95	16071-86-6	No	No	6.70E+00	C	1.40E-01	С	-		<u>-</u>			6.99E+06		1		- 1.62E-01
				0.70⊑₹00		1.40⊑-01	U	-		-					1		1.02L-01
•	2610-05-1	No	No	<u> </u>	-		1	4 005 05	ID				2.88E+08		1		0.405.05
Disulfoton	298-04-4	No	No	•	-			4.00E-05	IR				8.38E+02		1		- 9.40E-05
Dithiane, 1,4-	505-29-3	No	Yes	•	-			1.00E-02	IR				1.46E+02		1		- 9.74E-03
Diundecyl Phthalate	3648-20-2	No	Yes	-	-	-		-		-		1.03E+04	5.16E+06	2.29E-03	1		

Screening Levels (RSL) for Soil to Groundwater

Chemical	CAS Number	Mutagen?	VOC?	Ingestion SF (mg/kg-day) ⁻¹	SFO Ref	Inhalation Unit Risk (ug/m³) ⁻¹	IUR Ref	Chronic RfD (mg/kg-day)	Chronic RfD Ref	Chronic RfC (mg/m³)	Chronic RfC Ref	K _d	K _{oc}	H,	Dilution Attenuation Factor (DAF) (unitless)	MCL-based SL (mg/kg)	Risk-Based SL (mg/kg)
Diuron	330-54-1	No	No		-	-		2.00E-03	IR	-		2.18E-01	1.09E+02	2.06E-08	1	-	1.51E-03
Dodine	2439-10-3	No	No		-	-		2.00E-02	OP	-		4.96E+00	2.48E+03	3.68E-09	1	-	2.06E-01
Hexachlorodibenzo-p-dioxin	34465-46-8	No	No	1.30E+04	W	3.80E+00	W	7.00E-09	WH	4.00E-07	WH	1.39E+03	6.95E+05	2.33E-04	1	-	8.33E-06
Hexachlorodibenzo-p-dioxin, 1,2,3,4,7,8-	39227-28-6	No	No	1.30E+04	W	3.80E+00	W	7.00E-09	WH	4.00E-07	WH	1.39E+03	6.95E+05	1.61E-04	1	-	8.33E-06
Hexachlorodibenzo-p-dioxin, Mixture	NA	No	No	6.20E+03	I	1.30E+00	I	-		-		1.39E+03	6.95E+05	2.33E-04	1	-	1.75E-05
HpCDD, 2,3,7,8-	37871-00-4	No	Yes	1.30E+03	W	3.80E-01	W	7.00E-08	WH	4.00E-06	WH	2.32E+03	1.16E+06	7.15E-03	1	-	2.75E-05
HxCDD, 1,2,3,6,7,8-	57653-85-7	No	No	1.30E+04	W	3.80E+00	W	7.00E-09	WH	4.00E-07	WH	1.39E+03	6.95E+05	7.93E-05	1		8.33E-06
HxCDD, 1,2,3,7,8,9-	19408-74-3	No	No	1.30E+04	W	3.80E+00	W	7.00E-09	WH	4.00E-07	WH	1.39E+03	6.95E+05	7.93E-05	1	-	8.33E-06
Endosulfan	115-29-7	No	Yes		-	-		6.00E-03	IR	-		1.35E+01	6.76E+03	2.66E-03	1	-	1.39E-01
Endosulfan I	959-98-8	No	No		-	-		-		-		1.35E+01	6.76E+03	2.90E-04	1	-	
Endosulfan II	33213-65-9	No	No		-	-		-		-		1.35E+01	6.76E+03	1.60E-05	1	-	
Endosulfan Sulfate	1031-07-8	No	No		-	-		-		-		1.97E+01	9.85E+03	1.33E-05	1	-	
Endothall	145-73-3	No	No		-	-		2.00E-02	IR	-		3.88E-02	1.94E+01	1.57E-14	1	2.39E-02	9.15E-03
Endrin	72-20-8	No	No		-	-		3.00E-04	IR	-		4.02E+01	2.01E+04	2.60E-04	1	8.08E-02	9.22E-03
Endrin ketone	53494-70-5	No	No		-	-		-		-		1.94E+01	9.72E+03	8.26E-07	1		
Endrin aldehyde	7421-93-4	No	No		-	-		-		-		6.54E+00	3.27E+03	1.71E-04	1	-	
Epichlorohydrin	106-89-8	No	Yes	9.90E-03	I	1.20E-06	I	6.00E-03	PP	1.00E-03	IR	1.98E-02	9.91E+00	1.24E-03	1		4.51E-05
Epoxybutane, 1,2-	106-88-7	No	Yes		-	-		-		2.00E-02	IR	1.98E-02	9.91E+00	7.36E-03	1		9.20E-04
EPTC	759-94-4	No	Yes		-	-		5.00E-02	OP	-		3.28E-01	1.64E+02	6.50E-04	1		3.97E-02
Ethanol	64-17-5	No	Yes		-	-		-		-		2.09E-03	1.05E+00	2.04E-04	1		
Ethanol, 2-(2-methoxyethoxy)-	111-77-3	No	No		-	-		4.00E-02	PP	-		2.00E-03	1.00E+00	6.75E-10	1		1.62E-02
Ethephon	16672-87-0	No	No		-	-		5.00E-03	IR	-		1.01E-02	5.03E+00	2.33E-10	1		2.10E-03
Ethion	563-12-2	No	No		-	-		5.00E-04	IR	-		1.76E+00	8.82E+02	1.55E-05	1		8.53E-04
Ethoxy Propanol	52125-53-8	No	Yes		-	-		-		-		2.73E-03	1.36E+00	3.02E-06	1		
Ethoxyethanol Acetate, 2-	111-15-9	No	Yes		-	-		1.00E-01	PP	6.00E-02	PP	9.08E-03	4.54E+00	1.31E-04	1		2.46E-03
Ethoxyethanol, 2-	110-80-5	No	Yes		-	-		9.00E-02	PP	2.00E-01	IR	2.00E-03	1.00E+00	1.92E-05	1		6.84E-03
Ethyl methane sulfonate	62-50-0	No	No		-	-		-		-		1.58E-02	7.89E+00	1.06E-05	1		
Ethyl Acetate	141-78-6	No	Yes		-	-		9.00E-01	IR	7.00E-02	PP	1.12E-02	5.58E+00	5.48E-03	1		3.07E-03
Ethyl Acrylate	140-88-5	No	Yes		-	-		5.00E-03	PP	8.00E-03	PP	2.13E-02	1.07E+01	1.39E-02	1		3.17E-04
Ethyl Chloride	75-00-3	No	Yes		-	-		-		1.00E+01	IR	4.35E-02	2.17E+01	4.54E-01	1		5.92E-01
Ethyl Ether	60-29-7	No	Yes		-	_		2.00E-01	IR	-		1.94E-02	9.70E+00	5.03E-02	1		8.80E-02
·	97-63-2	No	Yes		-	-		-		3.00E-01	PP	3.33E-02	1.67E+01	2.34E-02	1		1.47E-02
Ethyl-p-nitrophenyl Phosphonate	2104-64-5	No	No		-	-		1.00E-05	IR	-		3.09E+01	1.55E+04	1.82E-05	1		2.78E-04
Ethylbenzene	100-41-4	No	Yes	1.10E-02	С	2.50E-06	С	1.00E-01	IR	1.00E+00	IR	8.92E-01	4.46E+02	3.22E-01	1	7.85E-01	1.68E-03
Ethylene Cyanohydrin	109-78-4	No	No		-	-		7.00E-02	PP	-		2.00E-03	1.00E+00	3.07E-07	1		2.83E-02
Ethylene Diamine	107-15-3	No	Yes		-	-		9.00E-02	PP	-		2.97E-02	1.49E+01	7.07E-08	1		4.15E-02
Ethylene Glycol	107-21-1	No	No		-	-		2.00E+00	IR	4.00E-01	CA	2.00E-03	1.00E+00	2.45E-06	1		8.10E-01
Ethylene Glycol Monobutyl Ether	111-76-2	No	No		-	_		1.00E-01	IR	1.60E+00	IR	5.65E-03	2.82E+00	6.54E-05	1		4.07E-02
Ethylene Oxide	75-21-8	Yes	Yes	3.10E-01	С	3.00E-03	I	-		3.00E-02	CA	6.47E-03	3.24E+00	6.05E-03	1		1.39E-07
Ethylene Thiourea	96-45-7	No	No	4.50E-02	С	1.30E-05	С	8.00E-05	IR	-		2.59E-02	1.30E+01	5.56E-10	1		3.62E-05
Ethyleneimine	151-56-4	No	Yes	6.50E+01	С	1.90E-02	С	-		-			9.04E+00		1		5.17E-08
Ethylphenol, 4-	123-07-9	No	No		-	-		-		-		1.15E+00	5.73E+02	3.16E-05	1		
	84-72-0	No	No		-			3.00E+00	IR	-			1.02E+03		1		1.30E+01
	52-85-7	No	No		-			-		-		3.78E-01	1.89E+02	6.58E-07	1		
-	22224-92-6	No	No			-		2.50E-04	IR	-		7.96E-01	3.98E+02	4.95E-08	1		4.35E-04
•	39515-41-8	No	No		-	-		2.50E-02	IR	-			2.25E+04		1		2.89E-01
	2164-17-2	No	No					1.30E-02	IR	-			2.85E+02		1		1.87E-02
	-	-	+		-		-										

Screening Levels (RSL) for Soil to Groundwater

Chemical	CAS Number	Mutagen?	VOC?	Ingestion SF (mg/kg-day) ⁻¹	SFO Ref	Inhalation Unit Risk (ug/m³) ⁻¹	IUR Ref	Chronic RfD (mg/kg-day)	Chronic RfD Ref	Chronic RfC (mg/m³)	Chronic RfC Ref	K _d	K _{oc}	H,	Dilution Attenuation Factor (DAF) (unitless)	MCL-based SL (mg/kg)	Risk-Based SL (mg/kg)
Fluoride	16984-48-8	No	No		-	-		4.00E-02	CA	1.30E-02	CA	1.50E+02		0.00E+00	1		- 1.20E+01
Fluorine (Soluble Fluoride)	7782-41-4	No	No		-	-		6.00E-02	IR	1.30E-02	CA	1.50E+02	-	0.00E+00	1	6.01E+02	1.80E+01
Fluorobenzene	462-06-6	No	Yes		-	-		-	-	-		4.68E-01	2.34E+02	2.56E-01	1		
Fluorobiphenyl, 2-	321-60-8	No	Yes		-	-		-	-	-		1.68E+01	8.40E+03	1.97E-02	1		
Fluorophenol, 2-	367-12-4	No	Yes		-	-		-	-	-	-	6.13E-01	3.07E+02	1.32E-04	1		
Fluridone	59756-60-4	No	No		-	-		8.00E-02	IR	-		1.14E+02	5.68E+04	3.31E-07	1		- 1.64E+01
Flurprimidol	56425-91-3	No	No		-	-		1.50E-02	OP	-		4.38E+00	2.19E+03	5.36E-08	1		- 1.18E-01
Flutolanil	66332-96-5	No	No		-	-		5.00E-01	OP	-		5.12E+00	2.56E+03	1.30E-07	1		- 4.20E+00
Fluvalinate	69409-94-5	No	No		-	-		1.00E-02	IR	-		1.46E+03	7.30E+05	5.93E-07	1		- 2.93E+01
Folpet	133-07-3	No	No		-	-		9.00E-02	OP	-	-	3.54E-02	1.77E+01	3.13E-06	1		- 3.87E-02
Fomesafen	72178-02-0	No	No		-	-		2.50E-03	OP	-	-	3.09E+00	1.55E+03	3.08E-11	1		- 1.58E-02
Fonofos	944-22-9	No	No		-	-		2.00E-03	IR	-		1.71E+00	8.56E+02	2.85E-04	1		- 4.68E-03
Formaldehyde	50-00-0	No	Yes		-	1.30E-05	I	2.00E-01	IR	9.83E-03	AT	2.00E-03	1.00E+00	1.38E-05	1		- 8.73E-05
Formic Acid	64-18-6	No	Yes		-	-		9.00E-01	PP	3.00E-04	SC	2.00E-03	1.00E+00	6.83E-06	1		- 1.26E-05
Fosetyl-AL	39148-24-8	No	No		-	-		2.50E+00	OP	-		1.30E+01	6.49E+03	1.29E-12	1		- 6.60E+01
Fuel Oil Number 2	68476-30-2	No	No		-	-		-	-	-		-	-	-	1		
Furazolidone	67-45-8	No	No	3.80E+00	Н	-		-	-	_		1.72E+00	8.58E+02	1.33E-09	1		- 3.92E-05
Furfural	98-01-1	No	Yes		-	-		3.00E-03	IR	5.00E-02	HE	1.22E-02	6.08E+00	1.54E-04	1		- 8.05E-04
Furium	531-82-8	No	No	1.50E+00	С	4.30E-04	С	-	-	-		1.16E+00	5.78E+02	5.44E-14	1		- 6.85E-05
Furmecyclox	60568-05-0	No	No	3.00E-02	I	8.60E-06	С	-	-	_		8.58E-01	4.29E+02	2.82E-07	1		- 1.18E-03
Dibenzofuran	132-64-9	No	Yes		-	-		1.00E-03	SC	-		1.83E+01	9.16E+03	8.71E-03	1		- 1.46E-02
Furan	110-00-9	No	Yes		-	-		1.00E-03	IR	-		1.60E-01	8.00E+01	2.21E-01	1		- 7.31E-04
Heptachlorodibenzofuran, 1,2,3,4,6,7,8-	67562-39-4	No	Yes	1.30E+03	W	3.80E-01	W	7.00E-08	WH	4.00E-06	WH	1.30E+03	6.50E+05	5.76E-04	1		- 1.54E-05
Hexachlorodibenzofuran, 1,2,3,4,7,8-	70648-26-9	No	Yes	1.30E+04	W	3.80E+00	W	7.00E-09	WH	4.00E-07	WH	7.79E+02	3.89E+05	1.59E-03	1		- 9.23E-07
HpCDF, 1,2,3,4,7,8,9-	55673-89-7	No	Yes	1.30E+03	W	3.80E-01	W	7.00E-08	WH	4.00E-06	WH	1.30E+03	6.50E+05	5.76E-04	1		- 1.54E-05
HpCDF, 2,3,7,8-	38998-75-3	No	Yes	1.30E+03	W	3.80E-01	W	7.00E-08	WH	4.00E-06	WH	1.30E+03	6.50E+05	5.76E-04	1		- 1.54E-05
HxCDF, 1,2,3,6,7,8-	57117-44-9	No	Yes	1.30E+04	W	3.80E+00	W	7.00E-09	WH	4.00E-07	WH	7.79E+02	3.89E+05	1.59E-03	1		- 9.23E-07
HxCDF, 1,2,3,7,8,9-	72918-21-9	No	No	1.30E+04	W	3.80E+00	W	7.00E-09	WH	4.00E-07	WH	7.79E+02	3.89E+05	3.47E-04	1		- 4.67E-06
HxCDF, 2,3,4,6,7,8-	60851-34-5	No	No	1.30E+04	W	3.80E+00	W	7.00E-09	WH	4.00E-07	WH	7.79E+02	3.89E+05	2.78E-04	1		- 4.67E-06
HxCDF, 2,3,7,8-	55684-94-1	No	No	1.30E+04	W	3.80E+00	W	7.00E-09	WH	4.00E-07	WH	7.94E+02	3.97E+05	3.47E-04	1		- 4.76E-06
Gadolinium	7440-54-2	No	No		-	-			-	-		-	_	0.00E+00	1		
Gallium	7440-55-3	No	No		-	-			-	_		-	-	0.00E+00	1		_
Germanium	7440-56-4	No	No		-	-			-	_		-	_	0.00E+00	1		
Glufosinate, Ammonium	77182-82-2	No	No		-	-		6.00E-03	OP	-		2.00E-02	1.00E+01	1.81E-12	1		- 2.65E-03
Glutaraldehyde	111-30-8	No	No		-	-		-	-	8.00E-05	CA		1.00E+00		1		_
Glycerol	56-81-5	No	No		-	-		-	-	_				7.07E-07	1		
Glycidyl	765-34-4	No	Yes		-	-		4.00E-04	IR	1.00E-03	HE		1.00E+00		1		- 3.34E-05
Glyphosate	1071-83-6	No	No		-	-		1.00E-01	IR	-		4.20E+00			1	3.08E+00	8.82E-01
Guanidine Chloride	50-01-1	No	No		-	-		2.00E-02	PP	_		-		8.87E-17	1		
Guanidine	113-00-8	No	Yes		-	-		1.00E-02	SC	_		2.39E-02		9.57E-10	1		- 4.49E-03
Guanidine Nitrate	506-93-4	No	No		-	-		3.00E-02	SC	_				3.66E-17	1		- 1.48E-02
Azinphos-methyl	86-50-0	No	No		-	-		3.00E-03	AT	1.00E-02	AT			9.77E-07	1		- 1.70E-03
Haloacetic acids	NA	No	No		-	-		-	-	-		-	_	_	1		
Haloxyfop, Methyl	69806-40-2	No	No		-	-		5.00E-05	IR	_		1.09E+01	5.45E+03	1.30E-05	1		- 8.39E-04
HCDD, 1,2,3,4,6,7,8,-	35822-46-9	No	Yes	1.30E+03	С	3.80E-01	С	1.00E-06	CA	4.00E-06	CA	2.32E+03			1		- 2.75E-05
Heptachlor	76-44-8	No	Yes	4.50E+00	I	1.30E-03	I	5.00E-04	IR	-				1.20E-02	1	3.31E-02	1.15E-04
Heptachlor Epoxide	1024-57-3	No	Yes	9.10E+00	I	2.60E-03	ı	1.30E-05	IR	-				8.59E-04	1	4.08E-03	2.84E-05
· '	+	-	+				-		-		-	+					

Screening Levels (RSL) for Soil to Groundwater

Chemical Heptanal, n-	CAS Number	Mutagen?	VOC?	Ingestion SF (mg/kg-day) ⁻¹	SFO Ref	Unit Risk (ug/m³) ⁻¹	IUR Ref	Chronic RfD (mg/kg-day)	Chronic RfD Ref	Chronic RfC (mg/m³)	Chronic RfC Ref	K _d	K _{oc}	H)	Attenuation Factor (DAF) (unitless)	MCL-based SL (mg/kg)	Risk-Based SL (mg/kg)
	111-71-7	No	Yes	(gg)	-	(#g···· /	1101	(gg) -		(g)	1.0.	-	1.09E+01	1.10E-02	1	(99)	- (g/g/
	142-82-5	No	Yes		_			3.00E-04	SC	4.00E-01	PP		2.40E+02		1		- 4.77E-03
·	111-70-6	No	Yes		-	_		-		-		4.20E-02			1		-
·	87-82-1	No	Yes		-	_		2.00E-03	IR	_		5.61E+00			1		- 2.33E-02
												1			<u> </u>		
Hexabromodiphenyl ether, 2,2',4,4',5,5'- (BDE-153)	68631-49-2	No	No		-	-		2.00E-04	IR	-		-	-	-	1		-
	118-74-1	No	Yes	1.60E+00	I	4.60E-04	I	8.00E-04	IR	-		1.24E+01	6.20E+03	6.95E-02	1	1.26E-02	1.23E-04
Hexachlorobutadiene	87-68-3	No	Yes	7.80E-02	I	2.20E-05	I	1.00E-03	PP	-		1.69E+00	8.45E+02	4.21E-01	1		- 2.67E-04
Hexachlorocyclohexane, Alpha-	319-84-6	No	No	6.30E+00	I	1.80E-03	I	8.00E-03	AT	-		5.61E+00	2.81E+03	2.74E-04	1		- 4.21E-05
Hexachlorocyclohexane, Beta-	319-85-7	No	No	1.80E+00	I	5.30E-04	I	-		-		5.61E+00	2.81E+03	1.80E-05	1		- 1.47E-04
Hexachlorocyclohexane, Delta-	319-86-8	No	No		-	-		-		-		5.61E+00	2.81E+03	2.10E-04	1		-
Hexachlorocyclohexane, Epsilon	6108-10-7	No	No		-	-		-		-		5.61E+00	2.81E+03	2.10E-04	1		-
Hexachlorocyclohexane, Gamma- (Lindane)	58-89-9	No	No	1.10E+00	С	3.10E-04	С	3.00E-04	IR	-		5.61E+00	2.81E+03	2.10E-04	1	1.16E-03	2.41E-04
Hexachlorocyclohexane, Technical	608-73-1	No	No	1.80E+00	I	5.10E-04	I	-		-		5.61E+00	2.81E+03	2.10E-04	1		- 1.47E-04
Hexachlorocyclopentadiene	77-47-4	No	Yes		-			6.00E-03	IR	2.00E-04	IR	2.81E+00	1.40E+03	1.10E+00	1	1.55E-01	1.28E-04
Hexachloroethane	67-72-1	No	Yes	4.00E-02	I	1.10E-05	С	7.00E-04	IR	3.00E-02	IR	3.94E-01	1.97E+02	1.59E-01	1		- 2.00E-04
Hexachlorophene	70-30-4	No	No		-	-		3.00E-04	IR	-		1.34E+03	6.69E+05	2.24E-11	1		- 8.05E-01
Hexachloropropene	1888-71-7	No	Yes		-	-		-		-		8.13E-01	4.06E+02	1.92E-01	1		-
Hexadecanoic Acid	57-10-3	No	Yes		-	-		-		-		7.04E+00	3.52E+03	8.18E-04	1		-
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)	121-82-4	No	No	1.10E-01	1	-		3.00E-03	IR	-		1.78E-01	8.91E+01	8.22E-10	1		- 2.66E-04
Hexamethylene Diisocyanate, 1,6-	822-06-0	No	Yes		-	-		-		1.00E-05	IR	9.64E+00	4.82E+03	1.96E-03	1		- 2.05E-05
Hexamethylphosphoramide	680-31-9	No	No		-	-		4.00E-04	PP	-		2.00E-02	1.00E+01	8.18E-07	1		- 1.76E-04
Hexane, N-	110-54-3	No	Yes		-	-		-		7.00E-01	IR	2.63E-01	1.32E+02	7.36E+01	1		- 1.03E+00
Hexanedioic Acid	124-04-9	No	No		-	-		2.00E+00	PP	-		4.87E-02	2.43E+01	1.93E-10	1		- 9.94E-01
Hexanol, n-	111-27-3	No	Yes		-	_		-		-		2.31E-02	1.15E+01	6.99E-04	1		_
	591-78-6	No	Yes		-	-		5.00E-03	IR	3.00E-02	IR	3.00E-02			1		- 8.75E-04
Hexazinone	51235-04-2	No	No		-	-		3.30E-02	IR	-		2.59E-01			1		- 2.95E-02
Hydrazine	302-01-2	No	Yes	3.00E+00	ı	4.90E-03	I	-		3.00E-05	PP	-		0.00E+00	1		_
	10034-93-2	No	No	3.00E+00	ı	4.90E-03	I	-		-		-		0.00E+00	1		_
-	7647-01-0	No	Yes		-	-		-		2.00E-02	IR	-		0.00E+00	1		_
	7664-39-3	No	Yes		-	-		4.00E-02	CA	1.40E-02	CA	-		0.00E+00	1		_
	7783-07-5	No	Yes		-	-		-		-		-		0.00E+00	1		_
	12143-45-2	No	No		-	-		-		-		-		0.00E+00	1		_
, ,	7783-06-4	No	Yes		-	-		-		2.00E-03	IR	-		0.00E+00	1		_
, 0	123-31-9	No	No	6.00E-02	Р	-		4.00E-02	PP	-		4.81E-01			1		- 8.75E-04
	35554-44-0	No	No	6.11E-02	0	-		2.50E-03	OP	-		1.70E+01			1		- 1.55E-02
Imazaquin	81335-37-7	No	No		-	-		2.50E-01	IR	-		4.77E+00			1		- 2.45E+00
·	7440-74-6	No	No		-			<u> </u>		-		-		0.00E+00	1		_
	20461-54-5	No	No		-	-		-		_		-		0.00E+00	1		_
	7553-56-2	No	No		-	-		1.00E-02	AT	-		6.00E+01		0.00E+00	1		- 1.20E+00
	74-88-4	No	Yes		-	_		- -		-		2.64E-02			1		_
	55406-53-6	No	No		-	-		-		-		5.70E-01			1		
	36734-19-7	No	No		-	_		4.00E-02	IR	_		1.05E-01			 1		- 2.25E-02
·	7439-89-6	No	No		-	-		7.00E-01	PP	_		2.50E+01		0.00E+00	<u>.</u> 1		- 3.52E+01
	11126-12-8	No	No		_			-		_		-		0.00E+00	<u>.</u> 1		-
	78-83-1	No	Yes		_			3.00E-01	IR	_		5.84E-03			<u>·</u> 1		- 1.22E-01
	465-73-6	No	Yes		-			-		_		1.64E+02			<u>·</u> 1		-

Screening Levels (RSL) for Soil to Groundwater

Chemical	CAS Number	Mutagen?	VOC?	Ingestion SF (mg/kg-day) ⁻¹	SFO Ref	Inhalation Unit Risk (ug/m³) ⁻¹	IUR Ref	Chronic RfD (mg/kg-day)	Chronic RfD Ref	Chronic RfC (mg/m³)	Chronic RfC Ref	K _d	K _{oc}	H,	Dilution Attenuation Factor (DAF) (unitless)	MCL-based SL (mg/kg)	Risk-Based SL (mg/kg)
Isophorone	78-59-1	No	No	9.50E-04	ı	-		2.00E-01	IR	2.00E+00	CA	_	6.52E+01		1	(0 0)	- 2.58E-02
Isopropalin	33820-53-0	No	Yes			-		1.50E-02	IR	-			1.14E+04		1		9.20E-02
Isopropanol	67-63-0	No	Yes			-		2.00E+00	PP	2.00E-01	PP	3.06E-03	1.53E+00	3.31E-04	1		- 8.38E-03
Isopropyl Methyl Phosphonic Acid	1832-54-8	No	No			-		1.00E-01	IR	-		1.54E-02	7.71E+00	2.81E-07	1		4.30E-02
Isopropyltoluene, p-	99-87-6	No	Yes			-		-	-	-		2.24E+00	1.12E+03	4.50E-01	1		
Isosafrole	120-58-1	No	Yes			-		-	-	-		4.14E-01	2.07E+02	1.47E+00	1		
Isoxaben	82558-50-7	No	No			-		5.00E-02	IR	-		2.52E+00	1.26E+03	5.19E-08	1		2.00E-01
JP-4	50815-00-4	No	Yes			-		-	-	-		_	-	4.09E+02	1		
JP-5	NA	No	Yes			-		-	-	-		2.49E-03	1.25E+00	2.41E-03	1		
JP-7	NA	No	Yes			-		-	-	3.00E-01	AT	-	-	4.09E-01	1		
JP-8	NA	No	Yes			-		-	-	-		2.49E-03	1.25E+00	2.41E-03	1		-
Kerosene	8008-20-6	No	Yes			-		-	-	-		-	-	4.09E-01	1		
Lactofen	77501-63-4	No	No			-		8.00E-03	U	-		4.60E+01	2.30E+04	1.93E-05	1		4.63E-01
Lactonitrile	78-97-7	No	No			-		-	-	-		2.00E-03	1.00E+00	4.01E-04	1		
Lanthanum	7439-91-0	No	No			-		-	-	-		_	-	0.00E+00	1		
Lead Alkyls	NA	No	No			-		-	-	-		-	-	-	1		
Lead Chromate	7758-97-6	Yes	No	5.00E-01	U	1.50E-01	U	2.00E-02	U	2.00E-04	U	-	-	0.00E+00	1		
Lead Phosphate	7446-27-7	No	No	8.50E-03	U	1.20E-05	U	-	-	-		_	_	0.00E+00	1		
Lead acetate	301-04-2	No	No	8.50E-03	U	1.20E-05	U	-	-	-		2.00E-03	1.00E+00	-	1		1.85E-03
Lead and Compounds	7439-92-1	No	No			-		-	-	-		9.00E+02	-	0.00E+00	1	1.35E+01	
Lead subacetate	1335-32-6	No	No	8.50E-03	U	1.20E-05	U	-	-	-		2.08E-02		-	1		2.02E-03
Lewisite	541-25-3	No	Yes			-		5.00E-06	U	-		2.22E-01	1.11E+02	8.91E-03	1		3.82E-06
Linuron	330-55-2	No	No			-		7.70E-03	U	-		6.80E-01	3.40E+02	2.56E-07	1		1.13E-02
Lithium	7439-93-2	No	No			-		2.00E-03	U	-		3.00E+02		0.00E+00	1		1.20E+00
Lithium Perchlorate	7791-03-9	No	No			-		7.00E-04	U	-		-	-	0.00E+00	1		
Lutetium	7439-94-3	No	No			-		-	-	-		-	-	0.00E+00	1		
MCPA	94-74-6	No	No			-		5.00E-04	U	-		5.92E-02	2.96E+01	5.44E-08	1		1.95E-04
МСРВ	94-81-5	No	No			-		4.40E-03	U	-		1.97E-01	9.84E+01	1.11E-07	1		2.56E-03
MCPP	93-65-2	No	No			-		1.00E-03	U	-		9.70E-02	4.85E+01	7.44E-07	1		4.65E-04
Magnesium	7439-95-4	No	No			-		-	-	-		4.50E+00	-	0.00E+00	1		
Malathion	121-75-5	No	No		-	-		2.00E-02	U	-		6.26E-02	3.13E+01	2.00E-07	1		1.02E-02
Maleic Anhydride	108-31-6	No	No			-		1.00E-01	U	7.00E-04	U	2.00E-03	1.00E+00	1.61E-04	1		3.85E-02
Maleic Hydrazide	123-33-1	No	No			-		5.00E-01	U	-		6.60E-03	3.30E+00	1.08E-09	1		- 2.07E-01
Malononitrile	109-77-3	No	No			-		1.00E-04	U	-		6.66E-03	3.33E+00	5.36E-06	1		4.14E-05
Mancozeb	8018-01-7	No	No		-	-		3.00E-02	U	-		1.22E+00	6.08E+02	6.21E-10	1		7.59E-02
Maneb	12427-38-2	No	No			-		5.00E-03	U	-		1.22E+00	6.08E+02	1.99E-07	1		- 1.38E-02
Manganese (Non-diet)	7439-96-5	No	No			-		2.40E-02	U	5.00E-05	U	6.50E+01	-	0.00E+00	1		- 2.83E+00
Mechlorethamine	51-75-2	No	No			-		-	-	-		1.77E-01	8.85E+01	1.19E-04	1		-
Mephosfolan	950-10-7	No	No			-		9.00E-05	U	-		1.27E+00	6.36E+02	4.87E-09	1		- 2.64E-04
Mepiquat Chloride	24307-26-4	No	No	-	-	-		3.00E-02	U	-		1.32E-01	6.62E+01	1.76E-10	1		- 2.00E-02
Mercaptobenzothiazole, 2-	149-30-4	No	No	1.10E-02	U	-		4.00E-03	U	-		2.72E+00	1.36E+03	1.48E-06	1		- 1.84E-02
Mercuric Chloride	7487-94-7	No	No		-	-		3.00E-04	U	3.00E-04	U	-	-	0.00E+00	1		•
Mercury (elemental)	7439-97-6	No	Yes		-	-		-	-	3.00E-04	U	5.20E+01	-	3.52E-01	1	1.04E-01	3.27E-03
Merphos	150-50-5	No	Yes		-	-		3.00E-05	U	-		9.80E+01	4.90E+04	9.28E-04	1		5.91E-03
Merphos Oxide	78-48-8	No	No		-	-		1.00E-04	U	-		4.70E+00	2.35E+03	1.20E-05	1		- 1.39E-04
Metalaxyl	57837-19-1	No	No		-	-		6.00E-02	U	-		7.72E-02	3.86E+01	1.21E-07	1		- 3.27E-02
Methacrylonitrile	126-98-7	No	Yes		-	-		1.00E-04	U	3.00E-02	U	2.62E-02	1.31E+01	1.01E-02	1		- 4.35E-05
											-	-	-				

Screening Levels (RSL) for Soil to Groundwater

Chemical	CAS Number	Mutagen?	VOC?	Ingestion SF (mg/kg-day) ⁻¹	SFO Ref	Inhalation Unit Risk (ug/m³) ⁻¹	IUR Ref	Chronic RfD (mg/kg-day)	Chronic RfD Ref	Chronic RfC (mg/m³)	Chronic RfC Ref	K d	K _{oc}	H.	Dilution Attenuation Factor (DAF) (unitless)	MCL-based SL (mg/kg)	Risk-Based SL (mg/kg)
Methamidophos	10265-92-6	No	No	, , , ,	-			5.00E-05	U	-		1.08E-02		3.55E-08	1	, 5 5.	- 2.11E-05
Methanol	67-56-1	No	Yes		-	-		2.00E+00	U	2.00E+01	U	2.00E-03	1.00E+00	1.86E-04	1		- 4.13E-01
Methapyrilene	91-80-5	No	No		-				-	-		3.72E+00	1.86E+03	1.32E-10	1		-
Methidathion	950-37-8	No	No		-	-		1.50E-03	U	-		4.24E-02	2.12E+01	2.93E-07	1		- 7.05E-04
Methomyl	16752-77-5	No	No		-	-		2.50E-02	U	-		2.00E-02	1.00E+01	8.05E-10	1		- 1.09E-02
Methoxy-5-nitroaniline, 2-	99-59-2	No	No	4.90E-02	U	1.40E-05	U		-	-		1.43E-01	7.13E+01	5.11E-07	1		- 5.29E-04
Methoxychlor	72-43-5	No	No		-	-		5.00E-03	U	-		5.38E+01	2.69E+04	8.30E-06	1	2.16E+00	2.00E-01
Methoxyethanol Acetate, 2-	110-49-6	No	Yes		-	-		8.00E-03	U	1.00E-03	U	4.98E-03	2.49E+00	1.27E-05	1		- 4.22E-05
Methoxyethanol, 2-	109-86-4	No	Yes		-	-		5.00E-03	U	2.00E-02	U	2.00E-03	1.00E+00	1.35E-05	1		- 5.95E-04
Methyl Acetate	79-20-9	No	Yes		-	-		1.00E+00	U	-		6.12E-03	3.06E+00	4.70E-03	1		- 4.11E-01
Methyl Acrylate	96-33-3	No	Yes		-	-			-	2.00E-02	U	1.17E-02	5.84E+00	8.14E-03	1		- 8.86E-04
Methyl Ethyl Ketone (2-Butanone)	78-93-3	No	Yes		-	-		6.00E-01	U	5.00E+00	U	9.02E-03	4.51E+00	2.33E-03	1		- 1.16E-01
Methyl Hydrazine	60-34-4	No	Yes		-	1.00E-03	U	1.00E-03	U	2.00E-05	U	2.66E-02	1.33E+01	1.24E-04	1		- 9.43E-07
Methyl Isobutyl Ketone (4-methyl-2-pentanone)	108-10-1	No	Yes		-	-			-	3.00E+00	U	2.52E-02	1.26E+01	5.64E-03	1		- 1.41E-01
Methyl Isocyanate	624-83-9	No	Yes		-				-	1.00E-03	U	7.92E-02	3.96E+01	3.79E-02	1		- 5.89E-05
Methyl Mercaptan	74-93-1	No	Yes		-	-			-	-		2.64E-02	1.32E+01	1.28E-01	1		-
Methyl Mercury	22967-92-6	No	No		-	-		1.00E-04	U	-				0.00E+00	1		-
Methyl Methacrylate	80-62-6	No	Yes		-	-		1.40E+00	U	7.00E-01	U	1.83E-02	9.14E+00	1.30E-02	1		- 3.04E-02
Methyl Parathion	298-00-0	No	No		-	-		2.50E-04	U	-		1.46E+00	7.29E+02	4.09E-06	1		- 7.41E-04
Methyl Phosphonic Acid	993-13-5	No	No		-	-		6.00E-02	U	-		2.82E-03	1.41E+00	4.99E-10	1		- 2.44E-02
Methyl Styrene (Mixed Isomers)	25013-15-4	No	Yes		-	-		6.00E-03	U	4.00E-02	U	1.43E+00	7.16E+02	1.07E-01	1		- 3.77E-03
Methyl dicyclohexylamine, n-	7560-83-0	No	Yes		-	-			-	_		3.54E-01	1.77E+02	4.95E-03	1		-
Methyl methanesulfonate	66-27-3	No	No	9.90E-02	U	2.80E-05	U		-	-		8.66E-03	4.33E+00	1.65E-04	1		- 1.64E-04
Methyl tert-Butyl Ether (MTBE)	1634-04-4	No	Yes	1.80E-03	U	2.60E-07	U		-	3.00E+00	U	2.32E-02	1.16E+01	2.40E-02	1		- 3.22E-03
Methyl-1,4-benzenediamine dihydrochloride, 2-	615-45-2	No	No		-	-		3.00E-04	U	_		4.04E-01	2.02E+02	2.61E-16	1		- 3.63E-04
Methyl-2-Pentanol, 4-	108-11-2	No	Yes		-	-			-	-		1.63E-02			1		_
Methyl-5-Nitroaniline, 2-	99-55-8	No	No	9.00E-03	U	-		2.00E-02	U	-		3.58E-01	1.79E+02	3.39E-07	1		- 4.56E-03
Methyl-N-nitro-N-nitrosoguanidine, N-	70-25-7	No	No	8.30E+00	U	2.40E-03	U		-	_		1.44E-01	7.20E+01	4.99E-11	1		- 3.23E-06
Methylaniline Hydrochloride, 2-	636-21-5	No	No	1.30E-01	U	3.70E-05	U		-	-		2.30E-01	1.15E+02	8.59E-05	1		- 2.58E-04
Methylarsonic acid	124-58-3	No	No		-	-		1.00E-02	U	_		8.78E-02	4.39E+01	-	1		- 5.77E-03
Methylaziridine, 2-	75-55-8	No	Yes		-	-			-	-		2.90E-02	1.45E+01	4.09E-04	1		_
Methylbenzene,1-4-diamine monohydrochloride, 2-	74612-12-7	No	No		-	-		2.00E-04	U	-				-	1		_
Methylbenzene-1,4-diamine sulfate, 2-	615-50-9	No	No	1.00E-01	U	-		3.00E-04	U	-				-	1		_
Methylcholanthrene, 3-	56-49-5	Yes	No	2.20E+01	U	6.30E-03	U		-	-		1.92E+03	9.62E+05	2.14E-04	1		- 2.19E-03
Methylcyclohexane	108-87-2	No	Yes		-	-			-	-			2.34E+02		1		-
Methylcyclohexylamine, n-	100-60-7	No	Yes		-	-			-	-		7.52E-02	3.76E+01	1.23E-03	1		-
Methylcyclopentane	96-37-7	No	Yes		-	-			-	-			1.28E+02		1		-
Methylene Chloride	75-09-2	Yes	Yes	2.00E-03	U	1.00E-08	U	6.00E-03	U	6.00E-01	U		2.17E+01		1	1.28E-03	2.72E-03
Methylene-bis(2-chloroaniline), 4,4'-	101-14-4	Yes	No	1.00E-01	U	4.30E-04	U	2.00E-03	U	-			5.70E+03		1		- 1.83E-03
Methylene-bis(N,N-dimethyl) Aniline, 4,4'-	101-61-1	No	No	4.60E-02	U	1.30E-05	U		-	-		5.34E+00	2.67E+03	4.37E-08	1		- 2.65E-03
Methylenebisbenzenamine, 4,4'-	101-77-9	No	No	1.60E+00	U	4.60E-04	U		-	2.00E-02	U	4.26E+00	2.13E+03	2.17E-09	1		- 2.11E-04
Methylenediphenyl Diisocyanate	101-68-8	No	No		-	-			-	6.00E-04	U	5.70E+02	2.85E+05	3.66E-05	1		-
Methylisothiocyanate	556-61-6	No	Yes		-	-			-	-			1.07E+01		1		-
Methylnaphthalene	1321-94-4	No	Yes		-	-			-	-			2.53E+03		1		_
Methylnaphthalene, 1-	90-12-0	No	Yes	2.90E-02	U	-		7.00E-02	U	-			2.53E+03		1		- 5.99E-03
Methylnaphthalene, 2-	91-57-6	No	Yes		-	-		4.00E-03	U	-			2.48E+03		1		- 1.86E-02
Methylstyrene, Alpha-	98-83-9	No	Yes		-	-		7.00E-02	U	-			6.98E+02		1		- 1.25E-01
	1			!			-					. = 30	· · · · = ·-		•		

Screening Levels (RSL) for Soil to Groundwater

Chemical	CAS Number	Mutagen?	VOC?	Ingestion SF (mg/kg-day) ⁻¹	SFO Ref	Inhalation Unit Risk (ug/m³) ⁻¹	IUR Ref	Chronic RfD (mg/kg-day)	Chronic RfD Ref	Chronic RfC (mg/m³)	Chronic RfC Ref	K _d	K _{oc}	H,	Dilution Attenuation Factor (DAF) (unitless)	MCL-based SL (mg/kg)	Risk-Based SL (mg/kg)
Methyltriethyl Lead	1762-28-3	No	Yes	, , , , , , , , , , , , , , , , , , , ,	-					-		-		2.54E+01	1		
Metolachlor	51218-45-2	No	No		-			1.50E-01	U	-		9.78E-01	4.89E+02	3.68E-07	1	-	3.18E-01
Metribuzin	21087-64-9	No	No		-			2.50E-02	U	-		1.06E-01	5.31E+01	4.78E-09	1	-	1.49E-02
Metsulfuron-methyl	74223-64-6	No	No		-			2.50E-01	U	-		1.85E-01	9.25E+01	5.40E-15	1		1.89E-01
Mineral oils	8012-95-1	No	Yes		-	-		3.00E+00	U	-		9.64E+00	4.82E+03	3.34E+02	1	-	2.39E+02
Mirex	2385-85-5	No	Yes	1.80E+01	U	5.10E-03	U	2.00E-04	U	-		7.14E+02	3.57E+05	3.32E-02	1	-	6.27E-04
Molinate	2212-67-1	No	No		-			2.00E-03	U	-		3.64E-01	1.82E+02	1.68E-04	1	-	1.69E-03
Molybdenum	7439-98-7	No	No		-			5.00E-03	U	-		2.00E+01	-	0.00E+00	1	-	2.02E-01
Monoaluminum phosphate	13530-50-2	No	No		-	-		4.86E+01	U	-		-	-	0.00E+00	1	-	
Monoammonium phosphate	7722-76-1	No	No		-			4.86E+01	U	-		-	-	0.00E+00	1	-	
Monobutyltin Compounds	NA	No	No		-	-		-		-		-	_	-	1	-	
Monocalcium phosphate	7758-23-8	No	No		-	-		4.86E+01	U	-		-	_	0.00E+00	1	-	
Monochloramine	10599-90-3	No	No		-	-		1.00E-01	U	-		-		0.00E+00	1	-	
Monochlorobutanes	25154-42-1	No	No		-	-		-		-		-	-	-	1	-	
Monochlorophenols (total)	NA	No	No		-	-		-		-		-	-	-	1	-	
Monocyclic aromatic hydrocarbons (total)	NA	No	No		-	-		-		-		-	-	-	1	-	
Monomagnesium phosphate	7757-86-0	No	No		-	-		4.86E+01	U	-		-	-	0.00E+00	1		
Monomethylaniline	100-61-8	No	No		-			2.00E-03	U	-		1.64E-01	8.21E+01	3.63E-04	1		1.39E-03
Monopotassium phosphate	7778-77-0	No	No		-			4.86E+01	U	-		-		0.00E+00	1		
Monosodium phosphate	7558-80-7	No	No		-	-		4.86E+01	U	_		-	-	0.00E+00	1		
Myclobutanil	88671-89-0	No	No		-			2.50E-02	U	-		1.22E+01	6.08E+03		1		5.60E-01
N,N'-Diphenyl-1,4-benzenediamine	74-31-7	No	No		-			3.00E-04	U	-			5.19E+04		1		3.73E-02
N-Methyl dithiocarbamate	137-42-8	No	No		_			-		-		1.17E-01		_	1		
Naled	300-76-5	No	Yes		_	-		2.00E-03	U	-			1.27E+02	2.66E-03	1		1.81E-03
Naphtha, High Flash Aromatic (HFAN)	64742-95-6	No	Yes		_			3.00E-02	U	1.00E-01	U	_		1.80E-02	1		
Naphthalene	91-20-3	No	Yes		_	3.40E-05	U	2.00E-02	U	3.00E-03	U	3.08E+00	1.54E+03		1		5.42E-04
Naphthol, 2-	135-19-3	No	No		_				_	-		3.96E+00			1		
Naphthoquinone, 1,4-	130-15-4	No	No		_					-					1		
Naphthylamine, 1-	134-32-7	No	No		_					-			2.53E+03		1		
Naphthylamine, 2-	91-59-8	No	No	1.80E+00	U	0.00E+00	U			_			2.48E+03		1		2.00E-04
Napropamide	15299-99-7	No	No		-	- 0.002		1.20E-01	U	_			3.22E+03		1		1.31E+00
Neodymium Chloride (Stable, Nonradioactive)	10024-93-8	No	No		_			-		-		-		0.00E+00	1		
Niagara Blue 4B	2429-74-5	No	No		_					-		5.64E+05	2.82E+08		1		
Nickel Acetate	373-02-4	No	No		_	2.60E-04	U	1.10E-02	U	1.40E-05	U	2.00E-03		_	1		4.45E-03
Nickel Carbonate	3333-67-3	No	No		-	2.60E-04	U	1.10E-02	U	1.40E-05	U		-	-	1		
Nickel Carbonyl	13463-39-3	No	Yes		_	2.60E-04	U	1.10E-02	U	1.40E-05	U	_		2.04E+01	1		
Nickel Hydroxide	12054-48-7	No	No		_	2.60E-04	U	1.10E-02	U	1.40E-05	U	_		0.00E+00	1		
Nickel Oxide	1313-99-1	No	No		_	2.60E-04	U	1.10E-02	U	2.00E-05	U	_		0.00E+00	1		
Nickel Refinery Dust	NA	No	No		_	2.40E-04	U	1.10E-02	U	1.40E-05	U	1.50E+02		0.00E+00	1		3.24E+00
Nickel Soluble Salts	7440-02-0	No	No		_	2.60E-04	U	2.00E-02	U	9.00E-05	U	6.50E+01		0.00E+00	1		2.56E+00
Nickel Subsulfide	12035-72-2	No	No	1.70E+00	U	4.80E-04	U	1.10E-02	U	1.40E-05	U			0.00E+00	1		
Nickelocene	1271-28-9	No	No	02 - 00	_	2.60E-04	U	1.10E-02	U	1.40E-05	U	-	_	-	1		
Nicotinonitrile	100-54-9	No	No		_							9.44F-02	4.72E+01	1.12F-05	1		
Niobium	7440-03-1	No	No		_					_			-	0.00E+00	1		
Nitrate	14797-55-8	No	No		_			1.60E+00	U	_		_		0.00E+00	1		
Nitrate + Nitrite (as N)	NA	No	No		_			1.002.00		_		_		0.00E+00	1		
Nitric Acid	7697-37-2	No	Yes		_					_		_		0.00E+00	1		
			. 55										_	3.002.00	'		

Screening Levels (RSL) for Soil to Groundwater

Chemical	CAS Number	Mutagen?	VOC?	Ingestion SF (mg/kg-day) ⁻¹	SFO Ref	Inhalation Unit Risk (ug/m³) ⁻¹	IUR Ref	Chronic RfD (mg/kg-day)	Chronic RfD Ref	Chronic RfC (mg/m³)	Chronic RfC Ref	K _d	K _{oc}	H,	Dilution Attenuation Factor (DAF) (unitless)	MCL-based SL (mg/kg)	Risk-Based SL (mg/kg)
Nitric Oxide	10102-43-9	No	Yes	, , , , , , , , , , , , , , , , , , , ,	-			-		-		-	-	0.00E+00	1	, , , , , , , , , , , , , , , , , , , ,	
Nitrite	14797-65-0	No	No		-	-		1.00E-01	U	-		-	-	0.00E+00	1	-	
Nitroaniline, 2-	88-74-4	No	No		-	-		1.00E-02	U	5.00E-05	U	2.22E-01	1.11E+02	2.41E-06	1	-	8.00E-03
Nitroaniline, 3-	99-09-2	No	No		-	-		-		-		2.18E-01	1.09E+02	3.23E-07	1	-	
Nitroaniline, 4-	100-01-6	No	No	2.00E-02	U	-		4.00E-03	U	6.00E-03	U	2.18E-01	1.09E+02	5.15E-08	1	-	1.58E-03
Nitrobenzene	98-95-3	No	Yes		-	4.00E-05	U	2.00E-03	U	9.00E-03	U	4.52E-01	2.26E+02	9.81E-04	1	-	9.15E-05
Nitrobiphenyl, 4-	92-93-3	No	No		-	-		-		-		1.59E+01	7.97E+03	1.45E-04	1	-	
Nitrocellulose	9004-70-0	No	No		-	-		3.00E+03	U	-		2.00E-02	1.00E+01	1.35E-21	1	-	1.32E+03
Nitrodiphenylamine, 2-	119-75-5	No	No		-	-		-		-		2.62E+00	1.31E+03	3.71E-06	1	-	
Nitrofurantoin	67-20-9	No	No		-	-		7.00E-02	U	-		2.34E-01	1.17E+02	5.44E-11	1	-	6.09E-02
Nitrofurazone	59-87-0	No	No	1.30E+00	U	3.70E-04	U	-		-		7.00E-01	3.50E+02	1.27E-11	1	-	5.37E-05
Nitrogen Dioxide	10102-44-0	No	Yes		-	-		-		-		-		0.00E+00	1	-	
Nitroglycerin	55-63-0	No	No	1.70E-02	U	-		1.00E-04	U	-		2.32E-01			1		8.47E-05
Nitroguanidine	556-88-7	No	No		-	-		1.00E-01	U	-		4.14E-02	2.07E+01	1.82E-14	1	-	4.84E-02
Nitromethane	75-52-5	No	Yes		-	8.80E-06	U	-		5.00E-03	U	2.06E-02	1.03E+01	1.17E-03	1	-	1.41E-04
Nitrophenol, 2-	88-75-5	No	Yes		- 1	-		-		-		5.94E-01	2.97E+02	5.23E-04	1	-	
Nitrophenol, 2-amino-4-	99-57-0	No	No		-	-		-		-		2.86E-01	1.43E+02	9.12E-11	1	-	
Nitrophenol, 3-	554-84-7	No	No		-	-		-		-		5.82E-01	2.91E+02	8.18E-08	1	-	
Nitrophenol, 4-	100-02-7	No	No		-	-		-		-		5.82E-01	2.91E+02	1.70E-08	1	-	
Nitrophenol, 4-amino-2-	119-34-6	No	No		-	-		-		-		2.86E-01	1.43E+02	9.12E-11	1	-	
Nitropropane, 2-	79-46-9	No	Yes		-	2.70E-03	U	-		2.00E-02	U	6.16E-02	3.08E+01	4.87E-03	1	-	5.45E-07
Nitropyrene, 4-	57835-92-4	No	No	1.20E+00	U	1.10E-04	U	-		-		1.72E+02	8.61E+04	1.00E-06	1	-	3.28E-03
Nitroguinoline-1-oxide. 4-	56-57-5	No	No		-	-		-		-		8.02E+00	4.01E+03	1.11E-12	1	-	
Nitroso-N-ethylurea, N-	759-73-9	Yes	No	2.70E+01	U	7.70E-03	U	-		-		4.20E-02	2.10E+01	5.40E-09	1		2.23E-07
Nitroso-N-methylurea, N-	684-93-5	Yes	No	1.20E+02	U	3.40E-02	U	-		-					1		4.61E-08
Nitroso-di-N-butylamine, N-	924-16-3	No	Yes	5.40E+00	U	1.60E-03	U	-		-			9.15E+02		1	-	5.53E-06
Nitroso-di-N-propylamine, N-	621-64-7	No	No	7.00E+00	U	2.00E-03	U	-		-			2.75E+02		1		8.09E-06
Nitrosodiethanolamine, N-	1116-54-7	No	No	2.80E+00	U	8.00E-04	U	-		-					1		5.62E-06
Nitrosodiethylamine, N-	55-18-5	Yes	No	1.50E+02	U	4.30E-02	U	-		-		1.66E-01	8.29E+01	1.48E-04	1	-	6.05E-08
Nitrosodimethylamine, N-	62-75-9	Yes	Yes	5.10E+01	U	1.40E-02	U	8.00E-06	U	4.00E-05	U		2.28E+01		1		2.75E-08
Nitrosodiphenylamine, N-	86-30-6	No	No	4.90E-03	U	2.60E-06	U	-		-			2.63E+03	4.95E-05	1		6.66E-02
Nitrosomethylethylamine, N-	10595-95-6	No	Yes	2.20E+01	U	6.30E-03	U	-		-		8.70E-02	4.35E+01		1		2.04E-07
Nitrosomethylvinylamine, N-	4549-40-0	No	Yes		-	-		-		-			4.35E+01		1		
Nitrosomorpholine [N-]	59-89-2	No	No	6.70E+00	U	1.90E-03	U			-			2.25E+01		1		2.84E-06
Nitrosopiperidine [N-]	100-75-4	No	No	9.40E+00	U	2.70E-03	U	-		-			1.68E+02		1		4.41E-06
Nitrosopyrrolidine, N-	930-55-2	No	No	2.10E+00	U	6.10E-04	U	-		-			9.19E+01		1		1.42E-05
Nitrotoluene, 4-Amino-2-	119-32-4	No	No		_			-		-			1.79E+02		1		
Nitrotoluene, m-	99-08-1	No	No		_	-		1.00E-04	U	-				3.80E-04	1		1.62E-04
Nitrotoluene, o-	88-72-2	No	Yes	2.20E-01	U	-		9.00E-04	U	-		1 1		5.11E-04	1		2.96E-04
Nitrotoluene, p-	99-99-0	No	No	1.60E-02	U	-		4.00E-03	U	_				2.30E-04	1		3.95E-03
Nonachlor, trans-	39765-80-5	No	Yes		-	-		-		-				1.01E-03	1		
Nonane, n-	111-84-2	No	Yes		-	-		3.00E-04	U	2.00E-02	U			1.39E+02	1		7.47E-03
Nonanol, n-	143-08-8	No	Yes		-	-		-		-			6.98E+01		1		
Norflurazon	27314-13-2	No	No		-	-		1.50E-02	U	_			3.12E+03		1		1.86E-01
OCDD	3268-87-9	No	No	3.90E+01	U	1.14E-02	U	2.33E-06	U	1.33E-04	U	3.88E+03			1		7.75E-03
OCDF	39001-02-0	No	No	3.90E+01	U	1.14E-02	U	2.33E-06	U	1.33E-04	U	2.18E+03		1	1		4.36E-03
Octabromodiphenyl Ether	32536-52-0	No	No		-		_	3.00E-03	U	-	-			3.06E-06	1		1.19E+00
	-2000 02 0	1.10						J.JJL 00					3.002.04	3.332 33	•		

Screening Levels (RSL) for Soil to Groundwater

Chemical	CAS Number	Mutagen?	VOC?	Ingestion SF (mg/kg-day) ⁻¹	SFO Ref	Inhalation Unit Risk (ug/m³)-¹	IUR Ref	Chronic RfD (mg/kg-day)	Chronic RfD Ref	Chronic RfC (mg/m³)	Chronic RfC Ref	Kd	K _{oc}	H`	Dilution Attenuation Factor (DAF) (unitless)	MCL-based SL (mg/kg)	Risk-Based SL (mg/kg)
Octachlorostyrene	29082-74-4	No	Yes	(0 0),	-	-			-	-		-	5.51E+04		1	, G G,	-
Octadecanoic Acid	57-11-4	No	No		-	-			-	-		2.34E+01	1.17E+04	1.95E-05	1		
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)	2691-41-0	No	No		-	-		5.00E-02	U	-			5.32E+02		1		- 1.27E-01
Octahydrotrimethylmethylethylphenanthrenol	511-15-9	No	No		-				-	-		-	3.95E+05		1		-
Octamethylpyrophosphoramide	152-16-9	No	No		-			2.00E-03	U	-		4.02E-02	2.01E+01	1.54E-08	1		- 9.63E-04
Octanol, n-	111-87-5	No	Yes		-				-	-			3.83E+01		1		-
Octanone, 2-	111-13-7	No	Yes		-	-			-	-		9.96E-02			1		-
Octanone, 3-	106-68-3	No	Yes		-				-	-		1.04E-01			1		-
Octyl Phthalate, di-N-	117-84-0	No	No		-	-		1.00E-02	U	-			1.41E+05		1		- 5.66E+00
Oleic acid	112-80-1	No	Yes		-	-			-	-		2.34E+01	1.17E+04		1		-
Oleum	8014-95-7	No	No		-	-			-	-				0.00E+00	1		-
Oryzalin	19044-88-3	No	No	7.79E-03	U	-		1.40E-01	U	-			8.25E+02		1		- 1.47E-02
Oxadiazon	19666-30-9	No	No		-	-		5.00E-03	U	-		1.00E+01	5.00E+03	2.97E-06	1		- 4.84E-02
Oxamyl	23135-22-0	No	No		-	-		2.50E-02	U	-		2.00E-02	1.00E+01	9.69E-09	1	4.40E-02	1.10E-02
Oxychlordane	27304-13-8	No	No		-	-			-	-		3.10E+01	1.55E+04	3.52E-06	1		-
Oxyfluorfen	42874-03-3	No	No	7.32E-02	U	-		3.00E-02	U	-		7.98E+01	3.99E+04	3.35E-05	1		- 4.29E-02
Ozone	10028-15-6	No	No		-	-			-	-			-	0.00E+00	1		-
Paclobutrazol	76738-62-0	No	No		-	-		1.30E-02	U	-		1.85E+00	9.23E+02	3.39E-09	1		- 4.63E-02
Paraquat Dichloride	1910-42-5	No	No		-	-		4.50E-03	U	-		1.36E+01	6.78E+03	1.32E-11	1		- 1.24E-01
Parathion	56-38-2	No	No		-	-		6.00E-03	U	-		4.84E+00	2.42E+03	1.22E-05	1		- 4.32E-02
PeCDD, 2,3,7,8-	36088-22-9	No	No	1.30E+05	U	3.80E+01	U	7.00E-10	U	4.00E-08	U	8.66E+02	4.33E+05	8.99E-05	1		- 5.19E-07
PeCDF, 1,2,3,7,8-	57117-41-6	No	No	3.90E+03	U	1.14E+00	U	2.33E-08	U	1.33E-06	U	4.66E+02	2.33E+05	2.05E-04	1		- 9.31E-06
PeCDF, 2,3,4,7,8-	57117-31-4	No	No	3.90E+04	U	1.14E+01	U	2.33E-09	U	1.33E-07	U	4.66E+02	2.33E+05	2.05E-04	1		- 9.31E-07
Pebulate	1114-71-2	No	Yes		-	-		5.00E-02	U	-		5.98E-01	2.99E+02	9.69E-03	1		- 4.48E-02
Pendimethalin	40487-42-1	No	No		-	-		3.00E-02	U	-		1.12E+01	5.62E+03	3.50E-05	1		- 1.56E-01
Pentabromodiphenyl Ether	32534-81-9	No	Yes		-	-		2.00E-03	U	-		4.34E+01	2.17E+04	4.42E-03	1		- 1.75E-01
Pentabromodiphenyl ether, 2,2',4,4',5- (BDE-99)	60348-60-9	No	No		-	-		1.00E-04	U	_		4.34E+01	2.17E+04	4.82E-05	1		- 8.74E-03
Pentachloroaniline	527-20-8	No	No		-	-			-	_			1.24E+04		1		_
Pentachlorobenzene	608-93-5	No	Yes		-	-		8.00E-04	U	_			3.71E+03		1		- 2.41E-03
Pentachlorobiphenyl, 2',3,4,4',5- (PCB 123)	65510-44-3	No	Yes	3.90E+00	U	1.14E-03	U	2.33E-05	U	1.33E-03	U		1.31E+05		1		- 1.04E-03
Pentachlorobiphenyl, 2,3',4,4',5- (PCB 118)	31508-00-6	No	Yes	3.90E+00	U	1.14E-03	U	2.33E-05	U	1.33E-03	U		1.28E+05		1		- 1.01E-03
Pentachlorobiphenyl, 2,3,3',4,4'- (PCB 105)	32598-14-4	No	Yes	3.90E+00	U	1.14E-03	U	2.33E-05	U	1.33E-03	U		1.31E+05		1		- 1.04E-03
Pentachlorobiphenyl, 2,3,4,4',5- (PCB 114)	74472-37-0	No	Yes	3.90E+00	U	1.14E-03	U	2.33E-05	U	1.33E-03	U		1.31E+05		1		- 1.04E-03
Pentachlorobiphenyl, 3,3',4,4',5- (PCB 126)	57465-28-8	No	Yes	1.30E+04	U	3.80E+00	U	7.00E-09	U	4.00E-07	U		1.28E+05		1		- 3.04E-07
Pentachlorocyclopentadiene	25329-35-5	No	Yes		_	-				-			9.41E+02		1		-
Pentachlorodibenzo-p-dioxin, 1,2,3,7,8-	40321-76-4	No	No	1.30E+05	U	3.80E+01	U	7.00E-10	U	4.00E-08	U		4.16E+05		1		- 4.99E-07
Pentachloroethane	76-01-7	No	Yes	9.00E-02	U					-			1.36E+02		1		- 3.10E-04
Pentachloronitrobenzene	82-68-8	No	Yes	2.60E-01	U			3.00E-03	U	_			6.00E+03		1		- 1.48E-03
Pentachlorophenol	87-86-5	No	No	4.00E-01	U	5.10E-06	U	5.00E-03	U	_			5.92E+02		1	1.38E-03	5.72E-05
Pentaerythritol tetranitrate (PETN)	78-11-5	No	No	4.00E-03	U	J. 10L 00		2.00E-03	U	_			6.48E+02		1	1.002 00	- 5.76E-03
Pentamethyl dipropylenetriamine	3855-32-1	No	No	7.00L-00	_			2.000-00					1.21E+02		1		- 0.102 00
Pentane, n-	109-66-0	No	Yes		_				_	1.00E+00	U		7.22E+01		1		- 1.02E+00
Pentyl Alcohol, N-	71-41-0	No	Yes		-	-				1.00⊑₹00	U		6.33E+00		1 1		1.02L+00
Perchlorate and Perchlorate Salts			No		-			7.00E-04	U	-		1.21 = 02			1 1		
	14797-73-0	No			-	-			U	-		1 225 04		0.00E+00	1		1 20E 02
Perfluercetore Sulfenete (PEOS)	375-73-5	No	No		-			2.00E-02	U	-			6.17E+01 3.72E+02	-	1		- 1.30E-02
Perfluorooctane Sulfonate (PFOS)	1763-23-1	No	No		-		1	2.00E-05	U	-		7.44⊏-01	3.12E+U2	-	ı		- 3.79E-05

Screening Levels (RSL) for Soil to Groundwater

Chemical	CAS Number	Mutagen?	VOC?	Ingestion SF (mg/kg-day) ⁻¹	SFO Ref	Inhalation Unit Risk (ug/m³)-¹	IUR Ref	Chronic RfD (mg/kg-day)	Chronic RfD Ref	Chronic RfC (mg/m³)	Chronic RfC Ref	K d	K _{oc}	H,	Dilution Attenuation Factor (DAF) (unitless)	MCL-based SL (mg/kg)	Risk-Based SL (mg/kg)
Perfluorooctanoic acid (PFOA)	335-67-1	No	No	7.00E-02	U			2.00E-05	U	-		2.30E-01	1.15E+02	-	1	, , ,	- 1.72E-05
Permethrin	52645-53-1	No	No			-		5.00E-02	U	-		2.38E+02	1.19E+05	7.65E-05	1		- 2.39E+01
Perylene	198-55-0	No	No						-	-		1.20E+03	5.99E+05	1.49E-04	1		-
Pesticides (total)	NA	No	No						-	-		-		-	1		-
Pesticides, organochlorinated (each)	NA	No	No			-			-	-		-		-	1		-
Pesticides, organochlorinated (total)	NA	No	No			-			-	-		-		-	1		-
Phenacetin	62-44-2	No	No	2.20E-03	U	6.30E-07	U		-	-		8.20E-02	4.10E+01	8.71E-09	1		- 9.68E-03
Phenanthrene	85-01-8	No	Yes						-	-		3.34E+01	1.67E+04	1.73E-03	1		-
Phenmedipham	13684-63-4	No	No			-		2.40E-01	U	-		5.18E+00	2.59E+03	3.44E-11	1		- 2.05E+00
Phenol	108-95-2	No	No					3.00E-01	U	2.00E-01	U	3.74E-01	1.87E+02	1.36E-05	1		- 3.31E-01
Phenol, 2-(1-methylethoxy)-, methylcarbamate	114-26-1	No	No			-		4.00E-03	U	-		1.20E-01	6.00E+01	5.85E-08	1		- 2.51E-03
Phenothiazine	92-84-2	No	No			-		5.00E-04	U	-		2.96E+00	1.48E+03		1		- 1.36E-03
Phenyl Isothiocyanate	103-72-0	No	Yes			-		2.00E-04	U	_		4.38E-01	2.19E+02	1.21E-01	1		- 1.70E-04
Phenylenediamine, m-	108-45-2	No	No		-	-		6.00E-03	U	-		6.76E-02			1		- 3.21E-03
Phenylenediamine, o-	95-54-5	No	No	1.20E-01	U	-		4.00E-03	U	_		6.90E-02	3.45E+01	2.94E-07	1		- 1.74E-04
Phenylenediamine, p-	106-50-3	No	No			-		1.00E-03	U	_		6.76E-02	3.38E+01	2.75E-08	1		- 5.35E-04
Phenylmercuric Acetate	62-38-4	No	No			-		8.00E-05	U	_		1.13E-01			1		- 5.00E-05
Phenylphenol, 2-	90-43-7	No	No	1.94E-03	U	-			-	_		1.34E+01			1		- 4.08E-01
Phorate	298-02-2	No	No					2.00E-04	U	-		9.20E-01	4.60E+02	1.79E-04	1		- 3.39E-04
Phosmet	732-11-6	No	No					2.00E-02	U	_		2.00E-02	1.00E+01		1		- 8.20E-03
Phosphine	7803-51-2	No	Yes					3.00E-04	U	3.00E-04	U			0.00E+00	1		_
Phosphoric Acid	7664-38-2	No	No					4.86E+01	U	1.00E-02	U			0.00E+00	1		_
Phosphorus (total)	NA	No	No						-	_		3.50E+00		0.00E+00	1		_
Phosphorus pentoxide	1314-56-3	No	No			-			-	_				0.00E+00	1		_
Phosphorus, White	7723-14-0	No	Yes					2.00E-05	U	_		3.50E+00	1.12E+03		1		- 1.48E-04
Phthalates (total)	NA	No	No						-	_				_	1		-
Phthalic Acid, P-	100-21-0	No	No					1.00E+00	U	_		1.58E-01	7.92E+01	1.59E-11	1		- 6.77E-01
Phthalic Acid, m-	121-91-5	No	No							_		1.58E-01			<u>.</u> 1		-
Phthalic Acid, o-	88-99-3	No	No						-	_		1.62E-01	8.09E+01		1		_
Phthalic Anhydride	85-44-9	No	No			-		2.00E+00	U	2.00E-02	U		1.00E+01		1		- 8.51E-01
Picloram	1918-02-1	No	No					7.00E-02	U				3.88E+01		1	1.39E-01	3.78E-02
Picoline, 2-	109-06-8	No	Yes			-		7.002 02		_			1.15E+02	_	1	1.002 01	- 0.102 02
Picramic Acid (2-Amino-4,6-dinitrophenol)	96-91-3	No	No			-		1.00E-04	U	_			2.27E+02		1		- 1.30E-04
Picric Acid (2,4,6-Trinitrophenol)	88-89-1	No	No			-		9.00E-04	U	_			2.25E+03		1		- 8.36E-03
Piperidine	110-89-4	No	Yes					5.55E 01	-	_			5.47E+01		1		-
Pirimiphos, Methyl	29232-93-7	No	No					6.67E-05	U	_			3.75E+02		<u>·</u> 1		- 7.72E-05
Polybrominated Biphenyls	59536-65-1	No	No	3.00E+01	U	8.60E-03	U	7.00E-06	U	_					 1		-
Polychlorinated Biphenyls (low risk)	1336-36-3	No	Yes	4.00E-01	U	1.00E-04	U			_		1.56E+02	7.81E+04	1.70E-02	<u>.</u> 1	7.82E-02	6.82E-03
Polycyclic aromatic hydrocarbons (PAH), Total	NA	No	No						-	_					1		-
Polycyclic aromatic hydrocarbons (PAH), Total (high molecular weight)	NA	No	No			-			-	-		-		_	1		_
Polycyclic aromatic hydrocarbons (PAH), Total (low molecular weight)	NA	No	No			-			-	-		_	-	_	1		-
Polycyclic chlorinated hydrocarbons (total)	NA	No	No	-	-	-			-	-		-	-	-	1		-
Polymeric Methylene Diphenyl Diisocyanate (PMDI)	9016-87-9	No	No			-		4.00= 51	-	6.00E-04	U	2.00E+07	1.00E+10		1		-
Polyphosphoric acid	8017-16-1	No	No	-	•	-		4.86E+01	U	-		-	-	0.00E+00	1		

Screening Levels (RSL) for Soil to Groundwater

Chemical	CAS Number	Mutagen?	VOC?	Ingestion SF (mg/kg-day) ⁻¹	SFO Ref	Inhalation Unit Risk (ug/m³) ⁻¹	IUR Ref	Chronic RfD (mg/kg-day)	Chronic RfD Ref	Chronic RfC (mg/m³)	Chronic RfC Ref	K _d	K _{oc}	H,	Dilution Attenuation Factor (DAF) (unitless)	MCL-based SL (mg/kg)	Risk-Based SL (mg/kg)
Potassium	7440-09-7	No	No		-		-	-	-	-		5.50E+00		- 0.00E+00	1		
Potassium Cyanide	151-50-8	No	No		-		-	2.00E-03	U	-		-		- 0.00E+00	1		
Potassium Perchlorate	7778-74-7	No	No		-		-	7.00E-04	U	-		-		- 0.00E+00	1		
Potassium Perfluorobutane Sulfonate	29420-49-3	No	No		-		-	2.00E-02	U	-		-		- 3.59E-11	1		
Potassium Perfluorooctane Sulfonate	2795-39-3	No	No		-		-	2.00E-05	U	-		-		- 8.18E-05	1		
Potassium Silver Cyanide	506-61-6	No	No		-		-	5.00E-03	U	-		-		- 0.00E+00	1		
Potassium tripolyphosphate	13845-36-8	No	No		-		-	4.86E+01	U	-		-		- 0.00E+00	1		
Praseodymium	7440-10-0	No	No		-		-	-	-	-		-		- 0.00E+00	1		
Praseodymium Chloride (Stable, Nonradioactive)	10361-79-2	No	No		-		-	-	-	-		-		- 0.00E+00	1		
Prochloraz	67747-09-5	No	No	1.50E-01	U		-	9.00E-03	U	-		4.86E+00	2.43E+03	6.70E-07	1		1.90E-03
Profluralin	26399-36-0	No	Yes		-			6.00E-03	U	-		6.10E+01	3.05E+04	1.19E-02	1		1.59E-01
Promethium	7440-12-2	No	No		-		-	-	-	-		-		- 0.00E+00	1		•
Prometon	1610-18-0	No	No		-			1.50E-02	U	-		2.74E-01	1.37E+02	3.72E-08	1		1.20E-02
Prometryn	7287-19-6	No	No		-			4.00E-02	U	-		1.31E+00	6.56E+02	4.87E-07	1		9.05E-02
Propachlor	1918-16-7	No	No		-			1.30E-02	U	-		4.10E-01	2.05E+02	1.47E-05	1		1.50E-02
Propanil	709-98-8	No	No		-		-	5.00E-03	U	-		3.52E-01	1.76E+02	6.99E-08	1		4.52E-03
Propanoic acid, 2-(2,4-dichlorophenoxy)-	120-36-5	No	No		-			-	-	-		9.70E-02	4.85E+01	3.55E-09	1		
Propargite	2312-35-8	No	No	3.27E-02	U			4.00E-02	U	-		7.34E+01	3.67E+04	2.62E-05	1		6.77E-02
Propargyl Alcohol	107-19-7	No	Yes		-			2.00E-03	U	-		3.80E-03	1.90E+00	4.70E-05	1		8.15E-04
Propazine	139-40-2	No	No		-			2.00E-02	U	-		6.88E-01	3.44E+02	1.88E-07	1		3.05E-02
Propham	122-42-9	No	No		-			2.00E-02	U	-		4.38E-01	2.19E+02	7.52E-06	1		2.24E-02
Propiconazole	60207-90-1	No	No		-			1.00E-01	U	_		3.12E+00	1.56E+03	7.03E-08	1		- 5.35E-01
Propionaldehyde	123-38-6	No	Yes		-				-	8.00E-03	U	2.00E-03			1		· 3.37E-04
Propionitrile	107-12-0	No	Yes		_					-	-			1.51E-03	1		
Propionitrile, 3-(NN-dimethylamino)	1738-25-6	No	Yes		_					_				8.22E-07	1		
Propyl Alcohol, n-	71-23-8	No	Yes		_					_		3.80E-03			1		
Propyl benzene	103-65-1	No	Yes		_			1.00E-01	U	1.00E+00	U			4.29E-01	1		1.22E-01
Propylene	115-07-1	No	Yes		_					3.00E+00	U			8.01E+00	<u>.</u> 1		6.00E-01
Propylene Glycol	57-55-6	No	No		-			2.00E+01	U	-				5.27E-07	1		8.09E+00
Propylene Glycol Dinitrate	6423-43-4	No	No		_			2.002 * 0 1		2.72E-04	U		6.07E+01		1		
Propylene Glycol Monoethyl Ether	1569-02-4	No	Yes		_				_			2.60E-03			1		
Propylene Glycol Monomethyl Ether	107-98-2	No	Yes		_			7.00E-01	U	2.00E+00	U		1.00E+00		<u>'</u> 1		6.49E-02
Propylene Oxide	75-56-9	No	Yes	2.40E-01	U	3.70E-06	U	7.002 01		3.00E-02	U		5.19E+00		<u>'</u> 1		5.60E-05
Propyzamide	23950-58-5	No	No	2.102 01	_	0.702 00		7.50E-02	U	0.002 02				3.99E-07	1		1.19E-01
Prussian Blue (Ferric Ferrocyanide)	14038-43-8	No	No		_			1.002 02				0.102-01			1		
Pyrazinyl phosphorothioate, O,O-diethyl O-2-	297-97-2	No	No		_				-					3.52E-05	1		
Pyrene Pyrespriordilloate, 0,5 dictriy, 0 2	129-00-0	No	Yes		_			3.00E-02	U					4.87E-04	1		1.32E+00
Pyridine	110-86-1	No	Yes		_			1.00E-03	U					4.50E-04	<u>'</u> 1		6.80E-04
Quinalphos	13593-03-8	No	No		_			5.00E-04	U	<u>-</u>				1.90E-06	1		4.35E-03
Quinoline	91-22-5	No	No	3.00E+00	U			0.002 01						6.83E-05	1		7.83E-05
Quizalofop-ethyl	76578-14-8	No	No	0.002.00	_			9.00E-03	U					4.33E-07	1		1.92E-01
Refractory Ceramic Fibers	NA	No	No		_			0.000		3.00E-02	U	1.002.101		- 0.00E+00	1		1.322 01
Resmethrin	10453-86-8	No	No		_			3.00E-02	U	-		6.22F+02		5.44E-06	1		4.20E+00
Resorcinol	10455-60-6	No	No		_			0.000-02						4.04E-09	1		1.202.700
Ronnel	299-84-3	No	Yes		_			5.00E-02	U					1.31E-03	1		· 3.70E-01
Rotenone	83-79-4	No	No			•		4.00E-03	U	<u>-</u>				4.58E-12	1		· 3.19E+00
Rubidium	7440-17-7	No	No			•		4.00E-03	J	-		J.ZZETUZ		4.36E-12 - 0.00E+00	1		J. 13L 100
Nubicidili	1440-11-1	INU	INU		-	•		-						- 0.00⊑+00	Į.		

Screening Levels (RSL) for Soil to Groundwater

Chemical	CAS Number	Mutagen?	VOC?	Ingestion SF (mg/kg-day) ⁻¹	SFO Ref	Inhalation Unit Risk (ug/m³) ⁻¹	IUR Ref	Chronic RfD (mg/kg-day)	Chronic RfD Ref	Chronic RfC (mg/m³)	Chronic RfC Ref	K _d	K _{oc}	H,	Dilution Attenuation Factor (DAF) (unitless)	MCL-based SL (mg/kg)	Risk-Based SL (mg/kg)
Rubidium Chloride	7791-11-9	No	No No	(mg/kg-day)	_ 101	(ug/iii /	1101	(mg/kg-day)	. Itel	(1119/111 /	1401	r\ _d	rv _{oc}	- 0.00E+00	1	(mg/kg)	(Hig/kg)
Rubidium Hydroxide	1310-82-3	No	No									_		- 0.00E+00	1		
	7790-29-6	No	No					_				_		- 0.00E+00	1		
	94-59-7	Yes	No	2.20E-01	U	6.30E-05	U	_				4 14F-01		3.71E-04	1		- 5.88E-05
Samarium Chloride (Stable, Nonradioactive)	10361-82-7	No	No	2.202 01	_	0.002 00		_				7.172 01		- 0.00E+00	1		0.002 00
Samarium Nitrate (Stable, Nonradioactive)	10361-83-8	No	No									_		- 0.00E+00	1		
Scandium	7440-20-2	No	No					_				_		- 0.00E+00	1		
Selenious Acid	7783-00-8	No	No					5.00E-03	U					- 0.00E+00	1		
Selenite	14124-67-5	No	No					0.00L-00						- 0.00E+00	1		
Selenium	7782-49-2	No	No		-			5.00E-03	U	2.00E-02	U	5.00E+00		- 0.00E+00	1	2.60E-01	5.19E-02
Selenium Sulfide	7446-34-6	No	No		-			5.00E-03	U	2.00E-02 2.00E-02	U	3.00L100		- 0.00E+00	1	2.00L-01	3.19L-02
Selenourea	630-10-4	No	Yes		-			3.00E-03	U	2.00E-02	U	2.40E-02		- 0.00∟+00	1		
					-		1	1.40E-01	U	-		8.74E+00		8.83E-10	1		- 1.45E+00
•	74051-80-2	No	No		-	-		1.40E-01	U	2.005.02		0.74⊑+00			1		- 1.45E+00
Silica (crystalline, respirable)	7631-86-9	No	No		-		1	-	•	3.00E-03	U	-		0.00E+00	1		
Silicon	7440-21-3	No	No		-			5 005 00		-		0.005.00		0.00E+00	1		7.005.00
Silver	7440-22-4	No	No		-	-		5.00E-03	U	-		8.30E+00		- 0.00E+00	1		7.99E-02
Silver Cyanide	506-64-9	No	No	4 005 04	-	-		1.00E-01	U	-		-		0.00E+00	1	4 005 00	0.005.04
Simazine	122-34-9	No	No	1.20E-01	U			5.00E-03	U	-		-		3.85E-08	1	1.98E-03	3.00E-04
Sodium	7440-23-5	No	No		-	-		-		-		1.00E+02		- 0.00E+00	1		
Sodium Acifluorfen	62476-59-9	No	No		-	-		1.30E-02	U			7.76E+00		2.47E-09	1		- 2.07E-01
Sodium Azide	26628-22-8	No	No		-			4.00E-03	U			-		- 0.00E+00	1		
Sodium Cyanide	143-33-9	No	No		-			1.00E-03	U			-		- 0.00E+00	1		-
Sodium Dichromate	10588-01-9	Yes	No	5.00E-01	U	1.50E-01	U	2.00E-02	U	2.00E-04	U	-		- 0.00E+00	1		-
Sodium Diethyldithiocarbamate	148-18-5	No	No	2.70E-01	U			3.00E-02	U	-		4.10E-01			1		- 1.76E-04
	7681-49-4	No	No		-	-		5.00E-02	U	1.30E-02	U	-		- 0.00E+00	1		-
	62-74-8	No	No		-	-		2.00E-05	U	-		2.88E-03	1.44E+00	4.46E-05	1		- 8.14E-06
Sodium Hydroxide	1310-73-2	No	No		-	-		-	-	-		-	-	0.00E+00	1		
Sodium Metavanadate	13718-26-8	No	No		-	-		1.00E-03	U	-		-	-	0.00E+00	1		
Sodium Perchlorate	7601-89-0	No	No		-	-		7.00E-04	U	-		-	-	0.00E+00	1		-
Sodium Tungstate	13472-45-2	No	No		-	-		8.00E-04	U	-		-	-	- 0.00E+00	1		-
Sodium Tungstate Dihydrate	10213-10-2	No	No		-	-		8.00E-04	U	-		-	-	0.00E+00	1		-
Sodium acid pyrophosphate	7758-16-9	No	No		-	-		4.86E+01	U	-		-		- 0.00E+00	1		-
Sodium aluminum phosphate (acidic)	7785-88-8	No	No		-	-		4.86E+01	U	-		-		- 0.00E+00	1		-
Sodium aluminum phosphate (anhydrous)	10279-59-1	No	No		-	-		4.86E+01	U	-		-		- 0.00E+00	1		-
Sodium aluminum phosphate (tetrahydrate)	10305-76-7	No	No		-	-		4.86E+01	U	-		-		- 0.00E+00	1		-
Sodium hexametaphosphate	10124-56-8	No	No		-	-		4.86E+01	U	-		-		- 0.00E+00	1		
Sodium polyphosphate	68915-31-1	No	No		-	-		4.86E+01	U	-		-		- 0.00E+00	1		
Sodium trimetaphosphate	7785-84-4	No	No		-	-		4.86E+01	U	-		-		- 0.00E+00	1		_
Sodium tripolyphosphate	7758-29-4	No	No		-	-		4.86E+01	U	-		-		- 0.00E+00	1		
	822-23-1	No	Yes		-	-		-		-		1.65E+02		8.87E-01	1		-
	961-11-5	No	No	2.40E-02	U	-		3.00E-02	U	-				7.52E-08	1		- 8.21E-03
	7789-06-2	Yes	No	5.00E-01	U	1.50E-01	U	2.00E-02	U	2.00E-04	U	-		- 0.00E+00	1		-
	7440-24-6	No	No		-	-		6.00E-01	U	-		3.50E+01		- 0.00E+00	1		- 4.22E+01
	57-24-9	No	No		-	-		3.00E-04	U	-				3.09E-12	1		- 6.50E-03
Styrene	100-42-5	No	Yes		-			2.00E-01	U	1.00E+00	U			1.12E-01	1	1.10E-01	1.33E-01
	NA NA	No	No		_	-		3.00E-03	U	-		-			1		
Sulfate	14808-79-8	No	No		_			-				_		- 0.00E+00	<u>·</u>		
		1			-			!			!			1	•		

Screening Levels (RSL) for Soil to Groundwater

Chemical	CAS Number	Mutagen?	VOC?	Ingestion SF (mg/kg-day) ⁻¹	SFO Ref	Inhalation Unit Risk (ug/m³) ⁻¹	IUR Ref	Chronic RfD (mg/kg-day)	Chronic RfD Ref	Chronic RfC (mg/m³)	Chronic RfC Ref	K _d	K _{oc}	н	Dilution Attenuation Factor (DAF) (unitless)	MCL-based SL (mg/kg)	Risk-Based SL (mg/kg)
Sulfide	18496-25-8	No	No	, , , ,	-		-			-		-	-	0.00E+00	1		-
Sulfite	14265-45-3	No	No		-		-	-		-		-	-	0.00E+00	1		_
Sulfolane	126-33-0	No	No		-		-	1.00E-03	U	2.00E-03	U	1.82E-02	9.08E+00	1.98E-04	1		- 4.37E-04
Sulfonylbis(4-chlorobenzene), 1,1'-	80-07-9	No	No		-		-	8.00E-04	U	-		5.72E+00	2.86E+03	5.60E-06	1		- 6.51E-03
Sulfur	7704-34-9	No	No		-		-	-		-		-	-	0.00E+00	1		-
Sulfur Dioxide	7446-09-5	No	Yes		-		-	-		_		-	-	0.00E+00	1		_
Sulfur Mustard	505-60-2	No	Yes		-		-	-		-		4.80E-01	2.40E+02	1.00E-03	1		_
Sulfur Trioxide	7446-11-9	No	Yes		-		-			1.00E-03	U	-	-	0.00E+00	1		-
Sulfuric Acid	7664-93-9	No	No		-		-	-		1.00E-03	U	-	-	0.00E+00	1		_
Sulfurous acid, 2-chloroethyl 2-[4-(1,1-																	
dimethylethyl)phenoxy]-1-methylethyl ester	140-57-8	No	No	2.50E-02	U	7.10E-06	U	5.00E-02	U	-		1.11E+01	5.55E+03	7.77E-06	1		- 1.51E-02
TCDD, 2,3,7,8-	1746-01-6	No	Yes	1.30E+05	U	3.80E+01	U	7.00E-10	U	4.00E-08	U	4.98E+02	2.49E+05	2.04E-03	1	1.49E-05	5.91E-08
TCDF, 2,3,7,8-	51207-31-9	No	Yes	1.30E+04	U	3.80E+00	U	7.00E-09	U	4.00E-07	U	2.80E+02	1.40E+05	6.83E-04	1		- 3.32E-07
ТСМТВ	21564-17-0	No	No		-		-	3.00E-02	U			6.74E+00			1		- 3.34E-01
Tebuthiuron	34014-18-1	No	No		-		-	7.00E-02	U	-		8.48E-02	4.24E+01	4.91E-09	1		- 3.88E-02
Technetium	7440-26-8	No	No		-		-	-		-		-	-	0.00E+00	1		-
Tellurium	13494-80-9	No	No		-		-	-		-		-	-	0.00E+00	1		-
Temephos	3383-96-8	No	No		-		-	2.00E-02	U	-		1.90E+02	9.51E+04	8.01E-08	1		- 7.64E+00
Terbacil	5902-51-2	No	No		-		-	1.30E-02	U	-		1.00E-01	5.01E+01	4.91E-09	1		- 7.54E-03
Terbufos	13071-79-9	No	Yes		-		-	2.50E-05	U	-		2.00E+00	9.99E+02	9.81E-04	1		- 5.23E-05
Terbutryn	886-50-0	No	No		-		-	1.00E-03	U	_		1.21E+00	6.07E+02	8.79E-07	1		- 1.91E-03
Test Chemical	NA	No	No		-		-			-		-	-	0.00E+00	1		-
Tetrabromodiphenyl ether, 2,2',4,4'- (BDE-47)	5436-43-1	No	No		-		-	1.00E-04	U	-		2.64E+01	1.32E+04	1.21E-04	1		- 5.33E-03
Tetrabutyl Lead	1920-90-7	No	Yes		-		-	-		-		1.58E+02	7.88E+04	3.25E+02	1		-
Tetrachloroaniline, 2,3,5,6-	3481-20-7	No	No		-		-	-		_		1.48E+01	7.42E+03	2.35E-05	1		_
Tetrachlorobenzene, 1,2,3,4-	634-66-2	No	Yes		-		-	-		-		4.54E+00	2.27E+03	3.11E-02	1		_
Tetrachlorobenzene, 1,2,4,5-	95-94-3	No	Yes		-		-	3.00E-04	U	_		4.44E+00	2.22E+03	4.09E-02	1		- 7.91E-04
Tetrachlorobiphenyl, 3,3',4,4'- (PCB 77)	32598-13-3	No	No	1.30E+01	U	3.80E-03	U	7.00E-06	U	4.00E-04	U	1.56E+02	7.81E+04	3.84E-04	1		- 9.37E-04
Tetrachlorobiphenyl, 3,4,4',5- (PCB 81)	70362-50-4	No	Yes	3.90E+01	U	1.14E-02	U	2.33E-06	U	1.33E-04	U	1.56E+02	7.81E+04	9.12E-03	1		- 6.18E-05
Tetrachloroethane, 1,1,1,2-	630-20-6	No	Yes	2.60E-02	U	7.40E-06	U	3.00E-02	U	_		1.72E-01	8.60E+01	1.02E-01	1		- 2.19E-04
Tetrachloroethane, 1,1,2,2-	79-34-5	No	Yes	2.00E-01	U	5.80E-05	U	2.00E-02	U	_		1.90E-01	9.49E+01	1.50E-02	1		- 2.96E-05
Tetrachloroethylene	127-18-4	No	Yes	2.10E-03	U	2.60E-07	U	6.00E-03	U	4.00E-02	U	1.90E-01	9.49E+01	7.24E-01	1	2.27E-03	1.84E-03
Tetrachlorophenol, 2,3,4,5-	4901-51-3	No	No		-		-	-		-		9.48E+00	4.74E+03	6.91E-06	1		-
Tetrachlorophenol, 2,3,4,6-	58-90-2	No	No		-		-	3.00E-02	U	-		5.60E-01	2.80E+02	3.61E-04	1		- 1.81E-02
Tetrachlorophenols (total)	25167-83-3	No	No		-		-	-		-		5.94E+00	2.97E+03	3.61E-04	1		-
Tetrachloroterephthalate, 2,3,5,6-	2136-79-0	No	No		-		-	-		-		2.62E+00			1		-
Tetrachlorotoluene, p- alpha, alpha, alpha-	5216-25-1	No	Yes	2.00E+01	U		-	-		<u> </u>		3.22E+00	1.61E+03	7.89E-03	1		- 4.54E-06
Tetraethyl Dithiopyrophosphate	3689-24-5	No	No		-		-	5.00E-04	U	-		5.32E-01	2.66E+02	1.82E-04	1		- 5.17E-04
Tetraethyl Lead	78-00-2	No	Yes		-		-	1.00E-07	U	-		1.30E+00			1		- 4.67E-07
Tetrafluoroethane, 1,1,1,2-	811-97-2	No	Yes		-		-			8.00E+01	U	1.72E-01			1		- 9.25E+00
Tetrahydrofuran	109-99-9	No	Yes		-		-	9.00E-01	U	2.00E+00	U	2.16E-02			1		- 7.50E-02
Tetrahydrothiophene	110-01-0	No	Yes		-		-			-		1.60E-01			1		
Tetramethyl Lead	75-74-1	No	Yes		-		-	_		-		8.78E-02			1		
Tetramethylcyclohexane	30501-43-0	No	Yes		-		-	_		_			-		1		
Tetrapotassium phosphate	7320-34-5	No	No		-		-	4.86E+01	U	_		_	-	0.00E+00	1		-
Tetrapropyl Lead	3440-75-3	No	Yes		_		-			_		1.43E+01			1		
Tetrasodium pyrophosphate	7722-88-5	No	No		_		-	4.86E+01	U	_				0.00E+00	 1		-
17 1			1							I	1				·		

Screening Levels (RSL) for Soil to Groundwater

Chemical	CAS Number	Mutagen?	VOC?	Ingestion SF (mg/kg-day) ⁻¹	SFO Ref	Inhalation Unit Risk (ug/m³) ⁻¹	IUR Ref	Chronic RfD (mg/kg-day)	Chronic RfD Ref	Chronic RfC (mg/m³)	Chronic RfC Ref	K _d	K _{oc}	H,	Dilution Attenuation Factor (DAF) (unitless)	MCL-based SL (mg/kg)	Risk-Based SL (mg/kg)
Tetryl (Trinitrophenylmethylnitramine)	479-45-8	No	No	, , ,	-		-	2.00E-03	U	-		9.22E+00 4.6		1.11E-07	1	, , , , ,	3.72E-02
Thallic Oxide	1314-32-5	No	No		-		-	2.00E-05	U	-		-	-	0.00E+00	1		
Thallium (I) Nitrate	10102-45-1	No	No		-		-	1.00E-05	U	-		-	-	0.00E+00	1		
Thallium (Soluble Salts)	7440-28-0	No	No		-		-	1.00E-05	U	-		7.10E+01	-	0.00E+00	1	1.42E-01	1.42E-03
Thallium Acetate	563-68-8	No	Yes		-		-	1.00E-05	U	-		3.02E-03 1.5	1E+00	-	1		4.07E-06
Thallium Carbonate	6533-73-9	No	Yes		-		-	2.00E-05	U	-		5.76E-03 2.8	8E+00	-	1		8.25E-06
Thallium Chloride	7791-12-0	No	No		-		-	1.00E-05	U	-		-	-	0.00E+00	1		
Thallium Selenite	12039-52-0	No	No		-		-	1.00E-05	U	-		-	-	0.00E+00	1		
Thallium Sulfate	7446-18-6	No	No		-		-	2.00E-05	U	-		-	-	0.00E+00	1		
Thifensulfuron-methyl	79277-27-3	No	No		-		-	4.30E-02	U	-		1.02E-01 5.0	8E+01	1.67E-12	1		2.58E-02
Thiobencarb	28249-77-6	No	No		-		-	1.00E-02	U	-		3.26E+00 1.6	3E+03	1.09E-05	1		5.51E-02
Thiocyanates	NA	No	No		-		-	2.00E-04	U	-		-	-	0.00E+00	1		
Thiocyanic Acid	463-56-9	No	Yes		-		-	2.00E-04	U	-		-		0.00E+00	1		
Thiodiglycol	111-48-8	No	No		-		-	7.00E-02	U	-		2.00E-03 1.0			1		2.83E-02
Thiofanox	39196-18-4	No	No		-		-	3.00E-04	U	-		1.45E-01 7.2	4E+01	3.84E-07	1		1.82E-04
Thiophanate, Methyl	23564-05-8	No	No	1.16E-02	U		-	2.67E-02	U	-		6.54E-01 3.2	7E+02	4.95E-08	1		5.69E-03
Thiophene	110-02-1	No	Yes		-		-	-		-		1.60E-01 8.0			1		
Thiram	137-26-8	No	No		-		-	1.50E-02	U	-		1.22E+00 6.1			1		4.17E-02
Thorium	7440-29-1	No	No		-		-	-		-		1.50E+05	-	0.00E+00	1		
Thymol	89-83-8	No	No		_		_			-		2.94E+00 1.4			1		
Tin	7440-31-5	No	No		_		_	6.00E-01	U	-		2.50E+02		0.00E+00	1		3.00E+02
Titanium	7440-32-6	No	No		_		_	-		_		1.00E+03		0.00E+00	1		
Titanium Tetrachloride	7550-45-0	No	Yes		_		_			1.00E-04	U			0.00E+00	1		
Toluene	108-88-3	No	Yes		_		_	8.00E-02	U	5.00E+00	U	4.68E-01 2.3		2.71E-01	1	6.92E-01	7.62E-02
Toluene-2,4-diisocyanate	584-84-9	No	Yes		_	1.10E-05	U	-		8.00E-06	U	1.48E+01 7.4			1	0.022 0.	2.51E-05
Toluene-2,5-diamine	95-70-5	No	No	1.80E-01	U		_	2.00E-04	U					3.04E-07	1		1.24E-04
Toluene-2,6-diisocyanate	91-08-7	No	Yes		_	1.10E-05	U			8.00E-06	U	1.52E+01 7.5			1		2.56E-05
Toluenediamine, 2,3-	2687-25-4	No	No		_		_			-		1.13E-01 5.6			1		
Toluenediamine, 3,4-	496-72-0	No	No		-		_					1.11E-01 5.5			1		
Toluidine, o- (Methylaniline, 2-)	95-53-4	No	No	1.60E-02	U	5.10E-05	U					2.30E-01 1.1			1		2.02E-03
Toluidine, p-	106-49-0	No	No	3.00E-02	U	0.102 00	_	4.00E-03	U			2.26E-01 1.1			1		1.07E-03
Total Petroleum Hydrocarbons (Aliphatic High)	NA	No	Yes	0.002 02	_		_	3.00E+00	U	_		9.64E+00 4.8			1		2.39E+02
Total Petroleum Hydrocarbons (Aliphatic Low)	NA	No	Yes		_		_	-		6.00E-01	U	2.64E-01 1.3			1		8.81E-01
Total Petroleum Hydrocarbons (Aliphatic Medium)	NA	No	Yes		_		_	1.00E-02	U	1.00E-01	U	1.59E+00 7.9			1		1.45E-01
Total Petroleum Hydrocarbons (Aromatic High)	NA	No	No		_		_	4.00E-02	U	1.002 01		1.11E+02 5.5			1		8.92E+00
Total Petroleum Hydrocarbons (Aromatic Low)	NA	No	Yes		-		-	4.00E-03	U	3.00E-02	U	2.92E-01 1.4			1		1.70E-03
Total Petroleum Hydrocarbons (Aromatic Medium)	NA	No	Yes		-		-	4.00E-03	U	3.00E-03	U	4.02E+00 2.0			1		2.30E-03
Toxaphene	8001-35-2	No	No	1.10E+00	U	3.20E-04	U	-		-		1.54E+02 7.7			1	4.64E-01	1.09E-02
Tralomethrin	66841-25-6	No	No		-	<u> </u>	-	7.50E-03	U	-		3.82E+02 1.9			1		5.75E+00
Tri-n-butyltin	688-73-3	No	Yes		-	-	-	3.00E-04	U	-		1.62E+01 8.0			1		8.20E-03
Triacetin	102-76-1	No	No		-		-	8.00E+01	U	-		8.14E-02 4.0			1		4.50E+01
Triadimefon	43121-43-3	No	No		-	•	-	3.40E-02	U	-		5.98E-01 2.9			1		5.00E-02
Triallate	2303-17-5	No	Yes	7.17E-02	U	•	-	2.50E-02	U	-		2.02E+00 1.0	1E+03	4.91E-04	1		1.04E-03
Trialuminum sodium tetra decahydrogenoctaorthophosphate (dihydrate)	15136-87-5	No	No		-		_	4.86E+01	U	_		_	_	0.00E+00	1		
Triasulfuron	82097-50-5	No	No		-		-	1.00E-02	U	-		8.54E-01 4.2	7E+02	1.32E-11	1		2.11E-02
												·					

Screening Levels (RSL) for Soil to Groundwater

Chemical	CAS Number	Mutagen?	VOC?	Ingestion SF (mg/kg-day) ⁻¹	SFO Ref	Inhalation Unit Risk (ug/m³) ⁻¹	IUR Ref	Chronic RfD (mg/kg-day)	Chronic RfD Ref	Chronic RfC (mg/m³)	Chronic RfC Ref	K _d	W.	H`	Dilution Attenuation Factor (DAF) (unitless)	MCL-based SL (mg/kg)	Risk-Based SL (mg/kg)
Triaziquone	68-76-8	No No	No.	(ilig/kg-day)	- IXEI	(ug/iii)	- 1761	(IIIg/kg-day)	ivei	(1119/111)	IVE	2.14E-01	K _{oc} 1.07E+02		1	(ilig/kg)	(ilig/kg)
Tribenuron-methyl	101200-48-0	No	No					8.00E-03	U			1.89E-01	9.47E+01		<u>'</u> 1		- 6.05E-03
Tribromobenzene, 1,2,4-	615-54-3	No	Yes		_		_	5.00E-03	U	_			6.14E+02		1		- 6.39E-03
Tribromochloromethane	594-15-0	No	Yes					3.002-00		_			4.39E+01		1		- 0.03L-03
Tribromodiphenyl Ether	49690-94-0	No	Yes									1.65E+01	8.25E+03		<u>'</u> 1		
Tribromophenol, 2,4,6-	118-79-6	No	No					9.00E-03	U				8.05E+02		<u>'</u> 1		- 2.19E-02
Tributyl Phosphate	126-73-8	No	No	9.00E-03	U			1.00E-02	U	_			2.35E+03		1		- 2.55E-02
TributyItin	56573-85-4	No	Yes	3.00E-03	_			1.002-02		_			1.21E+04		1		
Tributyltin Compounds	NA	No	No					3.00E-04	U			2.422.101	1.212.04	J.Z/L101	1		
Tributyltin Oxide	56-35-9	No	No					3.00E-04	U	_		5 18E+04	2.59E+07	1 23F-05	1		- 2.93E+01
Tributyltin chloride	1461-22-9	No	Yes					0.00L-04					1.21E+04		1		2.0001
Tributyltin fluoride	1983-10-4	No	Yes										1.21E+04		1		
Tributyltin linoleate	24124-25-2	No	Yes	-						_			2.55E+07		1		
Tributyltin methacrylate	2155-70-6	No	Yes	-		<u> </u>		_		_			4.92E+03		1		
Tributyltin naphthenate	85409-17-2	No	No	-	-		-	-	•	_		9.04L+00	4.92L+03	1.902+00	1		-
Tricaine Methanesulfonate	886-86-2	No	No	-	-		-	-	•	-		1 105 01	5.90E+01	6 66E 07	1		-
Tricalcium phosphate	7758-87-4	No	No	-	-		-	4.86E+01	·	-		1.10⊑-01		0.00E+00	1		-
Trichloro-1,2,2-trifluoroethane, 1,1,2-	76-13-1		Yes	-	-		-	3.00E+01	IJ	5.00E+00	U	3.94E-01	1.97E+02		1		- 2.56E+00
		No		<u> </u>	-		-	3.00⊑+01	U	5.00E+00	U		2.34E+04		1		- 2.50E+00
Trichloro-2'-hydroxydiphenylether	3380-34-5	No	No	7.005.00	-		-	2.005.02	11	-		4.68E+01			•	4.045.00	2 245 04
Trichloroacetic Acid Trichloroaniline HCl, 2.4,6-	76-03-9	No	No	7.00E-02 2.90E-02	U		-	2.00E-02	U	-		6.46E-03	3.23E+00		1	1.24E-02	2.24E-04
	33663-50-2	No	No	2.90E-02	U		-	-	1	-		2.54E+00			1		- 7.36E-03
Trichloroaniline, 2,4,5-	636-30-6	No	No	7.005.00	-		-	2.005.05		-		1.33E+00			1		2.045.04
Trichloroaniline, 2,4,6-	634-93-5	No	No	7.00E-03	U		-	3.00E-05	U	-			4.44E+03		1		- 3.61E-04
Trichlorehamana 4.2.2	12002-48-1	No	Yes	-	-		-	0.005.04	U	-		2.66E+00			1		0.005.00
Trichlorebenzene, 1,2,3-	87-61-6	No	Yes	0.005.00	-		-	8.00E-04	U	2.005.02		2.76E+00			1	0.055.04	- 2.09E-03
Trichlorobenzene, 1,2,4-	120-82-1	No	Yes	2.90E-02	U		-	1.00E-02		2.00E-03	U	2.72E+00			1	2.05E-01	1.17E-03
Trichloroethane, 1,1,1-	71-55-6	No	Yes	- TOE 00	-	4 005 05	-	2.00E+00	U	5.00E+00	U		4.39E+01		1	7.01E-02	2.81E-01
Trichloroethane, 1,1,2-	79-00-5	No	Yes	5.70E-02	U	1.60E-05	U	4.00E-03	U	2.00E-04	U		6.07E+01		1	1.62E-03	1.35E-05
Trichloroethylene	79-01-6	Yes	Yes	4.60E-02	U	4.10E-06	U	5.00E-04	U	2.00E-03	U		6.07E+01		1	1.79E-03	1.01E-04
Trichlorofluoromethane	75-69-4	No	Yes	-	-		-	3.00E-01	U	-		8.78E-02			1		- 3.32E-01
Trichlorophenol, 2,4,5-	95-95-4	No	No	1 405 00	-	0.405.00	-	1.00E-01	U	-		3.20E+00			1		- 4.03E-01
Trichlorophenol, 2,4,6-	88-06-2	No	No	1.10E-02	U	3.10E-06	U	1.00E-03	U	-		7.62E-01	3.81E+02		1		- 1.16E-03
Trichlorophenoxyacetic Acid, 2,4,5-	93-76-5	No	No	-	-		-	1.00E-02	U	-			1.07E+02		1	0.755.00	- 6.76E-03
Trichlorophenoxypropionic acid, -2,4,5	93-72-1	No	No	-	-		-	8.00E-03	U	-			1.75E+02		1	2.75E-02	6.11E-03
Trichloropropane, 1,1,2-	598-77-6	No	Yes	-	-		-	5.00E-03	U	-			9.49E+01		1		- 3.46E-03
Trichloropropane, 1,2,3-	96-18-4	Yes	Yes	3.00E+01	U		-	4.00E-03	U	3.00E-04	U		1.16E+02		1		- 3.25E-07
Trichloropropene, 1,2,3-	96-19-5	No	Yes	-	-		-	3.00E-03	U	3.00E-04	U		1.16E+02		1		- 3.07E-05
Trichlorotoluene, 2,3,6-	2077-46-5	No	Yes	-	-		-	-	•	-			2.27E+03		1		-
Trichlorotoluene, alpha 2,6-	2014-83-7	No	Yes	-	-		-	-	•	-		2.40E+00	1.20E+03	1.17E-02	1		-
Triclorophenols (total)	NA	No	No	-	-		-	-	·	-		-	-	-	1		
Tricresyl Phosphate (TCP)	1330-78-5	No	No	-	-		-	2.00E-02	U	-			4.71E+04		1		- 1.49E+00
Tridiphane	58138-08-2	No	No	-	-		-	3.00E-03	U	-		6.90E+00	3.45E+03		1		- 1.28E-02
Tridymite	15468-32-3	No	No	-	-		-	-	-	-		-		0.00E+00	1		-
Triethyl Lead	5224-23-7	No	Yes	-	-		-	-	-	-			2.21E+02		1		-
Triethyl phosphorothioate [O,O,O-]	126-68-1	No	Yes	-	-		-	-	-				1.38E+02		1		-
Triethylamine	121-44-8	No	Yes	-	-		-		·	7.00E-03	U		5.08E+01		1		- 4.41E-04
Triethylene Glycol	112-27-6	No	No	-	-		-	2.00E+00	U	-		2.00E-02	1.00E+01	1.29E-09	1		- 8.82E-01

Screening Levels (RSL) for Soil to Groundwater

Chemical	CAS Number	Mutagen?	VOC?	Ingestion SF (mg/kg-day) ⁻¹	SFO Ref	Inhalation Unit Risk (ug/m³) ⁻¹	IUR Ref	Chronic RfD (mg/kg-day)	Chronic RfD Ref	Chronic RfC (mg/m³)	Chronic RfC Ref	Kd	K _{oc}	H,	Dilution Attenuation Factor (DAF) (unitless)	MCL-based SL (mg/kg)	Risk-Based SL (mg/kg)
Trifluoroethane, 1,1,1-	420-46-2	No	Yes	, , , ,	-				-	2.00E+01	U	8.78E-02		3.15E+01	1		- 1.29E+01
Trifluralin	1582-09-8	No	Yes	7.70E-03	U			7.50E-03	U	-		3.28E+01	1.64E+04	4.21E-03	1		- 8.45E-02
Trimagnesium phosphate	7757-87-1	No	No		-			4.86E+01	U	-				0.00E+00	1		-
Trimethyl Lead	7442-13-9	No	Yes		-				-	-		6.36E-02	3.18E+01	5.97E+00	1		-
Trimethyl Phosphate	512-56-1	No	No	2.00E-02	U			1.00E-02	U	-		2.12E-02	1.06E+01	2.94E-07	1		- 8.60E-04
Trimethyl-4-Propenylnaphthalene, 1,2,3-	26137-53-1	No	Yes		-				-	-		7.88E+01	3.94E+04	9.55E-03	1		-
Trimethylbenzene, 1,2,3-	526-73-8	No	Yes		-			1.00E-02	U	6.00E-02	U	1.25E+00	6.27E+02	1.78E-01	1		- 8.08E-03
Trimethylbenzene, 1,2,4-	95-63-6	No	Yes		-			1.00E-02	U	6.00E-02	U	1.23E+00	6.14E+02	2.52E-01	1		- 8.08E-03
Trimethylbenzene, 1,3,5-	108-67-8	No	Yes		-			1.00E-02	U	6.00E-02	U	1.20E+00	6.02E+02	3.59E-01	1		- 8.66E-03
Trimethylethyl Lead	1762-26-1	No	Yes		-				-	-		1.72E-01	8.60E+01	1.44E+01	1		-
Trimethylpentane, 2,2,4-	540-84-1	No	Yes		-				-	-		4.80E-01	2.40E+02	1.24E+02	1		-
Trimethylpentene, 2,4,4-	25167-70-8	No	Yes		-			1.00E-02	U	-		4.80E-01	2.40E+02	3.05E+01	1		- 2.21E-02
Trinitrobenzene, 1,3,5-	99-35-4	No	No		-			3.00E-02	U	-		3.36E+00	1.68E+03	2.66E-07	1		- 2.11E-01
Trinitrotoluene, 2,4,6-	118-96-7	No	No	3.00E-02	U			5.00E-04	U	-		5.62E+00	2.81E+03	8.50E-07	1		- 5.71E-03
Triphenylphosphine Oxide	791-28-6	No	No		-			2.00E-02	U	-			1.95E+03		1		- 1.49E-01
Triphenyltin	668-34-8	No	Yes		-				-	-		6.72E+02	3.36E+05	3.21E-03	1		_
Tripotassium phosphate	7778-53-2	No	No		-			4.86E+01	U	_				0.00E+00	1		_
Tripropyl Lead	6618-03-7	No	Yes		-				-	-		2.68E+00	1.34E+03		1		_
Tris(1,3-Dichloro-2-propyl) Phosphate	13674-87-8	No	No		-			2.00E-02	U	_		2.22E+01	1.11E+04	1.07E-07	1	-	- 7.99E-01
Tris(1-chloro-2-propyl)phosphate	13674-84-5	No	No		-			1.00E-02	U	_		3.20E+00	1.60E+03	2.44E-06	1		- 6.47E-02
Tris(2,3-dibromopropyl)phosphate	126-72-7	No	Yes	2.30E+00	U	6.60E-04	U		-	-			9.71E+03		1		- 1.33E-04
Tris(2-chloroethyl)phosphate	115-96-8	No	No	2.00E-02	U			7.00E-03	U	-		7.76E-01	3.88E+02	1.35E-04	1		- 3.75E-03
Tris(2-ethylhexyl)phosphate	78-42-2	No	No	3.20E-03	U			1.00E-01	U	_			2.47E+06		1		- 1.20E+02
Trisbutoxyethyl Phosphate	78-51-3	No	No		-				-	_			1.27E+03		1		_
Trisodium phosphate	7601-54-9	No	No		-			4.86E+01	U	_				0.00E+00	1		_
Trithion	786-19-6	No	No		-				-	_		1.66E+01	8.31E+03		1		_
Tungsten	7440-33-7	No	No		_			8.00E-04	U	_		1.50E+02		0.00E+00	1		- 2.40E-01
Uranium (Soluble Salts)	NA	No	No		-			2.00E-04	U	4.00E-05	U	4.50E+02		0.00E+00	1	1.35E+01	1.80E-01
Urea	57-13-6	No	No		-				-	_		6.30E-03			1		_
Urethane	51-79-6	Yes	No	1.00E+00	U	2.90E-04	U		-	_			1.21E+01		1		- 5.59E-06
Vanadium Pentoxide	1314-62-1	No	No		_	8.30E-03	U	9.00E-03	U	7.00E-06	U			0.00E+00	1		-
Vanadium Sulfate	36907-42-3	No	No		-				-	-				0.00E+00	1		_
Vanadium and Compounds	7440-62-2	No	No		_			5.04E-03	U	1.00E-04	U	1.00E+03		0.00E+00	1		- 8.64E+00
Vanadyl Sulfate	27774-13-6	No	No		_				-	-				0.00E+00	1		-
Vernolate	1929-77-7	No	Yes		-			1.00E-03	U	_		5.98E-01	2.99E+02		1		- 8.88E-04
Vinclozolin	50471-44-8	No	No		_			1.20E-03	U	_			2.84E+02		1		- 1.63E-03
Vinyl Acetate	108-05-4	No	Yes		_			1.00E+00	U	2.00E-01	U		5.58E+00		1		- 8.70E-03
Vinyl Bromide	593-60-2	No	Yes		_	3.20E-05	U		-	3.00E-03	U		2.17E+01		1		- 5.06E-05
Vinyl Chloride	75-01-4	Yes	Yes	7.20E-01	U	4.40E-06	U	3.00E-03	U	1.00E-01	U		2.17E+01		1	6.90E-04	6.48E-06
Warfarin	81-81-2	No	No	3_ 0.	-			3.00E-04	U	-			4.26E+02		1		- 5.91E-04
Xylene, P-	106-42-3	No	Yes		_			2.00E-01	U	1.00E-01	U		3.75E+02		1		- 1.88E-02
Xylene, m-	108-38-3	No	Yes		-			2.00E-01	U	1.00E-01	U		3.75E+02		1		- 1.88E-02
Xylene, o-	95-47-6	No	Yes		_			2.00E-01	U	1.00E-01	U		3.83E+02		1		- 1.91E-02
Xylenes	1330-20-7	No	Yes		_			2.00E-01	U	1.00E-01	U		3.83E+02		1	9.90E+00	1.91E-02
Ytterbium	7440-64-4	No	No		_			00_ 01	_	552 01				0.00E+00	1	3.002.00	_
Yttrium	7440-65-5	No	No		_				-	_				0.00E+00	1		_
Zinc Cyanide	557-21-1	No	No		_			5.00E-02	U	_				0.00E+00	1		_
	00. 21 1		110					0.00L 0Z		_				3.002.00	1		

Screening Levels (RSL) for Soil to Groundwater

Key: I = IRIS; P = PPRTV; D = DWSHA; O = OPP; A = ATSDR; C = Cal EPA; X = APPENDIX PPRTV SCREEN (See FAQ #27); H = HEAST; F = See user guide Section 2.3.5; L = see user guide on lead; M = mutagen; S = see user guide Section 5; V = volatile; R = RBA applied (See User Guide for Arsenic notice); c = cancer; n = noncancer; * = where: n SL < 100X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL

Chemical	CAS Number	Mutagen?	VOC?	Ingestion SF (mg/kg-day) ⁻¹	SFO Ref	Inhalation Unit Risk (ug/m³) ⁻¹	IUR Ref	Chronic RfD (mg/kg-day)	Chronic RfD Ref	Chronic RfC (mg/m³)	Chronic RfC Ref	K _d	K _{oc}	нъ	Dilution Attenuation Factor (DAF) (unitless)	MCL-based SL (mg/kg)	Risk-Based SL (mg/kg)
Zinc Phosphide	1314-84-7	No	No	-		-		3.00E-04	U	-		-	-	0.00E+00	1	-	
Zinc and Compounds	7440-66-6	No	No	-		-		3.00E-01	U	-		6.20E+01	-	0.00E+00	1	-	3.73E+01
Zineb	12122-67-7	No	No	-		-		5.00E-02	U	-		2.70E+00	1.35E+03	1.11E-07	1	-	2.88E-01
Zirconium	7440-67-7	No	No	-		-		8.00E-05	U	-		3.00E+03	-	0.00E+00	1	-	4.79E-01

Output generated 06MAY2017:14:16:13

Site-specific Resident Equation Inputs for Tap Water

R (target risk) unitless 0.000001 T (lifetime) year 70 (volatilization factor of Andelman) L/m³ 0.5 (apparent thickness of stratum corneum) cm 0.001 Dress (exposure duration - resident) year 26 Dress (exposure duration - resident) year 26 Dress (exposure duration - adult) year 20 Dress (exposure duration - adult) year 21 Dress (exposure duration - adult) year 20 Dress (exposure duration first phase) year 21 Dress (exposure duration fourth phase) year 32 Less (mutagenic exposure duration fourth phase) year 350 Fress (exposure frequency) day/year 350 Fress (exposure frequency - adult) day/year 350 Fress (exposure frequency - adult) day/year 350 Fress (exposure frequency - adult) day/year 350 Fress (mutagenic exposure frequency first phase) day/year 350 Fress (mutagenic exposure frequency fourth phase) day/year 350 Fress (mutagenic exposure frequency fourth phase) day/year 350 Fress (mutagenic exposure frequency fourth phase) day/year 350 Tress (demale exposure frequency fourth phase) day/year 350 Tress (demale exposure time) hour/event 0.67077 Tress (dermal exposure time - child) hour/event 0.67077 Tress (dermal exposure time - adult) hour/event 0.54 Tress (dermal exposure time - adult) hour/day 24 Tress (inhalation exposure time - adult) hour/day 24 Tress (inhalation exposure time second phase) hour/day 24 Tress (inhalation exposure time first phase) hour/day 24 Tress (mutagenic inhalation exposure time first phase) hour/day 24 Tress (mutagenic inhalation exposure time fourth phase) hour/day 24 Tress (mutagenic dermal exposure time first phase) hour/day 34 Tress (mutagenic dermal exposure time first phase) hour/event 0.54 Tress (mutagenic dermal exposure time first phase) hour/event 0.54 Tress (mutagenic dermal exposure time first phase) hour/event 0.54 Tress (mutagenic dermal exposure time fourth phase) hour/event 0.54 Tress (mutagenic dermal exposur	Variable	Value
T (lifetime) year (volatilization factor of Andelman) L/m³ 0.5 (apparent thickness of stratum corneum) cm 0.001 Dres (exposure duration - resident) year 26 Dresc (exposure duration - resident) year 6 Dresc (exposure duration - adult) year 6 Dresc (exposure duration - adult) year 20 Doc (mutagenic exposure duration first phase) year 21 Doc (mutagenic exposure duration first phase) year 22 Dc, (mutagenic exposure duration third phase) year 35 Dresc (exposure frequency duration fourth phase) year 36 Dresc (exposure frequency duration fourth phase) year 37 Dresc (exposure frequency duration fourth phase) year 38 Dresc (exposure frequency - child) day/year 38 Dresc (exposure frequency - adult) day/year 38 Dresc (imutagenic exposure frequency first phase) day/year 38 Dresc (mutagenic exposure frequency third phase) day/year 38 Dresc (mutagenic exposure frequency fourth phase) day/year 39 Dresc (dermal exposure time - adult) hour/event Dresc (dermal exposure time - adult) hour/event Dresc (dermal exposure time - adult) hour/event Dresc (inhalation exposure time first phase) hour/day 24 Dresc (inhalation exposure time first phase) hour/day 24 Dresc (inhalation exposure time first phase) hour/day 24 Dresc (inhalation exposure time first phase) hour/event Dresc (inhalation exposure time first phase) hour/event Dresc	THQ (target hazard quotient) unitless	0.1
(Volatilization factor of Andelman) L/m³ 0.5 c (apparent thickness of stratum corneum) cm 0.001 Dres (exposure duration - resident) year 26 Dresc (exposure duration - child) year 27 Dresd (exposure duration - adult) year 28 Dresd (exposure duration - adult) year 29 Dresd (exposure duration - adult) year 20 Dresd (exposure duration first phase) year 20 Dresd (exposure duration first phase) year 20 Dresd (mutagenic exposure duration second phase) year 30 Dresd (mutagenic exposure duration fourth phase) year 30 Dresd (exposure frequency) day/year 30 Dresd (exposure frequency - child) day/year 30 Dresd (exposure frequency - adult) day/year 30 Dresd (mutagenic exposure frequency fourth phase) day/year 30 Dresd (mutagenic age-adjusted exposure time) hour/event 0.67077 Dresd (age-adjusted exposure time) hour/event 0.67077 Dresd (age-adjusted exposure time) hour/event 0.54 Dresd (dermal exposure time - child) hour/event 0.54 Dresd (dermal exposure time - child) hour/event 0.54 Dresd (dermal exposure time - child) hour/day 24 Dresd (inhalation exposure time - child) hour/day 24 Dresd (inhalation exposure time first phase) hour/event 0.54 Dresd (inhalation exposure time first phase) hour/event 0.54 Dresd (inhalation exposure t	TR (target risk) unitless	0.00001
c (apparent thickness of stratum corneum) cm Dros (exposure duration - resident) year 26 Dros-c (exposure duration - child) year 6 Dres-a (exposure duration - adult) year 20 Do-2 (mutagenic exposure duration first phase) year 21 Do-2 (mutagenic exposure duration second phase) year 4 Do-16 (mutagenic exposure duration first phase) year 10 D16-26 (mutagenic exposure duration third phase) year 10 D16-28 (mutagenic exposure duration fourth phase) year 10 D16-28 (mutagenic exposure duration fourth phase) year 10 D16-29 (mutagenic exposure duration fourth phase) year 10 D16-29 (exposure frequency) day/year 10 D16-29 (exposure frequency) day/year 10 D16-29 (exposure frequency - child) day/year 10 D16-29 (exposure frequency - child) day/year 10 D16-20 (exposure frequency - adult) day/year 10 D16-20 (mutagenic exposure frequency first phase) day/year 10 D16-20 (mutagenic exposure frequency second phase) day/year 10 D16-20 (mutagenic exposure frequency third phase) day/year 10 D16-20 (mutagenic exposure frequency third phase) day/year 10 D16-20 (mutagenic exposure frequency fourth phase) day/year D16-20 (dermal exposure frequency fourth phase) day/year D17 D18-20 (dermal exposure frequency fourth phase) day/year D18-20 (mutagenic inhalation exposure time first phase) hour/day D17 D18-20 (mutagenic inhalation exposure time first phase) hour/day D17 D18-20 (mutagenic inhalation exposure time fourth phase) hour/day D18-20 (mutagenic dermal exposure time fourth phase) hour/event D18-20 (mutagenic dermal exposure time fourth phase) hour/event D18-20 (LT (lifetime) year	70
Dres (exposure duration - resident) year 26 Dres-c (exposure duration - child) year 6 Dres-a (exposure duration - adult) year 20 Do-2 (mutagenic exposure duration second phase) year 2 Ds-16 (mutagenic exposure duration second phase) year 4 Ds-16 (mutagenic exposure duration fourth phase) year 10 D16-26 (mutagenic exposure duration fourth phase) year 10 Fres (exposure frequency) day/year 350 Fresc (exposure frequency - adult) day/year 350 Fresc (exposure frequency - adult) day/year 350 Fresc (exposure frequency - adult) day/year 350 Fo-2 (mutagenic exposure frequency first phase) day/year 350 Fo-2 (mutagenic exposure frequency ferty phase) day/year 350 F ₋₁₆ (mutagenic exposure frequency fourth phase) day/year 350 F ₋₁₆ (mutagenic exposure frequency fourth phase) day/year 350 F ₋₁₆ (mutagenic exposure frequency fourth phase) day/year 350 F ₋₁₆ (mutagenic exposure time) hour/event 0.67077 T ₋₁₈ (exposure time) hour/day 24 T ₋₁₈ (mutagenic implaction exposure time) hour/event 0.54 T ₋₁₈ (dermal exposure time - child) hour/event 0.71	K (volatilization factor of Andelman) L/m³	0.5
Dress_C (exposure duration - child) year 6 Dress_a (exposure duration - adult) year 20 Do_2 (mutagenic exposure duration first phase) year 2 Do_2 (mutagenic exposure duration second phase) year 4 De.16 (mutagenic exposure duration third phase) year 10 De.16 (mutagenic exposure duration fourth phase) year 10 De.16 (mutagenic exposure duration fourth phase) year 10 Fresc (exposure frequency) day/year 350 Fresc (exposure frequency - child) day/year 350 Fresc (exposure frequency - adult) day/year 350 Fresc (exposure frequency - adult) day/year 350 Fresc (exposure frequency - adult) day/year 350 Fresc (exposure frequency first phase) day/year 350 Fresc (mutagenic exposure frequency first phase) day/year 350 Fe.16 (mutagenic exposure frequency fourth phase) day/year 350 Fe.16 (mutagenic exposure frequency fourth phase) day/year 350 Fe.16 (mutagenic exposure frequency fourth phase) day/year 350 Fe.16 (mutagenic age-adjusted exposure time) hour/event 0.67077 Tresc (dermal exposure time - child) hour/event 0.67077	l _{sc} (apparent thickness of stratum corneum) cm	0.001
Dissa (exposure duration - adult) year Dissa (exposure duration - adult) year Dissa (mutagenic exposure duration first phase) year 2 Dissa (mutagenic exposure duration second phase) year 4 Dissa (mutagenic exposure duration second phase) year 10 Dissa (mutagenic exposure duration fourth phase) year 10 Dissa (mutagenic exposure duration fourth phase) year 10 Fros (exposure frequency) day/year 350 Fros (exposure frequency - adult) day/year 350 Fros (exposure frequency - adult) day/year 350 Fros (mutagenic exposure frequency first phase) day/year 350 Fros (mutagenic exposure frequency second phase) day/year 350 Fros (mutagenic exposure frequency second phase) day/year 350 Fros (mutagenic exposure frequency fourth phase) day/year 350 Fros (demalexposure time) hour/event Dissa (day-adjusted exposure time) hour/event Dissa (dermal exposure time - child) hour/event Dissa (dermal exposure time - child) hour/event Dissa (dermal exposure time - child) hour/event Dissa (inhalation exposure time - child) hour/day 24 Tros (inhalation exposure time - adult) hour/day 24 Tros (mutagenic inhalation exposure time first phase) hour/day 24 Tros (mutagenic inhalation exposure time first phase) hour/day 24 Tros (mutagenic inhalation exposure time first phase) hour/day 24 Tros (mutagenic inhalation exposure time fourth phase) hour/event Dissa (mutagenic dermal exposure time first phase) hour/event Dissa (mutagenic dermal exposure time first phase) hour/event Dissa (mutagenic dermal exposure time first phase) hour/event Dissa (mutagenic dermal exposure time fourth phase) hour/event Dissa (mutagenic dermal exposur	ED _{res} (exposure duration - resident) year	26
Dressa (exposure duration - adult) year 20 Do2 (mutagenic exposure duration first phase) year 2 Do2,6 (mutagenic exposure duration second phase) year 4 De.16 (mutagenic exposure duration third phase) year 10 De.16,26 (mutagenic exposure duration fourth phase) year 10 Fresc (exposure frequency) day/year 350 Fresc (exposure frequency - child) day/year 350 Fresc (exposure frequency - adult) day/year 350 Fresc (exposure frequency - adult) day/year 350 Fresc (exposure frequency - adult) day/year 350 Fresc (mutagenic exposure frequency first phase) day/year 350 Fresc (mutagenic exposure frequency first phase) day/year 350 Fresc (mutagenic exposure frequency fourth phase) day/year 350 Fresc (mutagenic age-adjusted exposure time) hour/event 0.67077 Tresc (dermal exposure time) hour/event 0.67077 Tresc (dermal exposure time - adult) hour/event 0.54 Tresc (dermal exposure time - adult) hour/event 0.71 Tresc (inha	ED _{res-c} (exposure duration - child) year	6
D _{2.6} (mutagenic exposure duration second phase) year D _{6.16} (mutagenic exposure duration third phase) year 10 D _{16.26} (mutagenic exposure duration fourth phase) year 10 D _{16.26} (mutagenic exposure duration fourth phase) year 10 F _{res.} (exposure frequency) day/year 350 F _{res.a.} (exposure frequency - child) day/year 350 F _{res.a.} (exposure frequency - adult) day/year 350 F _{0.2} (mutagenic exposure frequency first phase) day/year 350 F _{2.6} (mutagenic exposure frequency second phase) day/year 350 F _{16.26} (mutagenic exposure frequency third phase) day/year 350 F _{16.26} (mutagenic exposure frequency fourth phase) day/year 350 T _{res.adj} (age-adjusted exposure time) hour/event 0.67077 T _{res.madj} (mutagenic age-adjusted exposure time) hour/event 0.67077 T _{res} (exposure time) hour/day 24 T _{res.c} (dermal exposure time - child) hour/event 0.71 T _{res.c} (inhalation exposure time - adult) hour/event 0.71 T _{res.a} (inhalation exposure time - adult) hour/day 24 T _{16.26} (mutagenic inhalation exposure time first phase) hour/day 24 T _{2.6} (mutagenic inhalation exposure time first phase) hour/day 24 T _{16.26} (mutagenic inhalation exposure time first phase) hour/day 24 T _{16.26} (mutagenic inhalation exposure time fourth phase) hour/day 24 T _{16.26} (mutagenic dermal exposure time first phase) hour/event 0.54 T _{16.26} (mutagenic dermal exposure time second phase) hour/event 0.54 T _{16.26} (mutagenic dermal exposure time first phase) hour/event 0.71 T _{16.26} (mutagenic dermal exposure time fourth phase) hour/event 0.71 T _{16.26} (mutagenic dermal exposure time fourth phase) hour/event 0.71 T _{16.26} (mutagenic dermal exposure time fourth phase) hour/event 0.71 T _{16.26} (mutagenic dermal exposure time fourth phase) hour/event 0.71 T _{16.26} (mutagenic body weight) kg 80 W _{16.46} (mutagenic body weight) kg 80	ED _{res-a} (exposure duration - adult) year	20
De.16 (mutagenic exposure duration third phase) year De.16 (mutagenic exposure duration fourth phase) year 10 De.26 (mutagenic exposure duration fourth phase) year 10 Tres (exposure frequency) day/year 350 Fres. (exposure frequency - child) day/year 350 Fres. (exposure frequency - adult) day/year 350 Fres. (mutagenic exposure frequency first phase) day/year 350 Fe.16 (mutagenic exposure frequency first phase) day/year 350 Fe.16 (mutagenic exposure frequency first phase) day/year 350 Fres. (mutagenic exposure frequency fourth phase) day/year 350 Fres. (mutagenic exposure frequency fourth phase) day/year 350 Tres. (mutagenic exposure frequency fourth phase) day/year 350 Tres. (age-adjusted exposure time) hour/event 0.67077 Tres. (exposure time) hour/day 10 Tres. (dermal exposure time - child) hour/event 0.54 Tres. (dermal exposure time - adult) hour/event 0.71 Tres. (inhalation exposure time - adult) hour/day 24 Tres. (inhalation exposure time second phase) hour/day 24 Tres. (mutagenic inhalation exposure time first phase) hour/day 24 Tres. (mutagenic inhalation exposure time fourth phase) hour/day 24 Tres. (mutagenic inhalation exposure time fourth phase) hour/day 24 Tres. (mutagenic dermal exposure time first phase) hour/event 0.54 Tres. (mutagenic dermal exposure time first phase) hour/event 0.54 Tres. (mutagenic dermal exposure time first phase) hour/event 0.54 Tres. (mutagenic dermal exposure time first phase) hour/event 0.54 Tres. (mutagenic dermal exposure time first phase) hour/event 0.71 Tres. (mutagenic dermal exposure time first phase) hour/event 0.71 Tres. (mutagenic dermal exposure time fourth phase) hour/event 0.71 Tres. (mutagenic dermal exposure time fourth phase) hour/event 0.71 Tres. (mutagenic dermal exposure time fourth phase) hour/event 0.71 Tres. (mutagenic dermal exposur	ED ₀₋₂ (mutagenic exposure duration first phase) year	2
D ₁₆₋₂₆ (mutagenic exposure duration fourth phase) year 10 F _{res} (exposure frequency) day/year 350 F _{res-a} (exposure frequency - child) day/year 350 F _{res-a} (exposure frequency - adult) day/year 350 F _{res-a} (exposure frequency - adult) day/year 350 F ₂₋₆ (mutagenic exposure frequency first phase) day/year 350 F ₂₋₆ (mutagenic exposure frequency second phase) day/year 350 F ₆₋₁₆ (mutagenic exposure frequency furid phase) day/year 350 F ₁₆₋₂₆ (mutagenic exposure frequency fourth phase) day/year 350 T _{res-adj} (age-adjusted exposure time) hour/event 0.67077 T _{res-madj} (mutagenic age-adjusted exposure time) hour/event 0.67077 T _{res-madj} (mutagenic age-adjusted exposure time) hour/event 0.67077 T _{res-(apposure time)} hour/day 10 11 12 14 17 17 18 19 10 10 10 10 10 10 10 10 10	ED ₂₋₆ (mutagenic exposure duration second phase) year	4
Fres (exposure frequency) day/year Fres (exposure frequency - child) day/year Fres-a (exposure frequency - adult) day/year Fres-a (exposure frequency first phase) day/year S50 Fres-a (mutagenic exposure frequency second phase) day/year Fres-a (mutagenic exposure frequency fourth phase) day/year Fres-adj (age-adjusted exposure time) hour/event Fres-madj (mutagenic age-adjusted exposure time) hour/event Fres-madj (mutagenic age-adjusted exposure time) hour/event Fres-adj (ager-adjusted exposure time - adult) hour/event Fres-adj (ager-adjusted exposure time - adult) hour/event Fres-adj (ager-adjusted exposure time - adult) hour/event Fres-adj (ager-adjusted exposure time first phase) hour/day 24 Tres-adj (ager-adjusted exposure time third phase) hour/day 24 Tres-adj (ager-adjusted exposure time first phase) hour/event Fres-adj (ager-adjusted e	ED ₆₋₁₆ (mutagenic exposure duration third phase) year	10
Fres-c (exposure frequency - child) day/year Fres-a (exposure frequency - adult) day/year Fres-a (exposure frequency - adult) day/year Fres-a (exposure frequency - adult) day/year Fres-a (mutagenic exposure frequency first phase) day/year Fres-a (mutagenic exposure frequency third phase) day/year Fres-a (mutagenic exposure frequency fourth phase) day/year Fres-a (mutagenic exposure frequency fourth phase) day/year Fres-a (mutagenic exposure frequency fourth phase) day/year Fres-a (ge-adjusted exposure time) hour/event Fres-a (mutagenic age-adjusted exposure time) hour/event Fres-a (exposure time) hour/day Fres-a (dermal exposure time - child) hour/event Fres-a (dermal exposure time - adult) hour/event Fres-a (inhalation exposure time - adult) hour/day Fres-a (inhalation exposure time - adult) hour/day Fres-a (inhalation exposure time - adult) hour/day Fres-a (inhalation exposure time first phase) hour/day Fres-a (mutagenic inhalation exposure time second phase) hour/day Fres-a (mutagenic inhalation exposure time first phase) hour/day Fres-a (mutagenic inhalation exposure time fourth phase) hour/day Fres-a (mutagenic dermal exposure time first phase) hour/event Fres-a (mutagenic dermal exposure time first phase) hour/event Fres-a (mutagenic dermal exposure time first phase) hour/event Fres-a (mutagenic dermal exposure time fourth phase) hour/event Fres-a (mutagenic body weight) kg Fres-a (mutagenic body weight) k	ED ₁₆₋₂₆ (mutagenic exposure duration fourth phase) year	10
Fres-a (exposure frequency - adult) day/year Fres-a (exposure frequency - adult) day/year Fres-a (mutagenic exposure frequency first phase) day/year Fres-a (mutagenic exposure frequency second phase) day/year Fres-a (mutagenic exposure frequency third phase) day/year Fres-a (mutagenic exposure frequency fourth phase) day/year Fres-a (mutagenic exposure frequency fourth phase) day/year Fres-a (mutagenic exposure frequency fourth phase) day/year Fres-a (age-adjusted exposure time) hour/event Fres-a (mutagenic age-adjusted exposure time) hour/event Fres-a (exposure time) hour/day Fres-a (exposure time) hour/day Fres-a (dermal exposure time - adult) hour/event Fres-a (inhalation exposure time - adult) hour/event Fres-a (inhalation exposure time - adult) hour/day Fres-a (inhalation exposure time - adult) hour/day Fres-a (inhalation exposure time - adult) hour/day Fres-a (inhalation exposure time first phase) hour/day Fres-a (inhalation exposure time second phase) hour/day Fres-a (mutagenic inhalation exposure time first phase) hour/day Fres-a (mutagenic inhalation exposure time fourth phase) hour/day Fres-a (mutagenic dermal exposure time first phase) hour/event Fres-a (mutagenic dermal exposure time second phase) hour/event Fres-a (mutagenic dermal exposure time third phase) hour/event Fres-a (mutagenic dermal exposure time third phase) hour/event Fres-a (mutagenic dermal exposure time fourth phase) hour/event Fres-	EF _{res} (exposure frequency) day/year	350
Fo.2 (mutagenic exposure frequency first phase) day/year Fo.2 (mutagenic exposure frequency second phase) day/year Fo.6 (mutagenic exposure frequency third phase) day/year Fo.6 (mutagenic exposure frequency fourth phase) day/year Fo.6 (mutagenic exposure frequency fourth phase) day/year Fo.6 (mutagenic exposure frequency fourth phase) day/year Fo.6 (mutagenic age-adjusted exposure time) hour/event Fo.6 (mutagenic age-adjusted exposure time) hour/event Fo.6 (age-adjusted exposure time) hour/event Fo.6 (mutagenic age-adjusted exposure time) hour/event Fo.6 (age-adjusted exposure time) hour/event Fo.6 (mutagenic age-adjusted exposure time) hour/event Fo.6 (age-adjusted exposure time) hour/event Fo.6 (age-adjusted exposure time) hour/event Fo.6 (age-adjusted exposure time) hour/event Fo.6 (mutagenic age-adjusted exposure time) hour/event Fo.6 (age-adjusted exposure time) hour/event Fo.6 (age-adjusted exposure time - child) hour/event Fo.6 (age-adjusted exposure time first phase) hour/day Fo.6 (age-adjusted exposure time first phase) hour/event Fo.6 (age-adjusted exposure time first phase) hour/event Fo.6 (age-adjusted exposure time first phase) hour/event Fo.6 (age-adjusted exposure time fourth phase) hour/event Fo.7 (age-adjusted exposure time fourth pha	EF _{res-c} (exposure frequency - child) day/year	350
F ₂₋₆ (mutagenic exposure frequency second phase) day/year 350 F ₆₋₁₆ (mutagenic exposure frequency third phase) day/year 350 T ₇₋₆₋₂₆ (mutagenic exposure frequency fourth phase) day/year 350 T ₇₋₆₋₃₋₄₀ (age-adjusted exposure time) hour/event 0.67077 T ₇₋₆₋₃₋₄₀ (mutagenic age-adjusted exposure time) hour/event 0.67077 T ₇₋₆₋₃₋₄₀ (age-adjusted exposure time) hour/event 0.67077 T ₇₋₆₋₃₋₄₀ (age-adjusted exposure time) hour/event 0.54 T ₇₋₆₋₃₋₄₀ (dermal exposure time - child) hour/event 0.54 T ₇₋₆₋₃₋₄₀ (dermal exposure time - adult) hour/event 0.71 T ₇₋₆₋₃₋₄₀ (inhalation exposure time - adult) hour/day 24 T ₇₋₆₋₃₋₄₀ (inhalation exposure time - adult) hour/day 24 T ₇₋₆₋₃₋₄₀ (mutagenic inhalation exposure time first phase) hour/day 24 T ₈₋₆₋₄₀ (mutagenic inhalation exposure time second phase) hour/day 24 T ₈₋₆₋₄₀ (mutagenic inhalation exposure time fourth phase) hour/day 24 T ₁₆₋₂₆ (mutagenic dermal exposure time first phase) hour/event 0.54 T ₁₆₋₆₋₆₀ (mutagenic dermal exposure time second phase) hour/event 0.54 T ₁₆₋₆₀ (mutagenic dermal exposure time second phase) hour/event 0.71 T ₁₆₋₆₀ (mutagenic dermal exposure time fourth phase) hour/event 0.71 T ₁₆₋₆₀ (mutagenic dermal exposure time fourth phase) hour/event 0.71 T ₁₆₋₆₀ (mutagenic dermal exposure time fourth phase) hour/event 0.71 T ₁₆₋₆₀ (mutagenic dermal exposure time fourth phase) hour/event 0.71 T ₁₆₋₆₀ (mutagenic dermal exposure time fourth phase) hour/event 0.71 T ₁₆₋₆₀ (mutagenic dermal exposure time fourth phase) hour/event 0.71 M ₁₆₋₆₀ (mutagenic body weight) kg 0.60 M ₁₆₋₁₆₀ (mutagenic body weight) kg 0.71 M ₁₆₋₁₆₀ (mutagenic body weight) kg 0.71 M ₁₆₋₁₆₀ (mutagenic body weight) kg 0.72 (mutagenic body weight) kg	EF _{res-a} (exposure frequency - adult) day/year	350
F ₆₋₁₆ (mutagenic exposure frequency third phase) day/year F ₁₆₋₂₆ (mutagenic exposure frequency fourth phase) day/year T _{res-adj} (age-adjusted exposure time) hour/event 0.67077 T _{res-madj} (mutagenic age-adjusted exposure time) hour/event 0.67077 T _{res-madj} (mutagenic age-adjusted exposure time) hour/event 0.67077 T _{res} (exposure time) hour/day 24 T _{res-c} (dermal exposure time - child) hour/event 0.71 T _{res-c} (inhalation exposure time - adult) hour/event 1.7 T _{res-c} (inhalation exposure time - adult) hour/day 24 T _{res-a} (inhalation exposure time - adult) hour/day 24 T ₁₆₋₂₆ (mutagenic inhalation exposure time first phase) hour/day 24 T ₁₆₋₁₆ (mutagenic inhalation exposure time second phase) hour/day 24 T ₁₆₋₂₆ (mutagenic inhalation exposure time fourth phase) hour/day 24 T ₁₆₋₂₆ (mutagenic dermal exposure time first phase) hour/event 0.54 T ₂₋₆ (mutagenic dermal exposure time second phase) hour/event 0.54 T ₁₆₋₁₆ (mutagenic dermal exposure time second phase) hour/event 0.71 T ₁₆₋₂₆ (mutagenic dermal exposure time fourth phase) hour/event 0.71 T ₁₆₋₂₆ (mutagenic dermal exposure time fourth phase) hour/event 0.71 W ₁₆₋₂₆ (mutagenic dermal exposure time fourth phase) hour/event 0.71 W ₁₆₋₂₆ (mutagenic dermal exposure time fourth phase) hour/event 0.71 W ₁₆₋₂₆ (mutagenic dermal exposure time fourth phase) hour/event 0.71 W ₁₆₋₂₆ (mutagenic dermal exposure time fourth phase) hour/event 0.71 W ₁₆₋₂₆ (mutagenic dermal exposure time fourth phase) hour/event 0.71 W ₁₆₋₂₆ (mutagenic dermal exposure time fourth phase) hour/event 0.71 W ₁₆₋₂₆ (mutagenic dermal exposure time fourth phase) hour/event 0.71 W ₁₆₋₂₆ (mutagenic body weight) kg 0.54 0.54	EF ₀₋₂ (mutagenic exposure frequency first phase) day/year	350
F ₆₋₁₆ (mutagenic exposure frequency third phase) day/year F ₁₆₋₂₆ (mutagenic exposure frequency fourth phase) day/year 350 T _{res-adj} (age-adjusted exposure time) hour/event 0.67077 T _{res-madj} (mutagenic age-adjusted exposure time) hour/event 0.67077 T _{res-madj} (mutagenic age-adjusted exposure time) hour/event 0.67077 T _{res} (exposure time) hour/day 24 T _{res-c} (dermal exposure time - child) hour/event 0.71 T _{res-c} (inhalation exposure time - adult) hour/day 24 T _{res-a} (inhalation exposure time - adult) hour/day 24 T _{res-a} (inhalation exposure time - adult) hour/day 24 T ₂₋₆ (mutagenic inhalation exposure time first phase) hour/day 24 T ₆₋₁₆ (mutagenic inhalation exposure time second phase) hour/day 24 T ₁₆₋₂₆ (mutagenic inhalation exposure time fourth phase) hour/day 24 T ₂₋₆ (mutagenic dermal exposure time first phase) hour/event 0.54 T ₂₋₆ (mutagenic dermal exposure time first phase) hour/event 0.54 T ₁₆₋₁₆ (mutagenic dermal exposure time second phase) hour/event 0.71 T ₁₆₋₂₆ (mutagenic dermal exposure time fourth phase) hour/event 0.71 T ₁₆₋₂₆ (mutagenic dermal exposure time fourth phase) hour/event 0.71 W _{res-a} (body weight - adult) kg 0.71 W _{res-a} (body weight - adult) kg 0.72 (mutagenic body weight) kg	EF ₂₋₆ (mutagenic exposure frequency second phase) day/year	350
Tres-adj (age-adjusted exposure time) hour/event 10.67077 10.6707 10.	EF ₆₋₁₆ (mutagenic exposure frequency third phase) day/year	350
Tres-madj (mutagenic age-adjusted exposure time) hour/event 1	EF ₁₆₋₂₆ (mutagenic exposure frequency fourth phase) day/year	350
Tres (exposure time) hour/day 1	ET _{res-adj} (age-adjusted exposure time) hour/event	0.67077
Tres-c (dermal exposure time - child) hour/event 10.54 10.71 1	ET _{res-madj} (mutagenic age-adjusted exposure time) hour/event	0.67077
Tres-a (dermal exposure time - adult) hour/event Tres-a (inhalation exposure time - child) hour/day 24 Tres-a (inhalation exposure time - adult) hour/day 24 To-2 (mutagenic inhalation exposure time first phase) hour/day 24 To-3 (mutagenic inhalation exposure time second phase) hour/day 24 To-4 (mutagenic inhalation exposure time second phase) hour/day 24 To-4 (mutagenic inhalation exposure time fourth phase) hour/day 24 To-2 (mutagenic dermal exposure time fourth phase) hour/event 0.54 To-4 (mutagenic dermal exposure time second phase) hour/event 0.54 To-4 (mutagenic dermal exposure time second phase) hour/event 0.71 To-4 (mutagenic dermal exposure time third phase) hour/event 0.71 To-4 (mutagenic dermal exposure time fourth phase) hour/event 0.71 Wres-a (body weight - adult) kg 80 Wres-c (body weight - child) kg 15 Wo-2 (mutagenic body weight) kg 15 Wo-4 (mutagenic body weight) kg 80 Wres-G (mutagenic body weight) kg 80 Wres-G (mutagenic body weight) kg	ET _{res} (exposure time) hour/day	24
Tres-a (inhalation exposure time - child) hour/day Tres-a (inhalation exposure time - adult) hour/day 24 To-2 (mutagenic inhalation exposure time first phase) hour/day 24 To-3 (mutagenic inhalation exposure time second phase) hour/day 24 To-4 (mutagenic inhalation exposure time third phase) hour/day 24 To-4 (mutagenic inhalation exposure time fourth phase) hour/day 24 To-2 (mutagenic dermal exposure time first phase) hour/event 0.54 To-3 (mutagenic dermal exposure time second phase) hour/event 0.54 To-4 (mutagenic dermal exposure time third phase) hour/event 0.71 To-4 (mutagenic dermal exposure time fourth phase) hour/event 0.71 Wres-a (body weight - adult) kg 80 Wres-c (body weight - child) kg 15 Wo-2 (mutagenic body weight) kg 15 Wo-4 (mutagenic body weight) kg 80	ET _{res-c} (dermal exposure time - child) hour/event	0.54
Tres-a (inhalation exposure time - adult) hour/day To-2 (mutagenic inhalation exposure time first phase) hour/day 24 To-2 (mutagenic inhalation exposure time second phase) hour/day 24 To-16 (mutagenic inhalation exposure time third phase) hour/day 24 To-16 (mutagenic inhalation exposure time fourth phase) hour/day 24 To-2 (mutagenic dermal exposure time first phase) hour/event To-2 (mutagenic dermal exposure time second phase) hour/event To-3 (mutagenic dermal exposure time second phase) hour/event To-4 (mutagenic dermal exposure time third phase) hour/event To-4 (mutagenic dermal exposure time fourth phase) hour/event To-4 (mutagenic dermal exposure time fourth phase) hour/event To-5 (mutagenic dermal exposure time fourth phase) hour/event To-7 (mutagenic dermal exposure time fourth phase) hour/event To-8 (mutagenic dermal exposure time fourth phase) hour/event To-8 (mutagenic dermal exposure time fourth phase) hour/event To-9 (mutagenic dermal exposure time first phase) hour/event To-9 (mutagenic dermal ex	ET _{res-a} (dermal exposure time - adult) hour/event	0.71
To-2 (mutagenic inhalation exposure time first phase) hour/day To-3 (mutagenic inhalation exposure time second phase) hour/day 24 To-4 (mutagenic inhalation exposure time third phase) hour/day 24 To-4 (mutagenic inhalation exposure time fourth phase) hour/day 24 To-4 (mutagenic inhalation exposure time fourth phase) hour/day 24 To-2 (mutagenic dermal exposure time first phase) hour/event 0.54 To-4 (mutagenic dermal exposure time second phase) hour/event 0.71 To-4 (mutagenic dermal exposure time third phase) hour/event 0.71 To-4 (mutagenic dermal exposure time fourth phase) hour/event 0.71 Wres-a (body weight - adult) kg 80 Wres-c (body weight - child) kg 15 Wo-2 (mutagenic body weight) kg 15 Wo-6 (mutagenic body weight) kg 80	ET _{res-c} (inhalation exposure time - child) hour/day	24
T ₂₋₆ (mutagenic inhalation exposure time second phase) hour/day 24 T ₆₋₁₆ (mutagenic inhalation exposure time third phase) hour/day 24 T ₁₆₋₂₆ (mutagenic inhalation exposure time fourth phase) hour/day 24 T ₀₋₂ (mutagenic dermal exposure time first phase) hour/event 0.54 T ₂₋₆ (mutagenic dermal exposure time second phase) hour/event 0.54 T ₆₋₁₆ (mutagenic dermal exposure time third phase) hour/event 0.71 T ₁₆₋₂₆ (mutagenic dermal exposure time fourth phase) hour/event 0.71 W _{res-a} (body weight - adult) kg 80 W _{res-c} (body weight - child) kg 15 W ₀₋₂ (mutagenic body weight) kg 15 W ₂₋₆ (mutagenic body weight) kg 80 W ₆₋₁₆ (mutagenic body weight) kg	ET _{res-a} (inhalation exposure time - adult) hour/day	24
T ₆₋₁₆ (mutagenic inhalation exposure time third phase) hour/day24T ₁₆₋₂₆ (mutagenic inhalation exposure time fourth phase) hour/day24T ₀₋₂ (mutagenic dermal exposure time first phase) hour/event0.54T ₂₋₆ (mutagenic dermal exposure time second phase) hour/event0.54T ₆₋₁₆ (mutagenic dermal exposure time third phase) hour/event0.71T ₁₆₋₂₆ (mutagenic dermal exposure time fourth phase) hour/event0.71W _{res-a} (body weight - adult) kg80W _{res-c} (body weight - child) kg15W ₀₋₂ (mutagenic body weight) kg15W ₂₋₆ (mutagenic body weight) kg15W ₆₋₁₆ (mutagenic body weight) kg80	ET ₀₋₂ (mutagenic inhalation exposure time first phase) hour/day	24
T ₆₋₁₆ (mutagenic inhalation exposure time third phase) hour/day24T ₁₆₋₂₆ (mutagenic inhalation exposure time fourth phase) hour/day24T ₀₋₂ (mutagenic dermal exposure time first phase) hour/event0.54T ₂₋₆ (mutagenic dermal exposure time second phase) hour/event0.54T ₆₋₁₆ (mutagenic dermal exposure time third phase) hour/event0.71T ₁₆₋₂₆ (mutagenic dermal exposure time fourth phase) hour/event0.71W _{res-a} (body weight - adult) kg80W _{res-c} (body weight - child) kg15W ₀₋₂ (mutagenic body weight) kg15W ₂₋₆ (mutagenic body weight) kg15W ₆₋₁₆ (mutagenic body weight) kg80	ET ₂₋₆ (mutagenic inhalation exposure time second phase) hour/day	24
$T_{0-2} \text{ (mutagenic dermal exposure time first phase) hour/event} \qquad 0.54$ $T_{2-6} \text{ (mutagenic dermal exposure time second phase) hour/event} \qquad 0.54$ $T_{6-16} \text{ (mutagenic dermal exposure time third phase) hour/event} \qquad 0.71$ $T_{16-26} \text{ (mutagenic dermal exposure time fourth phase) hour/event} \qquad 0.71$ $W_{res-a} \text{ (body weight - adult) kg} \qquad 80$ $W_{res-c} \text{ (body weight - child) kg} \qquad 15$ $W_{0-2} \text{ (mutagenic body weight) kg} \qquad 15$ $W_{2-6} \text{ (mutagenic body weight) kg} \qquad 15$ $W_{6-16} \text{ (mutagenic body weight) kg} \qquad 80$	ET ₆₋₁₆ (mutagenic inhalation exposure time third phase) hour/day	24
T ₂₋₆ (mutagenic dermal exposure time second phase) hour/event C ₆₋₁₆ (mutagenic dermal exposure time third phase) hour/event C ₁₆₋₂₆ (mutagenic dermal exposure time fourth phase) hour/event C ₁₆₋₂₆ (mutagenic dermal exposure time fourth phase) hour/event C ₁₆₋₂₆ (mutagenic dermal exposure time fourth phase) hour/event C ₁₆₋₂₆ (mutagenic dermal exposure time fourth phase) hour/event C ₁₆₋₂₆ (mutagenic dermal exposure time fourth phase) hour/event C ₁₆₋₂₆ (mutagenic dermal exposure time third phase) hour/event C ₁₆₋₂₆ (mutagenic dermal exposure time second phase) hour/event C ₁₆₋₂₆ (mutagenic dermal exposure time third phase) hour/event C ₁₆₋₂₆ (mutagenic dermal exposure time third phase) hour/event C ₁₆₋₂₆ (mutagenic dermal exposure time third phase) hour/event C ₁₆₋₂₆ (mutagenic dermal exposure time fourth phase) hour/event C ₁₆₋₂₆ (mutagenic dermal exposure time fourth phase) hour/event C ₁₆₋₂₆ (mutagenic body weight) kg C ₁₆ (mutagenic body weight) kg	ET ₁₆₋₂₆ (mutagenic inhalation exposure time fourth phase) hour/day	24
T ₆₋₁₆ (mutagenic dermal exposure time third phase) hour/event 0.71 T ₁₆₋₂₆ (mutagenic dermal exposure time fourth phase) hour/event 0.71 W _{res-a} (body weight - adult) kg 80 W _{res-c} (body weight - child) kg 15 W ₀₋₂ (mutagenic body weight) kg 15 W ₂₋₆ (mutagenic body weight) kg 80 W ₆₋₁₆ (mutagenic body weight) kg	ET ₀₋₂ (mutagenic dermal exposure time first phase) hour/event	0.54
T ₁₆₋₂₆ (mutagenic dermal exposure time fourth phase) hour/event 0.71 W _{res-a} (body weight - adult) kg 80 W _{res-c} (body weight - child) kg 15 W ₀₋₂ (mutagenic body weight) kg 15 W ₂₋₆ (mutagenic body weight) kg 15 W ₆₋₁₆ (mutagenic body weight) kg	ET ₂₋₆ (mutagenic dermal exposure time second phase) hour/event	0.54
T16-26 (mutagenic dermal exposure time fourth phase) hour/event0.71Wres-a (body weight - adult) kg80Wres-c (body weight - child) kg15W0-2 (mutagenic body weight) kg15W2-6 (mutagenic body weight) kg15W6-16 (mutagenic body weight) kg80	ET ₆₋₁₆ (mutagenic dermal exposure time third phase) hour/event	0.71
W _{res-a} (body weight - adult) kg80W _{res-c} (body weight - child) kg15W ₀₋₂ (mutagenic body weight) kg15W ₂₋₆ (mutagenic body weight) kg15W ₆₋₁₆ (mutagenic body weight) kg80	ET ₁₆₋₂₆ (mutagenic dermal exposure time fourth phase) hour/event	0.71
W ₀₋₂ (mutagenic body weight) kg 15 W ₂₋₆ (mutagenic body weight) kg 15 W ₆₋₁₆ (mutagenic body weight) kg 80	BW _{res-a} (body weight - adult) kg	80
W ₀₋₂ (mutagenic body weight) kg15W ₂₋₆ (mutagenic body weight) kg15W ₆₋₁₆ (mutagenic body weight) kg80	BW _{res-c} (body weight - child) kg	15
W ₂₋₆ (mutagenic body weight) kg 15 W ₆₋₁₆ (mutagenic body weight) kg 80	BW ₀₋₂ (mutagenic body weight) kg	15
W ₆₋₁₆ (mutagenic body weight) kg	BW ₂₋₆ (mutagenic body weight) kg	15
	BW ₆₋₁₆ (mutagenic body weight) kg	80
	BW ₁₆₋₂₆ (mutagenic body weight) kg	80

Appendix A - Regional Screening Levels from the RSL Calculator AVX Corporation, Myrtle Beach Facility Myrtle Beach, South Carolina

Site-specific Resident Equation Inputs for Tap Water

Variable	Value
IFW _{res-adj} (adjusted intake factor) L/kg	327.95
IFW _{res-adj} (adjusted intake factor) L/kg	327.95
IFWM _{res-adj} (mutagenic adjusted intake factor) L/kg	1019.9
IFWM _{res-adj} (mutagenic adjusted intake factor) L/kg	1019.9
IRW _{res-c} (water intake rate - child) L/day	0.78
IRW _{res-a} (water intake rate - adult) L/day	2.5
IRW ₀₋₂ (mutagenic water intake rate) L/day	0.78
IRW ₂₋₆ (mutagenic water intake rate) L/day	0.78
IRW ₆₋₁₆ (mutagenic water intake rate) L/day	2.5
IRW ₁₆₋₂₆ (mutagenic water intake rate) L/day	2.5
EV _{res-a} (events - adult) per day	1
EV _{res-c} (events - child) per day	1
EV ₀₋₂ (mutagenic events) per day	1
EV ₂₋₆ (mutagenic events) per day	1
EV ₆₋₁₆ (mutagenic events) per day	1
EV ₁₆₋₂₆ (mutagenic events) per day	1
DFW _{res-adj} (age-adjusted dermal factor) cm ² -event/kg	2610650
DFWM _{res-adj} (mutagenic age-adjusted dermal factor) cm ² -event/kg	8191633
DFW _{res-adj} (age-adjusted dermal factor) cm ² -event/kg	2610650
DFWM _{res-adj} (mutagenic age-adjusted dermal factor) cm ² -event/kg	8191633
SA _{res-c} (skin surface area - child) cm ²	6365
SA _{res-a} (skin surface area - adult) cm ²	19652
SA ₀₋₂ (mutagenic skin surface area) cm ²	6365
SA ₂₋₆ (mutagenic skin surface area) cm ²	6365
SA ₆₋₁₆ (mutagenic skin surface area) cm ²	19652
SA ₁₆₋₂₆ (mutagenic skin surface area) cm ²	19652

Output generated 07MAR2017:11:17:30

Resident Screening Levels (RSL) for Tap Water

Key: I = IRIS; P = PPRTV; D = DWSHA; O = OPP; A = ATSDR; C = Cal EPA; X = APPENDIX PPRTV SCREEN (See FAQ #27); H = HEAST; F = See FAQ; J = New Jersey; E = see user guide Section 2.3.5; L = see user guide on lead; M = mutagen; S = see user guide Section 5; V = volatile; R = RBA applied (See User Guide for IRIS) or IRIS; P = PPRTV; D = DWSHA; O = OPP; A = ATSDR; C = Cal EPA; X = APPENDIX PPRTV SCREEN (See FAQ #27); H = HEAST; F = See IRIS; P = PPRTV; D = DWSHA; O = OPP; A = ATSDR; C = Cal EPA; X = APPENDIX PPRTV SCREEN (See FAQ #27); H = HEAST; F = See IRIS; P = PPRTV; D = DWSHA; O = OPP; A = ATSDR; C = Cal EPA; X = APPENDIX PPRTV SCREEN (See IRIS) for IRIS PRIVE PRTV SCREEN (See IRIS) for IRIS PRTV SCREEN (See Arsenic notice); c = cancer; n = noncancer; * = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X

					Ingestion		Inhalation Unit				Chronic												
<u>.</u>				<u> </u>	Ingestion SF	SFO	Risk	IUR	Chronic RfD	Chronic RfD	RfC	Chronic RfC		K _p		В	,t	T _{event}	FA		MCL	Screening Level	
Chemical	CAS Number	Mutagen?	VOC?	Chemical Type	(mg/kg-day) ⁻¹	Ref	(ug/m ³) ⁻¹	Ref	(mg/kg-day)	Ref	(mg/m³)	Ref	GIABS	· , ,	MW 183.1	(unitless)	(hr)	(hr/event)	(unitless)	In EPD?	(ug/L)	(ug/L)	[basis]
Acephate	30560-19-1	No	No	Organics	-		-		1.20E-03	OP	-		1	0.00004	7	0.0002082	2.6780087	1.115837	1	Yes	-	2.40E+01	nc
Acetaldehyde	75-07-0	No	Yes	Organics	-		2.20E-06	I	-		9.00E-03	IR	1	0.000527	44.05 4 269.7	0.0013453	0.4454125	0.1855885	1	Yes	-	2.55E+00	ca**
Acetochlor	34256-82-1	No	No	Organics	-		-		2.00E-02	IR	-		1	0.00495	7	0.0312701	8.180352	3.40848	0.9	Yes	-	3.53E+02	nc
Acetone	67-64-1	No	Yes	Organics	-		-		9.00E-01	IR	3.09E+01	АТ	1	0.000512	58.08	0.0015008	0.5337201	0.2223834	1	Yes	-	1.41E+04	nc
Acetone Cyanohydrin	75-86-5	No	No	Organics	-		-		-		2.00E-03	SC	1	0.000495	85.10 6	0.0017564	0.7562295	0.3150956	1	Yes	-		
Acetonitrile	75-05-8	No	Yes	Organics	-		-		-		6.00E-02	IR	1	0.000548	41.05 3	0.0013505	0.4285059	0.1785441	1	Yes	-	1.25E+02	nc
Acetophenone	98-86-2	No	Yes	Organics	-		_		1.00E-01	IR	-		1	0.00372	120.1 5	0.0156831	1.1882286	0.4950952	1	Yes	-	1.92E+03	nc
Acetylaminofluorene, 2-	53-96-3	No	No	Organics	3.80E+00	С	1.30E-03	С	-		-		1	0.0124959	223.2 8	0.0718154	4.4918784	1.871616	1	Yes	-	1.57E-02	ca
Acifluorofen	50594-66-6	No	No	Organics	-		_		-		-		1	0.00421	361.6 6	0.0307935	26.751984	11.14666	0.9	Yes	-		
Acridine	260-94-6	No	No	Organics	-		_		-		-		1	0.0281	179.2 2	0.1446859	2.5450246	1.0604269	1	Yes	-		
Acrolein	107-02-8	No	Yes	Organics	-		_		5.00E-04	IR	2.00E-05	IR	1	0.000748	56.06 5	0.0021541	0.5200247	0.216677	1	Yes	-	4.15E-02	nc
Acrylamide	79-06-1	Yes	No	Organics	5.00E-01	I	1.00E-04	I	2.00E-03	IR	6.00E-03	IR	1	0.000224	71.07 9	0.0007263	0.6311061	0.2629609	1	Yes	-	5.00E-02	ca
Acrylic Acid	79-10-7	No	Yes	Organics	-		-		5.00E-01	IR	1.00E-03	IR	1	0.00105	72.06 4	0.0034283	0.639173	0.2663221	1	Yes	-	2.09E+00	nc
Acrylonitrile	107-13-1	No	Yes	Organics	5.40E-01	ı	6.80E-05	I	4.00E-02	AT	2.00E-03	IR	1	0.00116	53.06 4	0.00325	0.500286	0.2084525	1	Yes	-	5.23E-02	ca*
Adiponitrile	111-69-3	No	No	Organics	-		-		-		6.00E-03	PP	1	0.000237	108.1	0.0009479	1.0177567	0.4240653	1	Yes	-		
Alachlor	15972-60-8	No	No	Organics	5.60E-02	С	-		1.00E-02	IR	-		1	0.0105	269.7 7	0.0663304	8.180352	3.40848	0.9	Yes	2.00E+00	1.06E+00	ca
Daminozide	1596-84-5	No	No	Organics	1.80E-02	С	5.10E-06	С	1.50E-01	IR	-		1	0.0000199	160.1 7	0.0000969	1.9907283	0.8294701	1	Yes	-	4.33E+00	ca
Aldicarb	116-06-3	No	No	Organics	-		-		1.00E-03	IR	-		1	0.000755	190.2 7	0.0040055	2.9347559	1.222815	1	Yes	3.00E+00	1.98E+01	nc
Aldicarb Sulfone	1646-88-4	No	No	Organics	-		-		1.00E-03	IR	-		1	0.0000371	222.2	0.0002127	4.4331864	1.847161	1	Yes	2.00E+00	2.00E+01	nc
Aldicarb sulfoxide	1646-87-3	No	No	Organics	-		-		-		-		1	0.0000329	206.2	0.0001817	3.6072147	1.5030061	1	Yes	4.00E+00		
		No	Yes	Organics	1.70E+01	ı	4.90E-03	I	3.00E-05	IR	-		1	0.293	364.9 2	2.1527476	47.726506	11.625208	1	No	-	9.17E-04	ca
		No	No	Organics	-		-		-		-		1	-	-	-	-	-	0	No	-		
		No	No	Organics	-		-		-		-		1	-	-	-	-	-	0	No	-		
Alizarin Red Compounds	NA	No	No	Organics	-		-		-		-		1	-	- 58.08	-	-	-	0	No	-		
Allyl Alcohol	107-18-6	No	Yes	Organics	-		-		5.00E-03	IR	1.00E-04	SC	1	0.000959	1 76.52	0.002811	0.5337201	0.2223834	1	Yes	-	2.08E-01	nc
Allyl Chloride	107-05-1	No	Yes	Organics	2.10E-02	С	6.00E-06	С	-		1.00E-03	IR	1	0.0112	6 26.98	0.0376833	0.6770264	0.2820943	1	Yes	-	7.32E-01	ca**
Aluminum	7429-90-5	No	No	Inorganics	-		_		1.00E+00	PP	5.00E-03	PP	1	0.001		0.0019979	0.3574038	0.1489183	1	Yes	_	2.00E+04	nc

					Ingestion SF	250	Inhalation Unit Risk		Chronic	Chronic	Chronic RfC	Chronic		K		n.		_			MOI	Screening	
Chemical	CAS Number	Mutagen?	VOC?	Chemical Type	(mg/kg-day) ⁻¹	SFO Ref	(ug/m ³) ⁻¹	IUR Ref	RfD (mg/kg-day)	RfD Ref	(mg/m³)	RfC Ref	GIABS	K _p (cm/hr)	MW	B (unitless)	t (hr)	T _{event} (hr/event)	FA (unitless)	In EPD?	MCL (ug/L)	Level (ug/L)	[basis]
Aluminum Phosphide	20859-73-8	No	No	Inorganics	-		_		4.00E-04	IR	_		1	0.001	57.95 5	0.002928	0.5328537	0.2220224	1	Yes	-	7.99E+00	nc
Hydramethylnon	67485-29-4	No	No	Organics	-		-		1.70E-02	OP	-		1	0.0000902	494.4 9	0.0007715	148.32146	61.800608	1	Yes	-	3.37E+02	nc
Ametryn	834-12-8	No	No	Organics	-		-		9.00E-03	IR	-		1	0.00794	227.3	0.0460443	4.7326893	1.9719539	1	Yes		1.52E+02	nc
Amino-4-chlorobenzotrifluoride, 3-	121-50-6	No	Yes	Organics	-		-		-		-		1	0.0135	195.5 7	0.0726125	3.1423314	1.3093048	1	Yes	-		
Aminoazobenzene, p-	60-09-3	No	No	Organics	-		-		-		-		1	0.0067706	197.2	0.0365724	3.2107315	1.3378048	1	Yes	-		
Aminobiphenyl, 4-	92-67-1	No	No	Organics	2.10E+01	С	6.00E-03	С	-		-		1	0.014	169.2	0.0700476	2.2374224	0.9322594	1	Yes	-	2.98E-03	ca
Aminophenol, m-	591-27-5	No	No	Organics	-		-		8.00E-02	PP	-		1	0.000527	109.1	0.0021174	1.0308322	0.4295134	1	Yes	-	1.60E+03	nc
Aminophenol, o-	95-55-6	No	No	Organics	-		-		4.00E-03	SC	-		1	0.000988	109.1	0.0039697	1.0308322	0.4295134	1	Yes	-	7.94E+01	nc
Aminophenol, p-	123-30-8	No	No	Organics	-		-		2.00E-02	PP	-		1	0.000407	109.1 3	0.0016353	1.0308322	0.4295134	1	Yes	-	3.99E+02	nc
Aminopyridine, 4-	504-24-5	No	No	Organics	-		-		-		-		1	0.000758	94.11	0.0028283	0.8494057	0.3539191	1	Yes	-		
Amitraz	33089-61-1	No	No	Organics	-		-		2.50E-03	IR	-		1	0.16	293.4	1.0541235	17.888257	4.6238182	0.9	Yes		8.18E+00	nc
Ammonium Sulfamate	7773-06-0	No	No	Inorganics	-		-		2.00E-01	IR	-		1	0.001	114.1	0.0041088	1.0993966	0.4580819	1	Yes	_	3.99E+03	nc
Amyl Alcohol, tert-	75-85-4	No	Yes	Organics	-		-		-		3.00E-03	SC	1	0.00196	88.15	0.0070778	0.7865124	0.3277135	1	Yes	-	6.26E+00	nc
Aniline	62-53-3	No	No	Organics	5.70E-03	I	1.60E-06	С	7.00E-03	PP	1.00E-03	IR	1	0.00186	93.12 9	0.0069037	0.8386532	0.3494388	1	Yes	-	1.34E+01	ca*
Anilinobenzothiazole	1843-21-6	No	No	Organics	-		-		-		-		1	-	208.2	-	-	-	0	No	-		
Anthraquinone, 9,10-	84-65-1	No	No	Organics	4.00E-02	Р	-		2.00E-03	sc	-		1	0.019	2 121.7	0.1054488	3.6990652	1.5412772	0.9	Yes	-	1.41E+00	ca*
Antimony (metallic)	7440-36-0	No	No	Inorganics	-		-		4.00E-04	IR	-		0.15	0.001	6	0.004244	1.2131542	0.5054809	1	Yes	6.00E+00	7.79E+00	nc
Antimony Pentoxide	1314-60-9	No	No	Inorganics	-		-		5.00E-04	HE	-		0.15	0.001	323.5 17	0.0069179	16.358941	6.8162255	1	Yes	-	9.74E+00	nc
Antimony Potassium Tartrate	11071-15-1	No	No	Organics	-		-		-		-		1	8.07E-12	613.8	7.69E-11	690.95854	287.89939	1	No	-		
Antimony Tetroxide	1332-81-6	No	No	Inorganics	-		-		4.00E-04	HE	-		0.15	0.001	307.5	0.0067447	13.309814	5.5457559	1	Yes	-	7.79E+00	nc
Antimony Trioxide	1309-64-4	No	No	Inorganics	-		-		-		2.00E-04	IR	0.15	0.001	291.5	0.0065669	10.828592	4.5119133	1	Yes	-		
Antimony Trichloride	10025-91-9	No	No	Inorganics	-		-		_		_		1	0.001	228.1 1 303.1	0.005809	4.7805294	1.9918872	1	Yes	-		
Clofentezine	74115-24-5	No	No	Organics	-		_		1.30E-02	IR	_		1	0.00358	5	0.0239739	12.580561	5.2419002	0.9	Yes	-	2.32E+02	nc
Arsenic Salts	NA	No	No	Inorganics	-		-		-		-		1	0.001	-	-	-	-	0	Yes	-		
Arsenic, Inorganic	7440-38-2	No	No	Inorganics	1.50E+00	I	4.30E-03	I	3.00E-04	IR	1.50E-05	CA	1	0.001	74.92	0.0033291	0.6631674	0.2763198	1	Yes	1.00E+01	5.17E-02	ca
Arsine	7784-42-1	No	No	Inorganics	-		-		3.50E-06	CA	5.00E-05	IR	1	0.001	77.94 6	0.0033957	0.689537	0.2873071	1	Yes	-	6.99E-02	nc
Asulam	3337-71-1	No	No	Organics	-		-		3.60E-02	ОР	_		1	0.0000529	230.2 4	0.0003087	4.9136474	2.0473531	1	Yes	-	7.21E+02	nc

					Ingestion SF	SFO	Inhalation Unit Risk	IUR	Chronic RfD	Chronic RfD	Chronic RfC	Chronic RfC		K _p		В	t	T _{event}	FA		MCL	Screening Level	
Chemical	CAS Number	Mutagen?	VOC?	Chemical Type	(mg/kg-day) ⁻¹	Ref	(ug/m³) ⁻¹	Ref	(mg/kg-day)	Ref	(mg/m³)	Ref	GIABS	(cm/hr)	MW	(unitless)	(hr)	(hr/event)	(unitless)	In EPD?	(ug/L)	(ug/L)	[basis]
Atrazine	1912-24-9	No	No	Organics	2.30E-01	С	-		3.50E-02	IR	-		1	0.00524	215.6 9	0.0295987	4.0730899	1.6971208	1	Yes	3.00E+00	3.02E-01	ca
Auramine	492-80-8	No	No	Organics	8.80E-01	С	2.50E-04	С	-		-		1	0.0111424	267.3 8	0.070076	7.9320965	3.3050402	0.9	Yes	-	6.66E-02	ca
Avermectin B1	65195-55-3	No	No	Organics	-		-		4.00E-04	IR	-		1	0.0000181	875.1	0.0002059	20078.534	8366.0557	1	No	-	8.02E+00	nc
Azobenzene	103-33-3	No	Yes	Organics	1.10E-01	ı	3.10E-05	ı	_		-		1	0.0514	182.2 3	0.26687	2.645745	1.1023938	1	Yes	_	1.20E-01	ca
Azodicarbonamide	123-77-3	No	No	Organics	_		-		1.00E+00	PP	7.00E-06	PP	1	0.0000259	116.0 8	0.0001073	1.1274778	0.4697824	1	Yes	-	2.00E+04	nc
Barium	7440-39-3	No	No	Inorganics	-		-		2.00E-01	IR	5.00E-04	HE	0.07	0.001	137.3	0.0045072	1.4828868	0.6178695	1	Yes	2.00E+03	3.77E+03	nc
Barium Chromate	10294-40-3	Yes	No	Inorganics	5.00E-01	С	1.50E-01	С	2.00E-02	CA	2.00E-04	CA	0.025	0.001	253.3 21	0.0061216	6.616946	2.7570608	1	Yes	_	4.12E-02	ca
Cyfluthrin	68359-37-5	No	No	Organics	-		-		2.50E-02	IR	-		1	0.0515	434.3	0.4127896	68.255868	28.439945	0.7	Yes	-	1.20E+02	nc
Benfluralin	1861-40-1	No	Yes	Organics	-		-		5.00E-03	OP	-		1	0.0675	335.2	0.4753798	19.040747	7.9336447	0.8	Yes	-	2.85E+01	nc
Benomyl	17804-35-2	No	No	Organics	-		-		5.00E-02	IR	-		1	0.000943	290.3	0.0061798	10.662327	4.4426362	1	Yes	-	9.71E+02	nc
Bentazon	25057-89-0	No	No	Organics	-		-		3.00E-02	IR	-		1	0.00252	240.2	0.015024	5.5927833	2.3303264	1	Yes	-	5.66E+02	nc
Benzaldehyde Benzamide, N,N-diethyl-3-methyl	100-52-7	No	Yes	Organics	4.00E-03	Р	-		1.00E-01	IR	-		1	0.00383	106.1 3 191.2	0.0151756	0.9917175	0.4132156	1	Yes	-	1.86E+01	ca
(DEET)	134-62-3	No	No	Organics	-		-		-		-		1	0.00372	8 78.11	0.0197881	2.9732265	1.2388444	1	Yes	-		
Benzene	71-43-2	No	Yes	Organics	5.50E-02	I	7.80E-06	ı	4.00E-03	IR	3.00E-02	IR	1	0.0149	5	0.0506501	0.6910413	0.2879339	1	Yes	5.00E+00	4.55E-01	ca*
Benzene, Ethyldimethyl	29224-55-3	No	Yes	Organics	-		-		-		-		1	0.212	134.2	0.9446504	2.2852989	0.593582	1	Yes	_		
Benzene, Ethylmethyl	25550-14-5	No	Yes	Organics	_		_		_		_		1	0.0857	360.5 9	0.6259135	43.76967	10.993924	0.8	Yes	_		
Benzene, Methylpropenyl	768-00-3	No	Yes	Organics	-		-		-		-		1	0.103	132.2 1	0.455508	1.3881487	0.5783953	1	Yes	-		
Benzene, Methylpropyl	28729-54-6	No	No	Organics	-		-		-		-		1	-	-	-	-	-	0	No	-		
Benzene, Trimethyl	25551-13-7	No	Yes	Organics	-		-		-		-		1	0.0621	360.5	0.4535499	26.385419	10.993924	0.8	Yes	-		
Benzenediamine-2-methyl sulfate, 1,4-	6369-59-1	No	No	Organics	1.00E-01	Х	_		3.00E-04	SC	_		1	3.04E-7	220.2 4	1.7352E-6	4.3192067	1.7996695	1	No	_	7.79E-01	ca**
Benzenethiol	108-98-5	No	Yes	Organics	-		-		1.00E-03	PP	-		1	0.0178	110.1	0.0718618	1.0448838	0.4353682	1	Yes	-	1.68E+01	nc
Benzidine	92-87-5	Yes	No	Organics	2.30E+02	ı	6.70E-02	ı	3.00E-03	IR	_		1	0.00113	184.2 4	0.0058993	2.7152135	1.131339	1	Yes	_	1.07E-04	ca
	NA	No	No	Organics	-		-		-		-		1	-	-	-	-	-	0	No	-		
Benzofluorene, 2,3-	243-17-4	No	No	Organics	_		-		_		-		1	0.654	216.2 9	3.6993261	7.3443321	1.7103018	1	No	-		
Benzoic Acid	65-85-0	No	No	Organics	-		-		4.00E+00	IR	-		1	0.00565	122.1	0.0240142	1.2187987	0.5078328	1	Yes	-	7.52E+04	nc
Benzoic acid, 3,5-dichloro-	51-36-5	No	No	Organics	-		-		-		-		1	0.0131	191.0	0.0696347	2.9628932	1.2345388	1	Yes	-		
Benzoic acid, 4-hydroxy-, methyl ester	99-76-3	No	No	Organics	-		_		-		-		1	0.004403	152.1 5	0.0208886	1.7951469	0.7479779	1	Yes	_		

					Ingestion		Inhalation Unit		Chronic	Chronic	Chronic	Chronic										Screening	
Chemical	CAS Number	Mutagen?	VOC?	Chemical Type	SF (mg/kg-day) ⁻¹	SFO Ref	Risk (ug/m³) ⁻¹	IUR Ref	RfD (mg/kg-day)	RfD Ref	RfC (mg/m³)	RfC Ref	GIABS	K _p (cm/hr)	MW	B (unitless)	t (hr)	T _{event} (hr/event)	FA (unitless)	In EPD?	MCL (ug/L)	Level (ug/L)	[basis]
Benzothiazole	95-16-9	No	No	Organics	-		-		-		-		1	0.00592	135.1 9	0.0264741	1.4425271	0.601053	1	Yes	-		
Benzotrichloride	98-07-7	No	Yes	Organics	1.30E+01	I	-		-		-		1	0.0487	195.4	0.2618827	3.1386869	1.3077862	1	Yes	-	2.99E-03	ca
Benzyl Alcohol	100-51-6	No	No	Organics	-		_		1.00E-01	PP	-		1	0.00209	108.1 4	0.0083592	1.0177567	0.4240653	1	Yes	-	1.96E+03	nc
Benzyl Chloride	100-44-7	No	Yes	Organics	1.70E-01	ı	4.90E-05	С	2.00E-03	PP	1.00E-03	PP	1	0.0103	126.5 9	0.0445721	1.2911122	0.5379634	1	Yes	-	8.92E-02	ca*
Beryllium and compounds	7440-41-7	No	No	Inorganics	-		2.40E-03	I	2.00E-03	IR	2.00E-05	IR	0.007	0.001	9.01	0.0011545	0.2834758	0.1181149	1	Yes	4.00E+00	2.46E+01	nc
Dicrotophos	141-66-2	No	No	Organics	-		-		7.00E-05	OP	-		1	0.0000731	237.1	0.000433	5.3743258	2.2393024	1	Yes	-	1.40E+00	nc
Bifenox	42576-02-3	No	No	Organics	-		-		9.00E-03	PP	-		1	0.0179	342.1	0.1273449	20.799074	8.6662807	0.9	Yes	-	1.01E+02	nc
Biphenthrin	82657-04-3	No	No	Organics	-		-		1.50E-02	IR	-		1	1.74	422.8 8	13.762093	112.3291	24.545775	0	Yes	-	3.01E+02	nc
Biphenyl, 1,1'-	92-52-4	No	Yes	Organics	8.00E-03	I	-		5.00E-01	IR	4.00E-04	sc	1	0.0943	154.2	0.4503961	1.8434696	0.7681124	1	Yes	-	8.34E-01	nc
Bis(2-chloroethoxy)methane	111-91-1	No	No	Organics	-		-		3.00E-03	PP	-		1	0.00122	173.0 4	0.0061725	2.3500873	0.979203	1	Yes	-	5.90E+01	nc
Bis(2-chloroethyl)ether	111-44-4	No	Yes	Organics	1.10E+00	I	3.30E-04	I	-		-		1	0.00178	143.0	0.0081871	1.5955705	0.664821	1	Yes	-	1.37E-02	са
Bis(2-chloro-1-methylethyl) ether	108-60-1	No	Yes	Organics	-		-		4.00E-02	IR	-		1	0.00764	171.0 7	0.0384332	2.2911419	0.9546425	1	Yes	-	7.14E+02	nc
Bis(chloromethyl)ether	542-88-1	No	Yes	Organics	2.20E+02	I	6.20E-02	I	-		-		1	0.000855	114.9 6 228.2	0.0035259	1.111312	0.4630467	1	Yes	-	7.20E-05	ca
Bisphenol A	80-05-7	No	No	Organics	-		_		5.00E-02	IR	_		1	0.0132	9	0.0767086	4.7916379	1.9965158	1	Yes	-	7.66E+02	nc
Boron And Borates Only	7440-42-8	No	No	Inorganics	-		-		2.00E-01	IR	2.00E-02	HE	1	0.001	13.84	0.0014309	0.3016921	0.1257051	1	Yes	-	3.99E+03	nc
Boron Trifluoride	7637-07-2	No	Yes	Inorganics	-		-		4.00E-02	CA	1.30E-02	CA	1	0.001	67.80 6	0.0031671	0.6050254	0.2520939	1	Yes	-	2.62E+01	nc
Boron Trichloride	10294-34-5	No	Yes	Inorganics	-		-		2.00E+00	PP	2.00E-02	PP	1	0.001	117.1 7 261.1	0.0041633	1.1434363	0.4764318	1	Yes	-	4.17E+01	nc
Bromacil	314-40-9	No	No	Organics	-		_		_		_		1	0.00135	201.1	0.0083904	7.3169821	3.0487425	1	Yes	_		
Bromate	15541-45-4	No	No	Inorganics	7.00E-01	I	-		4.00E-03	IR	-		1	0.001	79.9	0.003438	0.7071312	0.294638	1	Yes	1.00E+01	1.11E-01	ca
Bromine	7726-95-6	No	Yes	Inorganics	-		-		-		-		1	0.001	159.8	0.0048623	1.9817643	0.8257351	1	Yes	-		
Bromo-2-chloroethane, 1-	107-04-0	No	Yes	Organics	2.00E+00	Х	6.00E-04	Х	_		_		1	0.00464	143.4 1	0.0213715	1.6038214	0.6682589	1	Yes	-	7.45E-03	ca
Bromo-3-fluorobenzene, 1-	1073-06-9	No	Yes	Organics	-		-		-		-		1	0.0142		0.0722494	2.4102383	1.004266	1	Yes	-		
Bromo-4-Ethylbenzene, 1-	1585-07-5	No	Yes	Organics	-		-		-		-		1	0.0579	185.0 6	0.3029434	2.7440751	1.1433646	1	Yes	-		
Bromoacetic acid	79-08-3	No	No	Organics	-		-		_		-		1	0.000487	138.9	0.0022079	1.5141887	0.6309119	1	Yes	-		
Bromoacetophenone, 3-	2142-63-4	No	No	Organics	-		-		-		-		1	0.00524	199.0 5	0.0284341	3.2865481	1.369395	1	Yes	-		
Bromobenzene	108-86-1	No	Yes	Organics	-		-		8.00E-03	IR	6.00E-02	IR	1	0.02	157.0	0.0963874	1.9112434	0.7963514	1	Yes	-	6.22E+01	nc
Bromochloromethane	74-97-5	No	Yes	Organics	-		-		-		4.00E-02	SC	1	0.00255	129.3	0.0111558	1.3384064	0.5576693	1	Yes	-	8.34E+01	nc
Bromodichloromethane	75-27-4	No	Yes	Organics	6.20E-02	I	3.70E-05	С	2.00E-02	IR	-		1	0.00402	163.8 3	0.0197902	2.0869305	0.8695544	1	Yes	8.00E+01	1.34E-01	ca

Resident Screening Levels (RSL) for Tap Water

Chemical	CAS Number	Mutagen?	VOC?	Chemical Type	Ingestion SF (mg/kg-day) ⁻¹	SFO Ref		UR Ref (Chronic RfD (mg/kg-day)	Chronic RfD Ref	Chronic RfC (mg/m³)	Chronic RfC Ref	GIABS	K _p (cm/hr)	MW	B (unitless)	t (hr)	T _{event} (hr/event)	FA (unitless)	In EPD?	MCL (ug/L)	Screening Level (ug/L)	[basis]
Bromodiphenyl Ether, p-	101-55-3	No	Yes	Organics	-		_		-		_		1	0.12	249.1	0.7284563	10.101557	2.611348	0.9	Yes	-		
Bromofluorobenzene, p-	460-00-4		Yes	Organics	-		-		-		-		1	0.0182	175		2.4102383	1.004266	1	Yes	-		
Bromoform	75-25-2	No	Yes	Organics	7.90E-03	I	1.10E-06	ı	2.00E-02	IR	-		1	0.00235	252.7	0.0143689	6.5667123	2.7361301	1	Yes	8.00E+01	3.29E+00	ca
Bromomethane	74-83-9	No	Yes	Organics	-		-		1.40E-03	IR	5.00E-03	IR	1	0.00284	94.93 9 173.0	0.0106431	0.8584567	0.3576903	1	Yes	-	7.55E+00	nc
Bromophenol, p-	106-41-2	No	No	Organics	-		-		-		-		1	0.008817	1	0.0446047	2.3491784	0.9788243	1	Yes	-		
Bromophos	2104-96-3	No	Yes	Organics	-		-		5.00E-03	HE	-		1	0.0401	366	0.2950608	28.291762	11.788234	0.8	Yes	-	3.55E+01	nc
Bromopropane, 1-	106-94-5	No	Yes	Organics	-		-		-		-		1	0.00795	122.9 9	0.0339101		0.5135618	1	Yes	-		
Bromopyridine, 2-	109-04-6	No	No	Organics	-		-		-		-		1	0.00179	158 198.2	0.0086538	1.9357978	0.8065824	1	Yes	-		
Bromotrichloromethane	75-62-7	No	Yes	Organics	-		-		-		-		1	0.00582	7 276.9	0.0315194	3.2536587	1.3556911	1	Yes	-		
Bromoxynil	1689-84-5	No	No	Organics	1.03E-01	0	-		1.50E-02	OP	-		1	0.00783	2 403.1	0.0501148	8.9704038	3.7376682	0.9	Yes	-	6.07E-01	ca
Bromoxynil Octanoate	1689-99-2	No	Yes	Organics	-		-		1.50E-02	OP	-		1	0.0332	2 54.09	0.2563787	45.659588	19.024828	0.8	Yes	-	1.03E+02	nc
Butadiene, 1,3-	106-99-0	No	Yes	Organics	3.40E+00	С	3.00E-05	I	-		2.00E-03	IR	1	0.0164	2 90.12	0.0463914	0.5069617	0.2112341	1	Yes	-	1.81E-02	ca
Butanediol, 2,3-	513-85-9	No	No	Organics	-		-		-		-		1	0.0001196	3 148.2			0.3361534	1	Yes	-		
Butanol	35296-72-1	No	Yes	Organics	-		-		-		-		1	0.00153	5 74.12	0.007165		0.7112934	1	Yes	-		
Butanol, N-	71-36-3		Yes	Organics	-		-		1.00E-01	IR	-		1	0.00231	4	0.0076492	0.6563786	0.2734911	1	Yes	-	1.97E+03	nc
Butanone-2, 4-chloro-4,4-difluoro	1515-16-8	No	No	Organics	-		-		-		-		1	-	74.12	-	-	-	0	No	-		
Butyl alcohol, sec-	78-92-2	No	Yes	Organics	-		-		2.00E+00	PP	3.00E+01	PP	1	0.00153	4 74.12	0.0050664	0.6563786	0.2734911	1	Yes	-	2.42E+04	nc
Butyl Alcohol, t-	75-65-0	No	Yes	Organics	-		-		-		-		1	0.00103	4 102.1	0.0034107	0.6563786	0.2734911	1	Yes	-		
Butyl Formate, tert-	762-75-4	No	Yes	Organics	-		-		-		-		1	0.00258	3 116.1	0.0100282	0.9418636	0.3924431	1	Yes	-		
Butylacetate	123-86-4	No	Yes	Organics	-		-		-		-		1	0.00532	6 217.3		1.1286414		1	Yes	-		
Butylate	2008-41-5		Yes	Organics	-		-		5.00E-02	IR	-		1	0.0541	8			1.7345098	1	Yes	-	4.60E+02	nc
Butylated hydroxyanisole	25013-16-5	No	No	Organics	2.00E-04	С	5.70E-08	C	-		-		1	0.0325	360.5 220.3	0.2373355	26.354816	10.981173	0.8	Yes	-	1.53E+02	ca
Butylated hydroxytoluene	128-37-0	No	No	Organics	3.60E-03	Р	-		3.00E-01	PP	-		1	0.223	6 134.2	1.2732037	7.0634042	1.8024563	1	Yes	-	3.38E+00	ca
Butylbenzene, n-	104-51-8	No	Yes	Organics	-		-		5.00E-02	PP	-		1	0.225	2 134.2	1.0025771	2.2905999	0.593582	1	No	-	1.00E+03	nc
Butylbenzene, sec-	135-98-8	No	Yes	Organics	-		-		1.00E-01	sc	-		1	0.301	2 134.2	1.3412254	2.3358545	0.593582	1	No	-	2.01E+03	nc
Butylbenzene, tert-	98-06-6	No	Yes	Organics	-		-		1.00E-01	SC	-		1	0.149	2 92.56	0.6639288	2.3266564	0.593582	1	Yes	-	6.91E+02	nc
Butylchloride, t-	507-20-0	No	Yes	Organics			-		-		-		1	0.0201	9	0.0743799	0.8326191	0.3469246	1	Yes			
Butyltin	NA		No	Organics	-		-		-		-		1	- 0.00010	-	-	-	-	0	No	-	0.005.00	
Cacodylic Acid	75-60-5	No	No	Organics	-		-		2.00E-02	AT	-		1	0.00046	138	0.0020784	1.4957534	0.6232306	1	Yes	-	3.99E+02	nc

Resident Screening Levels (RSL) for Tap Water

					Ingestion		Inhalation Unit		Chronic	Chronic	Chronic	Chronic										Screening	
Chemical	CAS Number	Mutagon?	VOC2	Chemical Type	SF (mg/kg-day) ⁻¹	SFO Ref	Risk (ug/m³) ⁻¹	IUR Ref	RfD (mg/kg-day)	RfD Ref	RfC	RfC Ref	GIABS	K _p (cm/hr)	MW	B (unitless)	t (hr)	T _{event} (hr/event)	FA (unitless)	In EPD?	MCL (ug/L)	Level	[haeie]
Cadmium (Water)	7440-43-9	No	No	Inorganics	(ilig/kg-uay)	Kei	1.80E-03		5.00E-04	IR	(mg/m³) 1.00E-05	AT	0.05	, ,	112.4	0.0040776	, ,	0.4480111	1		5.00E+00	(ug/L) 9.22E+00	[basis]
Calcium	7440-70-2	No	No	Inorganica									1	0.001	10.07	0.0024349	0.4231524	0.1763135	1	Yes			
Calcium		INO	No	Inorganics							-		'	1	156.0				'	165	-		
Calcium Chromate	13765-19-0	Yes	No	Inorganics	5.00E-01	С	1.50E-01	С	2.00E-02	CA	2.00E-04	CA	0.025		72 113.1	0.004805	1.8882661	0.7867775	1	Yes	-	4.12E-02	ca
Caprolactam	105-60-2	No	No	Organics	-		-		5.00E-01	IR	2.20E-03	CA	1	0.001	6	0.0040914	1.0858154	0.4524231	1	Yes	-	9.92E+03	nc
Captafol	2425-06-1	No	No	Organics	1.50E-01	С	4.30E-05	С	2.00E-03	IR	_		1	0.00577	349.0 6	0.0414622	22.74029	9.4751207	0.9	Yes	-	4.03E-01	ca*
Captan	133-06-2	No	No	Organics	2.30E-03	С	6.60E-07	С	1.30E-01	IR	-		1	0.00234	300.5 9	0.0156038	12.172057	5.0716906	1	Yes	-	3.09E+01	ca*
Carbaryl	63-25-2	No	No	Organics	-		-		1.00E-01	IR	-		1	0.00431	201.2	0.0235153	3.3802435	1.4084348	1	Yes	-	1.85E+03	nc
Carbazole	86-74-8	No	No	Organics	-		-		-		-		1	0.0536	167.2 1	0.2665769	2.1798971	0.9082905	1	Yes	-		
Carbofuran	1563-66-2	No	No	Organics	_		_		5.00E-03	IR	_		1	0.00313	221.2	0.017907	4.3763897	1.8234957	1	Yes	4.00E+01	9.37E+01	nc
Carbon Disulfide	75-15-0	No	Yes	Organics					1.00E-01	IR	7.00E-01	IR	1		76.13 9	0.0382591		0.2806901	1	Yes		8.11E+02	nc
Carbon Tetrachloride	56-23-5	No	Yes	Organics	7.00E-02	ı	6.00E-06	ı	4.00E-03	IR	1.00E-01	IR	1		153.8	0.0777536		0.7642593	1		5.00E+00		ca
Carbonyl Sulfide	463-58-1	No	Yes	Organics	_		_		_		1.00E-01	PP	1		50.07	0.0002808		0.2281754	1	Yes		2.09E+02	nc
				-					1.005.00	ID			4	3	380.5 5				0.0				
Carbosulfan	55285-14-8	No	No	Organics	-		-		1.00E-02	IR	-		1		235.3	0.4344213	34.130291	14.220955	8.0	Yes	-	5.15E+01	nc
Carboxin	5234-68-4	No	No	Organics	-		-		1.00E-01	IR	-		1	0.00198	1 10.1	0.0116819	5.2456099	2.1856708	1	Yes	-	1.91E+03	nc
Catechol	120-80-9	No	No	Organics	-		-		-		-		1	0.00145	1	0.0058521	1.0439411	0.4349755	1	Yes	-		
Ceric oxide	1306-38-3	No	No	Inorganics	-		-		-		9.00E-04	IR	1	0.001	15	0.0050459	2.3222234	0.9675931	1	Yes	-		
Cerium, Stable	7440-45-1	No	No	Inorganics	-		-		-		-		1	0.001	140.1 2	0.0045528	1.5372057	0.6405024	1	Yes	-		
Chloral	75-87-6	No	Yes	Organics	_		_		-		_		1	0.00106	9	0.0049496	1.6882781	0.7034492	1	Yes	-		
Chloral Hydrate	302-17-0	No	Yes	Organics	-		-		1.00E-01	IR	-		1		165.4	0.00416	2.1296096	0.8873373	1	Yes	-	1.98E+03	nc
Chloramben	133-90-4	No	No	Organics	_		-		1.50E-02	IR	_		1	0.00201	206.0	0.0110965	3.5960688	1.498362	1	Yes	-	2.89E+02	nc
Chloramine	127-65-1	No	No	Inorganics	-		_		-		-		1	0.0000344	227.6 5	0.0001996	4.7522578	1.9801074	1	Yes	-		
Chloranil	118-75-2	No	No	Organics	4.03E-01	Н	_		_		_		1		245.8 8	0.0117001	6.0115711	2 5048213	1	Yes	_	1.83E-01	ca
Chlorate (ClO3) as			No	Inorganics			-		-		-		1	0.001	-	-	-	-	0	Yes	-	1.002 01	Jou
Chlordane	12789-03-6	No	Yes	Organics	3.50E-01	ı	1.00E-04	I	5.00E-04	IR	7.00E-04	IR	1	0.107		0.8330783	79.689722	20.730833	0.7	Yes	2.00E+00	2.00E-02	ca*
Chlordane (alpha)	5103-71-9	No	Yes	Organics			-		-		-		1	0.0338366	109.7 8	0.2634445	49.753999	20.730833	0.7	Yes	-		
Chlordane (gamma)	5103-74-2	No	Yes	Organics	-		-		-				1	0.0338366		0.2634445	49.753999	20.730833	0.7	No			
Chlordecone (Kepone)	143-50-0	No	No	Organics	1.00E+01	I	4.60E-03	С	3.00E-04	IR	-		1		190.6 4	0.0928613	141.13801	58.807504	0.8	Yes	-	3.53E-03	ca

Resident Screening Levels (RSL) for Tap Water

							Inhalation																
					Ingestion		Unit		Chronic	Chronic	Chronic	Chronic		14		_						Screening	
Chemical	CAS Number	Mutagen?	VOC?	Chemical Type	SF (mg/kg-day) ⁻¹	SFO Ref	Risk (ug/m³) ⁻¹	IUR Ref	RfD (mg/kg-day)	RfD Ref	RfC (mg/m³)	RfC Ref	GIABS	(cm/hr)	MW	B (unitless)	t (hr)	T _{event} (hr/event)	FA (unitless)	In EPD?	MCL (ug/L)	Level (ug/L)	[basis]
Obligation in the			N1.	0	, , ,		, , ,			A.T.			4	0.00540	359.5	0.0070447		40.054074					
Chlorfenvinphos	470-90-6	No	No	Organics		-	-		7.00E-04	AT	-		1	0.00512	35.45	0.0373417	26.044018	10.851674	0.9	Yes	-	1.12E+01	nc
Chloride	16887-00-6	No	No	Inorganics		-	-		-		-		1	0.001	3	0.0022901	0.3986546	0.1661061	1	Yes	-		
Chlorimuron, Ethyl-	90982-32-4	No	No	Organics		-	-		9.00E-02	OP	-		1	0.000338	414.8	0.0026478	53.101647	22.125686	1	Yes	_	1.76E+03	nc
Chlorinated Hydrocarbons (total)	NA	No	No	Organics		-	-		-		-		1	-	-	-	-	-	0	No	-		
Chlorine	7782-50-5	No	Yes	Inorganics		_	_		1.00E-01	IR	1.45E-04	AT	1	0.001	70.90 6	0.0032387	0.6296999	0.2623749	1	Yes	_	3.02E-01	nc
Chlorine Dioxide	10049-04-4	No	Yes	Inorganics		-	_		3.00E-02	IR	2.00E-04	IR	1	0.001	67.45	0.0031588	0.6022544	0.2509393	1	Yes	-	4.17E-01	nc
Chlorite	14998-27-7	No	No	Inorganics		-	-		-		-		1	0.001	-	-	-	-	0	Yes	-		
Chlorite (Sodium Salt)	7758-19-2	No	No	Inorganics		-	-		3.00E-02	IR	-		1	0.001	90.44	0.0036577	0.8100727	0.3375303	1	Yes	1.00E+03	5.99E+02	nc
Chloro-2-methylphenol, 4-	1570-64-5	No	No	Organics		_	_		-		_		1	0.0175	142.5 9	0.0803728	1.5869527	0.6612303	1	Yes	_		
Chloro-4-methylphenol	35421-08-0	No	No	Organics		-	-		-		-		1	-		-	-	-	0	No	-		
Chloro-1,1-difluoroethane, 1-	75-68-3	No	Yes	Organics		-	-		-		5.00E+01	IR	1	0.00989	100.5	0.0381334	0.9222741	0.3842809	1	Yes	-	1.04E+05	nc
Chloro-1,3-butadiene, 2-	126-99-8	No	Yes	Organics		-	3.00E-04	ı	2.00E-02	HE	2.00E-02	IR	1	0.0238	88.53 7	0.0861323	0.7904369	0.3293487	1	Yes	-	1.87E-02	са
Chloro-2-methylaniline HCl, 4-	3165-93-3	No	No	Organics	4.60E-01	Н	_		_		_		1	0.000018	178.0 6	0.0000924	2.5072405	1.0446835	1	Yes	_	1.69E-01	ca
Chloro-2-methylaniline, 4-	95-69-2	No	No	Organics	1.00E-01	Р	7.70E-05	С	3.00E-03	SC	-		1	0.00808	141.6	0.0369802	1.5668232	0.652843	1	Yes	-	6.97E-01	ca*
															146.5				_				
Chloro-6-fluorophenol, 2-	2040-90-6	No	No	Organics		-	-		-		-		1	-	5 78.49	-	1.6700904	0.695871	0	No	-		
Chloroacetaldehyde, 2-	107-20-0	No	Yes	Organics	2.70E-01	Х	-		-		-		1	0.00065	9	0.002215	0.6944714	0.2893631	1	Yes	-	2.87E-01	ca
Chloroacetamide	79-07-2	No	No	Organics		-	-		-		-		1	0.000208	93.51 3	0.0007736	0.842816	0.3511733	1	Yes	-		
Chloroacetic Acid	79-11-8	No	No	Organics		-	_		-		-		1	0.000647	94.49	0.002419	0.853589	0.3556621	1	Yes	6.00E+01		
Chloroacetophenone, 2-	532-27-4	No	No	Organics		-	-		-		3.00E-05	IR	1	0.00406	154.6	0.0194159	1.8527635	0.7719848	1	Yes	-		
Chloroaniline	27134-26-5	No	No	Organics		_	_		-		_		1	0.00552	127.5 7	0.0239795	1.307531	0.5448046	1	Yes	_		
Chloroaniline, 3-	108-42-9	No	No	Organics		_	_		_		_		1	0.00535	127.5 7	0.023241	1.307531	0.5448046	1	Yes	_		
,					2.00E-01	Р			4.00E-03	IR			1		127.5		1.307531		4			2.655.04	
Chloroaniline, p-	106-47-8	No	No	Organics	2.00E-01	Р	-		4.00⊑-03	IK	-		1	0.00496	112.5	0.0215468	1.30/531	0.5448046	1	Yes	-	3.65E-01	ca
Chlorobenzene	108-90-7	No	Yes	Organics		-	-		2.00E-02	IR	5.00E-02	PP	1	0.0282	6	0.1150715	1.0774472	0.4489363	1	Yes	1.00E+02	7.77E+01	nc
Chlorobenzene sulfonic acid, p-	98-66-8	No	No	Organics		-	_		1.00E-01	sc	-		1	0.0000586		0.0003128	3.0250461	1.2604359	1	Yes	-	2.00E+03	nc
Chlorobenzenes (total)	NA	No	No	Organics		-	-		-		-		1	-	-	-	-	-	0	No	-		
Chlorobenzilate	510-15-6	No	No	Organics	1.10E-01	С	3.10E-05	С	2.00E-02	IR	-		1	0.0331	325.1 9	0.2295743	16.715678	6.9648657	0.8	Yes	_	3.13E-01	ca
Chlorobenzoic Acid, 2-	118-91-2	No	No	Organics		_	_		_		_		1	0.00477	156.5 7	0.0229562			1	Yes	_		
		No		Organics			_		3.00E-02	SC			1	0.00477	156.5	0.0577514			1			5.11E+02	nc
Chlorobenzoic Acid, p-	74-11-3		No			-	-		3.00⊏-02	30	-		1		225.5				1	Yes	-	J.11E+02	nc
Chlorobenzotrifluoride, 3-nitro-4-	121-17-5	No	Yes	Organics		-	-		-		-		1	0.0159	6 180.5	0.0918449	4.6258973	1.9274572	0.9	Yes	-		
Chlorobenzotrifluoride, 4-	98-56-6	No	Yes	Organics		-	-		3.00E-03	PP	3.00E-01	PP	1	0.0375	6	0.1938067	2.5893812	1.0789088	1	Yes	-	3.45E+01	nc

					Ingestion		Inhalation Unit		Chronic	Chronic	Chronic	Chronic										Screening	
Chemical	CAS Number	Mutagen?	VOC?	Chemical Type	SF (mg/kg-day) ⁻¹	SFO Ref	Risk (ug/m³) ⁻¹	IUR Ref	RfD (mg/kg-day)	RfD Ref	RfC (mg/m³)	RfC Ref	GIABS	K _p (cm/hr)	MW	B (unitless)	t (hr)	T _{event} (hr/event)	FA (unitless)	In EPD?	MCL (ug/L)	Level (ug/L)	[basis]
Chlorobiphenyl, p-		No	Yes	Organics	-	1101	(ug/iii)	IXOI	-	1101	(g/ /	Titol	1	0.7518023	188.6 6	3.9716431	5.1694548	1.1976909	0.6	Yes	- (ug/L)	(ug/L)	[MUSIS]
Chlorobutane, 1-	109-69-3	No	Yes	Organics	-		-		4.00E-02	PP	-		1	0.0269	92.56	0.0995432	0.8326191	0.3469246	1	Yes	-	6.35E+02	nc
Chlorobutane, 2-	78-86-4	No	Yes	Organics	-		-		-		-		1	0.0167	92.56	0.0617982	0.8326191	0.3469246	1	Yes	-		
Chlorocyclopentadiene		No	Yes	Organics	-		-		-		-		1	0.0177	100.5 5	0.0682639	0.9228689	0.3845287	1	Yes	_		
Chlorodibromoethane	73506-94-2	No	No	Organics	-		-		-		-		1	-	-	-	-	-	0	No	-		
Chlorodifluoromethane	75-45-6	No	Yes	Organics	-		-		-		5.00E+01	IR	1	0.00268	86.46 9	0.009585	0.7696378	0.3206824	1	Yes	-	1.04E+05	nc
Chloroethanol, 2-	107-07-3	No	Yes	Organics	-		-		2.00E-02	PP	-		1	0.000579	80.51 5	0.0019982	0.7127611	0.2969838	1	Yes	-	3.99E+02	nc
Chloroethylvinyl ether, 2-	110-75-8	No	Yes	Organics	-		-		-		-		1	0.00236	106.5	0.0093695	0.9971029	0.4154596	1	Yes	-		
Chloroform	67-66-3	No	Yes	Organics	3.10E-02	С	2.30E-05	I	1.00E-02	IR	9.77E-02	AT	1	0.00683	119.3	0.0287021	1.1764893	0.4902039	1	Yes	8.00E+01	2.21E-01	са
Chloromethane	74-87-3	No	Yes	Organics	-		-		-		9.00E-02	IR	1	0.00328	50.48	0.0089638	0.4839414	0.2016423	1	Yes	-	1.88E+02	nc
Chloromethyl Methyl Ether	107-30-2	No	Yes	Organics	2.40E+00	С	6.90E-04	С	-		-		1	0.000905	80.51 5	0.0031233	0.7127611	0.2969838	1	Yes	_	6.50E-03	ca
Chloronaphthalene, alpha-	90-13-1	No	Yes	Organics	-		-		-		-		1	0.0872	162.6 2	0.427691	2.0546223	0.8560926	1	Yes	_		
Chloronitrobenzene, o-	88-73-3	No	No	Organics	3.00E-01	Р	-		3.00E-03	PP	1.00E-05	SC	1	0.0063	157.5 6	0.0304152	1.924846	0.8020192	1	Yes	-	2.36E-01	ca
Chloronitrobenzene, p-	100-00-5	No	No	Organics	6.00E-02	Р	-		7.00E-04	PP	2.00E-03	PP	1	0.00793	157.5 6	0.0382845	1.924846	0.8020192	1	Yes	-	1.15E+00	ca*
Chlorooctadecane, 1-	3386-33-2	No	Yes	Organics	-		-		-		-		1	69.8	288.9	456.34513	20.549544	4.3648442	0	No	-		
Chlorophenol, 2-	95-57-8	No	Yes	Organics	-		-		5.00E-03	IR	-		1	0.00799	128.5	0.0348439	1.3243293	0.5518039	1	Yes	-	9.13E+01	nc
Chlorophenol, 3-	108-43-0	No	No	Organics	-		-		-		-		1	0.0136	128.5	0.0593087	1.3243293	0.5518039	1	Yes	-		
Chlorophenol, 4-		No	No	Organics	-		-		-		-		1	0.0115	128.5 6	0.0501507	1.3243293	0.5518039	1	Yes	-		
Chlorophenols (total)	NA	No	No	Organics	-		-		-		-		1	-	204.6	-	-	-	0	No	-		
Chlorophenyl phenyl ether, 4-	7005-72-3	No	Yes	Organics	-		-		-		-		1	0.148	6	0.8143383	5.6608975	1.4721252	1	Yes	-		
Chlorophenyl Methyl Sulfide, p-	123-09-1	No	Yes	Organics	-		-		-		-		1	0.0286	5 174.6	0.138552	1.9520907	0.8133711	1	Yes	-		
Chlorophenyl Methyl Sulfoxide	934-73-6	No	No	Organics	-		-		-		-		1	0.000849	5	0.0043154	2.3993853	0.9997439	1	Yes	-		
Chloropicrin	76-06-2	No	Yes	Organics	-		-		-		4.00E-04	CA	1	0.00459	164.3 8 78.54	0.0226341	2.1017836	0.8757432	1	Yes	_	8.34E-01	nc
Chloropropane, 2-	75-29-6	No	Yes	Organics	-		-		-		-		1	0.0104	2 265.9	0.0354496	0.6948566	0.2895236	1	Yes	_		
Chlorothalonil	1897-45-6	No	No	Organics	3.10E-03	С	8.90E-07	С	1.50E-02	IR	-		1	0.00537	1 126.5	0.0336797	7.7831606	3.2429836	0.9	Yes	_	2.17E+01	ca*
Chlorotoluene, o-	95-49-8	No	Yes	Organics	-		-		2.00E-02	IR	-		1	0.0572	9	0.2475269	1.2911122	0.5379634	1	Yes	_	2.37E+02	nc
Chlorotoluene, p-	106-43-4	No	Yes	Organics	-		-		2.00E-02	sc	-		1	0.0498	9	0.2155042	1.2911122	0.5379634	1	Yes	_	2.50E+02	nc

Resident Screening Levels (RSL) for Tap Water

| | | |

 | Ingestion
SF | SFO
 | Inhalation
Unit
Risk | IUR | Chronic
RfD | Chronic
RfD | Chronic
RfC | Chronic
RfC | | K p
 | | В | t | T _{event} | FA |
 | MCL | Screening
Level | |
|------------|--|---
--
--
--|-----------------
---|--|--|----------------|--|--|--|--
--|--|--|-----------|---
---|---|--|---
--|
| | | |

 | , , , , |
 | | | (mg/kg-day) | Ref | (mg/m³) | Ref | GIABS |
 | | | | ` ' | (unitless) |
 | | | [basis] |
| 34749-90-3 | 110 | 140 | Organics

 | 2.401102 |
 | 0.30L-02 | | - | | - | | ı | 3.31L-0
 | | 0.0000021 | 7.7021133 | 3.234214 | I . | 163
 | | 3.23L-04 | - Ca |
| 101-21-3 | No | No | Organics

 | - |
 | - | | 5.00E-02 | OP | - | | 1 | 0.0213
 | 7 | 0.1197507 | 3.9683685 | 1.6534869 | 0.9 | Yes
 | - | 7.12E+02 | nc |
| 2921-88-2 | No | No | Organics

 | - |
 | - | | 1.00E-03 | АТ | - | | 1 | 0.0334
 | 9 | 0.240532 | 23.193377 | 9.6639072 | 0.8 | Yes
 | - | 8.44E+00 | nc |
| 5598-13-0 | No | No | Organics

 | - |
 | - | | 1.00E-02 | HE | - | | 1 | 0.0178
 | 4 | 0.1229528 | 16.154146 | 6.730894 | 0.9 | Yes
 | - | 1.19E+02 | nc |
| 64902-72-3 | No | No | Organics

 | - |
 | - | | 2.00E-02 | ОР | - | | 1 | 0.000328
 | 8 | 0.0023862 | 25.446496 | 10.602707 | 1 | Yes
 | - | 3.94E+02 | nc |
| 60238-56-4 | No | No | Organics

 | - |
 | - | | 8.00E-04 | HE | - | | 1 | 0.106
 | 5 | 0.7748836 | 42.709079 | 11.087886 | 8.0 | Yes
 | - | 2.82E+00 | nc |
| 16065-83-1 | No | No | Inorganics

 | - |
 | - | | 1.50E+00 | IR | - | | 0.013 | 0.001
 | 52 | 0.0027735 | 0.4934691 | 0.2056121 | 1 | Yes
 | - | 2.25E+04 | nc |
| 18540-29-9 | Yes | No | Inorganics

 | 5.00E-01 | J
 | 8.40E-02 | S | 3.00E-03 | IR | 1.00E-04 | IR | 0.025 | 0.002
 | 52 | 0.005547 | 0.4934691 | 0.2056121 | 1 | Yes
 | - | 3.50E-02 | ca |
| 7440-47-3 | No | No | Inorganics

 | _ |
 | _ | | _ | | _ | | 0.013 | 0.001
 | | 0.0027734 | 0.4934437 | 0.2056015 | 1 | Yes
 | 1.00E+02 | | |
| | | |

 | _ |
 | 9.00E-03 | Р | 3.00E-04 | PP | 6.00E-06 | PP | 1 |
 | - | | | | 1 |
 | | 6.01E+00 | nc |
| | | | 9

 | |
 | | | | | | | |
 | | *************************************** | | | - |
 | | | |
| NA | No | No | Organics

 | - |
 | - | | - | | - | | 1 | -
 | - | - | - | - | 0 | No
 | - | | |
| 7440-50-8 | No | No | Inorganics

 | - |
 | _ | | 4.00E-02 | HE | _ | | 1 | 0.001
 | 63.54 | 0.003066 | 0.5726874 | 0.2386197 | 1 | Yes
 | 1.30E+03 | 7.99E+02 | nc |
| 8001-58-9 | No | No | Organics

 | - |
 | - | | - | | - | | 1 | -
 | - | - | - | - | 0 | No
 | - | | |
| 108-39-4 | No | No | Organics

 | - |
 | - | | 5.00E-02 | IR | 6.00E-01 | CA | 1 | 0.00777
 | 108.1
4 | 0.0310771 | 1.0177567 | 0.4240653 | 1 | Yes
 | - | 9.25E+02 | nc |
| 95-48-7 | No | No | Organics

 | - |
 | - | | 5.00E-02 | IR | 6.00E-01 | CA | 1 | 0.00766
 | 4 | 0.0306372 | 1.0177567 | 0.4240653 | 1 | Yes
 | - | 9.26E+02 | nc |
| 106-44-5 | No | No | Organics

 | - |
 | - | | 1.00E-01 | АТ | 6.00E-01 | CA | 1 | 0.00754
 | 4 | 0.0301572 | 1.0177567 | 0.4240653 | 1 | Yes
 | - | 1.85E+03 | nc |
| 59-50-7 | No | No | Organics

 | - |
 | - | | 1.00E-01 | AT | - | | 1 | 0.0285
 | 9 | 0.1308929 | 1.5869527 | 0.6612303 | 1 | Yes
 | | 1.45E+03 | nc |
| 1319-77-3 | No | No | Organics

 | - |
 | - | | 1.00E-01 | AT | 6.00E-01 | CA | 1 | 0.00766
 | 2 | 0.0530651 | 16.550533 | 6.8960555 | 0.9 | Yes
 | - | 1.54E+03 | nc |
| 4170-30-3 | No | Yes | Organics

 | - |
 | - | | - | | - | | 1 | 0.00159
 | 2 | 0.0051199 | 0.623125 | 0.2596354 | 1 | Yes
 | - | | |
| 123-73-9 | No | Yes | Organics

 | 1.90E+00 | Н
 | - | | 1.00E-03 | PP | - | | 1 | 0.00159
 | 2 | 0.0051199 | 0.623125 | 0.2596354 | 1 | Yes
 | - | 4.04E-02 | ca |
| 98-82-8 | No | Yes | Organics

 | - |
 | - | | 1.00E-01 | IR | 4.00E-01 | IR | 1 | 0.0897
 | 120.2 | 0.3782434 | 1.1889949 | 0.4954145 | 1 | Yes
 | - | 4.51E+02 | nc |
| 135-20-6 | No | Nο | Organics

 | 2 20F-01 | С
 | 6 30F-05 | С | _ | | _ | | 1 | 1 67F-6
 | | 8 0008F-6 | 1 8661906 | 0 7775794 | 1 | Yes
 | _ | 3 54F-01 | ca |
| | | |

 | | Н
 | - | | 2.00E-03 | HE | - | | 1 |
 | | | | | 1 |
 | | | ca |
| | | | Organics

 | - |
 | - | | - | | 6.00E+00 | IR | 1 | 0.102
 | 84.16 | | | | 1 | Yes
 | | | nc |
| 87-84-3 | No | No | Organics

 | 2 OOE 02 | V
 | | | 2.00E.02 | 80 | | | 1 |
 | | 0.0246552 | 188 52285 | 78 551197 | 0.0 | Vec
 | | 2 77E±00 | ca |
| | | | J

 | 2.00E-02 | ^
 | | | | | 7 00F-01 | DD | 1 |
 | 98.14 | | | | 0.9 |
 | | | nc |
| | | | 0

 | |
 | | | | PP | | | 1 |
 | | | | | 1 |
 | | | nc |
| | | | -

 | _ |
 | _ | | | | 7.002.00 | 33 | 1 |
 | 99.17
7 | | | | 1 |
 | | | nc |
| | | | Organics

 | - |
 | - | | - | | - | | 1 |
 | 66.10 | | | | 1 | Yes
 | - | | |
| | 54749-90-5 101-21-3 2921-88-2 5598-13-0 54902-72-3 50238-56-4 16065-83-1 18540-29-9 7440-47-3 7440-48-4 NA 7440-50-8 3001-58-9 108-39-4 95-48-7 1106-44-5 59-50-7 1319-77-3 4170-30-3 123-73-9 98-82-8 135-20-6 21725-46-2 110-82-7 37-84-3 108-94-1 110-83-8 108-91-8 | 54749-90-5 No 101-21-3 No 101-21-3 No 2921-88-2 No 5598-13-0 No 64902-72-3 No 60238-56-4 No 16065-83-1 No 18540-29-9 Yes 7440-47-3 No 7440-48-4 No NA No 7440-50-8 No 3001-58-9 No 108-39-4 No 106-44-5 No 106-44-5 No 1319-77-3 No 14170-30-3 No 123-73-9 No 123-73-9 No 123-73-9 No 135-20-6 No 21725-46-2 No 110-82-7 No 137-84-3 No 108-94-1 No 110-83-8 No | 54749-90-5 No No 101-21-3 No No 101-21-3 No No 10598-13-0 No No 5598-13-0 No No 60238-56-4 No No 16065-83-1 No No 18540-29-9 Yes No 7440-47-3 No No 7440-48-4 No No NA No No 7440-50-8 No No 3001-58-9 No No 108-39-4 No No 108-39-4 No No 106-44-5 No No 106-44-5 No No 1319-77-3 No No 14170-30-3 No Yes 123-73-9 No Yes 135-20-6 No No 110-82-7 No Yes 137-84-3 No No 110-83-8 No Yes <td> 101-21-3</td> <td>CAS Number (A4749-90-5) Mutagen? No VOC? (Chemical Type (mg/kg-day)^1) SF (mg/kg-day)^1 2.40E+02 101-21-3 No No Organics - 2921-88-2 No No Organics - 5598-13-0 No No Organics - 64902-72-3 No No Organics - 616065-83-1 No No Inorganics - 7440-47-3 No No Inorganics - 7440-48-4 No No Inorganics - 7440-48-4 No No Organics - 7440-50-8 No No Inorganics - 7440-50-8 No No Organics - 108-39-4 No No Organics - 108-44-5 No No Organics - 39-50-7 No No Organics - 4170-30-3 No Yes Organics -</td> <td>CAS Number 64749-90-5 Mutagen? No VOC? No Chemical Type Organics SF (mg/kg-day)⁻¹ Ref SF (mg/kg-day)⁻¹ Ref 24749-90-5 No No Organics - - 101-21-3 No No Organics - - 5598-13-0 No No Organics - - 5598-13-0 No No Organics - - 30238-56-4 No No Organics - - 30238-56-4 No No No Inorganics - - 18540-29-9 Yes No Inorganics 5.00E-01 J J 7440-47-3 No No Inorganics - - - NA No No Organics -</td> <td>CAS Number (AS Number) 54749-90-5 Mutagen? No VOC? Chemical Type (mg/kg-day)¹ (mg/kg-day)¹ (Ref Risk (ug/m)¹)¹ (4749-90-5) No No Organics 2.40E+02 C 6.90E-02 101-21-3 No No Organics - - 6.90E-02 2921-88-2 No No Organics - - - 36902-72-3 No No Organics - - - 30238-56-4 No No No Inorganics - - - 30238-56-4 No No No Inorganics - - - - 40605-83-1 No No Inorganics 5.00E-01 J 8.40E-02 -</td> <td> CAS Number</td> <td> CAS Number Mutagen? VOC? Chemical Type (mg/kg-day)¹ Ref (ug/m²)¹ Ref (ug/m²)² Ref (ug/m²)¹ Ref (ug/m²)² (ug/m²)²</td> <td> CAS Number Number Number CAS Number No</td> <td> CAS Number Mutagen? VOC? Chemical Type Sept Se</td> <td> CAS Number Muttagen VOCC Chemical Type Chemical Type</td> <td> CAS Number Mutagen VOC7 Chemical Type Chemical Type Cas Number Sept Cas Number Cas Number </td> <td> CAS Number Murtagen VOC? Chemical Type Chemical SF Glight (unity) SF Chemical SF Chemi</td> <td> CAS Number Mutagen VoC? Chemical Type (mgkyd-sign) SF Chemical</td> <td> Case</td> <td> Care Care </td> <td> Part Part </td> <td> Part Part </td> <td> California Cal</td> <td> Part Part </td> <td> Character Char</td> | 101-21-3 | CAS Number (A4749-90-5) Mutagen? No VOC? (Chemical Type (mg/kg-day)^1) SF (mg/kg-day)^1 2.40E+02 101-21-3 No No Organics - 2921-88-2 No No Organics - 5598-13-0 No No Organics - 64902-72-3 No No Organics - 616065-83-1 No No Inorganics - 7440-47-3 No No Inorganics - 7440-48-4 No No Inorganics - 7440-48-4 No No Organics - 7440-50-8 No No Inorganics - 7440-50-8 No No Organics - 108-39-4 No No Organics - 108-44-5 No No Organics - 39-50-7 No No Organics - 4170-30-3 No Yes Organics - | CAS Number 64749-90-5 Mutagen? No VOC? No Chemical Type Organics SF (mg/kg-day) ⁻¹ Ref SF (mg/kg-day) ⁻¹ Ref 24749-90-5 No No Organics - - 101-21-3 No No Organics - - 5598-13-0 No No Organics - - 5598-13-0 No No Organics - - 30238-56-4 No No Organics - - 30238-56-4 No No No Inorganics - - 18540-29-9 Yes No Inorganics 5.00E-01 J J 7440-47-3 No No Inorganics - - - NA No No Organics - | CAS Number (AS Number) 54749-90-5 Mutagen? No VOC? Chemical Type (mg/kg-day) ¹ (mg/kg-day) ¹ (Ref Risk (ug/m) ¹) ¹ (4749-90-5) No No Organics 2.40E+02 C 6.90E-02 101-21-3 No No Organics - - 6.90E-02 2921-88-2 No No Organics - - - 36902-72-3 No No Organics - - - 30238-56-4 No No No Inorganics - - - 30238-56-4 No No No Inorganics - - - - 40605-83-1 No No Inorganics 5.00E-01 J 8.40E-02 - | CAS Number | CAS Number Mutagen? VOC? Chemical Type (mg/kg-day)¹ Ref (ug/m²)¹ Ref (ug/m²)² Ref (ug/m²)¹ Ref (ug/m²)² (ug/m²)² | CAS Number Number Number CAS Number No | CAS Number Mutagen? VOC? Chemical Type Sept Se | CAS Number Muttagen VOCC Chemical Type Chemical Type | CAS Number Mutagen VOC7 Chemical Type Chemical Type Cas Number Sept Cas Number Cas Number | CAS Number Murtagen VOC? Chemical Type Chemical SF Glight (unity) SF Chemical SF Chemi | CAS Number Mutagen VoC? Chemical Type (mgkyd-sign) SF Chemical | Case | Care Care | Part Part | Part Part | California Cal | Part Part | Character Char |

Resident Screening Levels (RSL) for Tap Water

					Ingestion		Inhalation Unit		Chronic	Chronic	Chronic	Chronic				_		_				Screening	
Chemical	CAS Number	Mutagen?	VOC?	Chemical Type	SF (mg/kg-day) ⁻¹	SFO Ref	Risk (ug/m³) ⁻¹	IUR Ref	RfD (mg/kg-day)	RfD Ref	RfC (mg/m³)	RfC Ref	GIABS	K _p (cm/hr)	MW	B (unitless)	t (hr)	T _{event} (hr/event)	FA (unitless)	In EPD?	MCL (ug/L)	Level (ug/L)	[basis]
Cyhalothrin	68085-85-8	No	No	Organics	-		_		1.00E-03	ОР	-		1	0.21	449.8 6	1.7131076	139.75254	34.758798	0.5	No	_	2.01E+01	nc
Cypermethrin	52315-07-8	No	No	Organics	_		_		6.00E-02	OP	_		1	0.0769	416.3 1	0.603478	91.125711	22.551984	0.7	No	_	1.20E+03	nc
Cyromazine	66215-27-8	No	No	Organics	_		_		1.50E-02	OP	_		1	0.000797	166.1 9	0.0039517	2.151414	0.8964225	1	Yes	_	2.97E+02	nc
Barium Cyanide	542-62-1	No	No	Inorganics	-		_		_		_		0.07	0.001	189.3 7	0.0052928		1.2087062	1	Yes	_		
Calcium Cyanide	592-01-8	No	No	Inorganics	_		_		1.00E-03	IR	_		1	0.001	92.11			0.3449041	1	Yes	_	2.00E+01	nc
	544-92-3								5.00E-03	IR			1	0.001	89.56 4	0.0036399		0.3337391	1			9.98E+01	
Copper Cyanide		No	No	Inorganics	-		-				-		<u>'</u>		26.01					Yes	-		nc
Cyanide (CN-) Cyanide (total complex)	57-12-5 NA	No No	Yes No	Inorganics Inorganics	-		-		6.00E-04	IR	8.00E-04	SU	1	0.001 0.001	8 -	0.0019618	0.3529887	0.1470786	0	Yes Yes	2.00E+02	1.46E+00	nc
Cyanogen	460-19-5	No	Yes	Inorganics	_		_		1.00E-03	IR	_		1	0.00089	52.03 6	0.0024693	0.4936983	0.2057076	1	Yes	_	2.00E+01	nc
Cyanogen Bromide	506-68-3	No	Yes	Inorganics	_		_		9.00E-02	IR	_		1	0.000255	105.9	0.0010094		0.4121514	1	Yes	_	1.80E+03	nc
Cyanogen Chloride	506-77-4	No			_		_		5.00E-02	IR	_		1	0.000394	61.47	0.0011881		0.2323199	1	Yes	_	1.00E+03	
			Yes	Inorganics	-		-				-		'		27.02						-		nc
Hydrogen Cyanide	74-90-8	No	Yes	Inorganics	-		-		6.00E-04	IR	8.00E-04	IR	1	0.001	6 331.9	0.0019995		0.1490028	1	Yes	-	1.46E+00	nc
Chlorthal-dimethyl	1861-32-1	No	No	Organics	-		-		1.00E-02	IR	-		1	0.015	7 142.9	0.1051156	18.242821	7.6011753	0.9	Yes	-	1.24E+02	nc
Dalapon	75-99-0	No	No	Organics	-		-		3.00E-02	IR	-		1	0.000815	7 320.0	0.0037481	1.5947477	0.6644782	1	Yes	2.00E+02	5.95E+02	nc
DDD	72-54-8	No	No	Organics	2.40E-01	I	6.90E-05	С	-		-		1	0.251	5	1.7270674	26.226797	6.518216	0.8	Yes	-	3.17E-02	ca
DDD, o,p'-	53-19-0	No	No	Organics	-		-		-		-		1	0.201	320.0 5	1.3830301	25.715946	6.518216	0.8	Yes	_		
DDT/DDE/DDD (total)	NA	No	No	Organics	-		-		-		-		1	-	318.0	-	-	-	0	No	-		
DDE, p,p'-	72-55-9	No	Yes	Organics	3.40E-01	I	9.70E-05	С	-		-		1	0.545	3	3.7381541	27.291554	6.3506291	0.8	No	-	4.62E-02	ca
DDT	50-29-3	No	No	Organics	3.40E-01	I	9.70E-05	ı	5.00E-04	IR	-		1	0.628	354.4 9	4.5476632	44.266797	10.162317	0.7	No	-	2.29E-01	ca*
DDT, o,p'-	789-02-6	No	No	Organics	-		_		-		-		1	0.526	354.4 9	3.80903	43.731727	10.162317	0.4	No	_		
Decabromodiphenyl ether, 2,2',3,3',4,4',5,5',6,6'- (BDE-209)	1163-19-5	No	No	Organics	7.00E-04	ı	_		7.00E-03	IR	-		1	0.725	959.1 7	8.6359964	111398.39	24728.669	0	No	_	1.11E+02	ca**
Decane	124-18-5	No	Yes	Organics	-		_		-		_		1	0.532	142.2 9	2.4407622	2.7346378	0.6586774	1	No	_		
Decanol, n-	112-30-1	No	Yes	Organics	_		_		_		_		1	0.2207301	158.2 9		3.1344514		1	No	_		
·													1		505.2				0.7				
Deltamethrin	52918-63-5	No	No	Organics	-		-		4.005.05	ID	-		1	0.0302	516.6		170.30837			No	-	4.005.04	
Demeton		No	No	Organics	-		-		4.00E-05	IR	-		1	0.0075598	8 370.5		197.45493		0.8	Yes		4.20E-01	nc
Di(2-ethylhexyl)adipate	103-23-1	No	No	Organics	1.20E-03	I	-		6.00E-01	IR	-		1	3.23	8 270.2	23.914988	57.918929	12.505376	0	Yes	4.00E+02	6.49E+01	ca
Diallate	2303-16-4	No	No	Organics	6.10E-02	Н	_		-		-		1	0.046	2	0.2908327	8.2279566	3.4283152	0.9	Yes	_	5.36E-01	ca

Resident Screening Levels (RSL) for Tap Water

Chemical	CAS Number	Mutagen?	VOC?	Chemical Type	Ingestion SF (mg/kg-day) ⁻¹	SFO Ref	Inhalation Unit Risk (ug/m³) ⁻¹	IUR Ref	Chronic RfD (mg/kg-day)	Chronic RfD Ref	Chronic RfC (mg/m³)	Chronic RfC Ref	GIABS	K _p (cm/hr)	MW	B (unitless)	t (hr)	T _{event} (hr/event)	FA (unitless)	In EPD?	MCL (ug/L)	Screening Level (ug/L)	[basis]
Diazinon	333-41-5	No	No	Organics	-		-		7.00E-04	AT	-		1	0.0104	304.3 5	0.0697825	12.776738	5.3236409	0.9	Yes	_	1.03E+01	nc
Dibenzothiophene	132-65-0	No	Yes	Organics	-		-		1.00E-02	sc	-		1	0.118	184.2	0.6160617	4.5314718	1.1316308	1	Yes	-	6.51E+01	nc
Dibromo-3-chloropropane, 1,2-	96-12-8	Yes	Yes	Organics	8.00E-01	Р	6.00E-03	Р	2.00E-04	PP	2.00E-04	IR	1	0.00685	236.3	0.040502	5.3150578	2.2146074	1	Yes	2.00E-01	3.34E-04	ca
Dibromoacetic acid	631-64-1	No	No	Organics	-		-		-		-		1	0.000274	217.8	0.0015554	4.1881284	1.7450535	1	Yes	-		
Dibromobenzene, 1,3-	108-36-1	No	Yes	Organics	-		-		4.00E-04	sc	-		1	0.0231	235.9 1 235.9	0.136462	5.2863509	2.2026462	0.9	Yes	-	5.31E+00	nc
Dibromobenzene, 1,4-	106-37-6	No	Yes	Organics	-		-		1.00E-02	IR	-		1	0.0245	1 208.2	0.1447324	5.2863509	2.2026462	0.9	Yes	-	1.30E+02	nc
Dibromochloromethane	124-48-1	No	Yes	Organics	8.40E-02	I	-		2.00E-02	IR	-		1	0.00289	8 242.7	0.0160416	3.7019282	1.5424701	1	Yes	8.00E+01	8.71E-01	ca
Dibromodichloromethane	594-18-3	No	Yes	Organics	-		-		-		-		1	0.00376	3	0.0225308	5.772288	2.40512	1	Yes	_		
Dibromodiphenyl Ether, p,p'-	2050-47-7	No	Yes	Organics	-		-		-		-		1	0.169	328 187.8	1.1772001	28.135566	7.2218548	0.8	Yes	-		
Dibromoethane, 1,2-	106-93-4	No	Yes	Organics	2.00E+00	I	6.00E-04	I	9.00E-03	IR	9.00E-03	IR	1	0.00278	6	0.0146551	2.8449589	1.1853995	1	Yes	5.00E-02	7.47E-03	ca
Dibromomethane (Methylene Bromide)	74-95-3	No	Yes	Organics	-		-		-		4.00E-03	SC	1	0.00223	173.8 4 519.3	0.0113085	2.3744553	0.9893564	1	Yes	-	8.34E+00	nc
Bis(Octanoyloxy)Di-N-Butyl Stannane	4731-77-5	No	Yes	Organics	-		-		-		-		1	0.0547	4 795.8	0.4794462	204.34499	85.143745	0.6	No	-		
Bis(oleoyloxy)dibutyl tin	13323-62-1	No	Yes	Organics	-		-		-		-		1	2680	5	29078.839	14185.461	3010.2929	0	No	-		
Di-n-butyltin bis(2-ethylhexanoate)	2781-10-4	No	Yes	Organics	-		-		-		-		1	0.0772	533.3	0.6857316	397.55912	102.01517	0.5	No	-		
Di-n-butyltin bis(methyl maleate)	15546-11-9	No	No	Organics	-		-		-		-		1	0.000125	491.1 1 575.2	0.0010654	141.99596	59.164984	1	Yes	-		
Di-n-butyltin bis(n-butyl maleate)	15546-16-4	No	No	Organics	-		-		-		-		1	0.00382	7	0.0352392	420.3122	175.13008	0.8	No	-		
Di-n-butyltin dilaurate	77-58-7	No	Yes	Organics	-		-		-		-		1	0.000053	631.5 5	0.0005123	868.44035	361.85014	1	Yes	-		
Di-n-butyltin distearate	5847-55-2	No	Yes	Organics	-		-		-		-		1	4910	799.8 8	53409.752	14942.198	3170.8577	0	No	-		
Dibutoxy di-n-butyltin	3349-36-8	No	Yes	Organics	-		-		-		-		1	0.00144	379.1 7	0.0107847	33.528335	13.97014	0.9	Yes	-		
Dibutylbis((1-oxoisooctyl)oxy)stannane	85702-74-5	No	No	Organics	-		-		-		-		1	-	-	-	-	-	0	No	-		
Dibutylbis(octadeca-9(Z),12(Z),15(Z)-trienoyloxy)stannane	95873-60-2	No	Yes	Organics	_		_		_		_		1	797	787 8	8603.8526	12786.398	2713 4933	0	No	_		
Dibutylbis(octadeca-9(Z),12(Z)-		110	100	Organioo									•	101	707.0	0000.0020	12100.000	27 10.1000		110			
		No	No	Organics	-		-		-		-		1	-	743.7	-	-	-	0	No	-		
Dibutylbis(palmitoyloxy)stannane			Yes	Organics	-		-		-		-		1	502	9	5265.693	7249.0065	1538.4123	0	No	-		
Dibutyltin Compounds	NA	No	No	Organics	-		-		3.00E-04	PP	-		1	-	351.0	-	-	-	0	No	-	6.02E+00	nc
Dibutyltin diacetate	1067-33-0	No	Yes	Organics	-		-		-		-		1	0.0000583	1 248.9	0.0004201	23.319326	9.7163858	1	Yes	-		
Dibutyltin oxide	818-08-6	No	Yes	Organics	-		-		-		-		1	0.219	248.9	1.3289256	10.243259	2.6049581	0.9	Yes	-		

Resident Screening Levels (RSL) for Tap Water

Chemical	CAS Number	Mutagen?	VOC3	Chemical Type	Ingestion SF	SFO Ref	Inhalation Unit Risk (ug/m³) ⁻¹	IUR Ref	Chronic RfD	Chronic RfD Ref	Chronic RfC	Chronic RfC Ref	GIABS	K _p	MW	B (unitless)	t (br)	T _{event}	FA (unitless)	In EPD?	MCL (ug/l)	Screening Level	[hacie]
Chemical	CAS Number	wutagen?	VOC?	Chemical Type	(mg/kg-day) ⁻¹	Kei	(ug/m)	Kei	(mg/kg-day)	Kei	(mg/m³)	Rei	GIADS	(cm/hr)	303.8	(unitiess)	(hr)	(hr/event)	(unitiess)	III EPD?	(ug/L)	(ug/L)	[basis]
Dibutyltin dichloride	683-18-1	No	Yes	Organics		-	-		-		-		1	0.000336	3	0.0022526	12.691355	5.2880646	1	Yes	-		
Dicamba	1918-00-9	No	No	Organics		-	_		3.00E-02	IR	-		1	0.00265	221.0 4	0.0151533	4.3639925	1.8183302	1	Yes	-	5.68E+02	nc
Dichloro-2-butene, cis-1,4-	1476-11-5	No	Yes	Organics		-	4.20E-03	Р	-		-		1	0.0166	125	0.0713822	1.2649111	0.5270463	1	Yes	-	1.34E-03	ca
Dichloro-2-butene, trans-1,4-	110-57-6	No	Yes	Organics		-	4.20E-03	Р	-		-		1	0.0166	125	0.0713822	1.2649111	0.5270463	1	Yes	-	1.34E-03	ca
Dichloro-2-butene, 1,4-	764-41-0	No	Yes	Organics		-	4.20E-03	Р	-		-		1	0.0166	125	0.0713822	1.2649111	0.5270463	1	Yes	-	1.34E-03	ca
Dichloroacetic Acid	79-43-6	No	No	Organics	5.00E-02				4.00E-03	IR			1	0.00121	128.9 4	0.0052845	1.3308343	0.5545143	1	Yes	6.00E+01	1 53E±00	ca*
Dictiloroacetic Acid	19-43-0	INO	NO	Organics	3.00L-02		-		4.00L-03	IIX	_		· ·	0.00121	162.0	0.0032043	1.0000040	0.5545145	I I	163	0.002101	1.552 100	Ca
Dichloroaniline, 2,4-	554-00-7	No	No	Organics		-	-		-		-		1	0.0136	2	0.0665809	2.0387876	0.8494948	1	Yes	-		
Dichloroaniline, 3,4-	95-76-1	No	Yes	Organics		-	-		-		-		1	0.0118	162.0	0.0577688	2.0387876	0.8494948	1	Yes	-		
Dichlorobenzene	25321-22-6	No	Yes	Organics		_	_		_		_		1	0.0446	441.0 1	0.3602349	74.424511	31.010213	0.7	Yes	_		
Dichlorobenzene, 1,2-	95-50-1	No	Yes	Organics		-	_		9.00E-02	IR	2.00E-01	HE	1	0.0446	147	0.2079793		0.6999206	1	Yes	6.00E+02	3.04E+02	nc
Dichlorobenzene, 1,3-	541-73-1	No	Yes	Organics		-	_		-				1	0.052	147	0.2424871		0.6999206	1	Yes	-		
Dichlorobenzene, 1,4-	106-46-7	No	Yes	Organics	5.40E-03	С	1.10E-05	С	7.00E-02	AT	8.00E-01	IR	1	0.0453	147	0.2112436		0.6999206	1	Yes	7.50E+01	4.82E-01	ca
Dichlorobenzidine, 3,3'-	91-94-1	No	No	Organics	4.50E-01	ı	3.40E-04	С	-		-		1	0.0128	253.1 3	0.0783264	6.6006696	2.750279	1	Yes		1.25E-01	ca
Dichlorobenzoic acid, -3,5	51-36-5	No	No	Organics		-	-		-		-		1	0.0131	191.0	0.0696347	2.9628932	1.2345388	1	Yes	-		
Dichlorobenzophenone, 4,4'-	90-98-2	No	No	Organics		_	_		9.00E-03	sc	_		1	0.0542	251.1 1	0.3303375	6.4309627	2.6795678	0.9	Yes	_	7.77E+01	nc
Dichlorobenzotrifluoride, 3,4-	328-84-7	No	Yes	Organics		-	_		-		-		1	0.0645	215	0.3637522	4.0370115		1	Yes	_		
															120.9								
Dichlorodifluoromethane	75-71-8	No	Yes	Organics		-	-		2.00E-01	IR	1.00E-01	SC	1	0.00895	1 171.0	0.0378513	1.1999302	0.4999709	1	Yes	-	1.97E+02	nc
Dichlorodiisopropyl ether, 2,2'-	39638-32-9	No	Yes	Organics		-	_		_		-		1	0.0515	7	0.2590722	2.2911419	0.9546425	1	Yes	-		
Dichloroethane, 1,1-	75-34-3	No	Yes	Organics	5.70E-03	С	1.60E-06	С	2.00E-01	PP	-		1	0.00675	98.96	0.0258262	0.9041406	0.3767253	1	Yes	-	2.75E+00	ca
Dichloroethane, 1,2-	107-06-2	No	Yes	Organics	9.10E-02	I	2.60E-05	I	6.00E-03	SC	7.00E-03	PP	1	0.0042	98.96	0.0160696	0.9041406	0.3767253	1	Yes	5.00E+00	1.71E-01	ca*
Dichloroethylene, 1,1-	75-35-4	No	Yes	Organics		-	_		5.00E-02	IR	2.00E-01	IR	1	0.0117	96.94 4	0.0443071	0.8809401	0.3670584	1	Yes	7.00E+00	2.85E+02	nc
Dichloroethylene, 1,2-cis-	156-59-2	No	Yes	Organics		-	-		2.00E-03	IR	-		1	0.011	96.94 4	0.0416562	0.8809401	0.3670584	1	Yes	7.00E+01	3.61E+01	nc
Diablaracthylana 12 trans	156 60 F	No	Von	Organias					2.00E.02	IR			1	0.011	96.94 4	0.0416562	0.8809401	0.3670584	1	Voc	1.00E±02	2 615±02	no
Dichloroethylene, 1,2-trans- Dichlorophenol, 2,6-	156-60-5 87-65-0	No No	Yes No	Organics Organics		_	-		2.00E-02	ır	-		1	0.011 0.0128	163		2.0647144		1	Yes Yes	1.00E+02	J.01L+02	nc
Dichlorophenol, 3,4-	95-77-2		No	Organics		-	_				_		1	0.0311	163		2.0647144		1	Yes			
Dichlorophenol, 2,3-	576-24-9		No	Organics		-	_		-		_		1	0.0147	163	0.0721835			1	Yes	_		
Dichlorophenol, 2,4-	120-83-2		No	Organics		-	_		3.00E-03	IR	-		1	0.0206	163		2.0647144		1	Yes	-	4.57E+01	nc
Dichlorophenol, 2,5-	583-78-8		No	Organics		-	_		-		-		1	0.0206	163	0.1011551			1	Yes	-		
Dichlorophenols (total)	NA	No	No	Organics		-	-		-		-		1	-	-	-	-	-	0	No	-		
Dichlorophenoxy Acetic Acid, 2,4-	94-75-7	No	No	Organics		-	-		1.00E-02	IR	-		1	0.00664	221.0 4	0.0379691	4.3639925	1.8183302	1	Yes	7.00E+01	1.75E+02	nc
Butanoic acid, 4-(2,4-dichlorophenoxy)-	94-82-6	No	No	Organics		-	-		3.00E-02	ОР	-		1	0.0139	249.1	0.0843778	6.2664271	2.6110113	0.9	Yes	-	4.51E+02	nc
Dichloropropane, 1,2-	78-87-5	No	Yes	Organics	3.70E-02	Р	3.70E-05	Р	4.00E-02	PP	4.00E-03	IR	1	0.00753	112.9 9	0.0307852	1.0834378	0.4514324	1	Yes	5.00E+00	1.41E-01	ca*

Resident Screening Levels (RSL) for Tap Water

Chemical	CAS Number	Mutagen?	VOC?	Chemical Type	Ingestion SF (mg/kg-day) ⁻¹	SFO Ref	Inhalation Unit Risk (ug/m³) ⁻¹	IUR	Chronic RfD g/kg-day)	Chronic RfD Ref	Chronic RfC (mg/m³)	Chronic RfC Ref	GIABS	K _p (cm/hr)	MW	B (unitless)	t (hr)	T _{event} (hr/event)	FA (unitless)	In EPD?	MCL (ug/L)	Screening Level (ug/L)	[basis]
Dichloropropane, 1,3-	142-28-9	No	Yes	Organics		-	-		2.00E-02	PP	-		1	0.00776	112.9 9	0.0317255	1.0834378	0.4514324	1	Yes	_	3.69E+02	nc
Dichloropropane, 2,2-	594-20-7	No	Yes	Organics		-	-		-		-		1	0.0316	112.9 9	0.1291914	1.0834378	0.4514324	1	Yes	-		
Dichloropropanol, 2,3-	616-23-9	No	No	Organics		-	-	3.	3.00E-03	IR	-		1	0.000983	128.9 9	0.004294	1.3316926	0.5548719	1	Yes	-	5.94E+01	nc
Dichloropropene, 1,3-	542-75-6	No	Yes	Organics	1.00E-01	I	4.00E-06	I 3.	3.00E-02	IR	2.00E-02	IR	1	0.00834	110.9 7	0.0337906	1.055582	0.4398258	1	Yes	-	4.71E-01	ca*
Dichloropropene, 2,3-	78-88-6	No	Yes	Organics		-	-		-		-		1	0.0153	110.9 7	0.0619899	1.055582	0.4398258	1	Yes	-		
Dichloropropene, cis-1,3-	10061-01-5	No	Yes	Organics		-	-		-		-		1	0.00834	110.9 7	0.0337906	1.055582	0.4398258	1	Yes	-		
Dichloropropene, trans-1,3-	10061-02-6	No	Yes	Organics		-	-		-		-		1	0.00834	110.9	0.0337906	1.055582	0.4398258	1	Yes	-		
Dichloropropene, 1,1-	563-58-6	No	Yes	Organics		-	-		-		-		1	0.0179	110.9	0.0725241	1.055582	0.4398258	1	Yes	-		
Dichlorvos	62-73-7	No	No	Organics	2.90E-01	ı	8.30E-05	C 5	5.00E-04	IR	5.00E-04	IR	1	0.000804	220.9	0.0045968	4.3606175	1.8169239	1	Yes	-	2.64E-01	ca*
Dicyclohexylamine	101-83-7	No	Yes	Organics		-	-		-		-		1	0.12	181.3	0.6214851	4.3485039	1.0895339	1	Yes	-		
Dicyclopentadiene	77-73-6	No	Yes	Organics		-	-	8.	3.00E-02	PP	3.00E-04	sc	1	0.036	132.2	0.1592067	1.3881487	0.5783953	1	Yes	-	6.25E-01	nc
Dieldrin	60-57-1	No	No	Organics	1.60E+01	ı	4.60E-03	I 5.	5.00E-05	IR	-		1	0.0326	380.9	0.2447121	34.289093	14.287122	0.8	Yes	-	1.75E-03	ca
Diepoxybutane	1464-53-5	No	Yes	Organics		-	-		-		-		1	0.0000308	86.09	0.00011	0.7658956	0.3191232	1	Yes	-		
Diethanolamine	111-42-2	No	No	Organics		-	-	2	2.00E-03	PP	2.00E-04	PP	1	0.0000451	105.1	0.0001779	0.9791382	0.4079742	1	Yes	-	4.01E+01	nc
Diethyl sulfate	64-67-5		No	Organics		-	-		-		-		1	0.0012256	154.1 9	0.0058533	1.8429943	0.7679143	1	Yes	-		
Diethyl-p-nitrophenylphosphate	311-45-5	No	No	Organics		-	-		-		-		1		275.2 106.1	0.0059083		3.6556849	1	Yes	-		
Diethylene-glycol	111-46-6	No	No	Organics		-	-		-		-		1	0.0000417	2 196.1	0.0001652	0.9915897	0.4131624	1	Yes	-		
Diethylene Glycol Dinitrate (DEGDN)	693-21-0	No	No	Organics		-	-		-		-		1	0.000557	2 162.2	0.0030001	3.164696	1.3186233	1	Yes	-		
Diethylene Glycol Monobutyl Ether	112-34-5	No	No	Organics		-	-	3.	3.00E-02	PP	1.00E-04	PP	1	0.000454	3 134.1	0.0022241	2.0443158	0.8517983	1	Yes	-	5.97E+02	nc
Diethylene Glycol Monoethyl Ether	111-90-0	No	No	Organics		-	-	6.	3.00E-02	PP	3.00E-04	PP	1	0.000121	8 101.1	0.0005391	1.4238623	0.593276	1	Yes	-	1.20E+03	nc
Diethylformamide	617-84-5	No	Yes	Organics		-	-	1.	.00E-03	PP	-		1	0.000457	5 186.2	0.0017678	0.9300365	0.3875152	1	Yes	-	2.00E+01	nc
Diethylphosphorodithioate	298-06-6	No	Yes	Organics		-	-		-		-		1	0.00436	3	0.0228843	2.7857875	1.1607448	1	Yes	-		
Diethylstilbestrol	56-53-1	No	No	Organics	3.50E+02	С	1.00E-01	С	-		-		1	0.114	268.3	0.7182744	12.965617	3.3470696	0.9	Yes	-	5.08E-05	ca
Difenzoquat	43222-48-6	No	No	Organics		-	-	8.	3.30E-02	OP	-		1	0.0000402		0.0002935	26.334434	10.972681	1	Yes	-	1.66E+03	nc
Diflubenzuron	35367-38-5	No	No	Organics		-	-	2.	2.00E-02	IR	-		1	0.0107	310.6	0.0725394	13.865131	5.7771381	0.9	Yes	-	2.90E+02	nc
Difluoroethane, 1,1-	75-37-6	No	Yes	Organics		-	-		-		4.00E+01	IR	1	0.0021	66.05 1	0.0065643	0.5914875	0.2464531	1	Yes	-	8.34E+04	nc

Resident Screening Levels (RSL) for Tap Water

Chemical	CAS Number	Mutagen?	VOC?	Chemical Type	Ingestion SF (mg/kg-day) ⁻¹	SFO Ref	Inhalation Unit Risk (ug/m³) ⁻¹	IUR Ref	Chronic RfD (mg/kg-day)	Chronic RfD Ref	Chronic RfC (mg/m³)	Chronic RfC Ref	GIABS	K _p (cm/hr)	MW	B (unitless)	t (hr)	T _{event} (hr/event)	FA (unitless)	In EPD?	MCL (ug/L)	Screening Level (ug/L)	[basis]
Difluoropropane, 2,2-	420-45-1	No	Yes	Organics			_						1	0.0185	80.07 8	0.063673	0.7087561	0.295315	1	Yes	_		
															164.2								
Dihydrosafrole	94-58-6	No	Yes	Organics	4.40E-02	С	1.30E-05	С	-		-		1	0.0452	102.1	0.2227742	2.0971814	0.8738256	1	Yes	-	3.02E-01	ca
Diisopropyl Ether	108-20-3	No	Yes	Organics		-	-		-		7.00E-01	PP	1	0.00428	8 180.1	0.01664	0.942471	0.3926962	1	Yes	-	1.46E+03	nc
Diisopropyl Methylphosphonate	1445-75-6	No	Yes	Organics		-	-		8.00E-02	IR	-		1	0.000738	9	0.0038102	2.5770568	1.0737737	1	Yes	-	1.58E+03	nc
Dimethipin	55290-64-7	No	No	Organics		_	_		2.18E-02	OP	-		1	0.0000798	210.2 7	0.0004451	3.7981489	1.5825621	1	Yes	_	4.36E+02	nc
Dimethoate	60-51-5	No	No	Organics			_		2.20E-03	OP	_		1	0.000267	229.2 6	0.0015549	4.8519464	2.0216443	1	Yes	_	4.38E+01	nc
Dimethoxybenzidine, 3,3'-	119-90-4	No	No	Organics	1.60E+00	Р	-		-	Oi	-		1		244.3	0.0063723		2.4543062	1	Yes			ca
Dimethyl methylphosphonate	756-79-6	No	No	Organics	1.70E-03	Р	_		6.00E-02	PP	_		1		124.0 8	0.0005313		0.5208309	1	Yes	_	4.58E+01	ca*
					02 00				0.002 02				1		126.1				1				
Dimethyl Sulfate	77-78-1	No	No	Organics		-	-		-		-		1	0.000392	3 62.13	0.0016933	1.2834767	0.534782	1	Yes	-		
Dimethyl Sulfide	75-18-3	No	Yes	Organics		-	-		-		-		1	0.00286	4	0.0086708		0.2343145	1	Yes	-		
Dimethylamino azobenzene [p-]	60-11-7	No	No	Organics	4.60E+00	С	1.30E-03	С	-		-		1		225.3	0.544401	4.6104147	1.9210061	1	Yes	-	5.05E-03	ca
Dimethylaniline HCI, 2,4-	21436-96-4	No	No	Organics	5.80E-01	Н	_		-		-		1	0.0000202	121.1	0.0000855	1.2041151	0.5017146	1	Yes	-	1.34E-01	ca
Dimethylaniline, 2,4-	95-68-1	No	No	Organics	2.00E-01	Р	-		2.00E-03	SC	-		1	0.00428	8	0.0181212	1.2041151	0.5017146	1	Yes	-	3.69E-01	са
Dimethylaniline, N,N-	121-69-7	No	Yes	Organics	2.70E-02	Р	-		2.00E-03	IR	-		1	0.0112	8	0.0474198		0.5017146	1	Yes			ca*
Dimethylbenzidine, 3,3'-	119-93-7	No	No	Organics	1.10E+01	Р	-		-		-		1		212.3	0.0202866	3.8988811	1.6245338	1	Yes	-	6.54E-03	ca
Dimethylcyclohexylamine, n,n-	98-94-2	No	Yes	Organics		_	_		_		_		1	0.0103	127.2	0.0446847	1.3018112	0.5424213	1	Yes	-		
Dimethylformamide	68-12-2	No	Yes	Organics			_		1.00E-01	PP	3.00E-02	IR	1	0.00013	73.09 5	0.0004275	0.647727	0.2698862	1	Yes	_	6.07E+01	nc
-															60.09				<u>.</u>				
Dimethylhydrazine, 1,1-	57-14-7	No	Yes	Organics		-	-		1.00E-04	SC	2.00E-06	SC	1	0.0000727	9 60.09	0.0002167	0.5477904	0.228246	1	Yes	-	4.16E-03	nc
Dimethylhydrazine, 1,2-	540-73-8	No	Yes	Organics	5.50E+02	С	1.60E-01	С	-		-		1	0.000317	9 149.2	0.0009452	0.5477904	0.228246	1	Yes	-	2.81E-05	ca
Dimethylphenethylamine	122-09-8	No	No	Organics		-	-		-		-		1	0.00417	4	0.0195932	1.7290358	0.7204316	1	Yes	-		
Dimethylphenol, 2,4-	105-67-9	No	No	Organics		-	_		2.00E-02	IR	-		1	0.0109	122.1 7	0.0463378	1.2195848	0.5081603	1	Yes	-	3.55E+02	nc
Dimethylphenol, 2,6-	576-26-1	No	No	Organics			_		6.00E-04	IR	_		1	0.012	122.1 7	0.0510141	1.2195848	0.5081603	1	Yes	_	1.05E+01	nc
Dimethylphenol, 3,4-	95-65-8	No	No	Organics		_	_		1.00E-03	IR	_		1	0.0098	122.1 7		1.2195848		1	Yes			nc
					4.505.00		4 005 05								90.55								
Dimethylvinylchloride	513-37-1	No	Yes	Organics	4.50E-02	С	1.30E-05	С	-		-		1		3 198.1	0.0925974			1	Yes			ca
Dinitro-o-cresol, 4,6-	534-52-1	No	No	Organics		-	-		8.00E-05	SC	-		1	0.00315	4 266.2	0.0170539	3.2482092	1.3534205	1	Yes	-	1.51E+00	nc
Dinitro-o-cyclohexyl Phenol, 4,6-	131-89-5	No	No	Organics		-	-		2.00E-03	IR	-		1	0.0275	6 183.1	0.1725887	7.8183659	3.2576525	0.9	Yes	-	2.30E+01	nc
Dinitroaniline, 3,5-	618-87-1	No	No	Organics		-	_		-		-		1	0.00265	2	0.0137924	2.6762827	1.1151178	1	Yes	-		
Dinitrobenzene, 1,2-	528-29-0	No	No	Organics		-	_		1.00E-04	PP	-		1	0.00237	168.1 1	0.0118188	2.2053422	0.9188926	1	Yes	-	1.93E+00	nc

					Ingestion		Inhalation Unit		Chronic	Chronic	Chronic	Chronic										Screening	
Chemical	CAS Number	Mutagen?	VOC2	Chemical Type	SF (mg/kg-day) ⁻¹	SFO Ref	Risk (ug/m³) ⁻¹	IUR Ref	RfD (mg/kg-day)	RfD Ref	RfC (mg/m ³)	RfC Ref	GIABS	K _p (cm/hr)	MW	B (unitless)	t (hr)	T _{event} (hr/event)	FA (unitless)	In EPD?	MCL (ug/L)	Level (ug/L)	[basis]
	99-65-0	No	No	Organics	(IIIg/Rg-day) -	IXOI	(ug/iii)	IXOI	1.00E-04	IR	(mg/m /	1161	1	0.00174	168.1 1	0.0086771		0.9188926	1	Yes	(ug/L) -	1.95E+00	nc
Dinitrobenzene, 1,4-	100-25-4	No	No	Organics	-		-		1.00E-04	PP	-		1	0.00167	168.1	0.008328	2.2053422	0.9188926	1	Yes	-	1.95E+00	nc
Dinitrophenol, 2,4-	51-28-5	No	No	Organics	-		_		2.00E-03	IR	_		1	0.00187	184.1 1	0.009759	2.7106659	1.1294441	1	Yes	-	3.88E+01	nc
Dinitrophenols	25550-58-7	No	No	Organics	-		-		-		-		1	0.00118	920.5 5	0.0137699	36069.489	15028.954	0.8	No	-		
Dinitrosopentamethylenetetramine, N,N-	101-25-7	No	No	Organics	-		-		-		-		1	0.0000104	186.1 7	0.0000546	2.7836331	1.1598471	1	Yes	-		
Dinitrotoluene Mixture, 2,4/2,6-	NA	No	No	Organics	6.80E-01	ı	_		-		-		1	0.00416	182.1 4	0.0215935	2.6426764	1.1011152	1	Yes	-	1.06E-01	ca
Dinitrotoluene, 2,4-	121-14-2	No	No	Organics	3.10E-01	С	8.90E-05	С	2.00E-03	IR	_		1	0.00308	182.1 4	0.0159875	2.6426764	1.1011152	1	Yes	-	2.37E-01	ca
Dinitrotoluene, 2,6-	606-20-2	No	No	Organics	1.50E+00	Р	-		3.00E-04	SC	-		1	0.0037	182.1	0.0192057	2.6426764	1.1011152	1	Yes	-	4.85E-02	ca
Dinitrotoluene, 2-Amino-4,6-	35572-78-2	No	No	Organics	-		_		2.00E-03	SU	_		1	0.00204	197.1 5	0.0110168	3.2070076	1.3362532	1	Yes	-	3.86E+01	nc
Dinitrotoluene, 4-Amino-2,6-	19406-51-0	No	No	Organics	-		-		2.00E-03	SU	-		1	0.00204	197.1 5	0.0110168	3.2070076	1.3362532	1	Yes	-	3.86E+01	nc
Dinitrotoluene, 2,3-	602-01-7	No	No	Organics	-		-		-		-		1	0.00416	182.1	0.0215935	2.6426764	1.1011152	1	Yes	-		
Dinitrotoluene, 2,5-	619-15-8	No	No	Organics	-		-		-		-		1	0.00416	182.1	0.0215935	2.6426764	1.1011152	1	Yes	-		
Dinitrotoluene, 3,4-	610-39-9	No	No	Organics	-		-		-		-		1	0.00359	182.1	0.0186348	2.6426764	1.1011152	1	Yes	-		
Dinitrotoluene, 3,5-	618-85-9	No	No	Organics	-		-		-		-		-	0.00416	182.1 4 546.4	0.0215935	2.6426764	1.1011152	1	Yes	-		
Dinitrotoluene, Technical grade	25321-14-6	No	No	Organics	4.50E-01	Х	-		9.00E-04	sc	-		1	0.00416	1	0.0374007	289.705	120.71042	0.8	Yes	-	1.04E-01	ca
Dinoseb	88-85-7	No	No	Organics	-		-		1.00E-03	IR	-		1	0.0163	240.2 2 88.10	0.097167	5.588458	2.3285242	0.9	Yes	7.00E+00	1.46E+01	nc
Dioxane, 1,4-	123-91-1	No	Yes	Organics	1.00E-01	I	5.00E-06	I	3.00E-02	IR	3.00E-02	IR	1	0.000332	7	0.0011986	0.7860663	0.3275276	1	Yes	-	4.59E-01	ca
Diphenamid	957-51-7	No	No	Organics	-		-		3.00E-02	IR	-		1	0.00563	239.3	0.0334984	5.5239786	2.3016578	1	Yes	-	5.27E+02	nc
Diphenyl Sulfone	127-63-9	No	No	Organics	-		-		8.00E-04	SC	-		1	0.00367	218.2	0.0208545	4.2114145	1.7547561	1	Yes	-	1.48E+01	nc
Diphenylamine	122-39-4	No	No	Organics	-		-		1.00E-01	ОР	-		1	0.0373	169.2 3	0.1866269	2.2374224	0.9322594	1	Yes	-	1.26E+03	nc
Diphenylhydrazine, 1,2-	122-66-7	No	No	Organics	8.00E-01	I	2.20E-04	I	-		-		1	0.013	184.2	0.0678675	2.7152135	1.131339	1	Yes	-	7.80E-02	ca
Diquat	85-00-7	No	No	Organics	-		-		2.20E-03	IR	_		1	2.44E-7	344.0 5	1.7407E-6	21.317683	8.8823677	1	No	2.00E+01	4.41E+01	nc
Direct Black 38	1937-37-7	No	No	Organics	7.10E+00	С	1.40E-01	С					1	0.000205	779.7 7	0.0022017	5871.81	2446.5875	1	No		1.10E-02	ca
Direct Blue 6	2602-46-2	No	No	Organics	7.40E+00	С	1.40E-01	С	-		-		1	1.73E-9	932.7	2.0322E-8	42219.782	17591.576	1	No	-	1.05E-02	ca
Direct Brown 95	16071-86-6	No	No	Organics	6.70E+00	С	1.40E-01	С	-		-		1	3.87E-12	761.1 2	4.106E-11	4616.7036	1923.6265	1	No	-	1.16E-02	ca
Direct Sky Blue	2610-05-1	No	No	Organics	-		_		-		_		1	3.69E-7	992.8 2	4.4719E-6	91590.829	38162.846	1	No	-		

Resident Screening Levels (RSL) for Tap Water

Key: I = IRIS; P = PPRTV; D = DWSHA; O = OPP; A = ATSDR; C = Cal EPA; X = APPENDIX PPRTV SCREEN (See FAQ #27); H = HEAST; F = See FAQ; J = New Jersey; E = see user guide Section 2.3.5; L = see user guide on lead; M = mutagen; S = see user guide Section 5; V = volatile; R = RBA applied (See User Guide for IRIS) or IRIS; P = PPRTV; D = DWSHA; O = OPP; A = ATSDR; C = Cal EPA; X = APPENDIX PPRTV SCREEN (See FAQ #27); H = HEAST; F = See IRIS; P = PPRTV; D = DWSHA; O = OPP; A = ATSDR; C = Cal EPA; X = APPENDIX PPRTV SCREEN (See FAQ #27); H = HEAST; F = See IRIS; P = PPRTV; D = DWSHA; O = OPP; A = ATSDR; C = Cal EPA; X = APPENDIX PPRTV SCREEN (See IRIS) for IRIS PRIVE PRTV SCREEN (See IRIS) for IRIS PRTV SCREEN (See Arsenic notice); c = cancer; n = noncancer; * = where: n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; *

					Ingestion SF	250	Inhalation Unit Risk		Chronic	Chronic	Chronic RfC	Chronic		V				_				Screening	
Chemical	CAS Number	Mutagen?	VOC?	Chemical Type	(mg/kg-day) ⁻¹	SFO Ref	(ug/m ³) ⁻¹	IUR Ref	RfD (mg/kg-day)	RfD Ref	(mg/m³)	RfC Ref	GIABS	K _p (cm/hr)	MW	B (unitless)	t (hr)	T _{event} (hr/event)	FA (unitless)	In EPD?	MCL (ug/L)	Level (ug/L)	[basis]
Disulfoton	298-04-4	No	No	Organics		-	-		4.00E-05	IR	-		1	0.0212	274.4	0.1350711	8.6847234	3.6186348	0.9	Yes	-	5.01E-01	nc
Dithiane, 1,4-	505-29-3	No	Yes	Organics		-	-		1.00E-02	IR	-		1	0.00108	120.2	0.0045549	1.1896083	0.4956701	1	Yes	-	1.98E+02	nc
Diundecyl Phthalate	3648-20-2	No	Yes	Organics	-	-	-		-		-		1	146	474.7 3	1223.4968	225.64496	47.900136	0	No	-		
Diuron	330-54-1	No	No	Organics	-	-	-		2.00E-03	IR	-		1	0.00466	233.1	0.0273643	5.0982367	2.1242653	1	Yes	-	3.61E+01	nc
Dodine	2439-10-3	No	No	Organics	-	-	-		2.00E-02	OP	-		1	0.000222	287.4	0.0014476	10.274956	4.2812319	1	Yes	-	3.98E+02	nc
Hexachlorodibenzo-p-dioxin	34465-46-8	No	No	Organics	1.30E+04	W	3.80E+00	w	7.00E-09	WH	4.00E-07	WH	1	2.86	390.8	21.747476	75.114656	16.245039	0	No	-	5.99E-06	ca*
Hexachlorodibenzo-p-dioxin, 1,2,3,4,7,8	- 39227-28-6	No	No	Organics	1.30E+04	W	3.80E+00	W	7.00E-09	WH	4.00E-07	WH	1	1.53	390.8 7	11.634139	73.973426	16.245039	0	No	-	5.99E-06	ca*
Hexachlorodibenzo-p-dioxin, Mixture	NA	No	No	Organics	6.20E+03	ı	1.30E+00	ı	-		-		1	2.86	390.8 7	21.747476	75.114656	16.245039	0	No	-	1.26E-05	ca
HpCDD, 2,3,7,8-	37871-00-4	No	Yes	Organics	1.30E+03	W	3.80E-01	w	7.00E-08	WH	4.00E-06	WH	1	1.33	425.3	10.549481	114.95554	25.327058	0	No	-	1.19E-05	ca
HxCDD, 1,2,3,6,7,8-	57653-85-7	No	No	Organics	1.30E+04	W	3.80E+00	w	7.00E-09	WH	4.00E-07	WH	1	2.86	390.8 7	21.747476	75.114656	16.245039	0	No	-	5.99E-06	ca*
HxCDD, 1,2,3,7,8,9-	19408-74-3	No	No	Organics	1.30E+04	W	3.80E+00	w	7.00E-09	WH	4.00E-07	WH	1	2.86	390.8 7	21.747476	75.114656	16.245039	0	No	-	5.99E-06	ca*
Endosulfan	115-29-7	No	Yes	Organics	-	-	-		6.00E-03	IR	-		1	0.00286	406.9	0.0221898	47.958765	19.982819	0.9	Yes	-	1.01E+02	nc
Endosulfan I	959-98-8	No	No	Organics		-	-		-		-		1	0.00286	406.9	0.0221898	47.958765	19.982819	0.9	Yes	-		
Endosulfan II	33213-65-9	No	No	Organics		-	-		-		-		1	0.00286	406.9	0.0221898	47.958765	19.982819	0.9	Yes	-		
Endosulfan Sulfate	1031-07-8	No	No	Organics	-	-	-		-		-		1	0.00179	422.9	0.0141584	58.947853	24.561605	0.9	Yes	-		
Endothall	145-73-3	No	No	Organics	-	-	-		2.00E-02	IR	-		1	0.00263	186.1 7	0.0138018	2.7836331	1.1598471	1	Yes	1.00E+02	3.83E+02	nc
Endrin	72-20-8	No	No	Organics	-	-	-		3.00E-04	IR	-		1	0.0326	380.9	0.2447121	34.289093	14.287122	0.8	Yes	2.00E+00	2.28E+00	nc
Endrin ketone	53494-70-5	No	No	Organics	-	-	-		-		-		1	0.0235	380.9 1 380.9	0.1764029	34.289093	14.287122	0.8	Yes	-		
Endrin aldehyde	7421-93-4	No	No	Organics	-	-	-		-		-		1	0.0178	1	0.1336158	34.289093	14.287122	0.8	Yes	-		
Epichlorohydrin	106-89-8	No	Yes	Organics	9.90E-03	I	1.20E-06	ı	6.00E-03	PP	1.00E-03	IR	1	0.000944	92.52 6 72.10	0.0034925	0.8321576	0.3467323	1	Yes	-	2.05E+00	nc
Epoxybutane, 1,2-	106-88-7	No	Yes	Organics	-	-	-		-		2.00E-02	IR	1	0.00231	8 189.3	0.0075445	0.6395357	0.2664732	1	Yes	-	4.17E+01	nc
EPTC	759-94-4	No	Yes	Organics		-	-		5.00E-02	OP	-		1	0.0184	2		2.8990252		1	Yes	-	7.51E+02	nc
Ethanol	64-17-5	No	Yes	Organics	-	-	-		-		-		1	0.000538	46.07 120.1	0.0014045	U.45/1429	0.1904/62	1	Yes	-		
Ethanol, 2-(2-methoxyethoxy)-	111-77-3	No	No	Organics	-	-	-		4.00E-02	PP	-		1	0.0001747	5	0.0007367	1.1882286		1	Yes		8.01E+02	nc
Ethephon	16672-87-0	No	No	Organics		-	-		5.00E-03	IR	-		1	0.000173		0.0007998	1.6265222	0.6777176	1	Yes	-	1.00E+02	nc
Ethion	563-12-2	No	No	Organics	-	-	-		5.00E-04	IR	-		1	0.0255	384.4	0.1923108	35.904426	14.960178	0.8	Yes	-	4.35E+00	nc
Ethoxy Propanol	52125-53-8	No	Yes	Organics	-	-	_		-		-		1	0.000409	104.1 5	0.0016054	0.9667184	0.4027993	1	Yes	-		

Resident Screening Levels (RSL) for Tap Water

					Ingestion		Inhalation Unit		Chronic	Chronic	Chronic	Chronic										Screening	
Chemical	CAS Number	Mutagen?	VOC?	Chemical Type	SF (mg/kg-day) ⁻¹	SFO Ref	Risk (ug/m³) ⁻¹	IUR Ref	RfD (mg/kg-day)	RfD Ref	RfC (mg/m³)	RfC Ref	GIABS	K _p (cm/hr)	MW	B (unitless)	t (hr)	T _{event} (hr/event)	FA (unitless)	In EPD?	MCL (ug/L)	Level (ug/L)	[basis]
Ethoxyethanol Acetate, 2-	111-15-9	No	Yes	Organics	-		-		1.00E-01	PP	6.00E-02	PP	1	0.0007	132.1 6	0.0030951	1.387254	0.5780225	1	Yes	-	1.18E+02	nc
Ethoxyethanol, 2-	110-80-5	No	Yes	Organics	-		-		9.00E-02	PP	2.00E-01	IR	1	0.0003	90.12	0.0010954	0.8067682	0.3361534	1	Yes	-	3.39E+02	nc
Ethyl methane sulfonate	62-50-0	No	No	Organics	-		-		-		-		1	0.000244	124.1 6	0.0010457	1.2512843	0.5213685	1	Yes	-		
Ethyl Acetate	141-78-6	No	Yes	Organics	-		-		9.00E-01	IR	7.00E-02	PP	1	0.00153	88.10	0.0055236	0.7860663	0.3275276	1	Yes	-	1.45E+02	nc
Ethyl Acrylate	140-88-5	No	Yes	Organics	-		-		5.00E-03	PP	8.00E-03	PP	1	0.00324	100.1	0.012469	0.9177661	0.3824025	1	Yes	-	1.42E+01	nc
Ethyl Chloride	75-00-3	No	Yes	Organics	-		-		-		1.00E+01	IR	1	0.00607	64.51	0.0187519	0.5798878	0.2416199	1	Yes	-	2.09E+04	nc
Ethyl Ether	60-29-7	No	Yes	Organics	-		-		2.00E-01	IR	-		1	0.00235	74.12	0.0077817	0.6563786	0.2734911	1	Yes	-	3.93E+03	nc
Ethyl Methacrylate	97-63-2	No	Yes	Organics	-		-		-		3.00E-01	PP	1	0.00698	114.1	0.0286827	1.0997652	0.4582355	1	Yes	-	6.26E+02	nc
Ethyl-p-nitrophenyl Phosphonate	2104-64-5	No	No	Organics	-		-		1.00E-05	IR	-		1	0.0361	323.3	0.2496568	16.315335	6.7980562	0.8	Yes	-	8.92E-02	nc
Ethylbenzene	100-41-4	No	Yes	Organics	1.10E-02	С	2.50E-06	С	1.00E-01	IR	1.00E+00	IR	1	0.0493	106.1 7	0.1953775	0.9922292	0.4134288	1	Yes	7.00E+02	1.50E+00	са
Ethylene Cyanohydrin	109-78-4	No	No	Organics	-		-		7.00E-02	PP	-		1	0.000148	71.07	0.0004799	0.6311061	0.2629609	1	Yes	-	1.40E+03	nc
Ethylene Diamine	107-15-3	No	Yes	Organics	-		-		9.00E-02	PP	-		1	0.0000318	60.09	0.0000948	0.5477904	0.228246	1	No	-	1.80E+03	nc
Ethylene Glycol	107-21-1	No	No	Organics	-		-		2.00E+00	IR	4.00E-01	CA	1	0.0000877	62.06 9	0.0002657	0.5618836	0.2341182	1	Yes	-	4.01E+04	nc
Ethylene Glycol Monobutyl Ether	111-76-2	No	No	Organics	-		-		1.00E-01	IR	1.60E+00	IR	1	0.00121	118.1	0.0050592	1.1584252	0.4826772	1	Yes	-	1.98E+03	nc
Ethylene Oxide	75-21-8	Yes	Yes	Organics	3.10E-01	С	3.00E-03	ı	-		3.00E-02	CA	1	0.00056	44.05	0.0014296	0.4454125	0.1855885	1	Yes	-	6.70E-04	ca
Ethylene Thiourea	96-45-7	No	No	Organics	4.50E-02	С	1.30E-05	С	8.00E-05	IR	-		1	0.000152	102.1	0.0005909	0.942228	0.392595	1	Yes	-	1.60E+00	nc
Ethyleneimine	151-56-4	No	Yes	Organics	6.50E+01	С	1.90E-02	С	-		-		1	0.000581	43.06	0.0014665	0.4397911	0.1832463	1	Yes	-	2.37E-04	са
Ethylphenol, 4-	123-07-9	No	No	Organics	-		-		-		-		1	0.0167485	7	0.0712009	1.2195848	0.5081603	1	Yes	-		
Ethylphthalyl Ethyl Glycolate	84-72-0	No	No	Organics	-		-		3.00E+00	IR	-		1	0.00119	280.2	0.0076625	9.3675925	3.9031636	1	Yes	-	5.79E+04	nc
Famphur	52-85-7	No	No	Organics	-		-		-		-		1	0.00071	325.3	0.0049255	16.74804	6.97835	1	Yes	-		
Fenamiphos	22224-92-6	No	No	Organics	-		-		2.50E-04	IR	-		1	0.00436	303.3	0.0292074	12.614673	5.2561137	0.9	Yes	-	4.36E+00	nc
Fenpropathrin	39515-41-8	No	No	Organics	-		-		2.50E-02	IR	-		1	0.167	349.4	1.2006688	37.143138	9.5204341	0.8	Yes	-	6.40E+01	nc
		No	No	Organics	_		-		1.30E-02	IR	-		1	0.00316	232.2			2.1000264	1	Yes		2.42E+02	nc
Fluoride		No	No	Inorganics	-		-		4.00E-02	CA	1.30E-02	CA	1		38 37.99		0.4119647		1	Yes		7.99E+02	nc
		No	No	Inorganics	-		-		6.00E-02	IR	1.30E-02	CA	1		7 96.10	0.0023708			1	Yes	4.00E+03	1.20E+03	nc
		No No	Yes Yes	Organics Organics	-		-		-		-		1	0.0146 0.0722	5 172.2		0.8714611 2.32477		1 1	Yes Yes	-		

Resident Screening Levels (RSL) for Tap Water

Key: I = IRIS; P = PPRTV; D = DWSHA; O = OPP; A = ATSDR; C = Cal EPA; X = APPENDIX PPRTV SCREEN (See FAQ #27); H = HEAST; F = See FAQ; J = New Jersey; E = see user guide Section 2.3.5; L = see user guide on lead; M = mutagen; S = see user guide Section 5; V = volatile; R = RBA applied (See User Guide for Arsenic notice); c = cancer; n = noncancer; * = where: n SL < 100X c SL; ** = where n SL < 10X c SL; SSL values are based on DAF=1; m = Concentration may exceed Csat (See User Guide)

					Ingestion		Inhalation Unit		Observato	Ohmania	Chronic	Observato										0	
					SF	SFO	Risk	IUR	Chronic RfD	Chronic RfD	RfC	Chronic RfC		K _p		В	t	T _{event}	FA		MCL	Screening Level	
Chemical	CAS Number	Mutagen?	VOC?	Chemical Type	(mg/kg-day) ⁻¹	Ref	(ug/m ³) ⁻¹	Ref	(mg/kg-day)	Ref	(mg/m³)	Ref	GIABS	(cm/hr)	MW	(unitless)	(hr)	(hr/event)	(unitless)	In EPD?	(ug/L)	(ug/L)	[basis]
Fluorophenol, 2-	367-12-4	No	Yes	Organics	-		-		-		-		1	0.00504	112.1	0.0205239	1.0710753	0.4462814	1	Yes	-		
Fluridone	59756-60-4	No	No	Organics	-		-		8.00E-02	IR	-		1	0.0028	329.3 2 312.2	0.0195431	17.629987	7.3458279	0.9	Yes	-	1.44E+03	nc
Flurprimidol	56425-91-3	No	No	Organics	-		-		1.50E-02	OP	-		1	0.00459	9	0.0311974	14.154156	5.8975652	0.9	Yes	-	2.58E+02	nc
Flutolanil	66332-96-5	No	No	Organics	-		-		5.00E-01	ОР	-		1	0.00691	323.3 2	0.0477882	16.317439	6.7989328	0.9	Yes	-	7.90E+03	nc
Fluvalinate	69409-94-5	No	No	Organics	-		-		1.00E-02	IR	-		1	0.0792	502.9	0.6831335	268.69259	68.905954	0.6	No	-	2.01E+02	nc
Folpet	133-07-3	No	No	Organics	-		-		9.00E-02	OP	-		1	0.00266	296.5	0.0176183	11.555693	4.814872	1	Yes	-	1.65E+03	nc
Fomesafen	72178-02-0	No	No	Organics	-		-		2.50E-03	OP	-		1	0.000457	438.7	0.0036818	72.305609	30.127337	1	Yes	-	4.81E+01	nc
Fonofos	944-22-9	No	No	Organics	-		-		2.00E-03	IR	-		1	0.027	246.3	0.1629855	6.0465548	2.5193978	0.9	Yes	-	2.45E+01	nc
Formaldehyde	50-00-0	No	Yes	Organics	-		1.30E-05	I	2.00E-01	IR	9.83E-03	AT	1	0.00182	30.02	0.0038357	0.3717112	0.1548796	1	Yes	-	4.32E-01	ca*
Formic Acid	64-18-6	No	Yes	Organics	-		-		9.00E-01	PP	3.00E-04	SC	1	0.000378	46.02 6	0.0009863	0.4568836	0.1903682	1	Yes	-	6.26E-01	nc
Fosetyl-AL	39148-24-8	No	No	Organics	-		-		2.50E+00	OP	_		1	4.1E-7	354.1 1	2.9674E-6	24.270347	10.112645	1	No	-	5.01E+04	nc
Fuel Oil Number 2	68476-30-2	No	No	Organics	-		-		-		-		1	-	-	-	-	-	0	No	-		
Furazolidone	67-45-8	No	No	Organics	3.80E+00	Н	-		-		-		1	0.0000803	225.1	0.0004634	4.6020994	1.9175414	1	Yes	-	2.05E-02	ca
Furfural	98-01-1	No	Yes	Organics	-		-		3.00E-03	IR	5.00E-02	HE	1	0.000848	96.08 6	0.0031971	0.8712476	0.3630198	1	Yes	-	3.79E+01	nc
Furium	531-82-8	No	No	Organics	1.50E+00	С	4.30E-04	С	-		-		1	0.000935	253.2	0.0057226	6.6091863	2.7538276	1	Yes	-	5.05E-02	ca
Furmecyclox	60568-05-0	No	No	Organics	3.00E-02	ı	8.60E-06	С	_		_		1	0.0499	251.3 3	0.3042632	6.4492319	2.6871799	0.9	Yes	_	1.12E+00	ca
		No	Yes	Organics	-		-		1.00E-03	SC	-		1	0.0975	168.2	0.4863448		0.9199596	1	Yes	-	7.86E+00	nc
Furan	110-00-9	No	Yes	Organics	-		-		1.00E-03	IR	_		1	0.00505	68.07 6	0.0160256	0.6071354	0.2529731	1	Yes	-	1.92E+01	nc
Heptachlorodibenzofuran, 1,2,3,4,6,7,8-	67562-39-4	No	Yes	Organics	1.30E+03	W	3.80E-01	w	7.00E-08	WH	4.00E-06	WH	1	1.45	409.3 1	11.282902	93.736911	20.605576	0	No	-	1.19E-05	ca
Hexachlorodibenzofuran, 1,2,3,4,7,8-	70648-26-9	No	Yes	Organics	1.30E+04	W	3.80E+00	W	7.00E-09	WH	4.00E-07	WH	1	2.25	374.8 7	16.755196	60.784699	13.216631	0	No	-	1.19E-06	ca
HpCDF, 1,2,3,4,7,8,9-	55673-89-7	No	Yes	Organics	1.30E+03	W	3.80E-01	W	7.00E-08	WH	4.00E-06	WH	1	1.45	409.3	11.282902	93.736911	20.605576	0	No	-	1.19E-05	ca
HpCDF, 2,3,7,8-	38998-75-3	No	Yes	Organics	1.30E+03	W	3.80E-01	W	7.00E-08	WH	4.00E-06	WH	1	1.45	409.3	11.282902	93.736911	20.605576	0	No	-	1.19E-05	ca
HxCDF, 1,2,3,6,7,8-	57117-44-9	No	Yes	Organics	1.30E+04	W	3.80E+00	W	7.00E-09	WH	4.00E-07	WH	1	2.25	374.8	16.755196	60.784699	13.216631	0	No	-	1.19E-06	ca
HxCDF, 1,2,3,7,8,9-	72918-21-9	No	No	Organics	1.30E+04	W	3.80E+00	W	7.00E-09	WH	4.00E-07	WH	1	1.35	374.8	10.053118	59.886344	13.216631	0	No	-	5.99E-06	ca*
HxCDF, 2,3,4,6,7,8-	60851-34-5	No	No	Organics	1.30E+04	W	3.80E+00	W	7.00E-09	WH	4.00E-07	WH	1	2.25	374.8	16.755196	60.784699	13.216631	0	No	-	5.99E-06	ca*
HxCDF, 2,3,7,8-	55684-94-1	No	No	Organics	1.30E+04	W	3.80E+00	W	7.00E-09	WH	4.00E-07	WH	1	1.35	374.8 7	10.053118	59.886344	13.216631	0	No	-	5.99E-06	ca*
Gadolinium	7440-54-2	No	No	Inorganics	_		_		_		_		1	0.001	157.2 5	0.0048231	1.9171672	0.7988197	1	Yes	_		
		No	No	Inorganics	-		-		-		-		1			0.0032115			1	Yes	-		

Resident Screening Levels (RSL) for Tap Water

Key: I = IRIS; P = PPRTV; D = DWSHA; O = OPP; A = ATSDR; C = Cal EPA; X = APPENDIX PPRTV SCREEN (See FAQ #27); H = HEAST; F = See user guide Section 2.3.5; L = see user guide Section 5; V = volatile; R = RBA applied (See User Guide for Arsenic notice); c = cancer; n = noncancer; * = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c S

Chamias	CAS Number	Mutagan2	VOCA	Chamical Type	Ingestion SF	SFO	Inhalation Unit Risk	IUR	Chronic RfD	Chronic RfD	Chronic RfC	Chronic RfC	GIABS	K _p	BANA	B	t (ba)	Tevent	FA (unitless)	In EPD?	MCL	Screening Level	[hasia]
Chemical Germanium	7440-56-4	_	No No	Chemical Type Inorganics	(mg/kg-day) ⁻¹	Ref	(ug/m³) ⁻¹	Ref	(mg/kg-day)	Ref	(mg/m³)	Ref	1	(cm/hr) 0.001	MW 72.64	(unitless) 0.003278	(hr) 0.6439379	(hr/event) 0.2683075	(unitiess)	Yes	(ug/L)	(ug/L)	[basis]
				0											198.1								
Glufosinate, Ammonium	77182-82-2	No	No	Organics	-		-		6.00E-03	OP	-		1	3.42E-8	100.1	1.8517E-7	3.249047	1.3537696	1	No	-	1.20E+02	nc
Glutaraldehyde	111-30-8	No	No	Organics	-		-		-		8.00E-05	CA	1	0.000325	2	0.0012507	0.9177661	0.3824025	1	Yes	-		
Glycerol	56-81-5	No	No	Organics	-		-		-		-		1	0.0000322	92.09	0.000119	0.8275457	0.3448107	1	Yes	-		
Glycidyl	765-34-4	No	Yes	Organics	-		-		4.00E-04	IR	1.00E-03	HE	1	0.000516	72.06 4	0.0016848	0.639173	0.2663221	1	Yes	-	1.65E+00	nc
Glyphosate	1071-83-6	No	No	Organics	-		-		1.00E-01	IR	-		1	4.54E-8	169.0 7	2.2705E-7	2.2328111	0.930338	1	No	7.00E+02	2.01E+03	nc
Guanidine Chloride	50-01-1	No	No	Organics	-		-		2.00E-02	PP	-		1	3.86E-8	95.53 2	1.4511E-7	0.865046	0.3604358	1	No	-	4.01E+02	nc
Guanidine	113-00-8	No	Yes	Organics	-		-		1.00E-02	sc	-		1	0.0000603	59.07 1	0.0001783	0.540577	0.2252404	1	Yes	-	2.00E+02	nc
Guanidine Nitrate	506-93-4	No	No	Organics	-		-		3.00E-02	SC	-		1	2.65E-8	122.1 1	1.1263E-7	1.2186416	0.5077673	1	No	-	6.02E+02	nc
Azinphos-methyl	86-50-0	No	No	Organics	_		_		3.00E-03	AT	1.00E-02	AT	1	0.00175	317.3 3	0.01199	15.104557	6.2935654	1	Yes	-	5.61E+01	nc
Haloacetic acids	NA	No	No	Organics	-		-		-		-		1	-	-	-	-	-	0	No	-		
Haloxyfop, Methyl	69806-40-2	No	No	Organics	-		-		5.00E-05	IR	-		1	0.006	375.7 3	0.0447317	32.073621	13.364009	0.9	Yes	-	7.56E-01	nc
HCDD, 1,2,3,4,6,7,8,-	35822-46-9	No	Yes	Organics	1.30E+03	С	3.80E-01	С	1.00E-06	CA	4.00E-06	CA	1	1.33	425.3 1	10.549481	114.95554	25.327058	0	No	-	1.19E-05	ca
Heptachlor	76-44-8	No	Yes	Organics	4.50E+00	ı	1.30E-03	ı	5.00E-04	IR	_		1	0.143	373.3 2	1.062682	50.142248	12.955099	0.8	Yes	4.00E-01	1.39E-03	ca
Heptachlor Epoxide	1024-57-3	No	Yes	Organics	9.10E+00	ı	2.60E-03	ı	1.30E-05	IR	-		1	0.0209	389.3 2	0.1586084		15.923581	0.8	Yes	2.00E-01		ca*
Heptanal, n-	111-71-7	No	Yes	Organics	-		-		-		-		1	0.0119	114.1 9	0.0489089	1.1003326	0.4584719	1	Yes	-		
Heptane, N-	142-82-5	No	Yes	Organics	_		_		3.00E-04	sc	4.00E-01	PP	1	0.537	100.2	2.0675521	1.5659999	0.3828466	1	No	_	5.97E+00	nc
Heptanol, n-			Yes	Organics	-		-		-		-		1	0.0192337	116.2	0.0797429		0.4705099	1	Yes	-		
Hexabromobenzene	87-82-1	No	Yes	Organics	-		-		2.00E-03	IR	-		1	0.0136	551.4 9	0.1228385	309.31714	128.88214	0.7	No	-	4.01E+01	nc
Hexabromodiphenyl ether, 2,2',4,4',5,5'-(BDE-153)	68631-49-2	No	No	Organics	_		_		2.00E-04	IR	_		1	_	643.5 8356		1014.2101	422.58754	0	No	_	4.01E+00	nc
Hexachlorobenzene			Yes	Organics	1.60E+00	ı	4.60E-04	ı	8.00E-04	IR	-		1	0.254	284.7	1.6485993		4.136345	0.9	No	1.00E+00		ca
Hexachlorobutadiene	87-68-3		Yes	Organics	7.80E-02	ı	2.20E-05	ı	1.00E-03	PP	_		1	0.081	260.7 6			3.034623	0.9	Yes		1.39E-01	ca*
Hexachlorocyclohexane, Alpha-			No	Organics	6.30E+00	ı	1.80E-03	ı	8.00E-03	AT	_		1	0.0206	290.8 3	0.1351181	10.732675		0.9	Yes		7.25E-03	ca
Hexachlorocyclohexane, Beta-			No	Organics	1.80E+00	ı	5.30E-04	ı	-		-		1	0.0206	290.8	0.1351181	10.732675		0.9	Yes		2.54E-02	ca
Hexachlorocyclohexane, Delta-			No	Organics	-		_		-		-		1	0.0206	290.8 3	0.1351181	10.732675		0.9	Yes	-		
Hexachlorocyclohexane, Epsilon		No	No	Organics									1	0.0206	290.8 3	0.1351181	10.732675	4 471049	0.9	Yes			
Hexachlorocyclohexane, Gamma- (Lindane)			No	Organics	1.10E+00	С	3.10E-04	С	3.00E-04	IR	-		1	0.0206	290.8	0.1351181	10.732675		0.9	Yes	2.00E-01	4.15E-02	ca*
·	1			. 5			- 1		-							-		-			-		

Resident Screening Levels (RSL) for Tap Water

Key: I = IRIS; P = PPRTV; D = DWSHA; O = OPP; A = ATSDR; C = Cal EPA; X = APPENDIX PPRTV SCREEN (See FAQ #27); H = HEAST; F = See FAQ; J = New Jersey; E = see user guide Section 2.3.5; L = see user guide on lead; M = mutagen; S = see user guide Section 5; V = volatile; R = RBA applied (See User Guide for Arsenic notice); c = cancer; n = noncancer; * = where: n SL < 100X c SL; ** = where n SL < 10X c SL; SSL values are based on DAF=1; m = Concentration may exceed Csat (See User Guide)

Chemical	CAS Number	Mutagen?	VOC?	Chemical Type	Ingestion SF (mg/kg-day) ⁻¹	SFO Ref	Inhalation Unit Risk (ug/m³)-1	IUR Ref	Chronic RfD (mg/kg-day)	Chronic RfD Ref	Chronic RfC (mg/m³)	Chronic RfC Ref	GIABS	Κ _p (cm/hr)	MW 290.8	B (unitless)	t (hr)	T _{event} (hr/event)	FA (unitless)	In EPD?	MCL (ug/L)	Screening Level (ug/L)	[basis]
Hexachlorocyclohexane, Technical	608-73-1	No	No	Organics	1.80E+00	1	5.10E-04	ı	-		_		1	0.0206	3	0.1351181	10.732675	4.471948	0.9	Yes	_	2.54E-02	ca
Hexachlorocyclopentadiene		No	Yes	Organics	-		-		6.00E-03	IR	2.00E-04	IR	1	0.103	272.7	0.6542778		3.5429151	0.9	Yes	5.00E+01		nc
Hexachloroethane	67-72-1	No	Yes	Organics	4.00E-02	I	1.10E-05	С	7.00E-04	IR	3.00E-02	IR	1	0.0415	236.7 4 406.9	0.2455899	5.3432315	2.2263465	1	Yes	-	3.28E-01	ca*
Hexachlorophene	70-30-4	No	No	Organics	-		_		3.00E-04	IR	-		1	0.836	1	6.4860772	88.826752	19.977666	0	No	_	6.02E+00	nc
Hexachloropropene	1888-71-7	No	Yes	Organics	-		-		-		-		1	0.051	248.7	0.3093701	6.23821	2.5992542	0.9	Yes	_		
Hexadecanoic Acid Hexahydro-1,3,5-triazine	57-10-3	No	Yes	Organics	-		-		_		-		1	3.32	256.4 3 222.1	20.447921	13.254367	2.8698338	0.8	No	-		
(RDX)	121-82-4	No	No	Organics	1.10E-01	I	_		3.00E-03	IR	-		1	0.000336	2	0.001926	4.4251907	1.8438295	1	Yes	-	7.02E-01	ca*
Hexamethylene Diisocyanate, 1,6-	822-06-0	No	Yes	Organics	-		-		-		1.00E-05	IR	1	0.0237	168.2	0.1182192	2.207903	0.9199596	1	Yes	-	2.09E-02	nc
Hexamethylphosphoramide	680-31-9	No	No	Organics	-		-		4.00E-04	PP	-		1		179.2 86.17	0.0012202	2.5443684	1.0601535	1	Yes	-	7.99E+00	nc
Hexane, N-	110-54-3	No	Yes	Organics	-		-		-		7.00E-01	IR	1	0.201	8	0.7176636	1.2376934	0.3194814	1	Yes	-	1.46E+03	nc
Hexanedioic Acid	124-04-9	No	No	Organics	-		-		2.00E+00	PP	-		1	0.000268	4 102.1	0.0012461	1.6612844	0.6922018	1	Yes	-	4.00E+04	nc
Hexanol, n-	111-27-3	No	Yes	Organics	-		-		-		-		1	0.0093462	8	0.0363365	0.942471	0.3926962	1	Yes	-		
Hexanone, 2-	591-78-6	No	Yes	Organics	-		-		5.00E-03	IR	3.00E-02	IR	1	0.00355	6 252.3	0.0136648	0.9182395	0.3825998	1	Yes	-	3.80E+01	nc
Hexazinone	51235-04-2	No	No	Organics	-		-		3.30E-02	IR	-		1	0.00102	2 32.04	0.0062316	6.5320875	2.7217031	1	Yes	-	6.44E+02	nc
Hydrazine		No	Yes	Inorganics	3.00E+00	I	4.90E-03	I	-		3.00E-05	PP	1	0.0000436	5	0.000095	0.3815153	0.1589647	1	Yes	-	1.10E-03	ca*
Hydrazine Sulfate			No	Inorganics	3.00E+00	I	4.90E-03	ı	-		-		1	0.001	128.1	0.0043531		0.5485406	1	Yes		2.58E-02	ca
Hydrogen Chloride	7647-01-0	No	Yes	Inorganics	-		-		-		2.00E-02	IR	1		35.45	0.00229	0.3986392	0.1660997	1	Yes	-	4.17E+01	nc
Hydrogen Fluoride	7664-39-3	No	Yes	Inorganics	_		-		4.00E-02	CA	1.40E-02	CA	1	0.001	20.00 6 80.97	0.0017203	0.3266582	0.1361076	1	Yes	-	2.82E+01	nc
Hydrogen Selenide	7783-07-5	No	Yes	Inorganics	-		_		-		-		1	0.001	6	0.003461	0.7170106	0.2987544	1	Yes	-		
Hydrogen Sulfate	12143-45-2	No	No	Inorganics	-		-		-		-		1	0.001	128.1	0.0043531	1.3164974	0.5485406	1	Yes	-		
Hydrogen Sulfide	7783-06-4	No	Yes	Inorganics	-		-		-		2.00E-03	IR	1		34.08	0.0022453	0.3916589	0.1631912	1	Yes	-	4.17E+00	nc
Hydroquinone	123-31-9	No	No	Organics	6.00E-02	Р	_		4.00E-02	PP	-		1	0.000931	110.1	0.0037574	1.0439411	0.4349755	1	Yes	_	1.28E+00	ca
lmazalil	35554-44-0	No	No	Organics	6.11E-02	0	-		2.50E-03	OP	-		1	0.0116	297.1	0.0769134	11.649948	4.854145	0.9	Yes	-	9.01E-01	ca*
Imazaquin	81335-37-7	No	No	Organics	-		-		2.50E-01	IR	-		1	0.000483	311.3	0.0032779	13.981829	5.8257622	1	Yes	-	4.92E+03	nc
Indium	7440-74-6	No	No	Inorganics	-		_		-		-		1	0.001	114.8 2	0.0041213	1.1093076	0.4622115	1	Yes	_		
lodide	20461-54-5	No	No	Inorganics	-		-		-		-		1			0.0043327	1.2962835	0.5401181	1	Yes	-		
lodine	7553-56-2	No	No	Inorganics	-		_		1.00E-02	AT	-		1	0.001	253.8	0.0061275	6.6588003	2.7745001	1	Yes	_	2.00E+02	nc
lodomethane	74-88-4	No	Yes	Organics	-				-				1	0.00252	141.9 4	0.0115473	1.5737074	0.6557114	1	Yes	_		
lodopropynyl Butylcarbamate (IPBC)	55406-53-6	No	No	Organics	-		_		-		-		1	0.00177	281.0 9	0.0114136	9.4659453	3.9441439	1	Yes	-		

Resident Screening Levels (RSL) for Tap Water

Key: I = IRIS; P = PPRTV; D = DWSHA; O = OPP; A = ATSDR; C = Cal EPA; X = APPENDIX PPRTV SCREEN (See FAQ #27); H = HEAST; F = See user guide Section 2.3.5; L = see user guide on lead; M = mutagen; S = see user guide Section 5; V = volatile; R = RBA applied (See User Guide for Arsenic notice); c = cancer; n = noncancer; * = where: n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n S

					Ingestion SF	SFO	Inhalation Unit Risk	IUR	Chronic RfD	Chronic RfD	Chronic RfC	Chronic RfC		K _p		В	•	T _{event}	FA		MCL	Screening Level	
Chemical	CAS Number	Mutagen?	VOC?	Chemical Type	(mg/kg-day) ⁻¹	Ref	(ug/m ³) ⁻¹	Ref	(mg/kg-day)	Ref	(mg/m³)	Ref	GIABS	(cm/hr)	MW	(unitless)	(hr)	(hr/event)	(unitless)	In EPD?	(ug/L)	(ug/L)	[basis]
Iprodione	36734-19-7	No	No	Organics	_		_		4.00E-02	IR	_		1	0.00217	330.1	0.0151654	17.82428	7.4267833	0.9	Yes	_	7.37E+02	nc
<u>.</u>															55.84								
Iron		No	No	Inorganics	-		-		7.00E-01	PP	-		1	0.001	7	0.0028743	0.518565	0.2160687	1	Yes	-	1.40E+04	nc
Iron Sulfide	11126-12-8	No	No	Inorganics	-		-		-		-		1	0.001	74.12	-	-	-	0	Yes	-		
Isobutyl Alcohol	78-83-1	No	Yes	Organics	-		-		3.00E-01	IR	-		1	0.00192	4	0.0063578	0.6563786	0.2734911	1	Yes	-	5.92E+03	nc
Isodrin	465-73-6	No	Yes	Organics	-		-		-		-		1	0.293	364.9 2	2.1527476	47.726506	11.625208	0.6	No	-		
La colla conse	70.50.4	NI.		0	0.505.04	١.			0.005.04	ID.	0.005.00	0.4		0.00054	138.2	0.0400000	4 4000004	0.0040005	4			7.045.04	
Isophorone	78-59-1	No	No	Organics	9.50E-04	I	-		2.00E-01	IR	2.00E+00	CA	1	0.00354	309.3	0.0160066	1.4998091	0.6249205	1	Yes	-	7.81E+01	ca*
Isopropalin	33820-53-0	No	Yes	Organics	_		-		1.50E-02	IR	-		1	0.207	7	1.4003484	22.43112	5.6796392	0.8	Yes	-	3.99E+01	nc
Isopropanol	67-63-0	No	Yes	Organics	_				2.00E+00	PP	2.00E-01	PP	1	0.000778	60.09	0.0023197	0.5477762	0.2282401	1	Yes	_	4.13E+02	nc
Isopropyl Methyl Phosphonic Acid		No	No	Organics	_		_		1.00E-01	IR	2.00L-01	11	1	0.000778	138.1	0.0023197			1	Yes		2.00E+03	nc
ізоргоруг мовтуг т поорногію лога	1002 04 0	110	110	Organios					1.002 01				'	0.000000	134.2	0.0017000	1.4070000	0.0240047		100		2.002 - 00	110
Isopropyltoluene, p-	99-87-6	No	Yes	Organics	-		-		-		-		1	0.147	2	0.655017	2.333453	0.593582	1	Yes	_		
Isosafrole	120-58-1	No	Yes	Organics	_		_		_		_		1	0.0334	162.1 9	0.1636007	2.0432617	0.851359	1	Yes	_		
Isoxaben		No	No	Organics	-		-		5.00E-02	IR	-		1	0.00887	332.4	0.0621986	18.344251	7.643438	0.9	Yes	-	7.34E+02	nc
JP-4	50815-00-4	No	Yes	Organics	-		-		-		-		1	-	-	-	-	-	0	No	-		
JP-5	NA	No	Yes	Organics	-		-		-		-		1	-	_	-	-	-	0	No	-		
JP-7	NA	No	Yes	Organics	-		-		-		3.00E-01	AT	1	-	-	-	-	-	0	No	-	6.26E+02	nc
JP-8	NA	No	Yes	Organics	-		-		-		-		-	-	-	-	-	-	0		-		
Kerosene	8008-20-6	No	Yes	Organics	-		-		-		-		1	-	-	-	-	-	0	No	-		
Lastafan	77504 62 4	No	No	Organias					9.005.03	OP			4	0.00634	461.7	0.0504500	07.000000	40 522747	0.0	Vaa		1.005.02	
Lactofen	77501-63-4	No	No	Organics	-		-		8.00E-03	UP	-		I	0.00631	8 71.07	0.0521523	97.280992	40.533747	0.9	Yes	-	1.00E+02	nc
Lactonitrile	78-97-7	No	No	Organics	-		-		_		_		1	0.000148	9	0.0004799	0.6311061	0.2629609	1	Yes	_		
Lonthonum	7420 04 0	No	No	Ingrapies									4	0.001	138.9	0.0045334	1 5124070	0.6305066	4	Vaa			
Lanthanum	7439-91-0	No	No	Inorganics	-		-		-		-		I	0.001	410.4	0.0045331	1.5134079	0.0303000	ı	Yes	<u>-</u>		
Bensulfuron-methyl	83055-99-6	No	No	Organics	_		_		2.00E-01	IR	_		1	0.000219	1	0.0017064	50.159823	20.899926	1	Yes	_	3.95E+03	nc
Dimethylethyl Lead	107584-40-7	No	No	Organics	-		-		-		-		1	-	-	-	-	-	0	No	-		
Lead Alkyls	NA	No	No	Organics	-		-		-		-		1	-	_	-	-	-	0	No	-		
Lead Chromate	7758-97-6	Yes	No	Inorganics	5.00E-01	С	1.50E-01	С	2.00E-02	CA	2.00E-04	CA	0.025	0.001		0.0069145	16.29221	6.7884207	1	Yes	-	4.12E-02	са
Lead Phosphate	7446-27-7	No	No	Inorganics	8.50E-03	С	1.20E-05	С	_		_		1	0.001	811.5 1	0.0109565	8841.2972	3683.8738	0.8	Yes	_	9.12E+00	ca
Lead acetate	301-04-2	No	No	Organics	8.50E-03	С	1.20E-05	С	-		-		1	0.0000208	327.3	0.0001447	17.17671	7.1569626	1	Yes	-	9.16E+00	ca
			.,										_		230.6					.,			
Dimethylmercury		No	Yes	Organics	-		-			0.5	-		1		6	0.0244752			1	Yes	-	2.425.04	
Flusilazole	85509-19-9	No	No	Organics	-		-		2.00E-03	OP	-		1	0.00766	315.4	0.0523222	14.733299	o.1388/44	0.9	Yes	-	3.13E+01	nc
Coronene	191-07-1	No	No	Organics	-		_		-		-		1	3.86	6	25.729717	23.447744	5.0566716	0.3	No	-		
Imazethapyr	81335-77-5	No	No	Organics					2.50E+00	OP			1	0.002	289.3 4	0.0130846	10.528439	4.3868496	1	Yes		4.69E+04	nc
Fenvalerate	51630-58-1	No	No	Organics	_		_		2.50E-02	IR	_		1	0.0938	419.9	0.7392777	91.267057	23.623528	0.7	No	_	5.01E+02	nc

Resident Screening Levels (RSL) for Tap Water

Key: I = IRIS; P = PPRTV; D = DWSHA; O = OPP; A = ATSDR; C = Cal EPA; X = APPENDIX PPRTV SCREEN (See FAQ #27); H = HEAST; F = See user guide Section 2.3.5; L = see user guide on lead; M = mutagen; S = see user guide Section 5; V = volatile; R = RBA applied (See User Guide for IRIS); P = PPRTV; D = DWSHA; O = OPP; A = ATSDR; C = Cal EPA; X = APPENDIX PPRTV SCREEN (See FAQ #27); H = HEAST; F = See user guide Section 2.3.5; L = see user guide on lead; M = mutagen; S = see user guide Section 5; V = volatile; R = RBA applied (See User Guide for IRIS); P = PPRTV; D = DWSHA; O = OPP; A = ATSDR; C = Cal EPA; X = APPENDIX PPRTV SCREEN (See FAQ #27); H = HEAST; F = See user guide Section 5; V = volatile; R = RBA applied (See User Guide for IRIS); P = PPRTV; D = DWSHA; O = OPP; A = ATSDR; C = Cal EPA; X = APPENDIX PPRTV SCREEN (See FAQ #27); H = HEAST; F = See user guide Section 5; V = volatile; R = RBA applied (See User Guide for IRIS); P = PPRTV; D = DWSHA; O = OPP; A = ATSDR; C = Cal EPA; D = OPP; A = ATSDR; D = OPP; A Arsenic notice); c = cancer; n = noncancer; * = where: n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; *

							Inhalation																
					Ingestion SF	SFO	Unit Risk	IUR	Chronic RfD	Chronic RfD	Chronic RfC	Chronic RfC		K _p		В	t	T _{event}	FA		MCL	Screening Level	
Chemical	CAS Number	Mutagen?	VOC?	Chemical Type	(mg/kg-day) ⁻¹	Ref	(ug/m ³) ⁻¹	Ref	(mg/kg-day)	Ref	(mg/m³)	Ref	GIABS	(cm/hr)	MW	(unitless)	(hr)	(hr/event)	(unitless)	In EPD?	(ug/L)	(ug/L)	[basis]
Ammonium Perchlorate	7790-98-9	No	No	Inorganics	_		_		7.00E-04	IR	_		1	0.001	117.4 9	0.004169	1.1481642	0.4784017	1	Yes	_	1.40E+01	nc
Aluminum metaphosphate	13776-88-0	No	No	Inorganics	-		-		4.86E+01	PP	-		1	0.001	263.9	0.0062481	7.5840291	3.1600121	1	Yes	-	9.70E+05	nc
Ammonium polyphosphate	68333-79-9	No	No	Inorganics	-		-		4.86E+01	PP	-		1	0.001	-	-	-	-	0	Yes	-	9.70E+05	nc
Calcium pyrophosphate	7790-76-3	No	No	Inorganics	-		-		4.86E+01	PP	-		1	0.001	254.1	0.006131	6.6837468	2.7848945	1	Yes	-	9.70E+05	nc
Diammonium phosphate	7783-28-0	No	No	Inorganics	-		-		4.86E+01	PP	-		1	0.001	132.0 6 136.0	0.0044199	1.3854664	0.5772777	1	Yes	-	9.70E+05	nc
Dicalcium phosphate	7757-93-9	No	No	Inorganics	-		-		4.86E+01	PP	-		1	0.001	6	0.0044863	1.4588008	0.6078337	1	Yes	-	9.70E+05	nc
Dimagnesium phosphate	7782-75-4	No	No	Inorganics	_		-		4.86E+01	PP	-		1	0.001	174.3	0.0050782	2.3895053	0.9956272	1	Yes	-	9.70E+05	nc
Dipotassium phosphate	7758-11-4	No	No	Inorganics	_		_		4.86E+01	PP	_		1	0.001	174.1 8	0.005076	2.384888	0.9937033	1	Yes	_	9.70E+05	nc
Disodium phosphate	7558-79-4	No	No	Inorganics	-		-		4.86E+01	PP	-		1	0.001	141.9 6	0.0045826	1.5741133	0.6558805	1	Yes	-	9.70E+05	nc
Bis(2-ethylhexyl)phthalate	117-81-7	No	No	Organics	1.40E-02	ı	2.40E-06	С	2.00E-02	IR	_		1	1.13	390.5 7	8.589236	72.882395	16.182319	0.8	No	6.00E+00	5.56E+00	ca*
Bromophenyl-phenyl phthalate, 4-	NA	No	No	Organics	-		-	-	-		-		1			-	-	-	0	No	-		
	85-68-7	No	No	Organics	1.90E-03	Р	-		2.00E-01	IR	-		1	0.0385	312.3	0.261711	14.168765	5.903652	0.9	Yes	-	1.63E+01	са
Butylphthalyl Butylglycolate	85-70-1	No	No	Organics	_		-		1.00E+00	IR	-		1	0.0116	336.3 9	0.0818288	19.312744	8.0469768	0.9	Yes	-	1.35E+04	nc
Di-n-hexylphthalate	84-75-3	No	Yes	Organics	_		-		-		_		1	0.709	334.4 6	4.9870644	34.390378	7.8491883	0.4	No	-		
Dibutyl Phthalate	84-74-2	No	No	Organics	-		-		1.00E-01	IR	-		1	0.042	278.3 5	0.2695079	9.1373443	3.8072268	0.9	Yes	-	9.02E+02	nc
Diethyl Phthalate	84-66-2	No	No	Organics	_		-		8.00E-01	IR	-		1	0.0036	222.2	0.0206415	4.4320433	1.8466847	1	Yes	-	1.48E+04	nc
Dimethylphthalate	131-11-3	No	No	Organics	_		_		-		_		1	0.00147	194.1 9	0.0078788	3.0869102	1.2862126	1	Yes	_		
Dimethylterephthalate	120-61-6	No	Yes	Organics	-		-		1.00E-01	IR	-		1	0.00399	194.1	0.0213852	3.0869102	1.2862126	1	Yes	-	1.87E+03	nc
Aroclor 1016	12674-11-2	No	Yes	Organics	7.00E-02	s	2.00E-05	s	7.00E-05	IR	_		1	0.305	549.5 4	2.7499585	527.18659	125.6819	0	No	_	2.24E-01	ca**
Aroclor 1221	11104-28-2	No	Yes	Organics	2.00E+00	S	5.71E-04	s	-		-		1	0.168	188.6 6	0.8875153	4.6045203	1.1976909	1	Yes	-	4.71E-03	ca
Aroclor 1232	11141-16-5	No	Yes	Organics	2.00E+00	S	5.71E-04	S	-		-		1	0.168	188.6	0.8875153	4.6045203	1.1976909	1	Yes	-	4.71E-03	ca
Aroclor 1242	53469-21-9	No	Yes	Organics	2.00E+00	S	5.71E-04	s	-		-		1	0.545	291.9	3.5818479	19.446178	4.5393404	0.7	No	-	7.85E-03	ca
Aroclor 1248	12672-29-6	No	Yes	Organics	2.00E+00	S	5.71E-04	S	-		-		1	0.475	618.4	4.5432385	1330.8056	305.53203	0	No	-	7.85E-03	ca
Aroclor 1254	11097-69-1	No	Yes	Organics	2.00E+00	S	5.71E-04	S	2.00E-05	IR	-		1	0.751	326.4 4 395.3	5.2187714	31.096663	7.0780357	0.5	No	_	7.85E-03	ca*
Aroclor 1260	11096-82-5	No	Yes	Organics	2.00E+00	S	5.71E-04	S	-		-		1	0.986	3	7.5402102	77.061908	17.206667	0	No	-	7.85E-03	ca
Aroclor 5460 Heptachlorobiphenyl, 2,3,3',4,4',5,5'-	11126-42-4	No	Yes	Organics	_		_		6.00E-04	sc	-		1	0.584	291.9 9 395.3	3.8381637	19.544977	4.5393404	0.7	No	-	1.20E+01	nc
(PCB 189)	39635-31-9	No	Yes	Organics	3.90E+00	W	1.14E-03	W	2.33E-05	WH	1.33E-03	WH	1	2.96	3	22.635925	79.618094	17.206667	0	No	_	3.95E-03	ca
Hexachlorobiphenyl, 2,3',4,4',5,5'- (PCB 167)	52663-72-6	No	Yes	Organics	3.90E+00	W	1.14E-03	W	2.33E-05	WH	1.33E-03	WH	1	1.43	360.8 8	10.448263	50.069888	11.035112	0	No	-	3.95E-03	ca

Resident Screening Levels (RSL) for Tap Water

Key: I = IRIS; P = PPRTV; D = DWSHA; O = OPP; A = ATSDR; C = Cal EPA; X = APPENDIX PPRTV SCREEN (See FAQ #27); H = HEAST; F = See FAQ; J = New Jersey; E = see user guide Section 2.3.5; L = see user guide on lead; M = mutagen; S = see user guide Section 5; V = volatile; R = RBA applied (See User Guide for Arsenic notice); c = cancer; n = noncancer; * = where: n SL < 100X c SL; ** = where n SL < 10X c SL; SSL values are based on DAF=1; m = Concentration may exceed Csat (See User Guide)

					Ingestion		Inhalation Unit		Chronic	Chronic	Chronic	Chronic										Screening	
					SF	SFO	Risk	IUR	RfD	RfD	RfC	RfC		K _p		В	t	T _{event}	FA		MCL	Level	
Chemical	CAS Number	Mutagen?	VOC?	Chemical Type	(mg/kg-day) ⁻¹	Ref	(ug/m ³) ⁻¹	Ref	(mg/kg-day)	Ref	(mg/m³)	Ref	GIABS	(cm/hr)	MW	(unitless)	(hr)	(hr/event)	(unitless)	In EPD?	(ug/L)	(ug/L)	[basis]
Hexachlorobiphenyl, 2,3,3',4,4',5'- (PCB 157)	69782-90-7	No	Yes	Organics	3.90E+00	W	1.14E-03	w	2.33E-05	WH	1.33E-03	WH	1	1.66	360.8 8	12.128753	50.314922	11.035112	0	No	_	3.95E-03	ca
Hexachlorobiphenyl, 2,3,3',4,4',5- (PCB	03102-30-1	140	103	Organios	3.30L 100	**	1.146-00	**	2.33L-03	VV11	1.55E-05	VVII	<u>'</u>	1.00	360.8	12.120733	30.314322	11.000112	0	140		0.00∟-00	Ca
156)	38380-08-4	No	Yes	Organics	3.90E+00	W	1.14E-03	W	2.33E-05	WH	1.33E-03	WH	1	1.66	8	12.128753	50.314922	11.035112	0	No	-	3.95E-03	ca
Hexachlorobiphenyl, 3,3',4,4',5,5'- (PCB	00774 40 0		.,		0.005.00		4.445.00	147	0.005.00	14/11	4.005.00		_	4.04	360.8	0.000000	40.000504	44.005440				0.055.00	
169)	32774-16-6	No	Yes	Organics	3.90E+03	W	1.14E+00	W	2.33E-08	WH	1.33E-06	WH	1	1.24	8 154.2	9.0600323	49.806591	11.035112	0.1	No	-	3.95E-06	ca
Acenaphthene	83-32-9	No	Yes	Organics	-		_		6.00E-02	IR	_		1	0.086	134.2	0.4107536	1.8434696	0.7681124	1	Yes	-	5.35E+02	nc
Acenaphthylene	208-96-8	No	Yes	Organics	-		-		-		-		1	0.0911	152.2	0.4322673	1.7963046	0.7484603	1	Yes	-		
				-											178.2								
		No	Yes	Organics	-		-		3.00E-01	IR	-		1	0.142	4	0.7291512		1.0471111	1	Yes	-	1.77E+03	nc
Benz[a]anthracene	56-55-3	Yes	Yes	Organics	1.00E-01	W	6.00E-05	W	-		-		1	0.552	228.3 252.3	3.2078842	8.4818238	1.9967732	1	No	-	2.98E-02	ca
Benzo(j)fluoranthene	205-82-3	No	No	Organics	1.20E+00	С	1.10E-04	С	_		_		1	0.69	232.3	4.2155241	11.795999	2.7217031	0.9	No	_	6.49E-02	ca
0/				2.3				-						*****	252.3								
Benzo[a]pyrene	50-32-8	Yes	No	Organics	1.00E+00	I	6.00E-04	I	3.00E-04	IR	2.00E-06	IR	1	0.713	2	4.3560416	11.822105	2.7217031	1	No	2.00E-01	2.51E-02	ca
Danzalhifikaranthana	205 00 2	Vaa	No	Organias	1 005 01	۱۸/	6 005 05	14/					4	0.417	252.3 2	2 5476420	11 242074	2.7217031	4	No		2.51E-01	
Benzo[b]fluoranthene	205-99-2	Yes	No	Organics	1.00E-01	W	6.00E-05	W	-		-		ı	0.417	276.3	2.5476429	11.342074	2.7217031	·	No	-	2.51E-01	ca
Benzo[g,h,i]perylene	191-24-2	No	No	Organics	-		_		-		-		1	1.12	4	7.1608826	16.575188	3.7098192	0.7	No	-		
				•											252.3								
Benzo[k]fluoranthene	207-08-9	Yes	No	Organics	1.00E-02	W	6.00E-06	W	-		-		1	0.691	2	4.2216336	11.797162	2.7217031	0.9	No	-	2.51E+00	ca
Chloronaphthalene, Beta-	91-58-7	No	Yes	Organics	_		_		8.00E-02	IR	_		1	0.0749	162.6 2	0.367363	2.0546223	0.8560926	1	Yes	_	7.47E+02	nc
	218-01-9	Yes	No	Organics	1.00E-03	W	6.00E-07	W	0.00L-02 -	111	_		1		228.3			1.9967732	1	No		2.51E+01	ca
Chilysons	210 01 0	100	140	Organios	1.002 00	•••	0.002 01	**					•	0.000	278.3	0.1000001	0.0021000	1.0007702	•	110		2.012 - 01	
Dibenz[a,h]anthracene	53-70-3	Yes	No	Organics	1.00E+00	W	6.00E-04	W	-		-		1	0.953	6	6.1153732	16.878565	3.8077178	0.6	No	-	2.51E-02	ca
D:1	400.05.4	NI -		0	4.005.04	_	4.405.00	_					4	4.40	302.3	00 000400	04.007000	5 4004400	0.0	NI.		0.405.00	
Dibenzo(a,e)pyrene	192-65-4	No	No	Organics	1.20E+01	С	1.10E-03	С	-		-		1	4.19	8 256.3	28.023166	24.097322	5.1901122	0.3	No	-	6.49E-03	ca
Dimethylbenz(a)anthracene, 7,12-	57-97-6	Yes	No	Organics	2.50E+02	С	7.10E-02	С	-		-		1	0.408	5	2.512485	11.932627	2.8668749	0.9	No	-	1.00E-04	ca
															202.2								
Fluoranthene	206-44-0	No	No	Organics	-		-		4.00E-02	IR	-		1	0.308	6	1.684738	5.7297979	1.4272654	1	No	-	8.02E+02	nc
Fluorene	86-73-7	No	Yes	Organics					4.00E-02	IR			1	0.11	166.2 2	0.5454576	2.1522464	0.8967693	1	Yes		2.94E+02	nc
Tidorene	00-7 3-7	110	163	Organics			_		4.00L-02	IIX	-		<u>'</u>	0.11	276.3	0.5454570	2.1322404	0.0307033	· ·	163		2.946102	TIC .
Indeno[1,2,3-cd]pyrene	193-39-5	Yes	No	Organics	1.00E-01	W	6.00E-05	W	-		-		1	1.24	4	7.92812	16.651939	3.7098192	0.6	No	-	2.51E-01	ca
															352.8								
-		No	No	Organics	4.005.00		- 0.005.04		2.50E-02	IR	- 4.005.00		1	0.0828	9		23.891532		0.8	Yes		1.12E+02	nc
•		No	Yes	Organics	1.30E+03		3.80E-01	U	7.00E-08	U	4.00E-06	U	1	1.33	425	10.545636		25.226021	0	No		1.19E-05	ca*
		No No	Yes	Organics Organics	1.30E+03 1.30E+03		3.80E-01 3.80E-01	U	7.00E-08 7.00E-08	U	4.00E-06 4.00E-06	U	1	1.45 1.45	409 409			20.523374	0	No No		1.19E-05 1.19E-05	ca*
-		No	Yes No	Organics	1.30E+03		3.80E+00	U	7.00E-00 7.00E-09	U	4.00E-00 4.00E-07	U	1	2.86	391	21.751092			0	No		5.99E-06	ca**
		No	No	Organics	1.30E+04			U	7.00E-09	U	4.00E-07	U	1	2.86	391		75.240903		0	No		5.99E-06	ca**
		No	Yes	Organics	1.30E+04		3.80E+00	U	7.00E-09	U	4.00E-07	U	1	2.25	375	16.758101		13.238804	0	No		1.19E-06	ca*
		No	No	Organics	1.30E+04		3.80E+00	U	7.00E-09	U	4.00E-07	U	1	1.35	375		59.987189		0	No		5.99E-06	ca**
		No	No	Organics	1.30E+04			U	7.00E-09	U	4.00E-07	U	1	2.25	375	16.758101		13.238804	0	No		5.99E-06	ca**
		No	No	Organics	1.30E+04	U	3.80E+00	U	7.00E-09	U	4.00E-07	U	1	1.35	375		59.987189	13.238804	0	No	-	5.99E-06	ca**
Hydramethylnon	67485-29-4	No	No	Organics	-		-		1.70E-02	U	-		1	0.0000902	494	0.0007711	147.38728	61.411365	1	Yes	-	3.37E+01	nc
Hydrazine	302-01-2	No	Yes	Inorganics	3.00E+00	U	4.90E-03	U	-		3.00E-05	U	1	0.0000436	32	0.0000949	0.381294	0.1588725	1	Yes	-	1.10E-03	ca**

Resident Screening Levels (RSL) for Tap Water

Key: I = IRIS; P = PPRTV; D = DWSHA; O = OPP; A = ATSDR; C = Cal EPA; X = APPENDIX PPRTV SCREEN (See FAQ #27); H = HEAST; F = See user guide Section 2.3.5; L = see user guide on lead; M = mutagen; S = see user guide Section 5; V = volatile; R = RBA applied (See User Guide for Arsenic notice); c = cancer; n = noncancer; * = where: n SL < 100X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL < 10X c SL; ** = where n SL

					Ingestion		Inhalation Unit		Chronic	Chronic	Chronic	Chronic										Screening	
					SF	SFO	Risk	IUR	RfD	RfD	RfC	RfC		K _p		В	t	T _{event}	FA		MCL	Level	
Chemical	CAS Number	Mutagen?	VOC?	Chemical Type	(mg/kg-day) ⁻¹	Ref	(ug/m ³) ⁻¹	Ref	(mg/kg-day)	Ref	(mg/m³)	Ref	GIABS	(cm/hr)	MW	(unitless)	(hr)	(hr/event)	(unitless)	In EPD?	(ug/L)	(ug/L)	[basis]
Hydrazine Sulfate	10034-93-2	No	No	Inorganics	3.00E+00	U	4.90E-03	U	-		-		1	0.001	128	0.0043514	1.3148009	0.5478337	1	Yes	-	2.58E-02	ca
Hydrogen Chloride	7647-01-0	No	Yes	Inorganics	-		-		-		2.00E-02	U	1	0.001	35.5	0.0022916	0.3988963	0.1662068	1	Yes	-	4.17E+00	nc
Hydrogen Cyanide	74-90-8	No	Yes	Inorganics	-		-		6.00E-04	U	8.00E-04	U	1	0.001	27	0.0019985	0.3574868	0.1489528	1	Yes	-	1.46E-01	nc
Hydrogen Fluoride	7664-39-3	No	Yes	Inorganics	-		-		4.00E-02	U	1.40E-02	U	1	0.001	20	0.0017201	0.3266329	0.1360971	1	Yes	-	2.82E+00	nc
Hydrogen Selenide	7783-07-5	No	Yes	Inorganics	-		-		-		-		1	0.001	81	0.0034615	0.7172326	0.2988469	1	Yes	-		
Hydrogen Sulfate	12143-45-2	No	No	Inorganics	-		-		-		-		1	0.001	128	0.0043514	1.3148009	0.5478337	1	Yes	-		
Hydrogen Sulfide	7783-06-4	No	Yes	Inorganics	-		-		-		2.00E-03	U	1	0.001	34.1	0.002246		0.1632333	1	Yes	-	4.17E-01	nc
Hydroquinone	123-31-9	No	No	Organics	6.00E-02	U	-		4.00E-02	U	-		1	0.000931	110	0.0037555	1.0424614	0.4343589	1	Yes	-	1.28E+00	ca*
Imazalil	35554-44-0	No	No	Organics	6.11E-02	U	-		2.50E-03	U	-		1	0.0116	297	0.0768888	11.621441	4.8422672	0.9	Yes	-	9.02E-01	ca**
•	81335-37-7	No	No	Organics	-		-		2.50E-01	U	-		1	0.000483	311	0.0032761	13.920665	5.8002772	1	Yes	-	4.92E+02	nc
	81335-77-5	No	No	Organics	-		-		2.50E+00	U	-		1	0.002	289	0.0130769	10.482382	4.3676593	1	Yes	-	4.69E+03	nc
Indeno[1,2,3-cd]pyrene	193-39-5	Yes	No	Organics	1.00E-01	U	6.00E-05	U	-		-		1	1.24	276	7.9232412	16.57865	3.6935905	0.6	No	-	2.51E-01	ca
Indium	7440-74-6	No	No	Inorganics	-		-		-		-		1	0.001	115	0.0041245	1.1118853	0.4632855	1	Yes	-		
lodide	20461-54-5	No	No	Inorganics	-		-		-		-		1	0.001	127	0.0043344	1.2979561	0.540815	1	Yes	-		
	7553-56-2	No	No	Inorganics	-		-		1.00E-02	U	-		1	0.001	254	0.0061298	6.675134	2.7813059	1	Yes	-	2.00E+01	nc
lodomethane	74-88-4	No	Yes	Organics	-		-		-		-		1	0.00252	142	0.0115497	1.5749254	0.6562189	1	Yes	-		
15 (1 (1550)	55400 50 0													0.00477	004	0.0444440	0.4540004	0.0005000	_	.,			
	55406-53-6	-	No	Organics	-		-		4.005.00		-		1	0.00177	281	0.0114118		3.9395693	1	Yes	-	7.075 : 04	
	36734-19-7	-	No	Organics	-		-		4.00E-02	U	-		1	0.00217	330	0.0151615		7.4105211	0.9	Yes	-	7.37E+01	nc
	7439-89-6	-	No	Inorganics	-		-		7.00E-01	U	-		1	0.001	55.8	0.0028731	0.5182508	0.2159378	1	Yes	-	1.40E+03	nc
	11126-12-8	-	No	Inorganics	-		-		-		-		1	0.001		-	- 0.0504755	- 0.704004	0	Yes	-	- 00F - 00	
	78-83-1		Yes	Organics	-		-		3.00E-01	U	-		1	0.00192	74.1	0.0063568		0.2734064	1	Yes	-	5.92E+02	nc
Isodrin	465-73-6		Yes	Organics			-		- 0.005.04		- 0.005.00		1	0.293	365	2.1529835		11.637207	0.6	No	-	7.045 : 04	++
<u>'</u>	78-59-1	-	No	Organics	9.50E-04	U	-		2.00E-01	U	2.00E+00	U	1	0.00354	138	0.0159945		0.6232306	0.0	Yes		7.81E+01	ca**
	33820-53-0		Yes	Organics	-		-		1.50E-02	U	2.005.01		1	0.207	309	1.3995107		5.6526064	0.8	Yes		4.00E+00	nc
	67-63-0		Yes	Organics	-		-		2.00E+00	U	2.00E-01	U	1	0.000778	60.1	0.0023198		0.2282489	1	Yes		4.13E+01	nc
	1832-54-8	-	No	Organics	-		-		1.00E-01	U	-		1	0.000396	138	0.0017892		0.6232306	1	Yes	-	2.00E+02	nc
	99-87-6	-	Yes	Organics	<u>-</u>		-		-		-		1	0.147	134	0.65448		0.5919006	1	Yes	-		
Isosafrole	120-58-1		Yes	Organics	<u>-</u>		-		- - -	U	-		1	0.0334	162	0.1635048		0.8492758	0.9	Yes	-	7.055.04	
	82558-50-7	-	No	Organics	-		-		5.00E-02	U	-		1	0.00887	332	0.0621612	18.249879	7.6041163	0.9	Yes	-	7.35E+01	nc
	50815-00-4		Yes	Organics	<u>-</u>		-		-		-		1	-	-	-	-	-	0	No	-		
JP-5 JP-7	NA NA		Yes	Organics	-		-		-		3.00E-01	U	1	-	-	-	-	-	0	No	-	2065+02	
	NA		Yes Yes	Organics	-		-		-		3.00⊑-01	<u> </u>	1	-	-		-	-	0	No Yes	-	6.26E+02	nc
				Organics	-		-		-		-		-	-	-		-	-	0		-		
			Yes	Organics	-		-		0.005.03		-		1	0.00631	460	0.0501647	97.557349	40.649906		No	-	1.005.02	200
			No	Organics			-		8.00E-03	U	-		1		462	0.0521647		40.648896	0.9	Yes	-	1.00E+02	nc
			No	Organics	-		-		-		-		1	0.000148		0.00048	0.631277		1	Yes	-		
			No	Inorganics	-		-		-		-		1	0.001	139	0.0045345	1.5151652	0.0313100	0	Yes	-		
•	NA 7759 07 6		No	Organics	5.00E-01	11	1 50E 01	- 11	2.00E.02	U	2.00E-04	U	0.025	0.001	300	0.0060424	16.250248	6 7700266	1	No	-	4.12E-02	00
			No	Inorganics		U	1.50E-01	U	2.00E-02	U	∠.∪∪⊏-∪4	U	0.025		323	0.0069124			I 0 0	Yes		4.12E-02 9.12E+00	ca
			No	Inorganics	8.50E-03	U	1.20E-05	U	-		-		1	0.001		0.0109599	8897.336		0.8	Yes		9.12E+00 9.16E+00	ca
	301-04-2		No	Organics	8.50E-03	U	1.20E-05	U	-		-		1	0.0000208	327		17.110393		1	Yes		9.10=+00	ca
Lead and Compounds Lead subacetate	7439-92-1		No	Inorganics	8.50E-03	U	1.20E-05	11	-		-		1	0.0001 1.03E-10	207 806		3.6413296		1	Yes	1.50E+01	9.17E+00	00
	1335-32-6 541-25-3	-	No	Organics	0.50⊑-05	U	1.200-00	U	5.00E-06	11	-		1	0.0054	207		8234.9315 3.6413296		1	No		9.17E+00 9.03E-02	ca
			Yes	Organics	-		-			U	-		1						1	Yes			nc
Linuron	330-55-2	No	No	Organics	-				7.70E-03	U			1	0.00839	249	0.05092	6.2583521	2.60/646/	0.9	Yes	-	1.28E+02	nc

Resident Screening Levels (RSL) for Tap Water

Key: I = IRIS; P = PPRTV; D = DWSHA; O = OPP; A = ATSDR; C = Cal EPA; X = APPENDIX PPRTV SCREEN (See FAQ #27); H = HEAST; F = See FAQ; J = New Jersey; E = see user guide Section 2.3.5; L = see user guide Section 5; V = volatile; R = RBA applied (See User Guide for Arsenic notice); c = cancer; n = noncancer; * = where: n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n

					Ingestion		Inhalation Unit				Chronic												
					Ingestion SF	SFO	Risk	IUR	Chronic RfD	Chronic RfD	RfC	Chronic RfC		K _p		В	t	T _{event}	FA		MCL	Screening Level	
Chemical	CAS Number	Mutagen?	VOC?	Chemical Type	(mg/kg-day) ⁻¹	Ref	(ug/m ³) ⁻¹	Ref	(mg/kg-day)	Ref	(mg/m³)	Ref	GIABS	(cm/hr)	MW	(unitless)	(hr)	(hr/event)	(unitless)	In EPD?	(ug/L)	(ug/L)	[basis]
Lithium	7439-93-2	No	No	Inorganics		-	-		2.00E-03	U	-		1	0.001	6.94	0.0010132	0.2760095	0.1150039	1	Yes	-	3.99E+01	nc
Lithium Perchlorate	7791-03-9	No	No	Inorganics		-	-		7.00E-04	U	-		1	0.001	106	0.0039599	0.9900565	0.4125236	1	Yes	-	1.40E+01	nc
Lutetium	7439-94-3	No	No	Inorganics		-	-		-		-		1	0.000237	175	0.0012059	2.4102383	1.004266	1	Yes	-		
MCPA	94-74-6	No	No	Organics		-	-		5.00E-04	U	-		1	0.0169	201	0.0921534	3.3702335	1.404264	1	Yes	-	7.53E+00	nc
MCPB	94-81-5	No	No	Organics		-	-		4.40E-03	U	-		1	0.0173	229	0.100691	4.8357071	2.014878	0.9	Yes	-	6.46E+01	nc
MCPP	93-65-2	No	No	Organics		-	-		1.00E-03	U	-		1	0.0131	215	0.0738783	4.0370115	1.6820881	1	Yes	-	1.56E+01	nc
Magnesium	7439-95-4	No	No	Inorganics		-	-		-		-		1	0.001	24.3	0.001896	0.345255	0.1438563	1	Yes	-		
Malathion	121-75-5	No	No	Organics		-	-		2.00E-02	U	-		1	0.000812	330	0.0056734	17.785251	7.4105211	1	Yes	-	3.87E+02	nc
Maleic Anhydride	108-31-6	No	No	Organics		-	-		1.00E-01	U	7.00E-04	U	1	0.00525	98.1	0.0199996	0.8941698	0.3725707	1	Yes	-	1.90E+03	nc
Maleic Hydrazide	123-33-1	No	No	Organics		-	-		5.00E-01	U	-		1	0.000102	112	0.0004152	1.0696951	0.4457063	1	Yes	-	1.00E+04	nc
Malononitrile	109-77-3	No	No	Organics		-	-		1.00E-04	U	-		1	0.000266	66.1	0.0008318	0.5918614	0.2466089	1	Yes	-	2.00E+00	nc
Mancozeb	8018-01-7	No	No	Organics		-	-		3.00E-02	U	-		1	0.000771	541	0.0068973	270.18423	112.57676	0.9	Yes	-	5.36E+02	nc
Maneb	12427-38-2	No	No	Organics			-		5.00E-03	U			1	0.000771	295	0.0050932	11.325568	4.7189867	1	Yes		9.76E+01	nc
Manganese (Non-diet)	7439-96-5	No	No	Inorganics			-		2.40E-02	U	5.00E-05	U	0.04	0.001	54.9	0.0028498	0.5122713	0.2134464	1	Yes	-	4.34E+02	nc
Mechlorethamine	51-75-2	No	No	Organics			-				-		1	0.00107	156	0.0051401	1.8865138	0.7860474	1	Yes	-		
Mephosfolan	950-10-7	No	No	Organics		-	-		9.00E-05	U	-		1	0.000237	269	0.001495	8.0995332	3.3748055	1	Yes	-	1.79E+00	nc
Mepiquat Chloride	24307-26-4	No	No	Organics		-	-		3.00E-02	U	-		1	3.03E-6	150	0.0000143	1.7460633	0.7275264	1	No	-	6.02E+02	nc
Mercaptobenzothiazole, 2-	149-30-4	No	No	Organics	1.10E-02	U	-		4.00E-03	U	-		1	0.00732	167	0.0363828	2.1740023	0.9058343	1	Yes	-	6.29E+00	ca*
Mercuric Chloride	7487-94-7	No	No	Inorganics		-	-		3.00E-04	U	3.00E-04	U	0.07	0.001	272	0.0063432	8.41899	3.5079125	1	Yes	2.00E+00	5.66E+00	nc
Mercury (elemental)	7439-97-6	No	Yes	Inorganics		-	-		-		3.00E-04	U	1	0.001	201	0.0054529	3.3702335	1.404264	1	Yes	2.00E+00	6.26E-01	nc
Merphos	150-50-5	No	Yes	Organics		-	-		3.00E-05	U	-		1	4.15	299	27.60008	23.06455	4.9687683	0.3	No	-	6.02E-01	nc
Merphos Oxide	78-48-8	No	No	Organics		-	-		1.00E-04	U	-		1	0.165	315	1.1263306	23.722016	6.1072929	0.9	Yes	-	2.83E-01	nc
Metalaxyl	57837-19-1	No	No	Organics		-	-		6.00E-02	U	-		1	0.00058	279	0.0037261	9.21425	3.8392708	1	Yes	-	1.18E+03	nc
Methacrylonitrile	126-98-7	No	Yes	Organics		-	-		1.00E-04	U	3.00E-02	U	1	0.00186	67.1	0.00586	0.5995425	0.2498094	1	Yes	-	1.91E+00	nc
Methamidophos	10265-92-6	No	No	Organics		-	-		5.00E-05	U	-		1	0.0000744	141	0.0003398	1.5547479	0.6478116	1	Yes	-	1.00E+00	nc
Methanol	67-56-1	No	Yes	Organics		-	-		2.00E+00	U	2.00E+01	U	1	0.000319	32	0.0006941	0.381294	0.1588725	1	Yes	-	2.04E+04	nc
Methapyrilene	91-80-5	No	No	Organics		-	-		-		-		1	0.00432	261	0.026843	7.305669	3.0440287	1	Yes	-		
Methidathion	950-37-8	No	No	Organics		-	-		1.50E-03	U	-		1	0.000913	302	0.0061024	12.395384	5.1647434	1	Yes	-	2.91E+01	nc
Methomyl	16752-77-5	No	No	Organics		-	-		2.50E-02	U	-		1	0.000482	162	0.0023596	2.0382619	0.8492758	1	Yes	-	4.98E+02	nc
Methoxy-5-nitroaniline, 2-	99-59-2	No	No	Organics	4.90E-02	U	1.40E-05	U	-		-		1	0.00169	168	0.008425	2.2022164	0.9175902	1	Yes	-	1.54E+00	ca
Methoxychlor	72-43-5	No	No	Organics		-	-		5.00E-03	U	-		1	0.0428	346	0.3062023	21.860495	9.1085396	0.8	Yes	4.00E+01	3.70E+01	nc
Methoxyethanol Acetate, 2-	110-49-6	No	Yes	Organics		-	-		8.00E-03	U	1.00E-03	U	1	0.000396	118	0.0016545	1.1557396	0.4815582	1	Yes	-	2.06E+00	nc
Methoxyethanol, 2-	109-86-4	No	Yes	Organics		-	-		5.00E-03	U	2.00E-02	U	1	0.00018	76.1	0.0006039	0.6733176	0.280549	1	Yes	-	2.94E+01	nc
Methyl Acetate	79-20-9	No	Yes	Organics		-	-		1.00E+00	U	-		1	0.000792	74.1	0.0026222	0.6561755	0.2734064	1	Yes	-	1.99E+04	nc
Methyl Acrylate	96-33-3	No	Yes	Organics		-	-		-		2.00E-02	U	1	0.00175	86.1	0.0062455	0.7659845	0.3191602	1	Yes	-	4.17E+01	nc
Methyl Ethyl Ketone (2-Butanone)	78-93-3	No	Yes	Organics		-	-		6.00E-01	U	5.00E+00	U	1	0.000962	72.1	0.0031417	0.6394697	0.2664457	1	Yes	-	5.57E+03	nc
Methyl Hydrazine	60-34-4	No	Yes	Organics		-	1.00E-03	U	1.00E-03	U	2.00E-05	U	1	0.000173	46.1	0.0004518	0.4573198	0.1905499	1	Yes	-	5.62E-03	ca**
Methyl Isobutyl Ketone (4-methyl-2-																							
pentanone)	108-10-1	No	Yes	Organics	<u> </u>	-	-		-		3.00E+00	U	1	0.00319	100	0.0122692	0.9163471		1	Yes		6.26E+03	nc
Methyl Isocyanate	624-83-9		Yes	Organics		-	-		-		1.00E-03	U	1	0.0025	57.1	0.0072658	0.5270114		1	Yes	-	2.09E+00	nc
Methyl Mercaptan	74-93-1		Yes	Organics	<u> </u>	-	-		-		-		1	0.00276	48.1	0.0073622	0.469267	0.1955279	1	Yes	-		
Methyl Mercury	22967-92-6		No	Inorganics		-	-		1.00E-04	U	-		1	0.001	217		4.1424759		1	Yes	-	2.00E+00	nc
Methyl Methacrylate	80-62-6		Yes	Organics		-	-		1.40E+00	U	7.00E-01	U	1	0.00355	100	0.0136538	0.9163471	0.3818113	1	Yes	-	1.39E+03	nc
Methyl Parathion	298-00-0		No	Organics		-	-		2.50E-04	U	-		1	0.00416	263	0.0259476	7.496525	3.1235521	1	Yes	-	4.47E+00	nc
Methyl Phosphonic Acid	993-13-5		No	Organics		-	-		6.00E-02	U	-		1	0.0000984	96	0.0003708	0.870282	0.3626175	1	Yes		1.20E+03	nc
Methyl Styrene (Mixed Isomers)	25013-15-4	No	Yes	Organics		-	-		6.00E-03	U	4.00E-02	U	1	0.066	355	0.4782828	24.55048	10.229367	0.8	Yes	-	2.30E+01	nc

Resident Screening Levels (RSL) for Tap Water

Key: I = IRIS; P = PPRTV; D = DWSHA; O = OPP; A = ATSDR; C = Cal EPA; X = APPENDIX PPRTV SCREEN (See FAQ #27); H = HEAST; F = See user guide Section 2.3.5; L = see user guide on lead; M = mutagen; S = see user guide Section 5; V = volatile; R = RBA applied (See User Guide for Arsenic notice); c = cancer; n = noncancer; * = where: n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n S

Chemical Methyl disvelebondomine p			VOC?	Chemical Type	Ingestion SF (mg/kg-day) ⁻¹	SFO Ref	Inhalation Unit Risk (ug/m³) ⁻¹	IUR Ref	Chronic RfD (mg/kg-day)	Chronic RfD Ref	Chronic RfC (mg/m³)	Chronic RfC Ref	GIABS	K _p (cm/hr)	MW	B (unitless) 0.1971106	t (hr) 3.1193204	T _{event} (hr/event) 1.2997169	FA (unitless)	In EPD?	MCL (ug/L)	Screening Level (ug/L)	[basis]
Methyl dicyclohexylamine, n-			Yes	Organics			0.005.05		-				 		195				!	Yes		7.005.04	
Methyl methanesulfonate			No	Organics	9.90E-02	U	2.80E-05	U					1	0.000138	110	0.0005567	1.0424614	0.4343589	1	Yes	-	7.86E-01	ca
Methyl tert-Butyl Ether (MTBE) Methyl-1,4-benzenediamine	1634-04-4	No	Yes	Organics	1.80E-03	U	2.60E-07	U	-		3.00E+00	U	1	0.00211	88.2	0.0076216	0.7870095	0.3279206	1	Yes	-	1.43E+01	ca
dihydrochloride, 2-	615-45-2	No	No	Organics	_		_		3.00E-04	U	_		1	5.39E-6	195	0.0000289	3.1193204	1.2997169	1	Yes	_	6.02E+00	nc
Methyl-2-Pentanol, 4-			Yes	Organics			_		0.00L 0+		_		1	0.00544	102	0.0211313		0.3917859	1	Yes		0.022 - 00	110
Methyl-5-Nitroaniline, 2-			No	Organics	9.00E-03	U	_		2.00E-02	U	_		1	0.00384	152	0.0182087		0.7465326	1	Yes	_	8.17E+00	ca*
				3						-													
Methyl-N-nitro-N-nitrosoguanidine, N-	70-25-7	No	No	Organics	8.30E+00	U	2.40E-03	U	-		-		1	0.0000572	147	0.0002667	1.6798093	0.6999206	1	Yes	-	9.38E-03	ca
Methylaniline Hydrochloride, 2-	636-21-5	No	No	Organics	1.30E-01	U	3.70E-05	U	-		-		1	0.0000105	144	0.0000485	1.6160693	0.6733622	1	Yes	-	5.99E-01	ca
Methylarsonic acid	124-58-3	No	No	Organics	-		-		1.00E-02	U	-		1	0.0000419	140	0.0001907	1.534829	0.6395121	1	Yes	-	2.00E+02	nc
Methylaziridine, 2-	75-55-8	No	Yes	Organics	-		-		-		-		1	0.000299	57.1	0.000869	0.5270114	0.2195881	1	Yes	-		
Methylbenzene,1-4-diamine																							
monohydrochloride, 2-	74612-12-7	No	No	Organics			-		2.00E-04	U	-		1	-	159		1.9609205	0.8170502	0	No	-	4.01E+00	nc
Methylbenzene-1,4-diamine sulfate, 2-	615-50-9	No	No	Organics	1.00E-01	U	_		3.00E-04	U	_		1	_	220	_	4.3058609	1.7941087	0	No	_	7.79E-01	ca**
Methylcholanthrene, 3-	56-49-5		No	Organics	2.20E+01	U	6.30E-03	U	0.002 04	U	_		1	0.903	268	5.685672		3.3315685	0.8	No		1.14E-03	ca
Methylcyclohexane			Yes	Organics	2.202.101		0.30L-03						1	0.303	98.2	0.4192519		0.3730515	1	Yes		1.146-00	Ca
Methylcyclohexylamine, n-			Yes	Organics			_						1	0.00898	113	0.0367149		0.4514906	1	Yes			
Methylcyclopentane			Yes	Organics			_						1	0.00030	84.2	0.3236324	0.7474463	0.311436	1	Yes			
Methylene Chloride			Yes	Organics	2.00E-03	U	1.00E-08	U	6.00E-03	U	6.00E-01	U	1	0.00317	84.9	0.0125454		0.3142597	1	Yes	5.00E+00	1.14E+01	ca**
Methylene-bis(2-chloroaniline), 4,4'-			No	Organics	1.00E-01	U	4.30E-04	U	2.00E-03	U	0.002 01		1	0.0197	267	0.1238079		3.2888855	0.9	Yes	0.002.00	1.58E-01	ca
Methylene-bis(N,N-dimethyl) Aniline,	101-14-4	103	140	Organics	1.00L-01		4.50L-04		2.00L-00	U			<u>'</u>	0.0137	201	0.1200013	7.0000201	3.2000033	0.0	103		1.50L-01	- Ca
4,4'-	101-61-1	No	No	Organics	4.60E-02	U	1.30E-05	U	-		-		1	0.0844	254	0.5173518	6.675134	2.7813059	1	Yes	-	4.79E-01	ca
Methylenebisbenzenamine, 4,4'-	101-77-9	No	No	Organics	1.60E+00	U	4.60E-04	U	-		2.00E-02	U	1	0.00138	198	0.0074686	3.2423507	1.3509795	1	Yes	-	4.73E-02	са
Methylenediphenyl Diisocyanate	101-68-8	No	No	Organics	-		-		-		6.00E-04	U	1	0.181	250	1.1007159	10.245107	2.6414887	0.9	Yes	-		
Methylisothiocyanate	556-61-6	No	Yes	Organics	-		-		-		-		1	0.00257	73.1	0.0084512	0.6477687	0.2699036	1	Yes	-		
Methylnaphthalene	1321-94-4	No	Yes	Organics	-		-		-		-		1	0.0931	142	0.4266979	1.5749254	0.6562189	1	Yes	-		
Methylnaphthalene, 1-	90-12-0	No	Yes	Organics	2.90E-02	U	-		7.00E-02	U	-		1	0.0931	142	0.4266979	1.5749254	0.6562189	1	Yes	-	1.14E+00	ca
Methylnaphthalene, 2-	91-57-6	No	Yes	Organics	-		-		4.00E-03	U	-		1	0.0917	142	0.4202814	1.5749254	0.6562189	1	Yes	-	3.60E+01	nc
Methylstyrene, Alpha-	98-83-9	No	Yes	Organics	-		-		7.00E-02	U	-		1	0.0699	118	0.2920417	1.1557396	0.4815582	1	Yes	-	7.78E+02	nc
Methyltriethyl Lead	1762-28-3	No	Yes	Organics	-		-		-		-		1	0.0238	309	0.1609099	13.566255	5.6526064	0.9	Yes	-		
Metolachlor	51218-45-2	No	No	Organics	-		-		1.50E-01	U	-		1	0.00339	284	0.0219728	9.8278833	4.0949514	1	Yes	-	2.70E+03	nc
Metribuzin	21087-64-9	No	No	Organics	-		-		2.50E-02	U	-		1	0.00132	214	0.0074269	3.9852906	1.6605377	1	Yes	-	4.88E+02	nc
Metsulfuron-methyl	74223-64-6	No	No	Organics	-		-		2.50E-01	U	-		1	0.000329	381	0.0024699	34.328908	14.303712	1	Yes	-	4.91E+03	nc
Mineral oils	8012-95-1	No	Yes	Organics	-		-		3.00E+00	U	-		1	1.96	170	9.8289513	4.2628507	0.9415616	1	No	-	6.02E+04	nc
Mirex	2385-85-5	No	Yes	Organics	1.80E+01	U	5.10E-03	U	2.00E-04	U	-		1	0.0516	546	0.463738	288.17745	120.07394	0.5	No	-	8.78E-04	ca
Molinate	2212-67-1	No	No	Organics	-		-		2.00E-03	U	-		1	0.0189	187	0.0994052	2.8135847	1.172327	1	Yes	-	3.00E+01	nc
Molybdenum	7439-98-7	No	No	Inorganics	-		-		5.00E-03	U	-		1	0.001	95.9	0.0037665	0.8691605	0.3621502	1	Yes	-	9.98E+01	nc
Monoaluminum phosphate	13530-50-2	No	No	Inorganics	-		-		4.86E+01	U	-		1	0.001	318	0.0068587	15.235615		1	Yes	-	9.70E+05	nc
Monoammonium phosphate	7722-76-1	No	No	Inorganics	-		-		4.86E+01	U	-		1	0.001	115	0.0041245	1.1118853	0.4632855	1	Yes	-	9.70E+05	nc
Monobutyltin Compounds	NA	No	No	Organics	-		-		-		-		1	-	-		-	-	0	No	-		
Monocalcium phosphate	7758-23-8	No	No	Inorganics	-		-		4.86E+01	U	-		1	0.001	234	0.0058835	5.1577465	2.149061	1	Yes	-	9.70E+05	nc
Monochloramine	10599-90-3	No	No	Inorganics	-		-		1.00E-01	U	-		1	0.001	51.5	0.0027601	0.4902979	0.2042908	1	Yes	4.00E+03	2.00E+03	nc
Monochlorobutanes	25154-42-1	No	No	Organics	-		-		-		-		1	-	-		-	-	0	No	-		
Monochlorophenols (total)	NA	No	No	Organics	-		-		-		-		1	-	-	-	-	-	0	No	-		

Resident Screening Levels (RSL) for Tap Water

Key: I = IRIS; P = PPRTV; D = DWSHA; O = OPP; A = ATSDR; C = Cal EPA; X = APPENDIX PPRTV SCREEN (See FAQ #27); H = HEAST; F = See user guide Section 2.3.5; L = see user guide Section 5; V = volatile; R = RBA applied (See User Guide for Arsenic notice); c = cancer; n = noncancer; * = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = wher

							Inhalation																
					Ingestion SF	SFO	Unit Risk	IUR	Chronic RfD	Chronic RfD	Chronic RfC	Chronic		K _p		В	_	_	FA		MCL	Screening	
Chemical	CAS Number	Mutagen?	VOC?	Chemical Type	(mg/kg-day) ⁻¹	Ref	(ug/m ³) ⁻¹	Ref	(mg/kg-day)	Ref	(mg/m³)	RfC Ref	GIABS	(cm/hr)	MW	(unitless)	(hr)	T _{event} (hr/event)	FA (unitless)	In EPD?	(ug/L)	Level (ug/L)	[basis]
Monocyclic aromatic hydrocarbons				, , ,	(0 0),		(0)		(0 0),		, ,			, ,		,	, ,	,	,		, ,	, ,	
(total)	NA	No	No	Organics	-		-		-		-		1	-	-	_	_	-	0	No	-		
Monomagnesium phosphate	7757-86-0	No	No	Inorganics	-		-		4.86E+01	U	-		1	0.001	120	0.0042133	1.1859326	0.4941386	1	Yes	-	9.70E+05	nc
Monomethylaniline	100-61-8	No	No	Organics	-		-		2.00E-03	U	-		1	0.00498	107	0.0198129	1.0029054	0.4178773	1	Yes	-	3.81E+01	nc
Monopotassium phosphate	7778-77-0	No	No	Inorganics	-		-		4.86E+01	U	-		1	0.001	136	0.0044853	1.4576726	0.6073636	1	Yes	-	9.70E+05	nc
Monosodium phosphate	7558-80-7	No	No	Inorganics	-		-		4.86E+01	U	-		1	0.001	120	0.0042133	1.1859326	0.4941386	1	Yes	-	9.70E+05	nc
Myclobutanil	88671-89-0	No	No	Organics	-		-		2.50E-02	U	-		1	0.00337	275	0.0214943	8.7510465	3.6462694	1	Yes	-	4.53E+02	nc
	74-31-7	No	No	Organics	-		-		3.00E-04	U	-		1	0.0262	260	0.1624855	7.212071	3.0050296	0.9	Yes	-	3.59E+00	nc
N-Methyl dithiocarbamate	137-42-8	No	No	Organics	-		-		-		-		1	5.32E-6	129	0.0000232	1.3318643	0.5549435	1	No	-		
Naled	300-76-5	No	Yes	Organics	-		-		2.00E-03	U	-		1	0.0000944	381	0.0007087	34.328908	14.303712	1	Yes	-	3.99E+01	nc
Naphtha, High Flash Aromatic (HFAN)	64742-95-6	No	Yes	Organics	-		_		3.00E-02	U	1.00E-01	U	1	_	-	-	_	_	0	No	_	1.55E+02	nc
Naphthalene	91-20-3	No	Yes	Organics	-		3.40E-05	U	2.00E-02	U	3.00E-03	U	1	0.0466	128	0.2027765	1.3148009	0.5478337	1	Yes	-	1.65E-01	ca*
Naphthol, 2-	135-19-3	No	No	Organics	-		-		-		-		1	0.0188	144	0.0867692	1.6160693	0.6733622	1	Yes	-		
Naphthoquinone, 1,4-	130-15-4	No	No	Organics	-		-		-		-		1	0.00278	158	0.01344	1.9357978	0.8065824	1	Yes	-		
Naphthylamine, 1-	134-32-7	No	No	Organics	-		-		-		-		1	0.0077	143	0.0354148	1.5953647	0.6647353	1	Yes	-		
Naphthylamine, 2-	91-59-8	No	No	Organics	1.80E+00	U	0.00E+00	U	-		-		1	0.00807	143	0.0371166	1.5953647	0.6647353	1	Yes	-	3.87E-02	ca
	15299-99-7	No	No	Organics	-		-		1.20E-01	U	-		1	0.00804	271	0.0509058	8.3111284	3.4629702	0.9	Yes	-	1.97E+03	nc
Neodymium Chloride (Stable,																							
Nonradioactive)	10024-93-8		No	Inorganics	-		-		-		-		1	0.001	251	0.0060935		2.6757698	1	Yes	-		
	2429-74-5		No	Organics	-		-		-				1	3.69E-7	993	4.4723E-6	91803.659	38251.525	1	No	-		
	373-02-4	-	No	Organics	-		2.60E-04	U	1.10E-02	U	1.40E-05	U	1	0.0000194	177	0.0000993	2.4732043	1.0305018	1	Yes		2.21E+02	nc
	3333-67-3	-	No	Organics	-		2.60E-04	U	1.10E-02	U	1.40E-05	U	1	0.0000132	119	0.0000554		0.4878078	1	Yes		2.21E+02	nc
Nickel Carbonyl	13463-39-3		Yes	Organics	-		2.60E-04	U	1.10E-02	U	1.40E-05	U	1	-	171				0	Yes		2.16E-02	ca**
Nickel Hydroxide	12054-48-7		No	Inorganics	-		2.60E-04	U	1.10E-02	U	1.40E-05	U	0.04	0.001	92.7	0.0037031	0.8340268	0.3475112	1	Yes	-	1.99E+02	nc
	1313-99-1	-	No	Inorganics	-		2.60E-04	U	1.10E-02	U	2.00E-05	U	0.04	0.001	74.7	0.0033242	0.6612718	0.2755299	1	Yes	-	1.99E+02	nc
	NA	-	No	Inorganics	-		2.40E-04	U	1.10E-02	U	1.40E-05	U	0.04	0.0002	-	-		-	0	Yes		2.16E+02	nc
	7440-02-0		No	Inorganics	1.705.00		2.60E-04	U	2.00E-02	U	9.00E-05	U	0.04	0.0002	58.7	0.0005894	0.5379972	0.2241655	1	Yes	-	3.92E+02	nc
Nickel Subsulfide	12035-72-2		No	Inorganics	1.70E+00	U	4.80E-04	U	1.10E-02	U	1.40E-05	U	0.04	0.0002	240	0.0011917	5.5726272	2.321928	1	Yes	-	4.46E-02	ca
	1271-28-9	-	No	Organics	-		2.60E-04	U	1.10E-02	U	1.40E-05	U	1	-	189	-	-	1.2029532	0	Yes	-	2.21E+02	nc
	100-54-9	-	No	Organics	-		-		-		-		1	0.000708	104	0.002777	0.9648504	0.402021	1	Yes	-		
	7440-03-1 14797-55-8		No	Inorganics	-		-		4.005.00	- 11	-		1	0.001	92.9	0.0037071	0.8361804	0.3484085	1	Yes	1.00E+04	2.405.04	4
		-	No	Inorganics	-		-		1.60E+00	U	-		1	0.001	62	0.0030285	0.5613839	0.23391	1	Yes		3.19E+04	nc
	NA 7007 07 0	-	No	Inorganics	-		-		-		-		1	0.001	-	0.0000500	0.5000000	0.0000457	0	Yes	1.00E+04		
			Yes	Inorganics	-		-		-		-		1	0.001	63	0.0030528			1	Yes	-		
			Yes	Inorganics	-		-		4.005.04	- 11	-		1	0.001	31		0.376409		1	Yes	4.005.00	0.005.00	
			No	Inorganics	-		-		1.00E-01	U			1	0.001	47		0.4626579		1	Yes	1.00E+03		nc
	88-74-4		No	Organics	-		-		1.00E-02	U	5.00E-05	U	1	0.00446	138		1.4957534		1	Yes	-	1.89E+02	nc
	99-09-2		No	Organics	2.005.00	11	-		4.005.00	11	6.005.00	11	1	0.00214	138	0.009669	1.4957534		1	Yes	-	2.705+02	*
	100-01-6		No	Organics	2.00E-02	U	4.005.05	11	4.00E-03	U	6.00E-03	U	l A	0.00221	138	0.0099852			1	Yes		3.78E+00	ca*
	98-95-3		Yes	Organics	-		4.00E-05	U	2.00E-03	U	9.00E-03	U	1	0.00541	123	0.0230768			1	Yes	-	1.40E-01	ca*
	92-93-3		No	Organics	-		-		2 005 : 02	11	-		I 4	0.0382	199		3.2844299		1	Yes	-	6.025±07	
		-	No	Organics	-		-		3.00E+03	U	-		1		387	7.4603E-8	37.09027		1	No	-	6.02E+07	nc
	119-75-5		No	Organics	<u>-</u>		-		7.005.00	11	-		I 4	0.0266	214		3.9852906		0.9	Yes	-	1.405+02	
	67-20-9		No	Organics	4.005:00		0.705.04		7.00E-02	U	-		1				5.4307523		1	Yes		1.40E+03	nc
Nitrofurazone	59-87-0	No	No	Organics	1.30E+00	U	3.70E-04	U	-		-		1	0.000172	198	0.0009309	3.2423507	1.3509795	1	Yes	-	5.97E-02	ca

Resident Screening Levels (RSL) for Tap Water

Key: I = IRIS; P = PPRTV; D = DWSHA; O = OPP; A = ATSDR; C = Cal EPA; X = APPENDIX PPRTV SCREEN (See FAQ #27); H = HEAST; F = See user guide Section 2.3.5; L = see user guide on lead; M = mutagen; S = see user guide Section 5; V = volatile; R = RBA applied (See User Guide for Arsenic notice); c = cancer; n = noncancer; * = where: n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n S

					Ingestion SF		Inhalation Unit		Chronic	Chronic	Chronic	Chronic						_				Screening	
Chemical	CAS Number	Mutagen?	VOC?	Chemical Type	ər (mg/kg-day) ⁻¹	SFO Ref	Risk (ug/m³) ⁻¹	IUR Ref	RfD (mg/kg-day)	RfD Ref	RfC (mg/m³)	RfC Ref	GIABS	(cm/hr)	MW	B (unitless)	t (hr)	T _{event} (hr/event)	FA (unitless)	In EPD?	MCL (ug/L)	Level (ug/L)	[basis]
Nitrogen Dioxide	10102-44-0	No	Yes	Inorganics	(Ilig/kg-day)	Kei	(ug/iii)	Kei	(Ilig/kg-day)	Kei	(IIIg/III)	Kei	1	0.001	46	0.0026086	0.4567305	0.1903044	(unitiess)	Yes	(ug/L)	(ug/L)	[basis]
	55-63-0	No	No	Organics	1.70E-02	U	_		1.00E-04	U			1	0.0001	227	0.0020000	4.7125936	1.9635807	1	Yes		1.96E+00	nc
	556-88-7	No	No	Organics	1.702 02		_		1.00E-01	U	_		1	0.000354	104	0.0004118	0.9648504	0.402021	1	Yes	_	2.00E+03	nc
Nitromethane	75-52-5	No	Yes	Organics			8.80E-06	U	-	0	5.00E-03	U	1	0.000417	61	0.0012526		0.2309132	1	Yes	_	6.38E-01	ca*
	88-75-5	No	Yes	Organics			0.002 00		_				1	0.00402	139	0.0182289		0.6313188	1	Yes		0.002 01	Jou
	99-57-0	No	No	Organics			_		_		_		1	0.00171	154	0.0081617		0.7660352	1	Yes			
•	554-84-7	No	No	Organics			_		_		_		1	0.00554	139	0.0251214	1.5151652		1	Yes	_		
Nitrophenol, 4-	100-02-7	No	No	Organics			_		_		_		1	0.00483	139	0.0219019		0.6313188	1	Yes	_		
Nitrophenol, 4-amino-2-	119-34-6	No	No	Organics			-		_		-		1	0.000929	154	0.0044341		0.7660352	1	Yes	_		
Nitropropane, 2-	79-46-9	No	Yes	Organics			2.70E-03	U	_		2.00E-02	U	1	0.00206	89.1	0.0074788	0.796196	0.3317483	1	Yes	_	2.08E-03	ca
<u> </u>	57835-92-4	No	No	Organics	1.20E+00	U	1.10E-04	U	-				1	0.0922	249	0.5595736	6.2583521	2.6076467	0.9	Yes	_	1.90E-02	ca
	56-57-5	No	No	Organics	-		-	_	-		-		1	0.000712	190	0.0037747	2.9245563	1.2185651	1	Yes	_		
•	759-73-9	Yes	No	Organics	2.70E+01	U	7.70E-03	U	_		_		1	0.00049	117	0.0020385		0.4753886	1	Yes	_	9.22E-04	ca
	684-93-5	Yes	No	Organics	1.20E+02	U	3.40E-02	U	_		_		1	0.000395	103	0.0015419		0.3968704	1	Yes	_	2.08E-04	ca
•	924-16-3	No	Yes	Organics	5.40E+00	U	1.60E-03	U	-		-		1	0.0113	158	0.0546303	1.9357978	0.8065824	1	Yes	_	2.73E-03	ca
	621-64-7	No	No	Organics	7.00E+00	U	2.00E-03	U	-		-		1	0.00233	130	0.0102177		0.5621455	1	Yes	_	1.08E-02	ca
1 17 /	1116-54-7	No	No	Organics	2.80E+00	U	8.00E-04	U	_		-		1	0.0000247	134	0.00011		0.5919006	1	Yes	_	2.78E-02	ca
	55-18-5	Yes	No	Organics	1.50E+02	U	4.30E-02	U	_		-		1	0.000872	102	0.0033872	0.940286	0.3917859	1	Yes	-	1.65E-04	ca
	62-75-9	Yes	Yes	Organics	5.10E+01	U	1.40E-02	U	8.00E-06	U	4.00E-05	U	1	0.000251	74.1	0.000831		0.2734064	1	Yes	_	1.12E-04	ca
•	86-30-6	No	No	Organics	4.90E-03	U	2.60E-06	U	-	_	-		1	0.0145	198	0.0784743		1.3509795	1	Yes	_	1.22E+01	ca
Nitrosomethylethylamine, N-	10595-95-6	No	Yes	Organics	2.20E+01	U	6.30E-03	U	_		-		1	0.000533	88.1	0.0019242		0.3274981	1	Yes	_	7.11E-04	ca
	4549-40-0	No	Yes	Organics	-	_	-	-	_		-		1	0.000515	86.1	0.001838	0.7659845	0.3191602	1	Yes	-		
	59-89-2	No	No	Organics	6.70E+00	U	1.90E-03	U	_		-		1	0.000178	116	0.0007374	1.1263153	0.469298	1	Yes	-	1.16E-02	ca
Nitrosopiperidine [N-]	100-75-4	No	No	Organics	9.40E+00	U	2.70E-03	U	-		_		1	0.000622	114	0.0025543		0.4573501	1	Yes	-	8.23E-03	ca
	930-55-2	No	No	Organics	2.10E+00	U	6.10E-04	U	-		-		1	0.000321	100	0.0012346	0.9163471	0.3818113	1	Yes	-	3.70E-02	ca
	119-32-4	No	No	Organics	-		-		-		-		1	0.00482	152	0.0228558	1.7916781	0.7465326	1	Yes	-		
Nitrotoluene, m-	99-08-1	No	No	Organics	-		-		1.00E-04	U	-		1	0.0113	137	0.0508704	1.4765902	0.6152459	1	Yes	-	1.75E+00	nc
	88-72-2	No	Yes	Organics	2.20E-01	U	-		9.00E-04	U	-		1	0.00899	137	0.0404713	1.4765902	0.6152459	1	Yes	-	3.14E-01	ca*
Nitrotoluene, p-	99-99-0	No	No	Organics	1.60E-02	U	-		4.00E-03	U	-		1	0.01	137	0.0450181	1.4765902	0.6152459	1	Yes	-	4.27E+00	ca*
Nonachlor, trans-	39765-80-5	No	Yes	Organics	-		-		-		-		1	0.0836	444	0.6775236	125.84785	32.229142	0.6	No	-		
Nonane, n-	111-84-2	No	Yes	Organics	-		-		3.00E-04	U	2.00E-02	U	1	1.7	128	7.3974248	2.4513898	0.5478337	1	No	-	5.26E+00	nc
Nonanol, n-	143-08-8	No	Yes	Organics	-		-		-		-		1	0.0778	144	0.3590769	1.6160693	0.6733622	1	Yes	-		
Norflurazon	27314-13-2	No	No	Organics	-		-		1.50E-02	U	-		1	0.00105	304	0.0070413	12.719206	5.299669	1	Yes	-	2.89E+02	nc
OCDD	3268-87-9	No	No	Organics	3.90E+01	U	1.14E-02	U	2.33E-06	U	1.33E-04	U	1	1.16	460	9.568934	179.17134	39.614005	0	No	-	2.00E-03	ca*
OCDF		No	No	Organics	3.90E+01	U	1.14E-02	U	2.33E-06	U	1.33E-04	U	1	2.63	444	21.314438		32.229142	0	No		2.00E-03	ca*
	32536-52-0	No	No	Organics	-		-		3.00E-03	U	-		1	0.0306	801	0.3330921	7720.7589	3216.9829	0.3	No		6.02E+01	nc
		No	Yes	Organics	-		-		-		-		1	1.05	380	7.8724108	63.36171		0	No	-		
	57-11-4	No	No	Organics	-		-		-		-		1	11.7	284	75.835348	19.189339	4.0949514	0.3	No	-		
Octahydro-1,3,5,7-tetranitro-1,3,5,7-				, j																			
	2691-41-0	No	No	Organics	-		-		5.00E-02	U	-		1	0.0000436	296	0.0002885	11.472551	4.7802295	1	Yes	-	1.00E+03	nc
Octahydrotrimethylmethylethylphenanthr																4= 05::							
	511-15-9	No	No	Organics	-		-		-		-		1	2.66	286	17.301801	19.339255		0.5	No	-	1015	
Octamethylpyrophosphoramide	152-16-9	No	No	Organics	-		-		2.00E-03	U	-		1	8.3E-6	286	0.000054	10.084631		1	Yes	-	4.01E+01	nc
	111-87-5	No	Yes	Organics	-		-		-		-		1	0.0274	130	0.1201569	1.3491492		1	Yes	-		
	111-13-7	No	Yes	Organics			-		-		-		1	0.0112	128	0.048736	1.3148009		1	Yes	-		
Octanone, 3-	106-68-3	No	Yes	Organics	-		-		-		-		1	0.00894	128	0.0389018	1.3148009	0.5478337	1	Yes	-		

Resident Screening Levels (RSL) for Tap Water

Key: I = IRIS; P = PPRTV; D = DWSHA; O = OPP; A = ATSDR; C = Cal EPA; X = APPENDIX PPRTV SCREEN (See FAQ #27); H = HEAST; F = See user guide Section 2.3.5; L = see user guide Section 5; V = volatile; R = RBA applied (See User Guide for Arsenic notice); c = cancer; n = noncancer; * = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = wher

							Inhalation																
					Ingestion		Unit		Chronic	Chronic	Chronic	Chronic										Screening	
Chamical	CAS Number	Mutagan?	VOCA	Chamical Tyre	SF	SFO	Risk (ug/m³) ⁻¹	IUR	RfD	RfD	RfC	RfC	CIABO	K _p	BASA/	B (veritless)	t (bar)	T _{event}	FA	In EDD2	MCL	Level	[hasia]
Chemical Octyl Phthalate, di-N-	CAS Number 117-84-0	Mutagen?	VOC?	Chemical Type Organics	(mg/kg-day) ⁻¹	Ref	(ug/m)	Ref	(mg/kg-day) 1.00E-02	Ref U	(mg/m³)	Ref	GIABS	(cm/hr) 2.43	MW 391	(unitless) 18.480823	(hr) 75.000398	(hr/event) 16.272293	(unitless)	In EPD?	(ug/L)	(ug/L) 2.01E+02	[basis]
	112-80-1	No	Yes	Organics	_		_		1.00L-02	0	-		1	4.87	282	31.45431	18.557737	3.990697	0.5	No	_	2.011102	IIC
	8014-95-7	No	No		_		_		_		-		1	0.001	202	31.43431	10.557757	3.990097	0.5	Yes	_		
	19044-88-3	No	No	Inorganics	7.79E-03	U	-		1.40E-01	U	-		1	0.001	346	0.0384184	21.860495	9.1085396	0.9	Yes	-	7.92E+00	ca
Oryzalin	19666-30-9	No	No	Organics	7.79E-03	- 0	-		5.00E-03	U	-		1	0.00337	345	0.2000296		8.9918437	0.9	Yes	-	4.74E+01	
		-		Organics	-		-			U	-		1	-	219				0.0		2.00E+02		nc
	23135-22-0	No	No	Organics	-		-		2.50E-02	U	-		1	0.0000449	424	0.0002556		1.7711231	0.8	Yes	2.00E+02	5.0 IE+02	nc
	27304-13-8 42874-03-3	No	No	Organics	7.32E-02	U	-		2.005.02		-		1	0.029		0.2296717		24.902833 11.195635		Yes	-	5.36E-01	
		-	No	Organics	7.32E-02	U	-		3.00E-02	U	-		1	0.0204	362	0.1492833			0.8	Yes	-	5.30E-U I	ca
	10028-15-6	-	No	Inorganics	-		-		4 005 00		-		1	0.001	48	0.0026647		0.1952759	1	Yes	-	0.005.00	
	76738-62-0	No	No	Organics	-		-		1.30E-02	U	-		1	0.00471	294	0.0310614		4.6585284	0.9	Yes		2.26E+02	nc
•	1910-42-5	No	No	Organics	-		-		4.50E-03	U	-		1	5.77E-8	257	3.5577E-7		2.8910044	1	No		9.02E+01	nc
	56-38-2	No	No	Organics	-		-		6.00E-03	U	-		1	0.0128	291	0.0839814		4.4817616	0.9	Yes		8.57E+01	nc
	36088-22-9	No	No	Organics	1.30E+05	U	3.80E+01	U	7.00E-10	U	4.00E-08	U	1	0.241	356	1.748915		10.362123	0.7	No		5.99E-07	ca*
	57117-41-6	No	No	Organics	3.90E+03	U	1.14E+00	U	2.33E-08	U	1.33E-06	U	1	0.627	340	4.4466572	36.668725	8.430411	0.4	No		2.00E-05	ca*
	57117-31-4	No	No	Organics	3.90E+04	U	1.14E+01	U	2.33E-09	U	1.33E-07	U	1	0.627	340	4.4466572	36.668725	8.430411	0.4	No		2.00E-06	ca*
Pebulate	1114-71-2	No	Yes	Organics	-		-		5.00E-02	U	-		1	0.0397	203	0.2175531		1.4409495	1	Yes		5.60E+02	nc
	40487-42-1	No	No	Organics	-		-		3.00E-02	U	-		1	0.115	281	0.7414428		3.9395693	0.9	Yes		1.37E+02	nc
	32534-81-9	No	Yes	Organics	-		-		2.00E-03	U	-		1	0.0373	565	0.3410042	368.17983	153.40826	0.6	No	-	4.01E+01	nc
Pentabromodiphenyl ether, 2,2',4,4',5-	00040 00 0								4 005 04					0.0070	-0-	0.0440040	000 47000	450 40000				0.045 - 00	
	60348-60-9	No	No	Organics	-		-		1.00E-04	U	-		1	0.0373	565	0.3410042		153.40826	0.6	No	-	2.01E+00	nc
	527-20-8	No	No	Organics	-		-		-		-		1	0.0811	265	0.507774		3.2051529	0.9	Yes	-		
	608-93-5	No	Yes	Organics	-		-		8.00E-04	U	-		1	0.168	250	1.0216589	10.202487	2.6414887	0.9	Yes	-	3.16E+00	nc
Pentachlorobiphenyl, 2',3,4,4',5- (PCB 123)	65510-44-3	No	Yes	Organics	3.90E+00	U	1.14E-03	U	2.33E-05	U	1.33E-03	U	1	1	326	6.9444116	31.399148	7.0379917	0.4	No	_	3.95E-03	ca
Pentachlorobiphenyl, 2,3',4,4',5- (PCB	03310-44-3	INO	163	Organics	3.90L100	0	1.14L-03		2.33L-03	U	1.55E-05			<u>'</u>	320	0.3444110	31.399140	7.0379917	0.4	INO	_	3.83L-03	Ga
118)	31508-00-6	No	Yes	Organics	3.90E+00	U	1.14E-03	U	2.33E-05	U	1.33E-03	U	1	1.24	326	8.6110703	31.7012	7.0379917	0.3	No	_	3.95E-03	ca
Pentachlorobiphenyl, 2,3,3',4,4'- (PCB				- · g						-									0.0				
105)	32598-14-4	No	Yes	Organics	3.90E+00	U	1.14E-03	U	2.33E-05	U	1.33E-03	U	1	0.751	326	5.2152531	30.919495	7.0379917	0.5	No	-	3.95E-03	ca
Pentachlorobiphenyl, 2,3,4,4',5- (PCB																							
114)	74472-37-0	No	Yes	Organics	3.90E+00	U	1.14E-03	U	2.33E-05	U	1.33E-03	U	1	1	326	6.9444116	31.399148	7.0379917	0.4	No	-	3.95E-03	ca
Pentachlorobiphenyl, 3,3',4,4',5- (PCB	57405 00 0		V	0	4.005.04		0.005.00		7.005.00		4.005.07				000	0.044440	04 000440	7 0070047	0.4	NI.		4.405.00	
126)	57465-28-8	No	Yes	Organics	1.30E+04	U	3.80E+00	U	7.00E-09	U	4.00E-07	U	1	1	326	6.9444116		7.0379917	0.4	No	-	1.19E-06	ca
Pentachlorocyclopentadiene	25329-35-5	No	Yes	Organics	-		-		-		-		1	0.0609	238	0.3613536	5.4307523	2.2628134	0.9	Yes	-		
Pentachlorodibenzo-p-dioxin, 1,2,3,7,8-	40321-76-4	No	No	Organics	1.30E+05	U	3.80E+01	U	7.00E-10	U	4.00E-08	U	1	0.405	356	2.939048	43.706478	10 362123	0.5	No	_	5.99E-07	ca*
			Yes	Organics	9.00E-02	U	3.00L 101		7.002-10		4.00L-00		1	0.0158	202	0.0863693		1.4224885	1	Yes			ca
	82-68-8		Yes	Organics	2.60E-01	U	_		3.00E-03	U			1	0.0130	295			4.7189867	0.9	Yes		6.46E-01 1.21E-01	ca
	87-86-5		No	Organics	4.00E-01	U	5.10E-06	U	5.00E-03	U			1	0.127	266	0.7966567		3.2467493	0.9	Yes	1.00E+00		ca
	78-11-5		No	-	4.00E-03	U	3.10L-00		2.00E-03	U	-		1	0.00101	316	0.0069054		6.1865532	0.9	Yes		1.86E+01	ca**
				Organics Organics	4.00⊏-03	U	-		2.00E-03	U	-		1	0.00101	201	0.0009034			1		-	1.00=+01	Ga
			No Yes	Organics	-		-		-		1.00E+00	U	1	0.000219	72.2		0.6402948		1	Yes Yes	-	2.09E+03	no
					-		-		-		1.00⊑₹00	U	1						1		-	2.092+03	nc
•	71-41-0		Yes	Organics	-		-		7.005.04	11	-		1	0.00506	88.2		0.7870095		1	Yes	1 505 : 04	1.405.04	
			No	Inorganics	-		-		7.00E-04	U	-		1	0.001	117	0.0041603		0.4753886	1	Yes	1.50E+01		nc
	375-73-5		No	Organics	-		-		2.00E-02	U	-		7	-	300		12.079807		U	Yes		4.01E+02	nc
		-	No	Organics	7.005.00		-		2.00E-05	U	-		1	-	500		159.24287		U	No		4.01E-01	nc
			No	Organics	7.00E-02	U	-		2.00E-05	U	-		1		414		52.536361		U	No		4.01E-01	nc
Permethrin	52645-53-1	No	No	Organics	-		-		5.00E-02	U	-		1	0.208	391	1.5818976	64.9548/3	16.272293	0.6	No	-	1.00E+03	nc

Resident Screening Levels (RSL) for Tap Water

Key: I = IRIS; P = PPRTV; D = DWSHA; O = OPP; A = ATSDR; C = Cal EPA; X = APPENDIX PPRTV SCREEN (See FAQ #27); H = HEAST; F = See user guide Section 2.3.5; L = see user guide on lead; M = mutagen; S = see user guide Section 5; V = volatile; R = RBA applied (See User Guide for Arsenic notice); c = cancer; n = noncancer; * = where: n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n S

							Inhalation																
					Ingestion		Unit		Chronic	Chronic	Chronic	Chronic										Screening	
Chemical	CAS Number	Mutagen?	VOC2	Chemical Type	SF (mg/kg,day) ⁻¹	SFO Ref	Risk (ug/m³) ⁻¹	IUR Ref	RfD (mg/kg-day)	RfD Ref	RfC (mg/m ³)	RfC Ref	GIABS	(cm/hr)	MW	B (unitless)	t (hr)	T _{event} (hr/event)	FA (unitless)	In EPD?	MCL (ug/L)	Level	[basis]
Perylene	198-55-0	No	No.	Organics	(mg/kg-day) ⁻¹	Kei	(ug/iii)	Kei	(Ilig/kg-uay)	Kei	(ilig/ili)	Kei	1	0.856	252	5.2263764	11.909329	2.7104959	0.9	No No	(ug/L)	(ug/L)	[basis]
Pesticides (total)	NA	No	No		<u>-</u>		-		<u>-</u>		-		1	0.030	232	3.2203704	11.909329	2.7 104939	0.9	No	-		
resticides (total)	INA	INO	INO	Organics	-		-		-		<u>-</u>		I	-	-	-	-	-	U	INO	-		
Pesticides, organochlorinated (each)	NA	No	No	Organics	-		-		-		_		1	-	-	-	-	-	0	No	-		
Pesticides, organochlorinated (total)	NA	No	No	Organics	-		-		-		_		1	-	-	-	_	-	0	No	-		
Phenacetin	62-44-2	No	No	Organics	2.20E-03	U	6.30E-07	U	-		-		1	0.00173	179	0.0089022	2.5378152	1.057423	1	Yes	-	3.43E+01	ca
Phenanthrene	85-01-8	No	Yes	Organics	-		-		-		-		1	0.144	178	0.7389229	4.0330618	1.0438756	1	Yes	-		
Phenmedipham	13684-63-4	No	No	Organics	-		-		2.40E-01	U	-		1	0.00786	300	0.0523612	12.079807	5.0332529	0.9	Yes	-	3.81E+03	nc
Phenol	108-95-2	No	No	Organics	-		-		3.00E-01	U	2.00E-01	U	1	0.00434	94.1	0.0161924	0.8492196	0.3538415	1	Yes	-	5.77E+03	nc
Phenol, 2-(1-methylethoxy)-,																							
methylcarbamate	114-26-1	No	No	Organics	-		-		4.00E-03	U	-		1	0.00107	209	0.0059495	3.736457	1.5568571	1	Yes	-	7.85E+01	nc
Phenothiazine	92-84-2	No	No	Organics	-		-		5.00E-04	U	_		1	0.0683	199	0.3705731	3.2844299	1.3685124	1	Yes	-	4.31E+00	nc
Phenyl Isothiocyanate	103-72-0	No	Yes	Organics	-		-		2.00E-04	U	-		1	0.0413	135	0.1845626	1.4389973	0.5995822	1	Yes	-	2.62E+00	nc
Phenylenediamine, m-	108-45-2	No	No	Organics	-		-		6.00E-03	U	-		1	0.000234	108	0.0009353	1.0159211	0.4233005	1	Yes	-	1.20E+02	nc
Phenylenediamine, o-	95-54-5	No	No	Organics	1.20E-01	U	-		4.00E-03	U	-		1	0.000487	108	0.0019466	1.0159211	0.4233005	1	Yes	-	6.46E-01	ca
Phenylenediamine, p-	106-50-3	No	No	Organics	-		-		1.00E-03	U	-		1	0.000245	108	0.0009793	1.0159211	0.4233005	1	Yes	-	2.00E+01	nc
Phenylmercuric Acetate	62-38-4	No	No	Organics	-		-		8.00E-05	U	-		1	0.0000599	337	0.0004229	19.46525	8.1105209	1	Yes	-	1.60E+00	nc
Phenylphenol, 2-	90-43-7	No	No	Organics	1.94E-03	U	-		-		-		1	0.0196	170	0.0982895	2.2597479	0.9415616	1	Yes	-	2.99E+01	ca
Phorate	298-02-2	No	No	Organics	-		-		2.00E-04	U	-		1	0.0126	260	0.0781419	7.212071	3.0050296	0.9	Yes	-	3.03E+00	nc
Phosmet	732-11-6	No	No	Organics	-		-		2.00E-02	U	-		1	0.00183	317	0.0125316	15.040421	6.2668421	1	Yes	-	3.73E+02	nc
Phosphine	7803-51-2	No	Yes	Inorganics	-		-		3.00E-04	U	3.00E-04	U	1	0.001	34	0.0022427	0.3912551	0.163023	1	Yes	-	5.67E-01	nc
Phosphoric Acid	7664-38-2	No	No	Inorganics	-		_		4.86E+01	U	1.00E-02	U	1	0.001	98	0.0038075	0.8930175	0.3720906	1	Yes	-	9.70E+05	nc
Phosphorus (total)	NA	No	No	Inorganics	-		_		-		_		1	0.001	-	_	_	_	0	Yes	-		
Phosphorus pentoxide	1314-56-3	No	No	Inorganics	-		_		-		-		1	0.001	142	0.0045832	1.5749254	0.6562189	1	Yes	-		
Phosphorus, White	7723-14-0	No	Yes	Inorganics	-		_		2.00E-05	U	_		1	0.001	31	0.0021414	0.376409	0.1568371	1	Yes	-	3.99E-01	nc
Phthalates (total)	NA	No	No	Organics	-		_		-	-	_		1	_	_	_	_	_	0	No	_		
Phthalic Acid, P-	100-21-0	No	No	Organics			_		1.00E+00	U	_		1	0.00391	166	0.0193757	2.1461496	0.894229	1	Yes	_	1.89E+04	nc
Phthalic Acid, m-	121-91-5	No	No	Organics	-		_				_		1	0.00232	166	0.0114966	2.1461496	0.894229	1	Yes	_		
Phthalic Acid, o-	88-99-3	No	No	Organics			_				_		1	0.000559	166	0.0027701	2.1461496	0.894229	1	Yes	_		
Phthalic Anhydride	85-44-9	No	No	Organics			_		2.00E+00	U	2.00E-02	U	1	0.00267	148	0.0124931	1.7016099	0.7090041	1	Yes	_	3.87E+04	nc
Picloram	1918-02-1	No	No	Organics			_		7.00E-02	U	2.002 02	U	1	0.00207	241	0.007583	5.6449486	2.3520619	1	Yes	5.00E+02		nc
Picoline, 2-	109-06-8	No	Yes	Organics			_		7.002 02		_		1	0.00127	93.1	0.0095375	0.8383396	0.3493082	1	Yes	0.002.02	1.002 - 00	110
Picramic Acid (2-Amino-4,6-	100 00 0	140	100	Organios										0.00207	30.1	0.0000070	0.0000000	0.0400002		100			
dinitrophenol)	96-91-3	No	No	Organics	-		_		1.00E-04	υ	_		1	0.000496	199	0.0026911	3.2844299	1.3685124	1	Yes	_	1.99E+00	nc
Picric Acid (2,4,6-Trinitrophenol)	88-89-1	No	No	Organics	-		_		9.00E-04	U	_		1	0.000621	229	0.0036144			1	Yes	-	1.78E+01	nc
Piperidine	110-89-4	No	Yes	Organics	-		_		-	-	_		1	0.00189	85.2				1	Yes	-		
Pirimiphos, Methyl	29232-93-7	No	No	Organics	-		_		6.67E-05	U	_		1	0.0187	305	0.1256083	12.884275		0.9	Yes	-	8.13E-01	nc
Polybrominated Biphenyls	59536-65-1	No	No	Organics	3.00E+01	U	8.60E-03	U	7.00E-06	U	_		1	-	_	-	-	_	0	No		2.60E-03	ca*
. одологиналов 2.р.голуго		1.10		0.9400	0.002 0.		0.002 00																
Polychlorinated Biphenyls (low risk) Polycyclic aromatic hydrocarbons	1336-36-3	No	Yes	Organics	4.00E-01	U	1.00E-04	U	-		_		1	0.545	292	3.5819093	19.448711	4.5399257	0.7	No	5.00E-01	4.36E-02	са
(PAH), Total	NA	No	No	Organics									1						0	No			
5																							
Polycyclic aromatic hydrocarbons	NIA	NI-	NI-	0															0	N.			
(PAH), Total (high molecular weight)	NA	No	No	Organics	-		-		-		-		1	-	-	-	-	-	0	No	-		
Polycyclic aromatic hydrocarbons (PAH), Total (low molecular weight)	NA	No	No	Organics	-		-		-		_		1	_	_	-	_	_	0	No	-		

Resident Screening Levels (RSL) for Tap Water

Key: I = IRIS; P = PPRTV; D = DWSHA; O = OPP; A = ATSDR; C = Cal EPA; X = APPENDIX PPRTV SCREEN (See FAQ #27); H = HEAST; F = See user guide Section 2.3.5; L = see user guide Section 5; V = volatile; R = RBA applied (See User Guide for Arsenic notice); c = cancer; n = noncancer; * = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c SL; ** = where: n SL < 100X c S

							Inhalation																
					Ingestion SF	SFO	Unit Risk	IUR	Chronic RfD	Chronic RfD	Chronic RfC	Chronic		K _p		В		_	EA		MCL	Screening	
Chemical	CAS Number	Mutagen?	VOC?	Chemical Type	(mg/kg-day) ⁻¹	Ref	(ug/m ³) ⁻¹	Ref	(mg/kg-day)	Ref	(mg/m³)	RfC Ref	GIABS	(cm/hr)	MW	(unitless)	(hr)	T _{event} (hr/event)	FA (unitless)	In EPD?	(ug/L)	Level (ug/L)	[basis]
Polycyclic chlorinated hydrocarbons				, ,	· · · · · · · · · · · · · · · · · · ·		(0)		, , , , , , , , , , , , , , , , , , , ,		, ,			,		,	,	` ,	,		(0 /	, ,	
	NA	No	No	Organics	-		-		-		-		1	-	-	-	-	-	0	No	-		
Polymeric Methylene Diphenyl	0040 07 0										0.005.04			40.0	F40	400 00400	000 70450	70 400004					
	9016-87-9	No	No	Organics	-		-		1.005.04		6.00E-04	U	1	18.6	513	162.03106		78.460081	0	No	-	705.05	
	8017-16-1	No	No	Inorganics	-		-		4.86E+01	U	-		1	0.001	258	0.0061778		2.9285237	1	Yes	-	9.70E+05	nc
	7440-09-7	No	No	Inorganics	-		-		2.005.02		-		1	0.002	39.1	0.00481	0.4178496	0.174104	1	Yes	-	2.005.04	
	151-50-8	No	No	Inorganics	<u>-</u>		-		2.00E-03	U	-		1	0.002	65.1	0.0062065		0.2434494	1	Yes		3.98E+01	nc
Potassium Perchlorate	7778-74-7	No	No	Inorganics	-		-		7.00E-04	U	-		1	0.002	139	0.0090691	1.5151652	0.6313188	1	Yes	-	1.39E+01	nc
Potassium Perfluorobutane Sulfonate	29420-49-3	No	No	Organics	-		-		2.00E-02	U	-		1	-	338	-	19.71787	8.215779	0	Yes	- 4	4.01E+02	nc
Potassium Perfluorooctane Sulfonate	2795-39-3	No	No	Organics	-		_		2.00E-05	U	-		1	_	538	_	259.93215	108.30506	0	No	-	4.01E-01	nc
Potassium Silver Cyanide	506-61-6	No	No	Inorganics	-		-		5.00E-03	U	-		0.04	0.002	199	0.0108513	3.2844299	1.3685124	1	Yes	-	3.22E+01	nc
·	13845-36-8	No	No	Inorganics	-		-		4.86E+01	U	-		1	0.001	448	0.0081408	81.444168	33.93507	0.9	Yes	- (9.70E+05	nc
Praseodymium	7440-10-0	No	No	Inorganics	-		-		-		-		1	0.001	141	0.0045671	1.5547479	0.6478116	1	Yes	-		
Praseodymium Chloride (Stable,																							
Nonradioactive)	10361-79-2	No	No	Inorganics	-		-		-		-		1	0.001	247	0.0060447		2.5412579	1	Yes	-		
	67747-09-5	No	No	Organics	1.50E-01	U	-		9.00E-03	U	-		1	0.0064	377	0.0477944	32.603182	13.584659	0.9	Yes		3.76E-01	ca
	26399-36-0	No	Yes	Organics	-		-		6.00E-03	U	-		1	0.09	347	0.6448132		9.2267499	8.0	Yes	-	2.60E+01	nc
	7440-12-2	No	No	Inorganics	-		-		-		-		1	0.001	145	0.0046314		0.6821011	1	Yes	-		
	1610-18-0	No	No	Organics	-		-		1.50E-02	U	-		1	0.00827	225	0.0477115		1.9135894	1	Yes		2.53E+02	nc
	7287-19-6	No	No	Organics	-		-		4.00E-02	U	-		1	0.0149	241	0.0889655		2.3520619	0.9	Yes		5.98E+02	nc
	1918-16-7	No	No	Organics	-		-		1.30E-02	U	-		1	0.00286	212	0.0160162		1.6182617	1	Yes		2.46E+02	nc
Propanil	709-98-8	No	No	Organics	-		-		5.00E-03	U	-		1	0.0103	218	0.0584914	4.1962368	1.748432	1	Yes	- 1	3.18E+01	nc
Propanoic acid, 2-(2,4-dichlorophenoxy)-		No	No	Organics	-		-		-		-		1	0.0000512	235	0.0003019		2.1769515	1	Yes	-		
. •	2312-35-8	No	No	Organics	3.27E-02	U	-		4.00E-02	U	-		1	0.0356	350	0.2561596		9.5906656	0.8	Yes		9.20E-01	са
	107-19-7	No	Yes	Organics	-		-		2.00E-03	U	-		1	0.000424	56.1	0.0012214		0.2167748	1	Yes		4.00E+01	nc
	139-40-2	No	No	Organics	-		-		2.00E-02	U	-		1	0.00713	230	0.0415892	4.8984648	2.041027	1	Yes		3.43E+02	nc
	122-42-9	No	No	Organics	-		-		2.00E-02	U	-		1	0.00826	179	0.0425043	2.5378152	1.057423	1	Yes		3.52E+02	nc
<u> </u>	60207-90-1	No	No	Organics	-		-		1.00E-01	U	-		1	0.00558	342	0.0396893		8.6506502	0.9	Yes		1.61E+03	nc
Propionaldehyde	123-38-6	No	Yes	Organics	-		-		-		8.00E-03	U	1	0.00182	58.1	0.0053356		0.2224379	1	Yes	-	1.67E+01	nc
	107-12-0	No	Yes	Organics	-		-		-		-		1	0.000982	55.1	0.0028036		0.2139975	1	Yes	-		
Propionitrile, 3-(NN-dimethylamino)	1738-25-6	No	Yes	Organics	-		-		-		-		1	0.000222	98.1	0.0008457		0.3725707	1	Yes	-		
	71-23-8	No	Yes	Organics	-		-		-		1.005.00		1	0.00106	60.1	0.0031606		0.2282489	1	Yes	-	2.505 . 00	
Propyl benzene		No	Yes	Organics	-		-		1.00E-01	U	1.00E+00	U	1	0.0939	120	0.3956242		0.4941386	1	Yes		6.56E+02	nc
		No	Yes	Organics	-		-		-		3.00E+00	U	1	0.0136	42.1			0.1809709	1	Yes		6.26E+03	nc
, ,	57-55-6	No	No	Organics	-		-		2.00E+01	U	0.705.04		1		76.1		0.6733176		1	Yes	- 4	4.01E+05	nc
		No	No	Organics	-		-		-		2.72E-04	U	1	0.00208	166		2.1461496		1	Yes	-		
Propylene Glycol Monoethyl Ether	1569-02-4	No	Yes	Organics	-		-		-		-		1	0.000409	104	0.0016042	0.9648504	0.402021	1	Yes	-		
Propylene Glycol Monomethyl Ether	107-98-2	No	Yes	Organics	-		-		7.00E-01	U	2.00E+00	U	1	0.000372	90.1	0.0013581		0.3360538	1	Yes		3.21E+03	nc
	75-56-9	No	Yes	Organics	2.40E-01	U	3.70E-06	U	-		3.00E-02	U	1	0.000774	58.1	0.0022691		0.2224379	1	Yes		2.66E-01	са
Propyzamide	23950-58-5	No	No	Organics	-		-		7.50E-02	U	-		1	0.0109	256	0.0670769	6.8495177	2.8539657	0.9	Yes	-	1.18E+03	nc
Prussian Blue (Ferric Ferrocyanide) Pyrazinyl phosphorothioate, O,O-diethyl	14038-43-8	No	No	Organics	_		-		-		-		1	_	859	_	16310.226	6795.9277	0	No	-		
	297-97-2	No	No	Organics	_		-		-		-		1	0.00109	248	0.0066021	6.1781719	2.5742383	1	Yes	-		

Resident Screening Levels (RSL) for Tap Water

Key: I = IRIS; P = PPRTV; D = DWSHA; O = OPP; A = ATSDR; C = Cal EPA; X = APPENDIX PPRTV SCREEN (See FAQ #27); H = HEAST; F = See user guide Section 2.3.5; L = see user guide on lead; M = mutagen; S = see user guide Section 5; V = volatile; R = RBA applied (See User Guide for Arsenic notice); c = cancer; n = noncancer; * = where: n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n S

Chemical	CAS Number	Mutagen?	VOC?	Chemical Type	Ingestion SF (mg/kg-day) ⁻¹	SFO Ref	Inhalation Unit Risk (ug/m³) ⁻¹	IUR Ref	Chronic RfD (mg/kg-day)	Chronic RfD Ref	Chronic RfC (mg/m³)	Chronic RfC Ref	GIABS	K _p (cm/hr)	MW	B (unitless)	t (hr)	T _{event} (hr/event)	FA (unitless)	In EPD?	MCL (ug/L)	Screening Level (ug/L)	[basis]
Pyrene	129-00-0	No	Yes	Organics		-	-		3.00E-02	U	-		1	0.201	202	1.0987488	5.5165618	1.4224885	1	Yes	-	1.21E+02	nc
Pyridine	110-86-1	No	Yes	Organics		-	-		1.00E-03	U	-		1	0.00152	79.1	0.0051995	0.6998742	0.2916143	1	Yes	-	1.98E+01	nc
Quinalphos	13593-03-8	No	No	Organics		-	-		5.00E-04	U	-		1	0.0296	298	0.1965289	11.772264	4.90511	0.9	Yes	-	5.07E+00	nc
Quinoline	91-22-5	No	No	Organics	3.00E+00	U	-		-		-		1	0.00659	129	0.0287877	1.3318643	0.5549435	1	Yes	-	2.39E-02	ca
Quizalofop-ethyl	76578-14-8	No	No	Organics		-	-		9.00E-03	U	-		1	0.00886	373	0.0658135	30.964209	12.901754	0.9	Yes	-	1.22E+02	nc
Refractory Ceramic Fibers	NA	No	No	Inorganics		-	-		-		3.00E-02	U	1	0.001	-		-	-	0	Yes	-		
Resmethrin	10453-86-8	No	No	Organics		-	-		3.00E-02	U	-		1	0.238	338	1.6829141	32.979231	8.215779	0.7	Yes	-	6.75E+01	nc
Resorcinol	108-46-3	No	No	Organics		-	-		-		-		1	0.00128	110	0.0051634		0.4343589	1	Yes	-		
Ronnel	299-84-3	No	Yes	Organics		-	-		5.00E-02	U	-		1	0.043	322	0.2967721	16.042055	6.6841894	0.8	Yes	-	4.05E+02	nc
Rotenone	83-79-4	No	No	Organics		-	-		4.00E-03	U	-		1	0.00509	394	0.0388591	40.593827	16.914094	0.9	Yes	-	6.11E+01	nc
Rubidium	7440-17-7	No	No	Inorganics		-	-		-		-		1	0.001	85.5	0.0035564		0.3167005	1	Yes	-		
Rubidium Chloride	7791-11-9	No	No	Inorganics		-	-		-		-		1	0.001	121	0.0042308		0.5005515	1	Yes	-		
Rubidium Hydroxide	1310-82-3	No	No	Inorganics		-	-		-		-		1	0.001	102	0.0038844		0.3917859	1	Yes	-		
Rubidium Iodide	7790-29-6	No	No	Inorganics		-	-		-		-		1	0.001	212	0.0056001		1.6182617	1	Yes	-		
Safrole	94-59-7	Yes	No	Organics	2.20E-01	U	6.30E-05	U	-		-		1	0.0113	162	0.0553175	2.0382619	0.8492758	1	Yes	-	9.57E-02	ca
Samarium Chloride (Stable, Nonradioactive)	10361-82-7	No	No	Inorganics		-	-		-		-		1	0.001	257	0.0061659	6.9384105	2.8910044	1	Yes	_		
Samarium Nitrate (Stable,																							
Nonradioactive)	10361-83-8	No	No	Inorganics		-	-		-		-		1	0.001	336	0.0070501		8.0066114	1	Yes	-		
Scandium	7440-20-2	No	No	Inorganics		-	-		-		-		1	0.001	45	0.0025801		0.1878662	1	Yes	-		
Selenious Acid	7783-00-8	No	No	Inorganics		-	-		5.00E-03	U	-		1	0.001	129	0.0043684		0.5549435	1	Yes	-	9.98E+01	nc
Selenite	14124-67-5	No	No	Inorganics		-	-		-		-		1	0.001	129	0.0043684		0.5549435	1	Yes	-		
Selenium	7782-49-2	No	No	Inorganics		-	-		5.00E-03	U	2.00E-02	U	1	0.001	79	0.0034185		0.2912385	1	Yes	5.00E+01	9.98E+01	nc
Selenium Sulfide	7446-34-6	No	No	Inorganics		-	-		5.00E-03	U	2.00E-02	U	1	0.001	111	0.0040522	1.0559905	0.439996	1	Yes	-	9.98E+01	nc
Selenourea	630-10-4	No	Yes	Organics		-	-				-		1	5.71E-6	123	0.0000244	1.2327074	0.5136281	1	No	-	1.005 : 00	
Sethoxydim	74051-80-2	No	No	Organics		-	-		1.40E-01	U	- 0.005.00		1	0.0185	327	0.1286685		7.1293305	0.9	Yes	-	1.62E+03	nc
Silica (crystalline, respirable)	7631-86-9	No	No	Inorganics		-	-		-		3.00E-03	U	1	0.001	60.1	0.0029817		0.2282489	1	Yes	-		
Silicon	7440-21-3	No	No	Inorganics		-	-				-		7	0.001	28.1	0.0020388		0.1510806	1	Yes	-	0.445.04	
Silver	7440-22-4	No	No	Inorganics		-	-		5.00E-03	U	-		0.04	0.0006	108	0.0023982		0.4233005	1	Yes	-	9.41E+01	nc
Silver Cyanide	506-64-9	No	No	Inorganics	1 205 01	- U	-		1.00E-01	U	-		0.04	0.001	134	0.0044522		0.5919006	1	Yes	4.005.00	1.81E+03	nc
Simazine Sodium	122-34-9 7440-23-5	No No	No	Organics	1.20E-01	U	-		5.00E-03	U	-		1	0.00325	202	0.0177658 0.0018446		1.4224885 0.1414649	1	Yes Yes	4.00E+00	0.07E-01	ca
Sodium Sodium Acifluorfen	62476-59-9	No	No No	Inorganics Organics		-	-		1.30E-02	U	-		1	0.001	384	0.0018446	35.682888	14.86787	1	Yes		2.60E+02	ne
Sodium Aciliuorien Sodium Azide	26628-22-8	No	No	Inorganics		-	-		4.00E-03	U	-		1	0.0000195	65	0.000147		0.2431357	1	Yes		7 99F+01	nc
Sodium Cyanide	143-33-9	No	No	Inorganics		_	-		4.00E-03 1.00E-03	U	-		1	0.001	49	0.0031009		0.2431357	1	Yes	2.00E+02		nc
Sodium Dichromate	10588-01-9	Yes	No	Inorganics	5.00E-01	- U	1.50E-01	U	2.00E-03	U	2.00E-04	U	0.025	0.001	262	0.0020923		3.0835341	1	Yes		4.12E-02	nc
Sodium Diethyldithiocarbamate	148-18-5	No	No	Organics	2.70E-01	U	1.300-01	U	3.00E-02	U	2.00E-04	U	1	0.0001		0.0002233		0.9661593	1	Yes		2.88E-01	ca
Sodium Fluoride	7681-49-4	No	No	Inorganics	2.70L-01	_			5.00E-02	U	1.30E-02	U	1	0.000192	42	0.0000906		0.1807377	1	Yes		9.98E+02	nc
Sodium Fluoroacetate	62-74-8	No	No	Organics		_	-		2.00E-02	U	1.000-02	J	1	1.32E-6	100			0.3818113	1	No		4.01E-01	nc
Sodium Hydroxide	1310-73-2	No	No	Inorganics		_			2.002-00	5	-		1	0.001	40	0.0024325		0.1761363	1	Yes		1.012 01	1.5
Sodium Metavanadate	13718-26-8	No	No	Inorganics		_			1.00E-03	U			1	0.001	122	0.0024323	1.2169143		1	Yes		2.00E+01	nc
Sodium Perchlorate	7601-89-0	No	No	Inorganics		_			7.00E-04	U	_		1	0.001	122	0.0042482	1.2169143		1	Yes		1.40E+01	nc
Sodium Tungstate	13472-45-2	No	No	Inorganics		_	_		8.00E-04	U	_		1	0.001	294	0.0065948	11.180468		1	Yes		1.60E+01	nc
Sodium Tungstate Dihydrate	10213-10-2	No	No	Inorganics		_	_		8.00E-04	U	_		1	0.001	330	0.0069869	17.785251		1	Yes		1.60E+01	nc
Sodium acid pyrophosphate	7758-16-9	No	No	Inorganics		_	_		4.86E+01	U	_		1	0.001	222	0.0057306			1	Yes		9.70E+05	nc
	1.700 10 0		. 10	inorganios			_		1.002.01	J			•	0.001		0.0007000	1.1130401		,	. 55		J JL . JU	1

Resident Screening Levels (RSL) for Tap Water

Key: I = IRIS; P = PPRTV; D = DWSHA; O = OPP; A = ATSDR; C = Cal EPA; X = APPENDIX PPRTV SCREEN (See FAQ #27); H = HEAST; F = See FAQ; J = New Jersey; E = see user guide Section 2.3.5; L = see user guide on lead; M = mutagen; S = see user guide Section 5; V = volatile; R = RBA applied (See User Guide for Arsenic notice); c = cancer; n = noncancer; * = where: n SL < 100X c SL; ** = where n SL < 10X c SL; SSL values are based on DAF=1; m = Concentration may exceed Csat (See User Guide)

Chemical	CAS Number	Mutagen?	VOC?	Chemical Type	Ingestion SF (mg/kg-day) ⁻¹	SFO Ref	Inhalation Unit Risk (ug/m³) ⁻¹	IUR Ref	Chronic RfD (mg/kg-day)	Chronic RfD Ref	Chronic RfC (mg/m³)	Chronic RfC Ref	GIABS	K _p (cm/hr)	MW	B (unitless)	t (hr)	T _{event} (hr/event)	FA (unitless)	In EPD?	MCL (ug/L)	Screening Level (ug/L)	[basis]
Codium duminum phoophata (acidia)	7705 00 0	No	Na	Ingraphica					4.86E+01	U			4	0.001	145	0.0046314	1 6270426	0.6821011	1	Voc			no
Sodium aluminum phosphate (acidic) Sodium aluminum phosphate	7785-88-8	No	No	Inorganics	-	-	-		4.00⊑+01	U	-		ı	0.001	145	0.0046314	1.6370426	0.0621011	ı	Yes		9.70E+05	nc
(anhydrous)	10279-59-1	No	No	Inorganics	-	_	_		4.86E+01	U	_		1	0.001	_	_	_	_	0	Yes	_	9.70E+05	nc
Sodium aluminum phosphate																			-				112
(tetrahydrate)	10305-76-7	No	No	Inorganics	-	-	-		4.86E+01	U	-		1	0.001	950	0.0118546	52730.27	21970.946	8.0	Yes	-	9.70E+05	nc
Sodium hexametaphosphate	10124-56-8	No	No	Inorganics	-	-	-		4.86E+01	U	-		1	0.001	611	0.0095071	666.28493	277.61872	0.9	Yes	-	9.70E+05	nc
Sodium polyphosphate	68915-31-1	No	No	Inorganics	-	-	-		4.86E+01	U	-		1	0.001	360	0.0072976	26.185447	10.910603	1	Yes	-	9.70E+05	nc
Sodium trimetaphosphate	7785-84-4	No	No	Inorganics	-	-	-		4.86E+01	U	-		1	0.001	306	0.006728	13.051487	5.4381195	1	Yes	-	9.70E+05	nc
Sodium tripolyphosphate	7758-29-4	No	No	Inorganics	-	-	-		4.86E+01	U	-		1	0.001	368	0.0073782	29.030866	12.096194	1	Yes	-	9.70E+05	nc
Stearyl Acetate	822-23-1	No	Yes	Organics	-	-	-		-		-		1	17.3	313	117.71856	27.945902	5.9518058	0	No	-		
Stirofos (Tetrachlorovinphos)	961-11-5	No	No	Organics	2.40E-02	U	-		3.00E-02	U	-		1	0.00307	366	0.0225894	28.291762	11.788234	0.9	Yes	-	2.77E+00	ca
Strontium Chromate	7789-06-2	Yes	No	Inorganics	5.00E-01	U	1.50E-01	U	2.00E-02	U	2.00E-04	U	0.025	0.001	204	0.0054934	3.5031601	1.4596501	1	Yes	-	4.12E-02	ca
Strontium, Stable	7440-24-6	No	No	Inorganics	-	-	-		6.00E-01	U	-		1	0.001	87.6	0.0035998	0.7809442	0.3253934	1	Yes	-	1.20E+04	nc
Strychnine	57-24-9	No	No	Organics	-	-	-		3.00E-04	U	-		1	0.000399	334	0.0028046	18.726646	7.802769	1	Yes	-	5.91E+00	nc
Styrene	100-42-5	No	Yes	Organics	-	-	-		2.00E-01	U	1.00E+00	U	1	0.0372	104	0.1459104	0.9648504	0.402021	1	Yes	1.00E+02	1.21E+03	nc
Styrene-Acrylonitrile (SAN) Trimer	NA	No	No	Organics	-	-	-		3.00E-03	U	-		1	0.0119	210	0.0663259	3.7849486	1.5770619	1	Yes	-	4.82E+01	nc
Sulfate	14808-79-8	No	No	Inorganics	-	-	-		-		-		1	0.001	98.1	0.0038094	0.8941698	0.3725707	1	Yes	-		
Sulfide	18496-25-8	No	No	Inorganics	-	-	-		-		-		1	0.001	34.1	0.002246	0.3917599	0.1632333	1	Yes	-		
Sulfite	14265-45-3	No	No	Inorganics	-	-	-		-		-		1	0.001	-	-	-	-	0	Yes	-		
Sulfolane	126-33-0	No	No	Organics	-	-	-		1.00E-03	U	2.00E-03	U	1	0.000102	120	0.0004298	1.1859326	0.4941386	1	Yes	-	2.00E+01	nc
Sulfonylbis(4-chlorobenzene), 1,1'-	80-07-9	No	No	Organics	-	-	-		8.00E-04	U	-		1	0.0149	287	0.0970854	10.215509	4.2564619	0.9	Yes	-	1.10E+01	nc
Sulfur	7704-34-9	No	No	Inorganics	-	-	-		-		-		1	0.001	32.1	0.0021791	0.381786	0.1590775	1	Yes	-		
Sulfur Dioxide	7446-09-5	No	Yes	Inorganics	-	-	-		-		-		1	0.001	64.1	0.0030793	0.576793	0.2403304	1	Yes	-		
Sulfur Mustard	505-60-2	No	Yes	Organics	-	-	-		-		-		1	0.00448	159	0.0217272	1.9609205	0.8170502	1	Yes	-		
Sulfur Trioxide	7446-11-9	No	Yes	Inorganics	-	-	-		-		1.00E-03	U	1	0.001	80.1	0.0034423	0.7089572	0.2953988	1	Yes	-	2.09E+00	nc
Sulfuric Acid	7664-93-9	No	No	Inorganics	-	-	-		-		1.00E-03	U	1	0.001	98.1	0.0038094	0.8941698	0.3725707	1	Yes	-		
Sulfurous acid, 2-chloroethyl 2-[4-(1,1-																							
dimethylethyl)phenoxy]-1-methylethyl	140.57.0				0.505.00	l l	7.405.00		5.005.00					0.000	005	0.0000005	40.000070	7.0040004				4.045.00	
ester	140-57-8		No	Organics	2.50E-02	U	7.10E-06	U	5.00E-02	U	-		1	0.0328	335	0.2308995	18.969679	7.9040331	0.8	Yes		1.34E+00	ca
TCDD, 2,3,7,8-	1746-01-6		Yes	Organics	1.30E+05		3.80E+01	U	7.00E-10	U	4.00E-08	U	1	0.808	322	5.5765545	29.479547	6.6841894	0.5		3.00E-05		ca
TCDF, 2,3,7,8-	51207-31-9	No	Yes	Organics	1.30E+04	U	3.80E+00	U	7.00E-09	U	4.00E-07	U	1	0.657	306	4.4203101	23.644243	5.4381195	0.6	No	-	1.19E-06	ca
TCMTB	21564-17-0		No	Organics	<u> </u>	-	-		3.00E-02	U	-		1	0.0112	238	0.0664558	5.4307523	2.2628134	0.9	Yes	-	4.81E+02	nc
Tebuthiuron	34014-18-1		No	Organics	<u> </u>	-	-		7.00E-02	U	-		1	0.00127	228	0.0073756	4.7737535	1.989064	1	Yes	-	1.36E+03	nc
Technetium	7440-26-8	No	No	Inorganics	<u> </u>	-	-		-		-		1	0.001	97.9	0.0038056	0.8918668	0.3716112	1	Yes	-		
Tellurium	13494-80-9		No	Inorganics	<u> </u>	-	-		2.005.00	11	-		1	0.001	128	0.0043514			0.7	Yes	-	4.04E+02	no
Temephos	3383-96-8		No	Organics	<u> </u>	-	-		2.00E-02	U	-		1	0.0345	466	0.2864433	102.72118	42.800491	0.7	No	-	4.01E+02	nc
Terbufee	5902-51-2		No	Organics		-	-		1.30E-02	U	-		1	0.00172	217	0.0097451	4.1424759	1.7260316	1	Yes		2.51E+02	nc
Terbufos	13071-79-9		Yes	Organics		-	-		2.50E-05 1.00E-03	U	-		1	0.0358	288	0.2336716	10.348085		0.9	Yes	-	2.38E-01 1.35E+01	nc
Terbutryn Test Chemical	886-50-0		No	Organics	-	-	-		1.00⊑-03	U	-		1	0.0212	241	0.1265817	5.6449486	2.3320019	0.9	Yes	-	1.335+01	nc
Tetrabromodiphenyl ether, 2,2',4,4'-	NA	No	No	Inorganics		-	-				-		-	-	-	-	-	-	U	No	-		
(BDE-47)	5436-43-1	No	No	Organics	_	_	_		1.00E-04	U	_		1	0.0929	486	0.7876994	213.21305	55.392217	0.6	No	_	2.01E+00	nc
Tetrabutyl Lead	1920-90-7		Yes	Organics	-	_	_			, ,	_		1	4.04	436	32.44526	135.23728	29.070249	0	No			
Tetrachloroaniline, 2,3,5,6-	3481-20-7		No	Organics	-	_	_				_		1	0.0421	231	0.2461018		2.0675154	0.9	Yes	_		
Tetrachlorobenzene, 1,2,3,4-	634-66-2		Yes	Organics		_	_				_		1	0.11	216	0.6217936		1.7039182	1	Yes	_		
Tetrachlorobenzene, 1,2,4,5-	95-94-3		Yes	Organics	-	_	_		3.00E-04	U	_		1	0.117	216	0.6613622			1	Yes		1.70E+00	nc
. 38 45111010201120110, 1,2,7,0	30 0 7 0		, 55	O i garnos			_		5.50L 07		-		•	5.117	0	0.0010022	0.00-1002	1.1 300 102	'	100		02.00	1.10

Resident Screening Levels (RSL) for Tap Water

Key: I = IRIS; P = PPRTV; D = DWSHA; O = OPP; A = ATSDR; C = Cal EPA; X = APPENDIX PPRTV SCREEN (See FAQ #27); H = HEAST; F = See user guide Section 2.3.5; L = see user guide Section 5; V = volatile; R = RBA applied (See User Guide for Arsenic notice); c = cancer; n = noncancer; * = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; *** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = wher

					Ingestion SF	SFO	Inhalation Unit Risk	IUR	Chronic RfD	Chronic RfD	Chronic RfC	Chronic RfC		K ₀		В	4	T _{event}	FA		MCL	Screening Level	
Chemical	CAS Number	Mutagen?	VOC?	Chemical Type	(mg/kg-day) ⁻¹	Ref	(ug/m ³) ⁻¹	Ref	(mg/kg-day)	Ref	(mg/m³)	Ref	GIABS	(cm/hr)	MW	(unitless)	(hr)	(hr/event)	(unitless)	In EPD?	(ug/L)	(ug/L)	[basis]
Tetrachlorobiphenyl, 3,3',4,4'- (PCB 77)	32598-13-3	No	No	Organics	1.30E+01	U	3.80E-03	U	7.00E-06	U	4.00E-04	U	1	0.917	292	6.0268088	20.108578	4.5399257	0.6	No	-	5.99E-03	ca*
Tetrachlorobiphenyl, 3,4,4',5- (PCB 81)	70362-50-4	No	Yes	Organics	3.90E+01	U	1.14E-02	U	2.33E-06	U	1.33E-04	U	1	0.584	292	3.8382294	19.547521	4.5399257	0.7	No	_	3.95E-04	ca
Tetrachloroethane, 1,1,1,2-	630-20-6	No	Yes	Organics	2.60E-02	U	7.40E-06	U	3.00E-02	U	-		1	0.0159	168	0.0792644	2.2022164	0.9175902	1	Yes	-	5.74E-01	ca
Tetrachloroethane, 1,1,2,2-	79-34-5	No	Yes	Organics	2.00E-01	U	5.80E-05	U	2.00E-02	U	-		1	0.00694	168	0.0345972	2.2022164	0.9175902	1	Yes	-	7.57E-02	ca
Tetrachloroethylene	127-18-4	No	Yes	Organics	2.10E-03	U	2.60E-07	U	6.00E-03	U	4.00E-02	U	1	0.0334	166	0.1655111	2.1461496	0.894229	1	Yes	5.00E+00	1.13E+01	ca**
Tetrachlorophenol, 2,3,4,5-	4901-51-3	No	No	Organics	-		-		-		-		1	0.0491	232	0.2876419	5.0264341	2.0943475	0.9	Yes	-		
Tetrachlorophenol, 2,3,4,6-	58-90-2	No	No	Organics	-		-		3.00E-02	U	-		1	0.071	232	0.4159384	5.0264341	2.0943475	0.9	Yes	-	2.38E+02	nc
Tetrachlorophenols (total)	25167-83-3	No	No	Organics	-		-		-		-		1	0.071	696	0.7204264	3216.9337	830.70868	0.3	No	-		
Tetrachloroterephthalate, 2,3,5,6- Tetrachlorotoluene, p- alpha, alpha,	2136-79-0	No	No	Organics	-		-		-		-		1	0.000808	304	0.0054184	12.719206	5.299669	1	Yes	-		
alpha-	5216-25-1	No	Yes	Organics	2.00E+01	U	-		-		-		1	0.0836	230	0.4876372	4.8984648	2.041027	0.9	Yes	-	1.33E-03	ca
Tetraethyl Dithiopyrophosphate	3689-24-5	No	No	Organics	-		-		5.00E-04	U	-		1	0.0109	322	0.0752283	16.042055	6.6841894	0.9	Yes		7.06E+00	nc
Tetraethyl Lead	78-00-2	No	Yes	Organics	-		-		1.00E-07	U	-		1	0.0137	323	0.0946997	16.250248	6.7709366	0.9	Yes		1.31E-03	nc
Tetrafluoroethane, 1,1,1,2-	811-97-2	No	Yes	Organics	-		-		-		8.00E+01	U	1	0.00548	102	0.0212866		0.3917859	1	Yes		1.67E+05	nc
Tetrahydrofuran	109-99-9	No	Yes	Organics	-		-		9.00E-01	U	2.00E+00	U	1	0.00125	72.1	0.0040823	0.6394697	0.2664457	1	Yes	-	3.38E+03	nc
Tetrahydrothiophene	110-01-0	No	Yes	Organics	-		-		-		-		1	0.00775	88.2	0.0279939		0.3279206	1	Yes	-		
Tetramethyl Lead	75-74-1	No	Yes	Organics	-		-		-		-		1	0.00466	267	0.0292865	7.8933251	3.2888855	1	Yes	-		
Tetramethylcyclohexane	30501-43-0	No	Yes	Organics	-		-		-		-		1	-	140	-		0.6395121	0	No	-		
Tetrapotassium phosphate	7320-34-5	No	No	Inorganics	-		-		4.86E+01	U	-		1	0.001	330	0.0069869		7.4105211	1	Yes	-	9.70E+05	nc
Tetrapropyl Lead	3440-75-3	No	Yes	Organics	<u>-</u>	•	-		4.005.04		-		1	0.412	380	3.0889841		14.120457	0.4	No	-	0.705 - 05	
Tetrasodium pyrophosphate	7722-88-5	No	No	Inorganics	-		-		4.86E+01	U	-		1	0.001	266	0.0062729	7.7921982	3.2467493	1	Yes	-	9.70E+05	nc
Tetryl (Trinitrophenylmethylnitramine)	479-45-8	No	No	Organics	-		_		2.00E-03	U	_		1	0.000474	287	0.0030885	10.215509	4.2564619	1	Yes	_	3.95E+01	nc
Thallic Oxide	1314-32-5	No	No	Inorganics	-		-		2.00E-05	U	-		1	0.001	457	0.0082221	91.466064	38.11086	0.9	Yes	-	3.99E-01	nc
Thallium (I) Nitrate	10102-45-1	No	No	Inorganics	-		-		1.00E-05	U	-		1	0.001	267	0.0062847	7.8933251	3.2888855	1	Yes	-	2.00E-01	nc
Thallium (Soluble Salts)	7440-28-0	No	No	Inorganics	-		-		1.00E-05	U	-		1	0.001	204	0.0054934	3.5031601	1.4596501	1	Yes	2.00E+00	2.00E-01	nc
Thallium Acetate	563-68-8	No	Yes	Organics	-		-		1.00E-05	U	-		1	0.0000399	263	0.0002489	7.496525	3.1235521	1	Yes	-	2.00E-01	nc
Thallium Carbonate	6533-73-9	No	Yes	Organics	-		-		2.00E-05	U	-		1	9.82E-7	469	8.1795E-6	106.77264	44.488601	1	Yes	-	4.01E-01	nc
Thallium Chloride	7791-12-0	No	No	Inorganics	-		-		1.00E-05	U	-		1	0.001	240	0.0059584	5.5726272	2.321928	1	Yes	-	2.00E-01	nc
Thallium Selenite	12039-52-0	No	No	Inorganics	-		-		1.00E-05	U	-		1	0.001	283	0.0064702	9.7019714	4.0424881	1	Yes		2.00E-01	nc
Thallium Sulfate	7446-18-6	No	No	Inorganics	-		-		2.00E-05	U	-		1	0.001	505	0.0086432	169.84783	70.769927	0.9	Yes		3.99E-01	nc
Thifensulfuron-methyl	79277-27-3	No	No	Organics	-		-		4.30E-02	U	-		1	0.000114	387	0.0008626	37.09027	15.454279	1	Yes		8.56E+02	nc
Thiobencarb	28249-77-6	No	No	Organics	-		-		1.00E-02	U	-		1	0.0102	258	0.0630139	7.028457	2.9285237	0.9	Yes		1.59E+02	nc
Thiocyanates	NA	No	No	Inorganics	-		-		2.00E-04	U	-		1	0.001	-	-	-	-	0	Yes		3.99E+00	nc
Thiocyanic Acid	463-56-9	No	Yes	Inorganics	-		-		2.00E-04	U	-		1	0.001	59.1		0.5407792		1	Yes		3.99E+00	nc
Thiodiglycol	111-48-8	No	No	Organics	-		-		7.00E-02	U	-		1	0.000123	122	0.0005225	1.2169143		1	Yes		1.40E+03	nc
Thiofanox	39196-18-4	No	No	Organics	-		-		3.00E-04	U	-		1		218	0.0356059			1	Yes		5.29E+00	nc
Thiophanate, Methyl	23564-05-8	No	No	Organics	1.16E-02	U	-		2.67E-02	U	-		1		342	0.001138	20.76156		1	Yes	-	6.66E+00	ca*
Thiophene	110-02-1	No	Yes	Organics	-		-		4 505 00		-		1	0.00843	84.1			0.3110346	1	Yes	-	0.005.00	
Thereives	137-26-8	No	No	Organics	-	·	-		1.50E-02	U	-		1	0.00099	240		5.5726272		1	Yes	-	2.93E+02	nc
Thornum	7440-29-1	No	No	Inorganics	-	·	-		-		-		1	0.001	232			2.0943475	1	Yes	-		
Thymol	89-83-8	No	No	Organics	-		-		6.005.04	- 11	-		1	0.0373	150		1.7460633		1	Yes	-	1.205.04	
Tin	7440-31-5	No	No	Inorganics	-		-		6.00E-01	U	-		1	0.001	119		1.1707387		1	Yes	-	1.20E+04	nc
Titanium Titanium Tatrachlarida	7440-32-6	No	No	Inorganics	-		-		-		1.005.04	11	1	0.001	47.9	0.0026619		0.1950243	1	Yes	-	2.005.04	
Titanium Tetrachloride	7550-45-0	No	Yes	Inorganics	-		-		-		1.00E-04	U	1	0.001	190	0.0053016	2.9245563	1.2100001	ı	Yes	-	2.09E-01	nc

Resident Screening Levels (RSL) for Tap Water

Key: I = IRIS; P = PPRTV; D = DWSHA; O = OPP; A = ATSDR; C = Cal EPA; X = APPENDIX PPRTV SCREEN (See FAQ #27); H = HEAST; F = See user guide Section 2.3.5; L = see user guide on lead; M = mutagen; S = see user guide Section 5; V = volatile; R = RBA applied (See User Guide for Arsenic notice); c = cancer; n = noncancer; * = where: n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n S

							Inhalation																
					Ingestion SF	SFO	Unit Risk	IUR	Chronic RfD	Chronic RfD	Chronic RfC	Chronic RfC		K _p		В			FA		MCL	Screening Level	
Chemical	CAS Number	Mutagen?	VOC?	Chemical Type	(mg/kg-day) ⁻¹	1 Ref	(ug/m ³) ⁻¹	Ref	(mg/kg-day)	Ref	(mg/m³)	Ref	GIABS	(cm/hr)	MW	(unitless)	(hr)	T _{event} (hr/event)	(unitless)	In EPD?	(ug/L)	(ug/L)	[basis]
Toluene	108-88-3	No	Yes	Organics	(0 0),	-	-		8.00E-02	U	5.00E+00	U	1	0.0311	92.1	0.1147934	0.8275991	0.3448329	1	Yes	1.00E+03	1.10E+03	nc
Toluene-2,4-diisocyanate	584-84-9	No	Yes	Organics		-	1.10E-05	U	-		8.00E-06	U	1	0.505	174	2.5620798	4.1334535	0.9913996	1	Yes	-	1.67E-02	nc
Toluene-2,5-diamine	95-70-5	No	No	Organics	1.80E-01	U	-		2.00E-04	U	-		1	0.00041	122	0.0017418	1.2169143	0.5070476	1	Yes	-	4.31E-01	ca**
Toluene-2,6-diisocyanate	91-08-7	No	Yes	Organics		-	1.10E-05	U	-		8.00E-06	U	1	0.0505	174	0.256208	2.3793591	0.9913996	1	Yes	-	1.67E-02	nc
Toluenediamine, 2,3-	2687-25-4	No	No	Organics		-	-		-		-		1	0.000952	122	0.0040443	1.2169143	0.5070476	1	Yes	-		
Toluenediamine, 3,4-	496-72-0	No	No	Organics		-	-		-		-		1	0.000887	122	0.0037682	1.2169143	0.5070476	1	Yes	-		
Toluidine, o- (Methylaniline, 2-)	95-53-4	No	No	Organics	1.60E-02	U	5.10E-05	U	-		-		1	0.00296	107	0.0117763	1.0029054	0.4178773	1	Yes	-	4.71E+00	ca
* I	106-49-0	No	No	Organics	3.00E-02	U	-		4.00E-03	U	-		1	0.00329	107	0.0130892	1.0029054	0.4178773	1	Yes	-	2.50E+00	ca*
Total Petroleum Hydrocarbons																							
(1 9)	NA	No	Yes	Organics		-	-		3.00E+00	U	-		1	1.96	170	9.8289513	4.2628507	0.9415616	1	No	-	6.02E+04	nc
Total Petroleum Hydrocarbons	NA	No	Voc	Organica							6.00E-01	U	1	0.204	86.0	0.7177552	1.2380278	0.319572	1	Yes		1.25E+03	no
(Aliphatic Low) Total Petroleum Hydrocarbons	INA	No	Yes	Organics		-	-		-		0.00⊏-01	U	1	0.201	86.2	0.7177552	1.2300218	0.319372	ı	162	-	1.250-03	nc
	NA	No	Yes	Organics		_	_		1.00E-02	U	1.00E-01	U	1	1.7	128	7.3974248	2.4513898	0.5478337	1	No	_	1.02E+02	nc
Total Petroleum Hydrocarbons				- 3						-		-	•							-			
(Aromatic High)	NA	No	No	Organics		-	-		4.00E-02	U	-		1	0.308	202	1.6836548	5.7102866	1.4224885	1	No	-	8.02E+02	nc
Total Petroleum Hydrocarbons																							
,	NA	No	Yes	Organics		-	-		4.00E-03	U	3.00E-02	U	1	0.0149	78.1	0.0506452	0.6909076	0.2878782	1	Yes	-	3.32E+01	nc
Total Petroleum Hydrocarbons	NIA	No	Voc	Organica					4.005.03		3 005 03		4	0.0602	125	0.2002420	1 4200072	0.5005022	4	Vaa		E 45E 100	
1	NA 25.2		Yes	Organics	1.10E+00	- U	3.20E-04	U	4.00E-03	U	3.00E-03	U	1	0.0692	135	0.3092428		0.5995822	0.0	Yes	3.00E+00	5.45E+00	nc
	8001-35-2		No	Organics	1.10=+00	U	3.20E-04	U	7 505 02	U	-		1	0.0518 0.0305	448	0.4216921 0.3025083	81.444168	33.93507 556.99173	0.8		3.00⊑+00	1.50E+02	ca
	66841-25-6 688-73-3		No	Organics		-	-		7.50E-03 3.00E-04	-	-		1	-	665	0.3025083		4.4817616	0.5	No	-		nc
	102-76-1		Yes	Organics		-	-			U	-		1	0.0193	291 218			1.748432	0.9	Yes	-	3.74E+00	nc
	43121-43-3		No No	Organics		-	-		8.00E+01 3.40E-02	U	-		1	0.000137 0.00244	218	0.000778 0.0160913	4.1962368 11.180468	4.6585284	1	Yes Yes	-	1.60E+06 6.27E+02	nc
	2303-17-5		Yes	Organics Organics	7.17E-02	- U	-		2.50E-02	U	-		1	0.00244	305	0.0100913		5.368448	0.9	Yes	-	4.70E-01	nc
Trialuminum sodium tetra	2303-17-3	INO	165	Organics	7.176-02	- 0	-		2.50E-02	U	-		ı	0.0349	303	0.234424	12.004273	5.306446	0.9	162		4.70⊏-01	ca
decahydrogenoctaorthophosphate																							
(dihydrate)	15136-87-5	No	No	Inorganics		-	-		4.86E+01	U	-		1	0.001	888	0.0114613	23706.093	9877.5389	8.0	Yes	-	9.70E+05	nc
Triasulfuron	82097-50-5	No	No	Organics		-	-		1.00E-02	U	-		1	0.0000469	402	0.0003617	45.00492	18.75205	1	Yes	-	2.00E+02	nc
Triaziquone	68-76-8	No	No	Organics		-	-		-		-		1	0.0000101	231	0.000059	4.9620369	2.0675154	1	Yes	-		
Tribenuron-methyl	101200-48-0	No	No	Organics		-	-		8.00E-03	U	-		1	0.000468	395	0.0035774	41.120652	17.133605	1	Yes	-	1.55E+02	nc
Tribromobenzene, 1,2,4-	615-54-3	No	Yes	Organics		-	-		5.00E-03	U	-		1	0.0337	315	0.2300445	14.657503	6.1072929	0.9	Yes	-	4.47E+01	nc
Tribromochloromethane	594-15-0	No	Yes	Organics		-	-		-		-		1	0.00243	287	0.0158334	10.215509	4.2564619	1	Yes	-		
Tribromodiphenyl Ether	49690-94-0	No	Yes	Organics		-	-		-		-		1	0.0659	407	0.5113394	48.002073	20.000864	0.7	Yes	-		
Tribromophenol, 2,4,6-	118-79-6	No	No	Organics		-	-		9.00E-03	U	-		1	0.0121	331	0.0846693	18.016067	7.5066946	0.9	Yes	-	1.21E+02	nc
Tributyl Phosphate	126-73-8	No	No	Organics	9.00E-03	U	-		1.00E-02	U	-		1	0.0228	266	0.1430218	7.7921982	3.2467493	0.9	Yes	-	5.20E+00	ca*
Tributyltin	56573-85-4	No	Yes	Organics		-	-		-		-		1	0.034	325	0.2357476	16.674775	6.9478231	0.8	Yes	-		
Tributyltin Compounds	NA	No	No	Organics		-	-		3.00E-04	U	-		1	-	-	-	-	-	0	No	-	6.02E+00	nc
Tributyltin Oxide	56-35-9	No	No	Organics		-	-		3.00E-04	U	-		1	0.000252	596	0.0023662	549.11081	228.79617	1	Yes	-	5.66E+00	nc
Tributyltin chloride	1461-22-9	No	Yes	Organics		-	-		-		-		1	0.034	325	0.2357476	16.674775	6.9478231	0.8	Yes	-		
Tributyltin fluoride	1983-10-4	No	Yes	Organics		-	-		-		-		1	0.0238	309	0.1609099	13.566255	5.6526064	0.9	Yes	-		
Tributyltin linoleate	24124-25-2	No	Yes	Organics		-	-		-		-		1	12.2	569	111.929	758.29374	161.52835	0	No	-		
Tributyltin methacrylate	2155-70-6	No	Yes	Organics		-	-		-		-		1	0.00693	375	0.051615	31.773129	13.238804	0.9	Yes	-		
Tributyltin naphthenate	85409-17-2	No	No	Organics		-	-		-		-		1	-	-	-	-	-	0	No	-		
Tricaine Methanesulfonate	886-86-2	No	No	Organics		-	-		-		-		1	0.0029	165	0.0143274	2.1186538	0.8827724	1	Yes	-		
Tricalcium phosphate	7758-87-4	No	No	Inorganics		-	-		4.86E+01	U	-		1	0.001	310	0.0067719	13.742318	5.7259658	1	Yes	-	9.70E+05	nc

Resident Screening Levels (RSL) for Tap Water

Key: I = IRIS; P = PPRTV; D = DWSHA; O = OPP; A = ATSDR; C = Cal EPA; X = APPENDIX PPRTV SCREEN (See FAQ #27); H = HEAST; F = See user guide Section 2.3.5; L = see user guide on lead; M = mutagen; S = see user guide Section 5; V = volatile; R = RBA applied (See User Guide for Arsenic notice); c = cancer; n = noncancer; * = where: n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n SL < 100X c SL; ** = where n S

							Inhalation																
					Ingestion		Unit		Chronic	Chronic	Chronic	Chronic										Screening	
Chemical	CAS Number	Mutagon2	VOC2	Chemical Type	SF (mg/kg-day) ⁻¹	SFO Ref	Risk (ug/m³) ⁻¹	IUR Ref	RfD (mg/kg-day)	RfD Ref	RfC (mg/m³)	RfC Ref	GIABS	(cm/hr)	MW	B (unitless)	t (hr)	T _{event} (hr/event)	FA (unitless)	In EPD?	MCL	Level (ug/L)	[basis]
Chemical	CAS Number	wiutagen	VUC	Chemical Type	(IIIg/kg-uay)	Kei	(ug/iii)	Kei	(Ilig/kg-day)	Kei	(mg/m)	Kei	GIADS	(CIII/III)	IVI VV	(unitiess)	(111)	(III/eveiit)	(unitiess)	III EPD?	(ug/L)	(ug/L)	[Dasis]
Trichloro-1,2,2-trifluoroethane, 1,1,2-	76-13-1	No	Yes	Organics	-		-		3.00E+01	U	5.00E+00	U	1	0.0175	187	0.0920419	2.8135847	1.172327	1	Yes	-	1.02E+04	nc
Trichloro-2'-hydroxydiphenylether	3380-34-5	No	No	Organics	-		-		-		-		1	0.0541	290	0.3543422	10.618422	4.4243426	0.9	Yes	-		
Trichloroacetic Acid	76-03-9	No	No	Organics	7.00E-02	U	-		2.00E-02	U	-		1	0.00145	163	0.0071201	2.0647144	0.8602977	1	Yes	6.00E+01	1.09E+00	ca
Trichloroaniline HCl, 2,4,6-	33663-50-2	No	No	Organics	2.90E-02	U	-		-		-		1	0.0000276	233	0.000162	5.091667	2.1215279	1	Yes	-	2.68E+00	ca
Trichloroaniline, 2,4,5-	636-30-6	No	No	Organics	-		-		-		-		1	0.0243	196	0.1308462	3.1598029	1.3165845	1	Yes	-		
Trichloroaniline, 2,4,6-	634-93-5	No	No	Organics	7.00E-03	U	-		3.00E-05	U	-		1	0.027	196	0.1453846	3.1598029	1.3165845	1	Yes	-	3.98E-01	nc
Trichlorobenzene	12002-48-1	No	Yes	Organics	-		-		-		-		1	0.0915	363	0.6705035	44.367152	11.340932	8.0	Yes	-		
Trichlorobenzene, 1,2,3-	87-61-6	No	Yes	Organics	-		-		8.00E-04	U	-		1	0.0738	181	0.3818759	2.604114	1.0850475	1	Yes	-	7.06E+00	nc
Trichlorobenzene, 1,2,4-	120-82-1	No	Yes	Organics	2.90E-02	U	-		1.00E-02	U	2.00E-03	U	1	0.0705	181	0.3648002	2.604114	1.0850475	1	Yes	7.00E+01	1.16E+00	ca**
		No	Yes	Organics	-		-		2.00E+00	U	5.00E+00	U	1	0.0126	133	0.0558886	1.4023615	0.5843173	1	Yes	2.00E+02		nc
Trichloroethane, 1,1,2-	79-00-5	No	Yes	Organics	5.70E-02	U	1.60E-05	U	4.00E-03	U	2.00E-04	U	1	0.00504	133	0.0223554	1.4023615	0.5843173	1	Yes	5.00E+00		ca**
,	79-01-6	Yes	Yes	Organics	4.60E-02	U	4.10E-06	U	5.00E-04	U	2.00E-03	U	1	0.0116	131	0.0510646	1.3666585	0.569441	1	Yes	5.00E+00	4.94E-01	ca**
Trichlorofluoromethane	75-69-4	No	Yes	Organics	-		-		3.00E-01	U	-		1	0.0127	137	0.057173	1.4765902	0.6152459	1	Yes	-	5.16E+03	nc
Trichlorophenol, 2,4,5-	95-95-4	No	No	Organics	-		-		1.00E-01	U	-		1	0.0362	197	0.1954197	3.2008107	1.3336711	1	Yes	-	1.18E+03	nc
Trichlorophenol, 2,4,6-	88-06-2	No	No	Organics	1.10E-02	U	3.10E-06	U	1.00E-03	U	-		1	0.0346	197	0.1867824	3.2008107	1.3336711	1	Yes	-	4.12E+00	ca**
Trichlorophenoxyacetic Acid, 2,4,5-	93-76-5	No	No	Organics	-		-		1.00E-02	U	-		1	0.00914	255	0.0561362	6.7617637	2.8174016	0.9	Yes	-	1.63E+02	nc
	93-72-1	No	No	Organics	-		-		8.00E-03	U	-		1	0.0161	270	0.10175	8.2046487	3.4186036	0.9	Yes	5.00E+01	1.11E+02	nc
Trichloropropane, 1,1,2-	598-77-6	No	Yes	Organics	-		-		5.00E-03	U	-		1	0.0096	147	0.0447669	1.6798093	0.6999206	1	Yes	-	8.85E+01	nc
Trichloropropane, 1,2,3-	96-18-4	Yes	Yes	Organics	3.00E+01	U	-		4.00E-03	U	3.00E-04	U	1	0.00752	147	0.0350674	1.6798093	0.6999206	1	Yes	-	7.49E-04	ca
Trichloropropene, 1,2,3-	96-19-5	No	Yes	Organics	-		-		3.00E-03	U	3.00E-04	U	1	0.0169	145	0.0782704	1.6370426	0.6821011	1	Yes	-	6.18E-01	nc
Trichlorotoluene, 2,3,6-	2077-46-5	No	Yes	Organics	-		-		-		-		1	0.118	195	0.6337617	5.1539199	1.2997169	1	Yes	-		
Trichlorotoluene, alpha 2,6-	2014-83-7	No	Yes	Organics	-		-		-		-		1	0.0648	195	0.3480318	3.1193204	1.2997169	1	Yes	-		
Triclorophenols (total)	NA	No	No	Organics	-		-		-		-		1	-	-	-	-	-	0	No	-		
Tricresyl Phosphate (TCP)	1330-78-5	No	No	Organics	-		-		2.00E-02	U	-		1	0.0334	368	0.246432	29.030866	12.096194	8.0	Yes	-	1.58E+02	nc
Tridiphane	58138-08-2	No	No	Organics	-		-		3.00E-03	U	-		1	0.0689	320	0.4740464	15.633636	6.5140149	0.8	Yes	-	1.81E+01	nc
Tridymite	15468-32-3	No	No	Inorganics	-		-		-		-		1	0.001	60.1	0.0029817	0.5477974	0.2282489	1	Yes	-		
Triethyl Lead	5224-23-7	No	Yes	Organics	-		-		-		-		1	0.0125	294	0.0824348	11.180468	4.6585284	0.9	Yes	-		
Triethyl phosphorothioate [O,O,O-]	126-68-1	No	Yes	Organics	-		-		-		-		1	0.00684	198	0.0370182	3.2423507	1.3509795	1	Yes	-		
Triethylamine		No	Yes	Organics	-		-		-		7.00E-03	U	1	0.0039	101	0.0150748	0.9282394	0.3867664	1	Yes	-	1.46E+01	nc
		No	No	Organics	-		-		2.00E+00	U	-		1	0.0000155	150	0.000073	1.7460633	0.7275264	1	Yes	-	4.01E+04	nc
Trifluoroethane, 1,1,1-		No	Yes	Organics	-		-		-		2.00E+01	U	1	0.00757	84	0.0266847	0.7455212	0.3106338	1	Yes	-	4.17E+04	nc
Trifluralin		No	Yes	Organics	7.70E-03	U	-		7.50E-03	U	-		1	0.0728	335	0.5124841		7.9040331	0.8	Yes	-	2.56E+00	ca*
			No	Inorganics	-		-		4.86E+01	U	-		1	0.001	263	0.0062374		3.1235521	1	Yes	-	9.70E+05	nc
•		No	Yes	Organics	-		-		-		-		1	0.00226	253	0.013826	6.5896142		1	Yes	-		
Trimethyl Phosphate	512-56-1	No	No	Organics	2.00E-02	U	-		1.00E-02	U	-		1	0.0000948	140	0.0004314	1.534829	0.6395121	1	Yes	-	3.89E+00	ca*
Trimethyl-4-Propenylnaphthalene, 1,2,3-	26137-53-1	No	Yes	Organics	-		_		-		-		1	1.22	210	6.7997999	7.028664	1.5770619	1	No	-		
•		No	Yes	Organics	-		-		1.00E-02	U	6.00E-02	U	1	0.0897	120	0.3779286	1.1859326	0.4941386	1	Yes	-	5.50E+01	nc
Trimethylbenzene, 1,2,4-	95-63-6	No	Yes	Organics	-		-		1.00E-02	U	6.00E-02	U	1	0.0857	120	0.3610756	1.1859326	0.4941386	1	Yes	-	5.57E+01	nc
Trimethylbenzene, 1,3,5-	108-67-8	No	Yes	Organics	-		-		1.00E-02	U	6.00E-02	U	1	0.0621	120	0.2616429	1.1859326	0.4941386	1	Yes	-	6.03E+01	nc
Trimethylethyl Lead	1762-26-1	No	Yes	Organics	-		-		-		-		1	0.0157	281	0.1012231	9.4549664	3.9395693	0.9	Yes	-		
Trimethylpentane, 2,2,4-	540-84-1	No	Yes	Organics	-		-		-		-		1	0.186	114	0.7638218	1.76298	0.4573501	1	Yes	-		
	25167-70-8	No	Yes	Organics	-		-		1.00E-02	U	-		1	0.189	112	0.7693031	1.7174241	0.4457063	1	Yes	-	6.49E+01	nc
Trinitrobenzene, 1,3,5-	99-35-4	No	No	Organics	-		-		3.00E-02	U	-		1	0.000607	213	0.0034073	3.9342322	1.6392634	1	Yes	-	5.94E+02	nc

Resident Screening Levels (RSL) for Tap Water

Key: I = IRIS; P = PPRTV; D = DWSHA; O = OPP; A = ATSDR; C = Cal EPA; X = APPENDIX PPRTV SCREEN (See FAQ #27); H = HEAST; F = See FAQ; J = New Jersey; E = see user guide Section 2.3.5; L = see user guide on lead; M = mutagen; S = see user guide Section 5; V = volatile; R = RBA applied (See User Guide for Arsenic notice); c = cancer; n = noncancer; * = where: n SL < 100X c SL; ** = where n SL < 10X c SL; SSL values are based on DAF=1; m = Concentration may exceed Csat (See User Guide)

					.		Inhalation				Ohaania												
					Ingestion SF	050	Unit Risk		Chronic	Chronic	Chronic RfC	Chronic		L L		_	_	_				Screening	
Chemical	CAS Number	Mutagen?	VOC?	Chemical Type	ات (mg/kg-day) ⁻¹	SFO Ref	(ug/m³) ⁻¹	IUR Ref	RfD (mg/kg-day)	RfD Ref	(mg/m³)	RfC Ref	GIABS	K _p (cm/hr)	MW	B (unitless)	(hr)	T _{event} (hr/event)	FA (unitless)	In EPD?	MCL (ug/L)	Level (ug/L)	[basis]
		No.	No.	Organics	3.00E-02	U	(ug/iii)	1101	5.00E-04	U	(mg/m /	1101	1	0.000963	227	0.0055804	4.7125936	1.9635807	1	Yes	(ug/L) -	2.54E+00	ca**
		No	No	Organics	0.002 02	_	_		2.00E-02	U	_		1	0.00327	278	0.0209699	9.0961998	3.7900833	1	Yes		3.63E+02	nc
1 71 1		No	Yes	Organics		_	_				-		1	0.00356	351	0.0256525	23.316319	9.715133	0.9	Yes			
1 2		No	No	Inorganics		-	-		4.86E+01	U	-		1	0.001	212	0.0056001	3.883828	1.6182617	1	Yes	-	9.70E+05	nc
		No	Yes	Organics		-	-		-		-		1	0.0693	337	0.4892996	19.46525	8.1105209	0.8	Yes	-		
Tris(1,3-Dichloro-2-propyl) Phosphate 1	13674-87-8	No	No	Organics		-	-		2.00E-02	U	-		1	0.00159	431	0.0126959	65.412386	27.255161	0.9	Yes	-	3.57E+02	nc
Tris(1-chloro-2-propyl)phosphate 1	13674-84-5	No	No	Organics		-	-		1.00E-02	U	-		1	0.0012	328	0.0083588	17.332451	7.2218548	1	Yes	-	1.90E+02	nc
Tris(2,3-dibromopropyl)phosphate	126-72-7	No	Yes	Organics	2.30E+00	U	6.60E-04	U	-		-		1	0.000135	698	0.0013718	2045.785	852.41042	1	No	-	6.80E-03	ca
7/1 1		No	No	Organics	2.00E-02	U	-		7.00E-03	U	-		1	0.000355	285	0.002305	9.9554293	4.1480955	1	Yes	-	3.85E+00	ca*
· 3 371 1		No	No	Organics	3.20E-03	U	-		1.00E-01	U	-		1	11.6	435	93.052762	134.6187	28.69781	0	No	-	2.43E+01	ca*
Trisbutoxyethyl Phosphate 7	78-51-3	No	No	Organics		-	-		-		-		1	0.00282	398	0.021638	42.742507	17.809378	0.9	Yes	-		
Trisodium phosphate 7	7601-54-9	No	No	Inorganics		-	-		4.86E+01	U	-		1	0.001	164	0.0049255	2.0915102	0.8714626	1	Yes	-	9.70E+05	nc
Trithion 7	786-19-6	No	No	Organics		-	-		-		-		1	0.065	343	0.4630065	21.031003	8.762918	0.8	Yes	-		
Tungsten 7		No	No	Inorganics		-	-		8.00E-04	U	-		1	0.001	184	0.0052172	2.7068238	1.1278433	1	Yes	-	1.60E+01	nc
Uranium (Soluble Salts)	NA	No	No	Inorganics		-	-		2.00E-04	U	4.00E-05	U	1	0.001	238	0.0059336	5.4307523	2.2628134	1	Yes	3.00E+01	3.99E+00	nc
Urea 5	57-13-6	No	No	Organics		-	-		-		-		1	0.0000286	60.1	0.0000853	0.5477974	0.2282489	1	No	-		
Urethane	51-79-6	Yes	No	Organics	1.00E+00	U	2.90E-04	U	-		-		1	0.000394	89.1	0.0014304	0.796196	0.3317483	1	Yes	-	2.49E-02	ca
Vanadium Pentoxide 1	1314-62-1	No	No	Inorganics		-	8.30E-03	U	9.00E-03	U	7.00E-06	U	0.026	0.001	182	0.0051887	2.6379101	1.0991292	1	Yes	-	1.54E+02	nc
Vanadium Sulfate 3	36907-42-3	No	No	Inorganics		-	-		-		-		0.026	0.001	273	0.0063549	8.5282513	3.5534381	1	Yes	-		
Vanadium and Compounds 7	7440-62-2	No	No	Inorganics		-	-		5.04E-03	U	1.00E-04	U	0.026	0.001	50.9	0.002744	0.4865192	0.2027163	1	Yes	-	8.64E+01	nc
Vanadyl Sulfate 2	27774-13-6	No	No	Inorganics		-	-		-		-		1	0.001	164	0.0049255	2.0915102	0.8714626	1	Yes	-		
Vernolate 1	1929-77-7	No	Yes	Organics		-	-		1.00E-03	U	-		1	0.0403	203	0.220841	3.4582787	1.4409495	1	Yes	-	1.11E+01	nc
Vinclozolin 5	50471-44-8	No	No	Organics		-	-		1.20E-03	U	-		1	0.00446	286	0.0290098	10.084631	4.2019294	0.9	Yes	-	2.12E+01	nc
Vinyl Acetate 1	108-05-4	No	Yes	Organics		-	-		1.00E+00	U	2.00E-01	U	1	0.00157	86.1	0.0056031	0.7659845	0.3191602	1	Yes	-	4.09E+02	nc
Vinyl Bromide 5	593-60-2	No	Yes	Organics		-	3.20E-05	U	-		3.00E-03	U	1	0.00435	107	0.0173064	1.0029054	0.4178773	1	Yes	-	1.75E-01	ca*
Vinyl Chloride 7	75-01-4	Yes	Yes	Organics	7.20E-01	U	4.40E-06	U	3.00E-03	U	1.00E-01	U	1	0.00838	62.5	0.0254807	0.565015	0.2354229	1	Yes	2.00E+00	1.88E-02	ca
Warfarin 8	81-81-2	No	No	Organics		-	-		3.00E-04	U	-		1	0.00182	308	0.012285	13.392449	5.580187	1	Yes	-	5.62E+00	nc
Xylene, P-	106-42-3	No	Yes	Organics		-	-		2.00E-01	U	1.00E-01	U	1	0.0493	106	0.195221	0.9900565	0.4125236	1	Yes	-	1.93E+02	nc
Xylene, m-	108-38-3	No	Yes	Organics		-	-		2.00E-01	U	1.00E-01	U	1	0.0532	106	0.2106644	0.9900565	0.4125236	1	Yes	-	1.93E+02	nc
Xylene, o-	95-47-6	No	Yes	Organics		-	-		2.00E-01	U	1.00E-01	U	1	0.0471	106	0.1865093	0.9900565	0.4125236	1	Yes	-	1.93E+02	nc
Xylenes 1	1330-20-7	No	Yes	Organics		-	-		2.00E-01	U	1.00E-01	U	1	0.05	106	0.1979929	0.9900565	0.4125236	1	Yes	1.00E+04	1.93E+02	nc
Ytterbium 7	7440-64-4	No	No	Inorganics		-	-		-		-		1	0.001	173	0.0050588	2.3488755	0.9786981	1	Yes	-		
Yttrium 7	7440-65-5	No	No	Inorganics		-	-		-		-		1	0.001	88.9	0.0036264	0.7941453	0.3308939	1	Yes	-		
Zinc Cyanide 5	557-21-1	No	No	Inorganics		-	-		5.00E-02	U	-		1	0.0006	117	0.0024962	1.1409326	0.4753886	1	Yes	-	1.00E+03	nc
Zinc Phosphide 1	1314-84-7	No	No	Inorganics		-	-		3.00E-04	U	-		1	0.0006	258	0.0037067	7.028457	2.9285237	1	Yes	-	6.00E+00	nc
Zinc and Compounds 7	7440-66-6	No	No	Inorganics		-	-		3.00E-01	U	-		1	0.0006	65.4	0.0018662	0.5865432	0.244393	1	Yes	-	6.00E+03	nc
Zineb 1	12122-67-7	No	No	Organics		-	-		5.00E-02	U	-		1	0.000325	276	0.0020767	8.8646173	3.6935905	1	Yes	-	9.92E+02	nc
Zirconium 7	7440-67-7	No	No	Inorganics		-	-		8.00E-05	U	-		1	0.001	91.2	0.003673	0.8180503	0.3408543	1	Yes	-	1.60E+00	nc

Output generated 05MAY2017:11:57:51

APPENDIX B

ProUCL Output

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.14/11/2017 10:53:43 AM

From File HHRA Data for Review.xls

Full Precision OFF
Confidence Coefficient 95%
Number of Bootstrap Operations 2000

Result (1,1,1-Trichloroethane)

General Statistics

Total Number of Observations	200	Number of Distinct Observations	149
Number of Detects	29	Number of Non-Detects	171
Number of Distinct Detects	29	Number of Distinct Non-Detects	120
Minimum Detect	0.94	Minimum Non-Detect	3.79
Maximum Detect	41600	Maximum Non-Detect	1160
Variance Detects	59332683	Percent Non-Detects	85.5%
Mean Detects	1640	SD Detects	7703
Median Detects	32.2	CV Detects	4.697
Skewness Detects	5.348	Kurtosis Detects	28.71
Mean of Logged Detects	3.766	SD of Logged Detects	2.498

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.221	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.926	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.48	Lilliefors GOF Test
5% Lilliefors Critical Value	0.161	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	239.8	KM Standard Error of Mean	211.5
KM SD	2939	95% KM (BCA) UCL	653.7
95% KM (t) UCL	589.4	95% KM (Percentile Bootstrap) UCL	660.1
95% KM (z) UCL	587.7	95% KM Bootstrap t UCL	9260
90% KM Chebyshev UCL	874.4	95% KM Chebyshev UCL	1162
97.5% KM Chebyshev UCL	1561	99% KM Chebyshev UCL	2344

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	3.618	A-D Test Statistic
Detected Data Not Gamma Distributed at 5% Significance	0.902	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.305	K-S Test Statistic
Detected Data Not Gamma Distributed at 5% Significance	0.18	5% K-S Critical Value

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.204	k star (bias corrected MLE)	0.202	k hat (MLE)
8033	Theta star (bias corrected MLE)	8116	Theta hat (MLE)
11.84	nu star (bias corrected)	11.72	nu hat (MLE)
		1640	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	237.8
Maximum	41600	Median	0.01
SD	2947	CV	12.39
k hat (MLE)	0.0925	k star (bias corrected MLE)	0.0945
Theta hat (MLE)	2570	Theta star (bias corrected MLE)	2517
nu hat (MLE)	37.01	nu star (bias corrected)	37.79
Adjusted Level of Significance (β)	0.0488		
Approximate Chi Square Value (37.79, α)	24.71	Adjusted Chi Square Value (37.79, β)	24.63
95% Gamma Approximate UCL (use when n>=50)	363.6	95% Gamma Adjusted UCL (use when n<50)	364.7

Estimates of Gamma Parameters using KM Estimates

Mean (KM) 239	9.8	SD (KM)	2939
Variance (KM) 8639	9121	SE of Mean (KM)	211.5
k hat (KM) 0.0	00666	k star (KM)	0.00989
nu hat (KM) 2	2.663	nu star (KM)	3.957
theta hat (KM) 3602	21	theta star (KM)	24246
80% gamma percentile (KM) 2.189	96E-6	90% gamma percentile (KM)	0.325

99% gamma percentile (KM) 6335

95% gamma percentile (KM) 77.06

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (3.96, α) 0.705 Adjusted Chi Square Value (3.96, β) 0.695 95% Gamma Approximate KM-UCL (use when n>=50) 1347 95% Gamma Adjusted KM-UCL (use when n<50) 1365

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic 0.96 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.926 Detected Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.0907 Lilliefors GOF Test

5% Lilliefors Critical Value 0.161 Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	239.1	Mean in Log Scale	0.673
SD in Original Scale	2947	SD in Log Scale	1.75
95% t UCL (assumes normality of ROS data)	583.4	95% Percentile Bootstrap UCL	650.5
95% BCA Bootstrap UCL	886.1	95% Bootstrap t UCL	9714
95% H-UCL (Log ROS)	13.05		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	0.979	KM Geo Mean	2.663
KM SD (logged)	1.558	95% Critical H Value (KM-Log)	2.726
KM Standard Error of Mean (logged)	0.195	95% H-UCL (KM -Log)	12.1
KM SD (logged)	1.558	95% Critical H Value (KM-Log)	2.726
KM Standard Error of Mean (logged)	0.195		

DL/2 Statistics

DL/2 Normal	DL/2 Log-Transformed
-------------	----------------------

Mean in Original Scale	254.7	Mean in Log Scale	1.615
SD in Original Scale	2946	SD in Log Scale	1.665
95% t UCL (Assumes normality)	599	95% H-Stat UCL	28.12

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 12.1

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

General Statistics

Total Number of Observations	200	Number of Distinct Observations	150
Number of Detects	23	Number of Non-Detects	177
Number of Distinct Detects	23	Number of Distinct Non-Detects	129
Minimum Detect	1.41	Minimum Non-Detect	3.79
Maximum Detect	989	Maximum Non-Detect	1160
Variance Detects	46102	Percent Non-Detects	88.5%
Mean Detects	84.11	SD Detects	214.7
Median Detects	18.5	CV Detects	2.553
Skewness Detects	3.86	Kurtosis Detects	15.7
Mean of Logged Detects	2.898	SD of Logged Detects	1.643

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.415	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.914	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.381	Lilliefors GOF Test
5% Lilliefors Critical Value	0.18	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

5.59	KM Standard Error of Mean	11.79	KM Mean
22.49	95% KM (BCA) UCL	76.54	KM SD
21.87	95% KM (Percentile Bootstrap) UCL	21.03	95% KM (t) UCL
60.04	95% KM Bootstrap t UCL	20.98	95% KM (z) UCL
36.16	95% KM Chebyshev UCL	28.56	90% KM Chebyshev UCL
67.41	99% KM Chebyshev UCL	46.7	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	1.776	Anderson-Darling GOF Test
5% A-D Critical Value	0.822	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.225	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.194	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.398	k star (bias corrected MLE)	0.425	k hat (MLE)
211.1	Theta star (bias corrected MLE)	198	Theta hat (MLE)
18.33	nu star (bias corrected)	19.54	nu hat (MLE)
		84.11	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 $GROS\ may\ not\ be\ used\ when\ kstar\ of\ detects\ is\ small\ such\ as\ <1.0,\ especially\ when\ the\ sample\ size\ is\ small\ (e.g.,\ <15-20)$

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

9.682	Mean	0.01	Minimum
0.01	Median	989	Maximum
7.88	CV	76.29	SD
0.132	k star (bias corrected MLE)	0.13	k hat (MLE)
73.47	Theta star (bias corrected MLE)	74.25	Theta hat (MLE)
52.71	nu star (bias corrected)	52.16	nu hat (MLE)
		0.0488	Adjusted Level of Significance (β)
36.94	Adjusted Chi Square Value (52.71, β)	37.03	Approximate Chi Square Value (52.71, α)
13.82	95% Gamma Adjusted UCL (use when n<50)	13.78	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	11.79	SD (KM)	76.54
Variance (KM)	5858	SE of Mean (KM)	5.59
k hat (KM)	0.0237	k star (KM)	0.0267
nu hat (KM)	9.49	nu star (KM)	10.68
theta hat (KM)	496.9	theta star (KM)	441.5
80% gamma percentile (KM)	0.0595	90% gamma percentile (KM)	4.953
95% gamma percentile (KM)	40.5	99% gamma percentile (KM)	313.3

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (10.68, α)	4.372	Adjusted Chi Square Value (10.68, β)	4.343
95% Gamma Approximate KM-UCL (use when n>=50)	28.8	95% Gamma Adjusted KM-UCL (use when n<50)	29

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.96	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.914	Detected Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.132 Lilliefors GOF Test

5% Lilliefors Critical Value 0.18 Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

e 0.282	Mean in Log Scale	10.6	Mean in Original Scale
e 1.217	SD in Log Scale	76.1	SD in Original Scale
L 20.36	95% Percentile Bootstrap UCL	19.5	95% t UCL (assumes normality of ROS data)
L 61.93	95% Bootstrap t UCL	26.7	95% BCA Bootstrap UCL
		3.41	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	0.947	KM Geo Mean	2.578
KM SD (logged)	0.953	95% Critical H Value (KM-Log)	2.136
KM Standard Error of Mean (logged)	0.144	95% H-UCL (KM -Log)	4.691
KM SD (logged)	0.953	95% Critical H Value (KM-Log)	2.136
KM Standard Error of Mean (logged)	0.144		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	28.4	Mean in Log Scale	1.457
SD in Original Scale	112.3	SD in Log Scale	1.318
95% t UCL (Assumes normality)	41.53	95% H-Stat UCL	12.89

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 4.691

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Result (1,1-Dichloroethene)

Gen	1	04-	.: _ *: .	
(sen	erai	SIA	usu	-5

Total Number of Observations	200	Number of Distinct Observations	148
Number of Detects	6	Number of Non-Detects	194
Number of Distinct Detects	6	Number of Distinct Non-Detects	142
Minimum Detect	1.15	Minimum Non-Detect	3.79
Maximum Detect	535	Maximum Non-Detect	1160
Variance Detects	41887	Percent Non-Detects	97%
Mean Detects	137	SD Detects	204.7
Median Detects	58.1	CV Detects	1.493
Skewness Detects	1.988	Kurtosis Detects	4.075
Mean of Logged Detects	3.485	SD of Logged Detects	2.293

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.74	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.788	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.279	Lilliefors GOF Test
5% Lilliefors Critical Value	0.325	Detected Data appear Normal at 5% Significance Level

Detected Data appear Approximate Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	5.405	KM Standard Error of Mean	3.183
KM SD	40.44	95% KM (BCA) UCL	13.08
95% KM (t) UCL	10.67	95% KM (Percentile Bootstrap) UCL	12
95% KM (z) UCL	10.64	95% KM Bootstrap t UCL	18.37
90% KM Chebyshev UCL	14.95	95% KM Chebyshev UCL	19.28
97.5% KM Chebyshev UCL	25.28	99% KM Chebyshev UCL	37.07

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.177	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.744	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.158	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.351	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.336	k star (bias corrected MLE)	0.45	k hat (MLE)
407.8	Theta star (bias corrected MLE)	304.6	Theta hat (MLE)
4.033	nu star (bias corrected)	5.399	nu hat (MLE)
		137	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 $GROS\ may\ not\ be\ used\ when\ kstar\ of\ detects\ is\ small\ such\ as\ <1.0,\ especially\ when\ the\ sample\ size\ is\ small\ (e.g.,\ <15-20)$

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

4.121	Mean	0.01	Minimum
0.01	Median	535	Maximum
9.712	CV	40.02	SD
0.136	k star (bias corrected MLE)	0.135	k hat (MLE)
30.23	Theta star (bias corrected MLE)	30.52	Theta hat (MLE)
54.53	nu star (bias corrected)	54.01	nu hat (MLE)
		0.0488	Adjusted Level of Significance (β)
38.47	Adjusted Chi Square Value (54.53, β)	38.56	Approximate Chi Square Value (54.53, α)
5.842	95% Gamma Adjusted UCL (use when n<50)	5.827	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

iviean (Kivi)	5.405	JD (KIVI)	40.44
Variance (KM)	1635	SE of Mean (KM)	3.183
k hat (KM)	0.0179	k star (KM)	0.0209
nu hat (KM)	7.148	nu star (KM)	8.374
theta hat (KM)	302.5	theta star (KM)	258.2
80% gamma percentile (KM)	0.00347	90% gamma percentile (KM)	0.965
95% gamma percentile (KM)	13.38	99% gamma percentile (KM)	150.2

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (8.37, α)	2.954	Adjusted Chi Square Value (8.37, β)	2.93
95% Gamma Approximate KM-UCL (use when n>=50)	15.33	95% Gamma Adjusted KM-UCL (use when n<50)	15.45

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.967	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.788	Detected Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.169 Lilliefors GOF Test

5% Lilliefors Critical Value 0.325 Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-0.315	Mean in Log Scale	4.896	Mean in Original Scale
1.007	SD in Log Scale	39.94	SD in Original Scale
10.28	95% Percentile Bootstrap UCL	9.563	95% t UCL (assumes normality of ROS data)
28.36	95% Bootstrap t UCL	13.81	95% BCA Bootstrap UCL
		1.415	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	0.252	KM Geo Mean	1.287
KM SD (logged)	0.699	95% Critical H Value (KM-Log)	1.94
KM Standard Error of Mean (logged)	0.0565	95% H-UCL (KM -Log)	1.809
KM SD (logged)	0.699	95% Critical H Value (KM-Log)	1.94
KM Standard Error of Mean (logged)	0.0565		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	24.79	Mean in Log Scale	1.415
SD in Original Scale	92.89	SD in Log Scale	1.296
95% t UCL (Assumes normality)	35 64	95% H-Stat UCI	11.95

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 10.67

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

General Statistics

Total Number of Observations	200	Number of Distinct Observations	147
Number of Detects	8	Number of Non-Detects	192
Number of Distinct Detects	8	Number of Distinct Non-Detects	140
Minimum Detect	5.37	Minimum Non-Detect	3.79
Maximum Detect	329	Maximum Non-Detect	1160
Variance Detects	14449	Percent Non-Detects	96%
Mean Detects	161.5	SD Detects	120.2
Median Detects	155	CV Detects	0.744
Skewness Detects	0.279	Kurtosis Detects	-1.222
Mean of Logged Detects	4.594	SD of Logged Detects	1.366

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.938	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.818	B Detected Data appear Normal at 5% Significance Leve	
Lilliefors Test Statistic	0.154	4 Lilliefors GOF Test	
5% Lilliefors Critical Value	0.283	Detected Data appear Normal at 5% Significance Level	

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

tandard Error of Mean 2.983	KM Sta	n 10.34	KM Mean
95% KM (BCA) UCL 15.62		38.82	KM SD
entile Bootstrap) UCL 15.73	95% KM (Perce	15.27	95% KM (t) UCL
6 KM Bootstrap t UCL 16.71	95%	15.25	95% KM (z) UCL
KM Chebyshev UCL 23.34	95% I	19.29	90% KM Chebyshev UCL
KM Chebyshev UCL 40.02	99% I	28.97	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.32	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.733	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.191	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.301	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.807	k star (bias corrected MLE)	1.158	k hat (MLE)
200	Theta star (bias corrected MLE)	139.4	Theta hat (MLE)
12.92	nu star (bias corrected)	18.53	nu hat (MLE)
		161.5	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 $GROS\ may\ not\ be\ used\ when\ kstar\ of\ detects\ is\ small\ such\ as\ <1.0,\ especially\ when\ the\ sample\ size\ is\ small\ (e.g.,\ <15-20)$

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	6.468
Maximum	329	Median	0.01
SD	38.91	CV	6.016
k hat (MLE)	0.129	k star (bias corrected MLE)	0.13
Theta hat (MLE)	50.27	Theta star (bias corrected MLE)	49.73
nu hat (MLE)	51.47	nu star (bias corrected)	52.03
Adjusted Level of Significance (β)	0.0488		
Approximate Chi Square Value (52.03, α)	36.47	Adjusted Chi Square Value (52.03, β)	36.37
95% Gamma Approximate UCL (use when n>=50)	9.23	95% Gamma Adjusted UCL (use when n<50)	9.254

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	10.34	SD (KM)	38.82
Variance (KM)	1507	SE of Mean (KM)	2.983
k hat (KM)	0.0709	k star (KM)	0.0732
nu hat (KM)	28.38	nu star (KM)	29.28
theta hat (KM)	145.7	theta star (KM)	141.2
80% gamma percentile (KM)	4.097	90% gamma percentile (KM)	23.08
95% gamma percentile (KM)	59.76	99% gamma percentile (KM)	190.9

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (29.28, α)	17.93	Adjusted Chi Square Value (29.28, β)	17.87
95% Gamma Approximate KM-UCL (use when n>=50)	16.89	95% Gamma Adjusted KM-UCL (use when n<50)	16.95

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.841	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.818	Detected Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.225 Lilliefors GOF Test

5% Lilliefors Critical Value 0.283 Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	6.549	Mean in Log Scale	- 2.717
SD in Original Scale	38.9	SD in Log Scale	1.892
95% t UCL (assumes normality of ROS data)	11.09	95% Percentile Bootstrap UCL	11.48
95% BCA Bootstrap UCL	12.51	95% Bootstrap t UCL	15.1
95% H-UCL (Log ROS)	0.599		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	1.47	KM Geo Mean	4.348
KM SD (logged)	0.702	95% Critical H Value (KM-Log)	1.942
KM Standard Error of Mean (logged)	0.0542	95% H-UCL (KM -Log)	6.129
KM SD (logged)	0.702	95% Critical H Value (KM-Log)	1.942
KM Standard Error of Mean (logged)	0.0542		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	26.67	Mean in Log Scale	1.44
SD in Original Scale	91.97	SD in Log Scale	1.351
95% t UCL (Assumes normality)	37.41	95% H-Stat UCL	13.38

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 15.27

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Result (1,3,5-Trimethylbenzene)

Total Number of Observations	200	Number of Distinct Observations	148
Number of Detects	6	Number of Non-Detects	194
Number of Distinct Detects	6	Number of Distinct Non-Detects	142
Minimum Detect	0.974	Minimum Non-Detect	3.79
Maximum Detect	1100	Maximum Non-Detect	1160
Variance Detects	181193	Percent Non-Detects	97%
Mean Detects	243.5	SD Detects	425.7
Median Detects	93.1	CV Detects	1.748
Skewness Detects	2.298	Kurtosis Detects	5.408
Mean of Logged Detects	3.684	SD of Logged Detects	2.618

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.642	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.788	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.402	Lilliefors GOF Test
5% Lilliefors Critical Value	0.325	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	9.675	KM Standard Error of Mean	6.234
KMSD	79.14	95% KM (BCA) UCL	21.81
95% KM (t) UCL	19.98	95% KM (Percentile Bootstrap) UCL	21.19
95% KM (z) UCL	19.93	95% KM Bootstrap t UCL	44.16
90% KM Chebyshev UCL	28.38	95% KM Chebyshev UCL	36.85
97.5% KM Chebyshev UCL	48.61	99% KM Chebyshev UCL	71.7

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.253	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Leve	0.756	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.195	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Leve	0.354	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.295	k star (bias corrected MLE)	0.368	k hat (MLE)
824.6	Theta star (bias corrected MLE)	661.1	Theta hat (MLE)
3.543	nu star (bias corrected)	4.419	nu hat (MLE)
		243.5	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

7.314	Mean	0.01	Minimum
0.01	Median	1100	Maximum
10.84	CV	79.29	SD
0.126	k star (bias corrected MLE)	0.124	k hat (MLE)
58.13	Theta star (bias corrected MLE)	58.81	Theta hat (MLE)
50.33	nu star (bias corrected)	49.74	nu hat (MLE)
		0.0488	Adjusted Level of Significance (β)
34.95	Adjusted Chi Square Value (50.33, β)	35.04	Approximate Chi Square Value (50.33, α)
10.53	95% Gamma Adjusted UCL (use when n<50)	10.51	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

ivieari (Kivi)	9.075	JD (KIVI)	79.14
Variance (KM)	6264	SE of Mean (KM)	6.234
k hat (KM)	0.0149	k star (KM)	0.0181
nu hat (KM)	5.978	nu star (KM)	7.221
theta hat (KM)	647.4	theta star (KM)	535.9
80% gamma percentile (KM)	0.00131	90% gamma percentile (KM)	0.893
95% gamma percentile (KM)	18.43	99% gamma percentile (KM)	272.9

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (7.22, α)	2.293	Adjusted Chi Square Value (7.22, β)	2.273
95% Gamma Approximate KM-UCL (use when n>=50)	30.47	95% Gamma Adjusted KM-UCL (use when n<50)	30.74

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.951	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.788	Detected Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.189 Lilliefors GOF Test

5% Lilliefors Critical Value 0.325 Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	9.346	Mean in Log Scale	0.624
SD in Original Scale	79.11	SD in Log Scale	0.938
95% t UCL (assumes normality of ROS data)	18.59	95% Percentile Bootstrap UCL	20.1
95% BCA Bootstrap UCL	26.44	95% Bootstrap t UCL	59.98
95% H-UCL (Log ROS)	3.339		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	0.731	KM Geo Mean	2.078
KM SD (logged)	0.939	95% Critical H Value (KM-Log)	2.124
KM Standard Error of Mean (logged)	0.505	95% H-UCL (KM -Log)	3.721
KM SD (logged)	0.939	95% Critical H Value (KM-Log)	2.124
KM Standard Error of Mean (logged)	0.505		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	28.36	Mean in Log Scale	1.421
SD in Original Scale	114.9	SD in Log Scale	1.334
95% t UCL (Assumes normality)	41.79	95% H-Stat UCL	12.76

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Approximate Gamma UCL 30.47

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Result (2-Butanone)

O	I Statistics
(-enera	i Statietics

Total Number of Observations	200	Number of Distinct Observations	131
Number of Detects	26	Number of Non-Detects	174
Number of Distinct Detects	26	Number of Distinct Non-Detects	107
Minimum Detect	1.37	Minimum Non-Detect	18.9
Maximum Detect	445	Maximum Non-Detect	28900
Variance Detects	7489	Percent Non-Detects	87%
Mean Detects	29.74	SD Detects	86.54
Median Detects	4.53	CV Detects	2.91
Skewness Detects	4.773	Kurtosis Detects	23.59
Mean of Logged Detects	2.014	SD of Logged Detects	1.417

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.338	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.92	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.372	Lilliefors GOF Test
5% Lilliefors Critical Value	0.17	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	8.651	KM Standard Error of Mean	2.758
KM SD	34.21	95% KM (BCA) UCL	13.99
95% KM (t) UCL	13.21	95% KM (Percentile Bootstrap) UCL	13.44
95% KM (z) UCL	13.19	95% KM Bootstrap t UCL	21.37
90% KM Chebyshev UCL	16.93	95% KM Chebyshev UCL	20.67
97.5% KM Chebyshev UCL	25.88	99% KM Chebyshev UCL	36.1

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	2.631	Anderson-Darling GOF Test
5% A-D Critical Value	0.816	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.247	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.182	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.438	k star (bias corrected MLE)	0.466	k hat (MLE)
67.94	Theta star (bias corrected MLE)	63.84	Theta hat (MLE)
22.76	nu star (bias corrected)	24.22	nu hat (MLE)
		29.74	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

5.039	Mean	0.01	Minimum
0.01	Median	445	Maximum
6.411	CV	32.31	SD
0.179	k star (bias corrected MLE)	0.178	k hat (MLE)
28.21	Theta star (bias corrected MLE)	28.31	Theta hat (MLE)
71.45	nu star (bias corrected)	71.19	nu hat (MLE)
		0.0488	Adjusted Level of Significance (β)
52.88	Adjusted Chi Square Value (71.45, β)	52.99	Approximate Chi Square Value (71.45, α)
6.809	95% Gamma Adjusted UCL (use when n<50)	6.795	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

iviedii (Kivi)	0.001	JD (KIVI)	34.21
Variance (KM)	1170	SE of Mean (KM)	2.758
k hat (KM)	0.064	k star (KM)	0.0663
nu hat (KM)	25.59	nu star (KM)	26.53
theta hat (KM)	135.3	theta star (KM)	130.4
80% gamma percentile (KM)	2.724	90% gamma percentile (KM)	17.86
95% gamma percentile (KM)	49.4	99% gamma percentile (KM)	167

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (26.53, α)	15.79	Adjusted Chi Square Value (26.53, β)	15.73
95% Gamma Approximate KM-UCL (use when n>=50)	14.54	95% Gamma Adjusted KM-UCL (use when n<50)	14.59

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.887	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.92	Detected Data Not Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.177 Lilliefors GOF Test

5% Lilliefors Critical Value 0.17 Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	7.859	Mean in Log Scale	1.506
SD in Original Scale	31.88	SD in Log Scale	0.677
95% t UCL (assumes normality of ROS data)	11.58	95% Percentile Bootstrap UCL	12.3
95% BCA Bootstrap UCL	15.24	95% Bootstrap t UCL	25.12
95% H-UCL (Log ROS)	6.219		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	1.438	KM Geo Mean	4.21
KM SD (logged)	0.856	95% Critical H Value (KM-Log)	2.057
KM Standard Error of Mean (logged)	0.149	95% H-UCL (KM -Log)	6.884
KM SD (logged)	0.856	95% Critical H Value (KM-Log)	2.057
KM Standard Error of Mean (logged)	0.149		

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 480.2
 Mean in Log Scale
 3.084

 SD in Original Scale
 2132
 SD in Log Scale
 1.804

 95% t UCL (Assumes normality)
 729.3
 95% H-Stat UCL
 163.3

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 20.67

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Result (Acetone)

General S	statistics
-----------	------------

Total Number of Observations	200	Number of Distinct Observations	174
Number of Detects	136	Number of Non-Detects	64
Number of Distinct Detects	116	Number of Distinct Non-Detects	58
Minimum Detect	2.77	Minimum Non-Detect	39.4
Maximum Detect	757	Maximum Non-Detect	28900
Variance Detects	4429	Percent Non-Detects	32%
Mean Detects	24.99	SD Detects	66.55
Median Detects	14.4	CV Detects	2.663
Skewness Detects	10.08	Kurtosis Detects	110.4
Mean of Logged Detects	2.652	SD of Logged Detects	0.878

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.261	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.369	Lilliefors GOF Test
Emiliororo i cot otationo	0.000	Lilliciois doi 163t

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	23	KM Standard Error of Mean	4.58
KM SD	59.45	95% KM (BCA) UCL	32.35
95% KM (t) UCL	30.57	95% KM (Percentile Bootstrap) UCL	31.49
95% KM (z) UCL	30.53	95% KM Bootstrap t UCL	44.49
90% KM Chebyshev UCL	36.74	95% KM Chebyshev UCL	42.97
97.5% KM Chebyshev UCL	51.6	99% KM Chebyshev UCL	68.57

Gamma GOF Tests on Detected Observations Only

545 Anderson-Darling GOF Test	545	A-D Test Statistic	6.545 Anderson-Darling GOF Test		
.783 Detected Data Not Gamma Distributed at 5% Significant	783	5% A-D Critical Value	0.783 Detected Data Not Gamma Distributed at 5% Significant Significant Detected Data Not Gamma Distributed at 5% Significant Detected Data Not Gamma Distributed Data Not Gamma Dat	nificance Level	el
176 Kolmogorov-Smirnov GOF	176	K-S Test Statistic	0.176 Kolmogorov-Smirnov GOF		
Detected Data Not Gamma Distributed at 5% Significan	0825	5% K-S Critical Value	0.0825 Detected Data Not Gamma Distributed at 5% Significant Significant Significant Detected Data Not Gamma Distributed at 5% Significant Detected Data Not Gamma Distributed Data Not	nificance Level	el

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.998	k star (bias corrected MLE)	1.016	k hat (MLE)
25.03	Theta star (bias corrected MLE)	24.6	Theta hat (MLE)
271.6	nu star (bias corrected)	276.3	nu hat (MLE)
		24.99	Mean (detects)

Mean

20.38

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum 0.01

11.33	Median	757	Maximum
2.715	CV	55.32	SD
0.885	k star (bias corrected MLE)	0.895	k hat (MLE)
23.03	Theta star (bias corrected MLE)	22.78	Theta hat (MLE)
353.8	nu star (bias corrected)	357.9	nu hat (MLE)
		0.0488	Adjusted Level of Significance (β)
311	Adjusted Chi Square Value (353.85, β)	311.3	Approximate Chi Square Value (353.85, α)
23.19	95% Gamma Adjusted UCL (use when n<50)	23.17	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	23	SD (KM)	59.45
Variance (KM)	3534	SE of Mean (KM)	4.58
k hat (KM)	0.15	k star (KM)	0.151
nu hat (KM)	59.88	nu star (KM)	60.31
theta hat (KM)	153.7	theta star (KM)	152.5
80% gamma percentile (KM)	25.14	90% gamma percentile (KM)	68.25
95% gamma percentile (KM)	126 5	99% gamma percentile (KM)	295.2

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (60.31, α)	43.45	Adjusted Chi Square Value (60.31, β)	43.35
95% Gamma Approximate KM-UCL (use when n>=50)	31.92	95% Gamma Adjusted KM-UCL (use when n<50)	32

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic	0.961	Shapiro Wilk GOF Test
5% Shaniro Wilk P Value	0.00692	Detected Data Not Lognormal at 5% Significance L

Detected Data Not Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.0666 Lilliefors GOF Test

5% Lilliefors Critical Value 0.0763 Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Approximate Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	21.3	Mean in Log Scale	2.631
SD in Original Scale	55.1	SD in Log Scale	0.729
95% t UCL (assumes normality of ROS data)	27.74	95% Percentile Bootstrap UCL	28.64
95% BCA Bootstrap UCL	33.42	95% Bootstrap t UCL	40.75
95% H-UCL (Log ROS)	20.05		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged) 2.621 KM Geo Mean 13.75 KM SD (logged) 0.842 95% Critical H Value (KM-Log) 2.046 0.07 95% H-UCL (KM -Log) KM Standard Error of Mean (logged) 22.14 KM SD (logged) 95% Critical H Value (KM-Log) 0.842 2.046 KM Standard Error of Mean (logged) 0.07

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 499.4
 Mean in Log Scale
 3.43

 SD in Original Scale
 2130
 SD in Log Scale
 1.821

 95% t UCL (Assumes normality)
 748.3
 95% H-Stat UCL
 239

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 22.14

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Result (Benzene)

General	Statistics
---------	------------

Total Number of Observations	200	Number of Distinct Observations	149
Number of Detects	5	Number of Non-Detects	195
Number of Distinct Detects	5	Number of Distinct Non-Detects	144
Minimum Detect	1.26	Minimum Non-Detect	3.79
Maximum Detect	12.2	Maximum Non-Detect	1160
Variance Detects	21.84	Percent Non-Detects	97.5%
Mean Detects	3.892	SD Detects	4.673
Median Detects	2.31	CV Detects	1.201
Skewness Detects	2.168	Kurtosis Detects	4.758
Mean of Logged Detects	0.943	SD of Logged Detects	0.919

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.646	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.429	Lilliefors GOF Test
5% Lilliefors Critical Value	0.343	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	1.876	KM Standard Error of Mean	0.295
KM SD	0.946	95% KM (BCA) UCL	2.395
95% KM (t) UCL	2.363	95% KM (Percentile Bootstrap) UCL	2.407
95% KM (z) UCL	2.361	95% KM Bootstrap t UCL	3.036
90% KM Chebyshev UCL	2.76	95% KM Chebyshev UCL	3.161
97.5% KM Chebyshev UCL	3.717	99% KM Chebyshev UCL	4.808

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.755	Anderson-Darling GOF Test
% A-D Critical Value	0.688	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.395	Kolmogorov-Smirnov GOF
% K-S Critical Value	0.363	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.672	k star (bias corrected MLE)	1.346	k hat (MLE)
5.796	Theta star (bias corrected MLE)	2.893	Theta hat (MLE)
6.715	nu star (bias corrected)	13.46	nu hat (MLE)
		3.892	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 $GROS \ may \ not \ be \ used \ when \ kstar \ of \ detects \ is \ small \ such \ as <1.0, \ especially \ when \ the \ sample \ size \ is \ small \ (e.g., <15-20)$

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.554	Mean	1.793
Maximum	12.2	Median	1.673
SD	0.959	CV	0.535
k hat (MLE)	6.186	k star (bias corrected MLE)	6.097
Theta hat (MLE)	0.29	Theta star (bias corrected MLE)	0.294
nu hat (MLE)	2475	nu star (bias corrected)	2439
Adjusted Level of Significance (β)	0.0488		
Approximate Chi Square Value (N/A, α)	2325	Adjusted Chi Square Value (N/A, β)	2324
95% Gamma Approximate UCL (use when n>=50)	1.881	95% Gamma Adjusted UCL (use when n<50)	1.881

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	1.876	SD (KM)	0.946
Variance (KM)	0.895	SE of Mean (KM)	0.295
k hat (KM)	3.931	k star (KM)	3.876
nu hat (KM)	1572	nu star (KM)	1550
theta hat (KM)	0.477	theta star (KM)	0.484
80% gamma percentile (KM)	2.596	90% gamma percentile (KM)	3.154
95% gamma percentile (KM)	3.667	99% gamma percentile (KM)	4.766

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (N/A, α) 1460 Adjusted Chi Square Value (N/A, β) 1459 95% Gamma Approximate KM-UCL (use when n>=50) 1.992 95% Gamma Adjusted KM-UCL (use when n<50) 1.993

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.801	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Detected Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.339 Lilliefors GOF Test

5% Lilliefors Critical Value 0.343 Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	1.89	Mean in Log Scale	0.594
SD in Original Scale	0.839	SD in Log Scale	0.258
95% t UCL (assumes normality of ROS data)	1.988	95% Percentile Bootstrap UCL	1.991
95% BCA Bootstrap UCL	2.043	95% Bootstrap t UCL	2.065
95% H-UCL (Log ROS)	1.932		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	0.565	KM Geo Mean	1.76
KM SD (logged)	0.328	95% Critical H Value (KM-Log)	1.735
KM Standard Error of Mean (logged)	0.163	95% H-UCL (KM -Log)	1.934
KM SD (logged)	0.328	95% Critical H Value (KM-Log)	1.735
KM Standard Error of Mean (logged)	0.163		

DL/2 Statistics

DL/2 Normai		DL/2 Log-Transformed	
Mean in Original Scale	21.52	Mean in Log Scale	1.374
SD in Original Scale	85	SD in Log Scale	1.233
95% t UCL (Assumes normality)	31.45	95% H-Stat UCL	10.42

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 1.934

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

Result (cis-1,2-Dichloroethene)

Total Number of Observations	200	Number of Distinct Observations	151
Number of Detects	27	Number of Non-Detects	173
Number of Distinct Detects	27	Number of Distinct Non-Detects	125
Minimum Detect	1.03	Minimum Non-Detect	3.79
Maximum Detect	7210	Maximum Non-Detect	1160
Variance Detects	2548520	Percent Non-Detects	86.5%
Mean Detects	580.4	SD Detects	1596
Median Detects	27.1	CV Detects	2.751
Skewness Detects	3.527	Kurtosis Detects	12.66
Mean of Logged Detects	3.572	SD of Logged Detects	2.534

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.418	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.923	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.415	Lilliefors GOF Test
5% Lilliefors Critical Value	0.167	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	80.59	KM Standard Error of Mean	43.86
KM SD	608.6	95% KM (BCA) UCL	159.7
95% KM (t) UCL	153.1	95% KM (Percentile Bootstrap) UCL	160.1
95% KM (z) UCL	152.7	95% KM Bootstrap t UCL	408.9
90% KM Chebyshev UCL	212.2	95% KM Chebyshev UCL	271.8
97.5% KM Chebyshev UCL	354.5	99% KM Chebyshev UCL	517

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	1.924	Anderson-Darling GOF Test
5% A-D Critical Value	0.876	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.219	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.185	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.25	k star (bias corrected MLE)	0.254	k hat (MLE)
2319	Theta star (bias corrected MLE)	2287	Theta hat (MLE)
13.51	nu star (bias corrected)	13.7	nu hat (MLE)
		580.4	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 $GROS\ may\ not\ be\ used\ when\ kstar\ of\ detects\ is\ small\ such\ as\ <1.0,\ especially\ when\ the\ sample\ size\ is\ small\ (e.g.,\ <15-20)$

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

78.36	Mean	0.01	Minimum
0.01	Median	7210	Maximum
7.789	CV	610.3	SD
0.105	k star (bias corrected MLE)	0.103	k hat (MLE)
748.4	Theta star (bias corrected MLE)	761.4	Theta hat (MLE)
41.88	nu star (bias corrected)	41.17	nu hat (MLE)
		0.0488	Adjusted Level of Significance (β)
27.96	Adjusted Chi Square Value (41.88, β)	28.05	Approximate Chi Square Value (41.88, α)
117.4	95% Gamma Adjusted UCL (use when n<50)	117	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	80.59	SD (KM)	608.6
Variance (KM)	370369	SE of Mean (KM)	43.86
k hat (KM)	0.0175	k star (KM)	0.0206
nu hat (KM)	7.014	nu star (KM)	8.242
theta hat (KM)	4596	theta star (KM)	3911
80% gamma percentile (KM)	0.0442	90% gamma percentile (KM)	13.48
95% gamma percentile (KM)	194.4	99% gamma percentile (KM)	2244

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (8.24, α)	2.876	Adjusted Chi Square Value (8.24, β)	2.853
95% Gamma Approximate KM-UCL (use when n>=50)	230.9	95% Gamma Adjusted KM-UCL (use when n<50)	232.8

Shapiro Wilk Test Statistic	0.943	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.923	Detected Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.109 Lilliefors GOF Test

5% Lilliefors Critical Value 0.167 Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

 Mean in Original Scale
 80.48
 Mean in Log Scale
 1.064

 SD in Original Scale
 610.1
 SD in Log Scale
 1.495

 95% t UCL (assumes normality of ROS data)
 151.8
 95% Percentile Bootstrap UCL
 157.8

 95% BCA Bootstrap UCL
 211.7
 95% Bootstrap t UCL
 396.8

 95% H-UCL (Log ROS)
 11.74

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged) KM Geo Mean 3.139 KM SD (logged) 1.386 95% Critical H Value (KM-Log) 2.545 95% H-UCL (KM -Log) KM Standard Error of Mean (logged) 0.159 10.52 KM SD (logged) 95% Critical H Value (KM-Log) 1.386 2.545 KM Standard Error of Mean (logged) 0.159

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 92.27
 Mean in Log Scale
 1.518

 SD in Original Scale
 612.4
 SD in Log Scale
 1.561

 95% t UCL (Assumes normality)
 163.8
 95% H-Stat UCL
 20.89

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 10.52

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

Result (Dichlorodifluoromethane)

0.955

Mean

O	1 C	Statistics	_
(-en	arai >	ranenc	8

Total Number of Observations	200	Number of Distinct Observations	152
Number of Detects	5	Number of Non-Detects	195
Number of Distinct Detects	5	Number of Distinct Non-Detects	147
Minimum Detect	1	Minimum Non-Detect	3.79
Maximum Detect	19	Maximum Non-Detect	5790
Variance Detects	52.43	Percent Non-Detects	97.5%
Mean Detects	7.808	SD Detects	7.241
Median Detects	7.64	CV Detects	0.927
Skewness Detects	0.969	Kurtosis Detects	0.678
Mean of Logged Detects	1.573	SD of Logged Detects	1.216

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.909	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.207	Lilliefors GOF Test
5% Lilliefors Critical Value	0.343	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	1.63	KM Standard Error of Mean	0.367
KM SD	1.613	95% KM (BCA) UCL	4.064
95% KM (t) UCL	2.236	95% KM (Percentile Bootstrap) UCL	4.014
95% KM (z) UCL	2.233	95% KM Bootstrap t UCL	3.118
90% KM Chebyshev UCL	2.73	95% KM Chebyshev UCL	3.229
97.5% KM Chebyshev UCL	3.921	99% KM Chebyshev UCL	5.28

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.275	Anderson-Darling GOF Test
5% A-D Critical Value	0.69	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.22	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.363	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.603	k star (bias corrected MLE)	1.175	k hat (MLE)
12.94	Theta star (bias corrected MLE)	6.647	Theta hat (MLE)
6.032	nu star (bias corrected)	11.75	nu hat (MLE)
		7.808	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 $GROS\ may\ not\ be\ used\ when\ kstar\ of\ detects\ is\ small\ such\ as\ <1.0,\ especially\ when\ the\ sample\ size\ is\ small\ (e.g.,\ <15-20)$

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum 0.01

Maximum	19	Median	0.62
SD	1.648	CV	1.726
k hat (MLE)	0.708	k star (bias corrected MLE)	0.701
Theta hat (MLE)	1.349	Theta star (bias corrected MLE)	1.363
nu hat (MLE)	283.1	nu star (bias corrected)	280.2
Adjusted Level of Significance (β)	0.0488		
Approximate Chi Square Value (280.22, α)	242.5	Adjusted Chi Square Value (280.22, β)	242.2
95% Gamma Approximate UCL (use when n>=50)	1.104	95% Gamma Adjusted UCL (use when n<50)	1.105

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	1.63	SD (KM)	1.613
Variance (KM)	2.602	SE of Mean (KM)	0.367
k hat (KM)	1.021	k star (KM)	1.009
nu hat (KM)	408.4	nu star (KM)	403.6
theta hat (KM)	1.596	theta star (KM)	1.615
80% gamma percentile (KM)	2.621	90% gamma percentile (KM)	3.745
95% gamma percentile (KM)	4.867	99% gamma percentile (KM)	7.472

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (403.59, α)	358	Adjusted Chi Square Value (403.59, β)	357.7
95% Gamma Approximate KM-UCL (use when n>=50)	1.837	95% Gamma Adjusted KM-UCL (use when n<50)	1.839

Shapiro Wilk Test Statistic	0.932	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Detected Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.248 Lilliefors GOF Test

5% Lilliefors Critical Value 0.343 Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Log Scale 0.334	1.565	Mean in Original Scale
SD in Log Scale 0.38	1.488	SD in Original Scale
95% Percentile Bootstrap UCL 1.752	1.739	95% t UCL (assumes normality of ROS data)
95% Bootstrap t UCL 2.016	1.842	95% BCA Bootstrap UCL
	1.574	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	0.353	KM Geo Mean	1.424
KM SD (logged)	0.422	95% Critical H Value (KM-Log)	1.777
KM Standard Error of Mean (logged)	0.246	95% H-UCL (KM -Log)	1.641
KM SD (logged)	0.422	95% Critical H Value (KM-Log)	1.777
KM Standard Error of Mean (logged)	0.246		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	99.68	Mean in Log Scale	1.655
SD in Original Scale	426.5	SD in Log Scale	1.79
95% t UCL (Assumes normality)	149.5	95% H-Stat UCL	37.88

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 2.236

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

Result (Ethylbenzene)

General	Statistics
---------	-------------------

Total Number of Observations	200	Number of Distinct Observations	153
Number of Detects	20	Number of Non-Detects	180
Number of Distinct Detects	20	Number of Distinct Non-Detects	133
Minimum Detect	0.767	Minimum Non-Detect	3.79
Maximum Detect	3810	Maximum Non-Detect	1160
Variance Detects	1371559	Percent Non-Detects	90%
Mean Detects	703.5	SD Detects	1171
Median Detects	72	CV Detects	1.665
Skewness Detects	1.918	Kurtosis Detects	2.803
Mean of Logged Detects	4.178	SD of Logged Detects	2.883

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.657	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.905	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.295	Lilliefors GOF Test
5% Lilliefors Critical Value	0.192	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	71.81	KM Standard Error of Mean	30.36
KM SD	418.2	95% KM (BCA) UCL	133
95% KM (t) UCL	122	95% KM (Percentile Bootstrap) UCL	123.8
95% KM (z) UCL	121.8	95% KM Bootstrap t UCL	170.7
90% KM Chebyshev UCL	162.9	95% KM Chebyshev UCL	204.2
97.5% KM Chebyshev UCL	261.4	99% KM Chebyshev UCL	373.9

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.626	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.849	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.158	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.211	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.281	k star (bias corrected MLE)	0.291	k hat (MLE)
2503	Theta star (bias corrected MLE)	2414	Theta hat (MLE)
11.24	nu star (bias corrected)	11.66	nu hat (MLE)
		703.5	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	70.36
Maximum	3810	Median	0.01
SD	419.2	CV	5.958
k hat (MLE)	0.102	k star (bias corrected MLE)	0.103
Theta hat (MLE)	692.7	Theta star (bias corrected MLE)	680.6
nu hat (MLE)	40.63	nu star (bias corrected)	41.35
Adjusted Level of Significance (β)	0.0488		
Approximate Chi Square Value (41.35, α)	27.61	Adjusted Chi Square Value (41.35, β)	27.53
95% Gamma Approximate UCL (use when n>=50)	105.4	95% Gamma Adjusted UCL (use when n<50)	105.7

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	71.81	SD (KM)	418.2
Variance (KM)	174896	SE of Mean (KM)	30.36
k hat (KM)	0.0295	k star (KM)	0.0324
nu hat (KM)	11.79	nu star (KM)	12.95
theta hat (KM)	2435	theta star (KM)	2218
80% gamma percentile (KM)	1.299	90% gamma percentile (KM)	50.45
95% gamma percentile (KM)	297.3	99% gamma percentile (KM)	1815

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (12.95, α)	5.859	Adjusted Chi Square Value (12.95, β)	5.825
95% Gamma Approximate KM-UCL (use when n>=50)	158.7	95% Gamma Adjusted KM-UCL (use when n<50)	159.7

Shapiro Wilk Test Statistic	0.927	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.905	Detected Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.165 Lilliefors GOF Test

5% Lilliefors Critical Value 0.192 Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	71.45	Mean in Log Scale	0.27
SD in Original Scale	419	SD in Log Scale	1.781
95% t UCL (assumes normality of ROS data)	120.4	95% Percentile Bootstrap UCL	124.8
95% BCA Bootstrap UCL	137.9	95% Bootstrap t UCL	167.2
95% H-UCL (Log ROS)	9.318		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	0.567	KM Geo Mean	1.763
KM SD (logged)	1.536	95% Critical H Value (KM-Log)	2.702
KM Standard Error of Mean (logged)	0.176	95% H-UCL (KM -Log)	7.693
KM SD (logged)	1.536	95% Critical H Value (KM-Log)	2.702
KM Standard Error of Mean (logged)	0.176		

DL/2 Statistics

DL/2 Normal	DL/2 Log-Transformed

Mean in Original Scale	82.93	Mean in Log Scale	1.488
SD in Original Scale	422.2	SD in Log Scale	1.568
95% t UCL (Assumes normality)	132.3	95% H-Stat UCL	20.53

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Approximate Gamma UCL 158.7

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

Result (Isopropylbenzene)

General	Statistics
---------	------------

Total Number of Observations	200	Number of Distinct Observations	148
Number of Detects	8	Number of Non-Detects	192
Number of Distinct Detects	8	Number of Distinct Non-Detects	141
Minimum Detect	0.958	Minimum Non-Detect	3.79
Maximum Detect	401	Maximum Non-Detect	1160
Variance Detects	18420	Percent Non-Detects	96%
Mean Detects	69.24	SD Detects	135.7
Median Detects	17.85	CV Detects	1.96
Skewness Detects	2.695	Kurtosis Detects	7.413
Mean of Logged Detects	2.73	SD of Logged Detects	2.034

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.556	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.818	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.401	Lilliefors GOF Test
5% Lilliefors Critical Value	0.283	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

2.241	KM Standard Error of Mean	3.883	KM Mean
10.23	95% KM (BCA) UCL	29.16	KM SD
8.451	95% KM (Percentile Bootstrap) UCL	7.586	95% KM (t) UCL
21.47	95% KM Bootstrap t UCL	7.569	95% KM (z) UCL
13.65	95% KM Chebyshev UCL	10.61	90% KM Chebyshev UCL
26.18	99% KM Chebyshev UCL	17.88	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.414	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.774	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.21	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.312	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.353	k star (bias corrected MLE)	0.431	k hat (MLE)
196.3	Theta star (bias corrected MLE)	160.6	Theta hat (MLE)
5.645	nu star (bias corrected)	6.898	nu hat (MLE)
		69.24	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 $GROS\ may\ not\ be\ used\ when\ kstar\ of\ detects\ is\ small\ such\ as\ <1.0,\ especially\ when\ the\ sample\ size\ is\ small\ (e.g.,\ <15-20)$

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	2.779
Maximum	401	Median	0.01
SD	28.86	CV	10.38
k hat (MLE)	0.145	k star (bias corrected MLE)	0.146
Theta hat (MLE)	19.19	Theta star (bias corrected MLE)	19.04
nu hat (MLE)	57.93	nu star (bias corrected)	58.39
Adjusted Level of Significance (β)	0.0488		
Approximate Chi Square Value (58.39, α)	41.83	Adjusted Chi Square Value (58.39, β)	41.72
95% Gamma Approximate UCL (use when n>=50)	3.88	95% Gamma Adjusted UCL (use when n<50)	3.89

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	3.883	SD (KM)	29.16
Variance (KM)	850.3	SE of Mean (KM)	2.241
k hat (KM)	0.0177	k star (KM)	0.0208
nu hat (KM)	7.091	nu star (KM)	8.318
theta hat (KM)	219	theta star (KM)	186.7
80% gamma percentile (KM)	0.00233	90% gamma percentile (KM)	0.674
95% gamma percentile (KM)	9.506	99% gamma percentile (KM)	108

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (8.32, α)	2.92	Adjusted Chi Square Value (8.32, β)	2.897
95% Gamma Approximate KM-UCL (use when n>=50)	11.06	95% Gamma Adjusted KM-UCL (use when n<50)	11.15

Shapiro Wilk Test Statistic	0.948	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.818	Detected Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.157 Lilliefors GOF Test

5% Lilliefors Critical Value 0.283 Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-0.0318	Mean in Log Scale	3.736	Mean in Original Scale
0.874	SD in Log Scale	28.77	SD in Original Scale
7.648	95% Percentile Bootstrap UCL	7.099	95% t UCL (assumes normality of ROS data)
23.86	95% Bootstrap t UCL	10.08	95% BCA Bootstrap UCL
		1.613	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	0.131	KM Geo Mean	1.14
KM SD (logged)	0.681	95% Critical H Value (KM-Log)	1.928
KM Standard Error of Mean (logged)	0.067	95% H-UCL (KM -Log)	1.579
KM SD (logged)	0.681	95% Critical H Value (KM-Log)	1.928
KM Standard Error of Mean (logged)	0.067		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	23.13	Mean in Log Scale	1.379
SD in Original Scale	89.03	SD in Log Scale	1.26
95% t UCL (Assumes normality)	33.53	95% H-Stat UCL	10.9

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Approximate Gamma UCL 11.06

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

Result (m-,p-Xylene)

Gen	1	04-	.::	
(-en	erai	S12	пеп	re

Total Number of Observations	200	Number of Distinct Observations	139
Number of Detects	17	Number of Non-Detects	183
Number of Distinct Detects	17	Number of Distinct Non-Detects	123
Minimum Detect	1.75	Minimum Non-Detect	7.58
Maximum Detect	15400	Maximum Non-Detect	2320
Variance Detects	26121132	Percent Non-Detects	91.5%
Mean Detects	3696	SD Detects	5111
Median Detects	355	CV Detects	1.383
Skewness Detects	1.266	Kurtosis Detects	0.539
Mean of Logged Detects	5.767	SD of Logged Detects	3.168

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.755	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.892	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.303	Lilliefors GOF Test
5% Lilliefors Critical Value	0.207	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	317.3	KM Standard Error of Mean	129.4
KM SD	1775	95% KM (BCA) UCL	534.1
95% KM (t) UCL	531.1	95% KM (Percentile Bootstrap) UCL	541.7
95% KM (z) UCL	530.1	95% KM Bootstrap t UCL	669.4
90% KM Chebyshev UCL	705.4	95% KM Chebyshev UCL	881.2
97.5% KM Chebyshev UCL	1125	99% KM Chebyshev UCL	1605

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.685	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Leve	0.849	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.185	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Leve	0.228	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.273	k star (bias corrected MLE)	0.284	k hat (MLE)
13526	Theta star (bias corrected MLE)	13006	Theta hat (MLE)
9.29	nu star (bias corrected)	9.662	nu hat (MLE)
		3696	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 $GROS \ may \ not \ be \ used \ when \ kstar \ of \ detects \ is \ small \ such \ as <1.0, \ especially \ when \ the \ sample \ size \ is \ small \ (e.g., <15-20)$

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

314.2	Mean	0.01	Minimum
0.01	Median	15400	Maximum
5.665	CV	1780	SD
0.0892	k star (bias corrected MLE)	0.0872	k hat (MLE)
3522	Theta star (bias corrected MLE)	3604	Theta hat (MLE)
35.68	nu star (bias corrected)	34.87	nu hat (MLE)
		0.0488	Adjusted Level of Significance (β)
22.94	Adjusted Chi Square Value (35.68, β)	23.01	Approximate Chi Square Value (35.68, α)
488.7	95% Gamma Adjusted UCL (use when n<50)	487.1	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	317.3	SD (KM)	1775
Variance (KM)	3150147	SE of Mean (KM)	129.4
k hat (KM)	0.032	k star (KM)	0.0348
nu hat (KM)	12.78	nu star (KM)	13.93
theta hat (KM)	9928	theta star (KM)	9114
80% gamma percentile (KM)	8.673	90% gamma percentile (KM)	262.4
95% gamma percentile (KM)	1391	99% gamma percentile (KM)	7848

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (13.93, α)	6.521	Adjusted Chi Square Value (13.93, β)	6.484
95% Gamma Approximate KM-UCL (use when n>=50)	677.7	95% Gamma Adjusted KM-UCL (use when n<50)	681.5

Shapiro Wilk Test Statistic	0.901	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.892	Detected Data appear Lognormal at 5% Significance Leve

Lilliefors Test Statistic 0.178 Lilliefors GOF Test

5% Lilliefors Critical Value 0.207 Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

 Mean in Original Scale
 316
 Mean in Log Scale
 0.464

 SD in Original Scale
 1780
 SD in Log Scale
 2.192

 95% t UCL (assumes normality of ROS data)
 523.9
 95% Percentile Bootstrap UCL
 538.9

 95% BCA Bootstrap UCL
 609
 95% Bootstrap t UCL
 678.5

 95% H-UCL (Log ROS)
 30.02

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged) 1.457 KM Geo Mean 4.294 KM SD (logged) 1.665 95% Critical H Value (KM-Log) 2.843 95% H-UCL (KM -Log) KM Standard Error of Mean (logged) 0.274 24.02 KM SD (logged) 95% Critical H Value (KM-Log) 1.665 2.843 KM Standard Error of Mean (logged) 0.274

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 339.1
 Mean in Log Scale
 2.215

 SD in Original Scale
 1780
 SD in Log Scale
 1.687

 95% t UCL (Assumes normality)
 547.2
 95% H-Stat UCL
 53.56

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Approximate Gamma UCL 677.7

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

Result (Methylene chloride)

Total Number of Observations	200	Number of Distinct Observations	136
Number of Detects	62	Number of Non-Detects	138
Number of Distinct Detects	60	Number of Distinct Non-Detects	77
Minimum Detect	0.869	Minimum Non-Detect	15.4
Maximum Detect	1460	Maximum Non-Detect	5790
Variance Detects	37390	Percent Non-Detects	69%
Mean Detects	49.1	SD Detects	193.4
Median Detects	2.56	CV Detects	3.938
Skewness Detects	6.652	Kurtosis Detects	48.22
Mean of Logged Detects	1.551	SD of Logged Detects	1.715

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.279	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.417	Lilliefors GOF Test
5% Lilliefors Critical Value	0.112	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	18.05	KM Standard Error of Mean	7.943
KM SD	110.1	95% KM (BCA) UCL	33.03
95% KM (t) UCL	31.18	95% KM (Percentile Bootstrap) UCL	33
95% KM (z) UCL	31.12	95% KM Bootstrap t UCL	56.74
90% KM Chebyshev UCL	41.88	95% KM Chebyshev UCL	52.67
97.5% KM Chebyshev UCL	67.65	99% KM Chebyshev UCL	97.08

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	11.05	Anderson-Darling GOF Test
5% A-D Critical Value	0.866	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.389	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.123	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.292	k star (bias corrected MLE)	0.295	k hat (MLE)
168.4	Theta star (bias corrected MLE)	166.4	Theta hat (MLE)
36.16	nu star (bias corrected)	36.6	nu hat (MLE)
		49.1	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 $GROS\ may\ not\ be\ used\ when\ kstar\ of\ detects\ is\ small\ such\ as\ <1.0,\ especially\ when\ the\ sample\ size\ is\ small\ (e.g.,\ <15-20)$

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

17.01	Mean	0.01	Minimum
0.01	Median	1460	Maximum
6.433	CV	109.4	SD
0.155	k star (bias corrected MLE)	0.154	k hat (MLE)
109.6	Theta star (bias corrected MLE)	110.3	Theta hat (MLE)
62.11	nu star (bias corrected)	61.7	nu hat (MLE)
		0.0488	Adjusted Level of Significance (β)
44.88	Adjusted Chi Square Value (62.11, β)	44.98	Approximate Chi Square Value (62.11, α)
23.54	95% Gamma Adjusted UCL (use when n<50)	23.49	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	18.05	SD (KM)	110.1
Variance (KM)	12115	SE of Mean (KM)	7.943
k hat (KM)	0.0269	k star (KM)	0.0298
nu hat (KM)	10.76	nu star (KM)	11.93
theta hat (KM)	671.1	theta star (KM)	605.2
80% gamma percentile (KM)	0.196	90% gamma percentile (KM)	10.35
95% gamma percentile (KM)	69.51	99% gamma percentile (KM)	466.8

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (11.93, α)	5.182	Adjusted Chi Square Value (11.93, β)	5.149
95% Gamma Approximate KM-UCL (use when n>=50)	41.57	95% Gamma Adjusted KM-UCL (use when n<50)	41.83

Lilliefors Test Statistic 0.272 Lilliefors GOF Test

5% Lilliefors Critical Value 0.112 Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	17.78	Mean in Log Scale	1.266
SD in Original Scale	109.1	SD in Log Scale	1.09
95% t UCL (assumes normality of ROS data)	30.53	95% Percentile Bootstrap UCL	32.24
95% BCA Bootstrap UCL	41.17	95% Bootstrap t UCL	56.91
95% H-UCL (Log ROS)	7.643		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	1.105	KM Geo Mean	3.019
KM SD (logged)	1.156	95% Critical H Value (KM-Log)	2.318
KM Standard Error of Mean (logged)	0.111	95% H-UCL (KM -Log)	7.118
KM SD (logged)	1.156	95% Critical H Value (KM-Log)	2.318
KM Standard Error of Mean (logged)	0.111		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	75.94	Mean in Log Scale	2.372
SD in Original Scale	344.8	SD in Log Scale	1.49
95% t UCL (Assumes normality)	116.2	95% H-Stat UCL	43.07

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 52.67

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

Result (Naphthalene)

0	Statistics
(-enera	Statietics

Total Number of Observations	200	Number of Distinct Observations	147
Number of Detects	5	Number of Non-Detects	195
Number of Distinct Detects	5	Number of Distinct Non-Detects	142
Minimum Detect	17.1	Minimum Non-Detect	3.79
Maximum Detect	187	Maximum Non-Detect	1160
Variance Detects	4276	Percent Non-Detects	97.5%
Mean Detects	97.78	SD Detects	65.39
Median Detects	80.8	CV Detects	0.669
Skewness Detects	0.312	Kurtosis Detects	-0.567
Mean of Logged Detects	4.319	SD of Logged Detects	0.921

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.978	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.202	Lilliefors GOF Test
5% Lilliefors Critical Value	0.343	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Standard Error of Mean 1.43	6.26	KM Mean
95% KM (BCA) UCL 8.99	17.71	KM SD
95% KM (Percentile Bootstrap) UCL 8.79	8.623	95% KM (t) UCL
95% KM Bootstrap t UCL 7.82	8.612	95% KM (z) UCL
95% KM Chebyshev UCL 12.49	10.55	90% KM Chebyshev UCL
99% KM Chebyshev UCL 20.49	15.19	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.249	Anderson-Darling GOF Test
5% A-D Critical Value	0.684	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.202	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.36	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.952	k star (bias corrected MLE)	2.046	k hat (MLE)
102.7	Theta star (bias corrected MLE)	47.79	Theta hat (MLE)
9.517	nu star (bias corrected)	20.46	nu hat (MLE)
		97.78	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

2.454	Mean	0.01	Minimum
0.01	Median	187	Maximum
7.29	CV	17.89	SD
0.147	k star (bias corrected MLE)	0.146	k hat (MLE)
16.67	Theta star (bias corrected MLE)	16.8	Theta hat (MLE)
58.9	nu star (bias corrected)	58.45	nu hat (MLE)
		0.0488	Adjusted Level of Significance (β)
42.16	Adjusted Chi Square Value (58.90, β)	42.26	Approximate Chi Square Value (58.90, α)
3.429	95% Gamma Adjusted UCL (use when n<50)	3.421	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	6.26	SD (KM)	17.71
Variance (KM)	313.5	SE of Mean (KM)	1.43
k hat (KM)	0.125	k star (KM)	0.126
nu hat (KM)	50.01	nu star (KM)	50.6
theta hat (KM)	50.07	theta star (KM)	49.49
80% gamma percentile (KM)	5.815	90% gamma percentile (KM)	17.98
95% gamma percentile (KM)	35.47	99% gamma percentile (KM)	88.18

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (50.60, α)	35.26	Adjusted Chi Square Value (50.60, β)	35.17
95% Gamma Approximate KM-UCL (use when n>=50)	8.983	95% Gamma Adjusted KM-UCL (use when n<50)	9.007

Shapiro Wilk Test Statistic	0.911	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Detected Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.257 Lilliefors GOF Test

5% Lilliefors Critical Value 0.343 Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-2.055	Mean in Log Scale	2.609	Mean in Original Scale
1.387	SD in Log Scale	17.87	SD in Original Scale
4.905	95% Percentile Bootstrap UCL	4.698	95% t UCL (assumes normality of ROS data)
8.089	95% Bootstrap t UCL	6.004	95% BCA Bootstrap UCL
		0.431	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	1.412	KM Geo Mean	4.103
KM SD (logged)	0.497	95% Critical H Value (KM-Log)	1.816
KM Standard Error of Mean (logged)	0.0404	95% H-UCL (KM -Log)	4.95
KM SD (logged)	0.497	95% Critical H Value (KM-Log)	1.816
KM Standard Error of Mean (logged)	0.0404		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	23.03	Mean in Log Scale	1.405
SD in Original Scale	86.16	SD in Log Scale	1.277
95% t UCL (Assumes normality)	33.1	95% H-Stat UCL	11.49

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 8.623

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

Result (n-Propylbenzene)

Gen	1	04-	.::	
(-en	erai	S12	пеп	re

Total Number of Observations	200	Number of Distinct Observations	148
Number of Detects	10	Number of Non-Detects	190
Number of Distinct Detects	10	Number of Distinct Non-Detects	138
Minimum Detect	2.37	Minimum Non-Detect	3.79
Maximum Detect	165	Maximum Non-Detect	1160
Variance Detects	3127	Percent Non-Detects	95%
Mean Detects	57.08	SD Detects	55.92
Median Detects	37.3	CV Detects	0.98
Skewness Detects	1.367	Kurtosis Detects	0.71
Mean of Logged Detects	3.515	SD of Logged Detects	1.255

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.799	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.842	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.271	Lilliefors GOF Test
5% Lilliefors Critical Value	0.262	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

	KM Mean	5.279	KM Standard Error of Mean	1.309
	KM SD	17.18	95% KM (BCA) UCL	8.936
	95% KM (t) UCL	7.442	95% KM (Percentile Bootstrap) UCL	8.224
	95% KM (z) UCL	7.432	95% KM Bootstrap t UCL	8.576
	90% KM Chebyshev UCL	9.206	95% KM Chebyshev UCL	10.99
9	7.5% KM Chebyshev UCL	13.45	99% KM Chebyshev UCL	18.31

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.327	Anderson-Darling GOF Test
5% A-D Critical Value	0.747	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.174	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.273	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.823	k star (bias corrected MLE)	1.081	k hat (MLE)
69.32	Theta star (bias corrected MLE)	52.8	Theta hat (MLE)
16.47	nu star (bias corrected)	21.62	nu hat (MLE)
		57.08	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

2.863	Mean	0.01	Minimum
0.01	Median	165	Maximum
6.018	CV	17.23	SD
0.148	k star (bias corrected MLE)	0.147	k hat (MLE)
19.35	Theta star (bias corrected MLE)	19.5	Theta hat (MLE)
59.18	nu star (bias corrected)	58.73	nu hat (MLE)
		0.0488	Adjusted Level of Significance (β)
42.39	Adjusted Chi Square Value (59.18, β)	42.49	Approximate Chi Square Value (59.18, α)
3.997	95% Gamma Adjusted UCL (use when n<50)	3.988	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

17.18	SD (KM)	5.279	Mean (KM)
1.309	SE of Mean (KM)	295	Variance (KM)
0.0964	k star (KM)	0.0944	k hat (KM)
38.54	nu star (KM)	37.78	nu hat (KM)
54.78	theta star (KM)	55.89	theta hat (KM)
13.83	90% gamma percentile (KM)	3.466	80% gamma percentile (KM)
85.42	99% gamma percentile (KM)	30.7	95% gamma percentile (KM)

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (38.54, α)	25.32	Adjusted Chi Square Value (38.54, β)	25.25
95% Gamma Approximate KM-UCL (use when n>=50)	8.034	95% Gamma Adjusted KM-UCL (use when n<50)	8.059

Shapiro Wilk Test Statistic	0.916	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.842	Detected Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.243 Lilliefors GOF Test

5% Lilliefors Critical Value 0.262 Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

0.637	Mean in Log Scale	4.616	Mean in Original Scale
0.875	SD in Log Scale	16.97	SD in Original Scale
6.75	95% Percentile Bootstrap UCL	6.599	95% t UCL (assumes normality of ROS data)
9.327	95% Bootstrap t UCL	7.883	95% BCA Bootstrap UCL
		3.153	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	1.007	KM Geo Mean	2.736
KM SD (logged)	0.658	95% Critical H Value (KM-Log)	1.912
KM Standard Error of Mean (logged)	0.0509	95% H-UCL (KM -Log)	3.716
KM SD (logged)	0.658	95% Critical H Value (KM-Log)	1.912
KM Standard Error of Mean (logged)	0.0509		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed		
Mean in Original Scale	22.52	Mean in Log Scale	1.393	
SD in Original Scale	85.91	SD in Log Scale	1.257	
95% t UCL (Assumes normality)	32.55	95% H-Stat UCL	11.01	

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Approximate Gamma UCL 8.034

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

Result (o-Xylene)

Total Number of Observations	200	Number of Distinct Observations	149
Number of Detects	10	Number of Non-Detects	190
Number of Distinct Detects	10	Number of Distinct Non-Detects	139
Minimum Detect	0.978	Minimum Non-Detect	3.79
Maximum Detect	818	Maximum Non-Detect	1160
Variance Detects	96313	Percent Non-Detects	95%
Mean Detects	211.5	SD Detects	310.3
Median Detects	21.6	CV Detects	1.467
Skewness Detects	1.318	Kurtosis Detects	0.209
Mean of Logged Detects	3.61	SD of Logged Detects	2.375

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.721	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.842	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.326	Lilliefors GOF Test
5% Lilliefors Critical Value	0.262	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	12.09	KM Standard Error of Mean	6.105
KMSD	81.01	95% KM (BCA) UCL	24.97
95% KM (t) UCL	22.18	95% KM (Percentile Bootstrap) UCL	23.09
95% KM (z) UCL	22.13	95% KM Bootstrap t UCL	34.91
90% KM Chebyshev UCL	30.4	95% KM Chebyshev UCL	38.7
97.5% KM Chebyshev UCL	50.21	99% KM Chebyshev UCL	72.83

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.516	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.799	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.258	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.285	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.333	k star (bias corrected MLE)	0.38	k hat (MLE)
635.1	Theta star (bias corrected MLE)	555.9	Theta hat (MLE)
6.66	nu star (bias corrected)	7.609	nu hat (MLE)
		211.5	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 $GROS\ may\ not\ be\ used\ when\ kstar\ of\ detects\ is\ small\ such\ as\ <1.0,\ especially\ when\ the\ sample\ size\ is\ small\ (e.g.,\ <15-20)$

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

10.58	Mean	0.01	Minimum
0.01	Median	818	Maximum
7.612	CV	80.57	SD
0.122	k star (bias corrected MLE)	0.121	k hat (MLE)
86.47	Theta star (bias corrected MLE)	87.55	Theta hat (MLE)
48.96	nu star (bias corrected)	48.35	nu hat (MLE)
		0.0488	Adjusted Level of Significance (β)
33.81	Adjusted Chi Square Value (48.96, β)	33.9	Approximate Chi Square Value (48.96, α)
15.33	95% Gamma Adjusted UCL (use when n<50)	15.29	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	12.09	SD (KM)	81.01
Variance (KM)	6562	SE of Mean (KM)	6.105
k hat (KM)	0.0223	k star (KM)	0.0253
nu hat (KM)	8.908	nu star (KM)	10.11
theta hat (KM)	542.8	theta star (KM)	478.4
80% gamma percentile (KM)	0.0401	90% gamma percentile (KM)	4.276
95% gamma percentile (KM)	38 93	99% gamma percentile (KM)	325 1

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (10.11, α)	4.009	Adjusted Chi Square Value (10.11, β)	3.981
95% Gamma Approximate KM-UCL (use when n>=50)	30.48	95% Gamma Adjusted KM-UCL (use when n<50)	30.69

Shapiro Wilk Test Statistic	0.924	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.842	Detected Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.165 Lilliefors GOF Test

5% Lilliefors Critical Value 0.262 Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	11.62	Mean in Log Scale	0.0386
SD in Original Scale	80.43	SD in Log Scale	1.187
95% t UCL (assumes normality of ROS data)	21.02	95% Percentile Bootstrap UCL	21.18
95% BCA Bootstrap UCL	27.37	95% Bootstrap t UCL	34.88
95% H-UCL (Log ROS)	2.562		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	0.421	KM Geo Mean	1.523
KM SD (logged)	0.943	95% Critical H Value (KM-Log)	2.128
KM Standard Error of Mean (logged)	0.201	95% H-UCL (KM -Log)	2.74
KM SD (logged)	0.943	95% Critical H Value (KM-Log)	2.128
KM Standard Error of Mean (logged)	0.201		

DL/2 Statistics

DL/2 Normal DL/2 Ld		DL/2 Log-Transformed	.og-1 ransformed		
Mean in Original Scale	27.48	Mean in Log Scale	1.408		
00: 0:: 10:	100.0	00:1	4 000		

 SD in Original Scale
 109.3
 SD in Log Scale
 1.309

 95% t UCL (Assumes normality)
 40.25
 95% H-Stat UCL
 12.1

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Approximate Gamma UCL 30.48

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

Result (p-Isopropyltoluene)

C	Statistics
Genera	SIMISIC

Total Number of Observations	200	Number of Distinct Observations	149
Number of Detects	14	Number of Non-Detects	186
Number of Distinct Detects	14	Number of Distinct Non-Detects	136
Minimum Detect	1.35	Minimum Non-Detect	3.79
Maximum Detect	1370	Maximum Non-Detect	1090
Variance Detects	122330	Percent Non-Detects	93%
Mean Detects	168.4	SD Detects	349.8
Median Detects	93.4	CV Detects	2.077
Skewness Detects	3.597	Kurtosis Detects	13.23
Mean of Logged Detects	3.873	SD of Logged Detects	1.917

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.434	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.874	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.437	Lilliefors GOF Test
5% Lilliefors Critical Value	0.226	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	13.93	KM Standard Error of Mean	7.266
KM SD	98.83	95% KM (BCA) UCL	28.82
95% KM (t) UCL	25.93	95% KM (Percentile Bootstrap) UCL	27.52
95% KM (z) UCL	25.88	95% KM Bootstrap t UCL	59.88
90% KM Chebyshev UCL	35.72	95% KM Chebyshev UCL	45.6
97.5% KM Chebyshev UCL	59.3	99% KM Chebyshev UCL	86.22

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.975	Anderson-Darling GOF Test
5% A-D Critical Value	0.793	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.258	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.242	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.445	k star (bias corrected MLE)	0.506	k hat (MLE)
378.2	Theta star (bias corrected MLE)	332.7	Theta hat (MLE)
12.47	nu star (bias corrected)	14.17	nu hat (MLE)
		168.4	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs $\,$

 $GROS\ may\ not\ be\ used\ when\ kstar\ of\ detects\ is\ small\ such\ as\ <1.0,\ especially\ when\ the\ sample\ size\ is\ small\ (e.g.,\ <15-20)$

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

11.8	Mean	0.01	Minimum
0.01	Median	1370	Maximum
8.412	CV	99.23	SD
0.124	k star (bias corrected MLE)	0.122	k hat (MLE)
95.43	Theta star (bias corrected MLE)	96.6	Theta hat (MLE)
49.44	nu star (bias corrected)	48.84	nu hat (MLE)
		0.0488	Adjusted Level of Significance (β)
34.21	Adjusted Chi Square Value (49.44, β)	34.3	Approximate Chi Square Value (49.44, α)
17.05	95% Gamma Adjusted UCL (use when n<50)	17	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	13.93	SD (KM)	98.83
Variance (KM)	9767	SE of Mean (KM)	7.266
k hat (KM)	0.0199	k star (KM)	0.0229
nu hat (KM)	7.943	nu star (KM)	9.157
theta hat (KM)	701.3	theta star (KM)	608.3
80% gamma percentile (KM)	0.0203	90% gamma percentile (KM)	3.51
95% gamma percentile (KM)	39.41	99% gamma percentile (KM)	381.7

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (9.16, α)	3.422	Adjusted Chi Square Value (9.16, β)	3.397
95% Gamma Approximate KM-UCL (use when n>=50)	37.27	95% Gamma Adjusted KM-UCL (use when n<50)	37.54

Shapiro Wilk Test Statistic	0.853	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.874	Detected Data Not Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.268 Lilliefors GOF Test

5% Lilliefors Critical Value 0.226 Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

	Mean in Original Scale	14.23	Mean in Log Scale	0.997
	SD in Original Scale	98.95	SD in Log Scale	1.103
95% t	JCL (assumes normality of ROS data)	25.79	95% Percentile Bootstrap UCL	27.1
	95% BCA Bootstrap UCL	35.71	95% Bootstrap t UCL	61.17
	95% H-UCL (Log ROS)	5.943		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	0.927	KM Geo Mean	2.526
KM SD (logged)	1.001	95% Critical H Value (KM-Log)	2.177
KM Standard Error of Mean (logged)	0.176	95% H-UCL (KM -Log)	4.864
KM SD (logged)	1.001	95% Critical H Value (KM-Log)	2.177
KM Standard Error of Mean (logged)	0.176		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed

 Mean in Original Scale
 28.29
 Mean in Log Scale
 1.429

 SD in Original Scale
 122.7
 SD in Log Scale
 1.34

 95% t UCL (Assumes normality)
 42.63
 95% H-Stat UCL
 12.99

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 45.6

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

Result (Tetrachloroethene)

General Statistics

Total Number of Observations	200	Number of Distinct Observations	149
Number of Detects	7	Number of Non-Detects	193
Number of Distinct Detects	7	Number of Distinct Non-Detects	142
Minimum Detect	1.04	Minimum Non-Detect	3.79
Maximum Detect	36.2	Maximum Non-Detect	1160
Variance Detects	202.7	Percent Non-Detects	96.5%
Mean Detects	12.02	SD Detects	14.24
Median Detects	1.99	CV Detects	1.185
Skewness Detects	0.919	Kurtosis Detects	-0.687
Mean of Logged Detects	1.568	SD of Logged Detects	1.573

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.799	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.803	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.331	Lilliefors GOF Test
5% Lilliefors Critical Value	0.304	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	1.863	KM Standard Error of Mean	0.34
KM SD	3.402	95% KM (BCA) UCL	2.583
95% KM (t) UCL	2.425	95% KM (Percentile Bootstrap) UCL	2.504
95% KM (z) UCL	2.422	95% KM Bootstrap t UCL	2.683
90% KM Chebyshev UCL	2.882	95% KM Chebyshev UCL	3.344
97.5% KM Chebyshev UCL	3.985	99% KM Chebyshev UCL	5.243

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.725	Anderson-Darling GOF Test
5% A-D Critical Value	0.741	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.326	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.324	Detected Data Not Gamma Distributed at 5% Significance Level

Detected data follow Appr. Gamma Distribution at 5% Significance Level

Gamma Statistics on Detected Data Only

0.474	k star (bias corrected MLE)	0.663	k hat (MLE)
25.34	Theta star (bias corrected MLE)	18.12	Theta hat (MLE)
6.64	nu star (bias corrected)	9.286	nu hat (MLE)
		12.02	Mean (detects)

Mean

1.314

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 $GROS \ may \ not \ be \ used \ when \ kstar \ of \ detects \ is \ small \ such \ as <1.0, \ especially \ when \ the \ sample \ size \ is \ small \ (e.g., <15-20)$

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

$For gamma\ distributed\ detected\ data,\ BTVs\ and\ UCLs\ may\ be\ computed\ using\ gamma\ distribution\ on\ KM\ estimates$

Minimum 0.01

0.496	Median	36.2	Maximum
2.599	CV	3.415	SD
0.499	k star (bias corrected MLE)	0.503	k hat (MLE)
2.633	Theta star (bias corrected MLE)	2.611	Theta hat (MLE)
199.6	nu star (bias corrected)	201.3	nu hat (MLE)
		0.0488	Adjusted Level of Significance (β)
167.7	Adjusted Chi Square Value (199.58, β)	167.9	Approximate Chi Square Value (199.58, α)
1.564	95% Gamma Adjusted UCL (use when n<50)	1.562	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	1.863	SD (KM)	3.402
Variance (KM)	11.58	SE of Mean (KM)	0.34
k hat (KM)	0.3	k star (KM)	0.299
nu hat (KM)	120	nu star (KM)	119.5
theta hat (KM)	6.213	theta star (KM)	6.237
80% gamma percentile (KM)	2.855	90% gamma percentile (KM)	5.498
95% gamma percentile (KM)	8.535	99% gamma percentile (KM)	16.43

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (119.50, α)	95.26	Adjusted Chi Square Value (119.50, β)	95.1
95% Gamma Approximate KM-UCL (use when n>=50)	2.338	95% Gamma Adjusted KM-UCL (use when n<50)	2.341

Shapiro Wilk Test Statistic	0.813	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.803	Detected Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.284 Lilliefors GOF Test

5% Lilliefors Critical Value 0.304 Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	2.012	Mean in Log Scale	0.474
SD in Original Scale	3.184	SD in Log Scale	0.496
95% t UCL (assumes normality of ROS data)	2.384	95% Percentile Bootstrap UCL	2.422
95% BCA Bootstrap UCL	2.585	95% Bootstrap t UCL	2.766
95% H-UCL (Log ROS)	1.937		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	0.378	KM Geo Mean	1.46
KM SD (logged)	0.454	95% Critical H Value (KM-Log)	1.793
KM Standard Error of Mean (logged)	0.136	95% H-UCL (KM -Log)	1.714
KM SD (logged)	0.454	95% Critical H Value (KM-Log)	1.793
KM Standard Error of Mean (logged)	0.136		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	21.51	Mean in Log Scale	1.373
SD in Original Scale	84.99	SD in Log Scale	1.236
95% t UCL (Assumes normality)	31 44	95% H-Stat UCI	10.45

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Approximate Gamma UCL 2.338

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

Result (Toluene)

General Statistics			
	0	_ 1 🔿 -	!
	(sener:	ลเ วาร	HISTICS

Total Number of Observations	200	Number of Distinct Observations	159
Number of Detects	40	Number of Non-Detects	160
Number of Distinct Detects	38	Number of Distinct Non-Detects	121
Minimum Detect	0.828	Minimum Non-Detect	3.79
Maximum Detect	8280	Maximum Non-Detect	1090
Variance Detects	1709116	Percent Non-Detects	80%
Mean Detects	235	SD Detects	1307
Median Detects	1.385	CV Detects	5.563
Skewness Detects	6.285	Kurtosis Detects	39.65
Mean of Logged Detects	1.597	SD of Logged Detects	2.128

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.186	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.94	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.468	Lilliefors GOF Test
5% Lilliefors Critical Value	0.139	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

an 41.88	KM Standard Error of Mean	48.3	KM Mean
L 131	95% KM (BCA) UCL	584.8	KM SD
CL 130.6	95% KM (Percentile Bootstrap) UCL	117.5	95% KM (t) UCL
L 1882	95% KM Bootstrap t UCL	117.2	95% KM (z) UCL
L 230.9	95% KM Chebyshev UCL	173.9	90% KM Chebyshev UCL
CL 465	99% KM Chebyshev UCL	309.9	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

atistic 7.852 Anderson-Darling GOF Test	
/alue 0.917 Detected Data Not Gamma Distributed at 5% Sig	Significance Level
atistic 0.301 Kolmogorov-Smirnov GOF	
/alue 0.155 Detected Data Not Gamma Distributed at 5% Sig	Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.194	k star (bias corrected MLE)	0.192	k hat (MLE)
1211	Theta star (bias corrected MLE)	1225	Theta hat (MLE)
15.53	nu star (bias corrected)	15.34	nu hat (MLE)
		235	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

47.01	Mean	0.01	Minimum
0.01	Median	8280	Maximum
12.47	CV	586.4	SD
0.113	k star (bias corrected MLE)	0.111	k hat (MLE)
417	Theta star (bias corrected MLE)	423.3	Theta hat (MLE)
45.09	nu star (bias corrected)	44.42	nu hat (MLE)
		0.0488	Adjusted Level of Significance (β)
30.6	Adjusted Chi Square Value (45.09, β)	30.69	Approximate Chi Square Value (45.09, α)
69.27	95% Gamma Adjusted UCL (use when n<50)	69.07	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM) 48.3	SD (KM)	584.8
Variance (KM) 342028	SE of Mean (KM)	41.88
k hat (KM) 0.00682	k star (KM)	0.0101
nu hat (KM) 2.728	nu star (KM)	4.021
theta hat (KM) 7081	theta star (KM)	4805
80% gamma percentile (KM) 6.2140E-7	90% gamma percentile (KM)	0.0763
95% gamma percentile (KM) 16.59	99% gamma percentile (KM)	1282

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (4.02, α)	0.73	Adjusted Chi Square Value (4.02, β)	0.72
95% Gamma Approximate KM-UCL (use when n>=50)	266.1	95% Gamma Adjusted KM-UCL (use when n<50)	269.6

Shapiro Wilk Test Statistic	0.781	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.94	Detected Data Not Lognormal at 5% Significance Level

95% H-Stat UCL 12.95

Lilliefors Test Statistic 0.252 Lilliefors GOF Test

5% Lilliefors Critical Value 0.139 Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	48.5	Mean in Log Scale	0.741
SD in Original Scale	586.3	SD in Log Scale	1.112
95% t UCL (assumes normality of ROS data)	117	95% Percentile Bootstrap UCL	130.7
95% BCA Bootstrap UCL	180.2	95% Bootstrap t UCL	1868
95% H-UCL (Log ROS)	4.659		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	0.522	KM Geo Mean	1.685
KM SD (logged)	1.149	95% Critical H Value (KM-Log)	2.311
KM Standard Error of Mean (logged)	0.103	95% H-UCL (KM -Log)	3.935
KM SD (logged)	1.149	95% Critical H Value (KM-Log)	2.311
KM Standard Error of Mean (logged)	0.103		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	61.78	Mean in Log Scale	1.351
SD in Original Scale	589.5	SD in Log Scale	1.385

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 230.9

95% t UCL (Assumes normality) 130.7

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

Result (Trichloroethene)

General	Statistics
---------	------------

Total Number of Observations	200	Number of Distinct Observations	163
Number of Detects	59	Number of Non-Detects	141
Number of Distinct Detects	59	Number of Distinct Non-Detects	105
Minimum Detect	0.908	Minimum Non-Detect	3.79
Maximum Detect	30100	Maximum Non-Detect	1160
Variance Detects	19484012	Percent Non-Detects	70.5%
Mean Detects	941.9	SD Detects	4414
Median Detects	10.4	CV Detects	4.686
Skewness Detects	5.903	Kurtosis Detects	36.12
Mean of Logged Detects	3.157	SD of Logged Detects	2.515

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.234	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.437	Lilliefors GOF Test
5% Lilliefors Critical Value	0.115	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	280.2	KM Standard Error of Mean	172.3
KM SD	2415	95% KM (BCA) UCL	596.9
95% KM (t) UCL	564.9	95% KM (Percentile Bootstrap) UCL	586.8
95% KM (z) UCL	563.5	95% KM Bootstrap t UCL	3682
90% KM Chebyshev UCL	797	95% KM Chebyshev UCL	1031
97.5% KM Chebyshev UCL	1356	99% KM Chebyshev UCL	1994

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	7.239	A-D Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Lev	0.915	5% A-D Critical Value
7 Kolmogorov-Smirnov GOF	0.267	K-S Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Lev	0.129	5% K-S Critical Value

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.201	k star (bias corrected MLE)	0.199	k hat (MLE)
4695	Theta star (bias corrected MLE)	4722	Theta hat (MLE)
23.67	nu star (bias corrected)	23.54	nu hat (MLE)
		941.9	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 $GROS\ may\ not\ be\ used\ when\ kstar\ of\ detects\ is\ small\ such\ as\ <1.0,\ especially\ when\ the\ sample\ size\ is\ small\ (e.g.,\ <15-20)$

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

277.9	Mean	0.01	Minimum
0.01	Median	30100	Maximum
8.715	CV	2422	SD
0.104	k star (bias corrected MLE)	0.102	k hat (MLE)
2677	Theta star (bias corrected MLE)	2724	Theta hat (MLE)
41.52	nu star (bias corrected)	40.8	nu hat (MLE)
		0.0488	Adjusted Level of Significance (β)
27.67	Adjusted Chi Square Value (41.52, β)	27.75	Approximate Chi Square Value (41.52, α)
417	95% Gamma Adjusted UCL (use when n<50)	415.7	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	280.2	SD (KM)	2415
Variance (KM)	5833929	SE of Mean (KM)	172.3
k hat (KM)	0.0135	k star (KM)	0.0166
nu hat (KM)	5.383	nu star (KM)	6.635
theta hat (KM)	20822	theta star (KM)	16891
80% gamma percentile (KM)	0.0138	90% gamma percentile (KM)	16.78
95% gamma percentile (KM)	447.9	99% gamma percentile (KM)	7935

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value $(6.64, \alpha)$ 1.973 Adjusted Chi Square Value $(6.64, \beta)$ 1.954 95% Gamma Approximate KM-UCL (use when n>=50) 942.4 95% Gamma Adjusted KM-UCL (use when n<50) 951.2

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic 0.908 Shapiro Wilk GOF Test

Lilliefors Test Statistic 0.145 Lilliefors GOF Test

5% Lilliefors Critical Value 0.115 Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

 Mean in Original Scale
 279.3
 Mean in Log Scale
 1.311

 SD in Original Scale
 2421
 SD in Log Scale
 1.89

 95% t UCL (assumes normality of ROS data)
 562.3
 95% Percentile Bootstrap UCL
 579.2

 95% BCA Bootstrap UCL
 747.6
 95% Bootstrap t UCL
 3718

 95% H-UCL (Log ROS)
 33.52

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged) 1.437 KM Geo Mean 4.207 KM SD (logged) 1.828 95% Critical H Value (KM-Log) 3.028 0.158 95% H-UCL (KM -Log) KM Standard Error of Mean (logged) 33.11 KM SD (logged) 95% Critical H Value (KM-Log) 1.828 3.028 KM Standard Error of Mean (logged) 0.158

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 291
 Mean in Log Scale
 1.785

 SD in Original Scale
 2421
 SD in Log Scale
 1.865

 95% t UCL (Assumes normality)
 573.9
 95% H-Stat UCL
 50.89

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 1031

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

Result (Trichlorofluoromethane)

1.407

Mean

General Sta	atistics	ŝ
-------------	----------	---

Total Number of Observations	200	Number of Distinct Observations	149
Number of Detects	5	Number of Non-Detects	195
Number of Distinct Detects	5	Number of Distinct Non-Detects	144
Minimum Detect	1.05	Minimum Non-Detect	3.79
Maximum Detect	33.6	Maximum Non-Detect	1160
Variance Detects	205.5	Percent Non-Detects	97.5%
Mean Detects	7.978	SD Detects	14.34
Median Detects	1.45	CV Detects	1.797
Skewness Detects	2.225	Kurtosis Detects	4.961
Mean of Logged Detects	1.01	SD of Logged Detects	1.445

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.588	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.445	Lilliefors GOF Test
5% Lilliefors Critical Value	0.343	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	1.761	KM Standard Error of Mean	0.407
KM SD	2.528	95% KM (BCA) UCL	2.696
95% KM (t) UCL	2.434	95% KM (Percentile Bootstrap) UCL	2.63
95% KM (z) UCL	2.431	95% KM Bootstrap t UCL	4.101
90% KM Chebyshev UCL	2.983	95% KM Chebyshev UCL	3.536
97.5% KM Chebyshev UCL	4.304	99% KM Chebyshev UCL	5.813

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.919	Anderson-Darling GOF Test
5% A-D Critical Value	0.707	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.399	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.37	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.366	k star (bias corrected MLE)	0.582	k hat (MLE)
21.79	Theta star (bias corrected MLE)	13.71	Theta hat (MLE)
3.661	nu star (bias corrected)	5.819	nu hat (MLE)
		7.978	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs $\,$

 $GROS \ may \ not \ be \ used \ when \ kstar \ of \ detects \ is \ small \ such \ as <1.0, \ especially \ when \ the \ sample \ size \ is \ small \ (e.g., <15-20)$

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum 0.01

Maximum	33.6	Median	0.916
SD	2.59	CV	1.841
k hat (MLE)	0.642	k star (bias corrected MLE)	0.635
Theta hat (MLE)	2.192	Theta star (bias corrected MLE)	2.214
nu hat (MLE)	256.6	nu star (bias corrected)	254.1
Adjusted Level of Significance (β)	0.0488		
Approximate Chi Square Value (254.13, α)	218.2	Adjusted Chi Square Value (254.13, β)	218
95% Gamma Approximate UCL (use when n>=50)	1.638	95% Gamma Adjusted UCL (use when n<50)	1.64

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	1.761	SD (KM)	2.528
Variance (KM)	6.39	SE of Mean (KM)	0.407
k hat (KM)	0.485	k star (KM)	0.481
nu hat (KM)	194.1	nu star (KM)	192.5
theta hat (KM)	3.629	theta star (KM)	3.659
80% gamma percentile (KM)	2.887	90% gamma percentile (KM)	4.802
95% gamma percentile (KM)	6.857	99% gamma percentile (KM)	11.93

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (192.52, α)	161.4	Adjusted Chi Square Value (192.52, β)	161.2
95% Gamma Approximate KM-UCL (use when n>=50)	2.1	95% Gamma Adjusted KM-UCL (use when n<50)	2.103

Shapiro Wilk Test Statistic	0.749	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Detected Data Not Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.312 Lilliefors GOF Test

5% Lilliefors Critical Value 0.343 Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Approximate Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

0.466	Mean in Log Scale	1.822	Mean in Original Scale
0.403	SD in Log Scale	2.334	SD in Original Scale
2.136	95% Percentile Bootstrap UCL	2.095	95% t UCL (assumes normality of ROS data)
2.639	95% Bootstrap t UCL	2.37	95% BCA Bootstrap UCL
		1.817	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	0.402	KM Geo Mean	1.495
KM SD (logged)	0.428	95% Critical H Value (KM-Log)	1.781
KM Standard Error of Mean (logged)	0.199	95% H-UCL (KM -Log)	1.73
KM SD (logged)	0.428	95% Critical H Value (KM-Log)	1.781
KM Standard Error of Mean (logged)	0.199		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	21.65	Mean in Log Scale	1.38
SD in Original Scale	85	SD in Log Scale	1.242
95% t UCL (Assumes normality)	31.58	95% H-Stat UCI	10.63

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 1.73

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

Result (Vinyl chloride)

O	I Statistics
(-enera	i Statietics

Total Number of Observations	200	Number of Distinct Observations	148
Number of Detects	5	Number of Non-Detects	195
Number of Distinct Detects	5	Number of Distinct Non-Detects	143
Minimum Detect	7.74	Minimum Non-Detect	3.79
Maximum Detect	288	Maximum Non-Detect	1160
Variance Detects	13219	Percent Non-Detects	97.5%
Mean Detects	91.17	SD Detects	115
Median Detects	60	CV Detects	1.261
Skewness Detects	1.79	Kurtosis Detects	3.365
Mean of Logged Detects	3.76	SD of Logged Detects	1.475

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.79	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.312	Lilliefors GOF Test
5% Lilliefors Critical Value	0.343	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	6.077	KM Standard Error of Mean	1.737
KM SD	21.59	95% KM (BCA) UCL	9.298
95% KM (t) UCL	8.947	95% KM (Percentile Bootstrap) UCL	9.256
95% KM (z) UCL	8.933	95% KM Bootstrap t UCL	11.77
90% KM Chebyshev UCL	11.29	95% KM Chebyshev UCL	13.65
97.5% KM Chebyshev UCL	16.92	99% KM Chebyshev UCL	23.36

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.278	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.697	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.223	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.366	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.449	k star (bias corrected MLE)	0.79	k hat (MLE)
202.9	Theta star (bias corrected MLE)	115.4	Theta hat (MLE)
4.494	nu star (bias corrected)	7.902	nu hat (MLE)
		91.17	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 $GROS \ may \ not \ be \ used \ when \ kstar \ of \ detects \ is \ small \ such \ as <1.0, \ especially \ when \ the \ sample \ size \ is \ small \ (e.g., <15-20)$

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

2.289	Mean	0.01	Minimum
0.01	Median	288	Maximum
9.464	CV	21.66	SD
0.149	k star (bias corrected MLE)	0.147	k hat (MLE)
15.4	Theta star (bias corrected MLE)	15.52	Theta hat (MLE)
59.44	nu star (bias corrected)	58.99	nu hat (MLE)
		0.0488	Adjusted Level of Significance (β)
42.61	Adjusted Chi Square Value (59.44, β)	42.71	Approximate Chi Square Value (59.44, α)
3.193	95% Gamma Adjusted UCL (use when n<50)	3.185	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	6.077	SD (KM)	21.59
Variance (KM)	466	SE of Mean (KM)	1.737
k hat (KM)	0.0792	k star (KM)	0.0814
nu hat (KM)	31.7	nu star (KM)	32.56
theta hat (KM)	76.69	theta star (KM)	74.66
80% gamma percentile (KM)	2.99	90% gamma percentile (KM)	14.56
95% gamma percentile (KM)	35.36	99% gamma percentile (KM)	106.8

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (32.56, α)	20.51	Adjusted Chi Square Value (32.56, β)	20.44
95% Gamma Approximate KM-UCL (use when n>=50)	9.645	95% Gamma Adjusted KM-UCL (use when n<50)	9.677

Shapiro Wilk Test Statistic	0.949	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Detected Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.199 Lilliefors GOF Test

5% Lilliefors Critical Value 0.343 Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	2.284	Mean in Log Scale	-6.07
SD in Original Scale	21.66	SD in Log Scale	2.126
95% t UCL (assumes normality of ROS data)	4.815	95% Percentile Bootstrap UCL	5.14
95% BCA Bootstrap UCL	6.682	95% Bootstrap t UCL	12.39
95% H-UCL (Log ROS)	0.0368		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	1.397	KM Geo Mean	4.045
KM SD (logged)	0.444	95% Critical H Value (KM-Log)	1.788
KM Standard Error of Mean (logged)	0.0361	95% H-UCL (KM -Log)	4.722
KM SD (logged)	0.444	95% Critical H Value (KM-Log)	1.788
KM Standard Error of Mean (logged)	0.0361		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	22.86	Mean in Log Scale	1.4
SD in Original Scale	87.03	SD in Log Scale	1.259
95% t UCL (Assumes normality)	33.03	95% H-Stat UCL	11.12

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 8.947

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

Result (Xylenes (total))

Gen		04-		
(-en	erai	S12	пен	re

Total Number of Observations	104	Number of Distinct Observations	84
Number of Detects	7	Number of Non-Detects	97
Number of Distinct Detects	7	Number of Distinct Non-Detects	77
Minimum Detect	2.73	Minimum Non-Detect	8.24
Maximum Detect	424	Maximum Non-Detect	2320
Variance Detects	31949	Percent Non-Detects	93.27%
Mean Detects	131.2	SD Detects	178.7
Median Detects	41.8	CV Detects	1.362
Skewness Detects	1.226	Kurtosis Detects	-0.562
Mean of Logged Detects	3.681	SD of Logged Detects	1.914

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.728	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.803		
Lilliefors Test Statistic	0.364		
5% Lilliefors Critical Value	0.304	Detected Data Not Normal at 5% Significance Level	

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

	KM Mean	12.94	KM Standard Error of Mean	5.911
	KM SD	54.28	95% KM (BCA) UCL	24.77
	95% KM (t) UCL	22.75	95% KM (Percentile Bootstrap) UCL	23.83
	95% KM (z) UCL	22.66	95% KM Bootstrap t UCL	56.44
	90% KM Chebyshev UCL	30.67	95% KM Chebyshev UCL	38.7
ç	7.5% KM Chebyshev UCL	49.85	99% KM Chebyshev UCL	71.75

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.376	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Leve	0.75	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.213	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Leve	0.327	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.396	k star (bias corrected MLE)	0.527	k hat (MLE)
331.2	Theta star (bias corrected MLE)	249.2	Theta hat (MLE)
5.547	nu star (bias corrected)	7.374	nu hat (MLE)
		131.2	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 $GROS\ may\ not\ be\ used\ when\ kstar\ of\ detects\ is\ small\ such\ as\ <1.0,\ especially\ when\ the\ sample\ size\ is\ small\ (e.g.,\ <15-20)$

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

8.842	Mean	0.01	Minimum
0.01	Median	424	Maximum
6.145	CV	54.34	SD
0.129	k star (bias corrected MLE)	0.126	k hat (MLE)
68.43	Theta star (bias corrected MLE)	69.93	Theta hat (MLE)
26.88	nu star (bias corrected)	26.3	nu hat (MLE)
		0.0477	Adjusted Level of Significance (β)
15.94	Adjusted Chi Square Value (26.88, β)	16.06	Approximate Chi Square Value (26.88, α)
14.91	95% Gamma Adjusted UCL (use when n<50)	14.8	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	12.94	SD (KM)	54.28
Variance (KM)	2946	SE of Mean (KM)	5.911
k hat (KM)	0.0568	k star (KM)	0.0616
nu hat (KM)	11.81	nu star (KM)	12.81
theta hat (KM)	227.8	theta star (KM)	210.1
80% gamma percentile (KM)	3.355	90% gamma percentile (KM)	24.96
95% gamma percentile (KM)	72.9	99% gamma percentile (KM)	258.1

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (12.81, α)	5.763	Adjusted Chi Square Value (12.81, β)	5.696
95% Gamma Approximate KM-UCL (use when n>=50)	28.75	95% Gamma Adjusted KM-UCL (use when n<50)	29.08

Shapiro Wilk Test Statistic	0.936	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.803	Detected Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.16 Lilliefors GOF Test

5% Lilliefors Critical Value 0.304 Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	12.3	Mean in Log Scale	1.372
SD in Original Scale	53.81	SD in Log Scale	0.896
95% t UCL (assumes normality of ROS data)	21.05	95% Percentile Bootstrap UCL	22.14
95% BCA Bootstrap UCL	26.19	95% Bootstrap t UCL	71.72
95% H-UCL (Log ROS)	7.102		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	1.505	KM Geo Mean	4.503
KM SD (logged)	0.829	95% Critical H Value (KM-Log)	2.061
KM Standard Error of Mean (logged)	0.254	95% H-UCL (KM -Log)	7.515
KM SD (logged)	0.829	95% Critical H Value (KM-Log)	2.061
KM Standard Error of Mean (logged)	0.254		

DL/2 Statistics

DL/2 Normal	DL/2 Log-Transformed
DL/2 Normal	DL/2 Log-Transformed

Mean in Original Scale	49.12	Mean in Log Scale	2.031
SD in Original Scale	186.7	SD in Log Scale	1.307
95% t UCL (Assumes normality)	79.51	95% H-Stat UCL	24.73

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Approximate Gamma UCL 28.75

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.15/9/2017 2:02:14 PM

From File HHRA Data for Review.xls

Full Precision OFF
Confidence Coefficient 95%
Number of Bootstrap Operations 2000

Result (1,1,1-Trichloroethane)

General Statistics

Total Number of Observations	324	Number of Distinct Observations	246
Number of Detects	56	Number of Non-Detects	268
Number of Distinct Detects	55	Number of Distinct Non-Detects	193
Minimum Detect	0.94	Minimum Non-Detect	3.79
Maximum Detect 1	840000	Maximum Non-Detect 2	235000
Variance Detects 8	.102E+10	Percent Non-Detects	82.72%
Mean Detects	77675	SD Detects 2	284638
Median Detects	112.3	CV Detects	3.664
Skewness Detects	4.993	Kurtosis Detects	27.94
Mean of Logged Detects	5.265	SD of Logged Detects	3.799

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.326	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.426	Lilliefors GOF Test
5% Lilliefors Critical Value	0.118	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean 13438	KM Standard Error of Mean 6778
KM SD 120898	95% KM (BCA) UCL 26923
95% KM (t) UCL 24618	95% KM (Percentile Bootstrap) UCL 25452
95% KM (z) UCL 24586	95% KM Bootstrap t UCL 39321
90% KM Chebyshev UCL 33770	95% KM Chebyshev UCL 42980
97.5% KM Chebyshev UCL 55764	99% KM Chebyshey UCL 80874

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	7.137	A-D Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.98	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.317	K-S Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.135	5% K-S Critical Value

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE) 0.131	k star (bias corrected MLE) 0.136
Theta hat (MLE) 594178	Theta star (bias corrected MLE) 572705
nu hat (MLE) 14.64	nu star (bias corrected) 15.19
Mean (detects) 77675	

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	13425
Maximum	1840000	Median	0.01
SD	121083	CV	9.019
k hat (MLE)	0.0684	k star (bias corrected MLE)	0.0698
Theta hat (MLE)	196228	Theta star (bias corrected MLE)	192227
nu hat (MLE)	44.33	nu star (bias corrected)	45.26
Adjusted Level of Significance (β)	0.0493		
Approximate Chi Square Value (45.26, α)	30.82	Adjusted Chi Square Value (45.26, β)	30.77
95% Gamma Approximate UCL (use when n>=50)	19711	95% Gamma Adjusted UCL (use when n<50)	19745

Estimates of Gamma Parameters using KM Estimates

Mean (KM) 13438	SD (KM) 120898
Variance (KM) 1.462E+10	SE of Mean (KM) 6778
k hat (KM) 0.0124	k star (KM) 0.0143
nu hat (KM) 8.005	nu star (KM) 9.265
theta hat (KM) 1087713	theta star (KM) 939876
80% gamma percentile (KM) 0.089	90% gamma percentile (KM) 336.7

95% gamma percentile (KM) 15003

99% gamma percentile (KM) 379689

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (9.26, α) 3.488 Adjusted Chi Square Value (9.26, β) 3.472 95% Gamma Approximate KM-UCL (use when n>=50) 35697 95% Gamma Adjusted KM-UCL (use when n<50) 35859

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic 0.906 Shapiro Wilk GOF Test

5% Shapiro Wilk P Value 1.7852E-4 Detected Data Not Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.13 Lilliefors GOF Test

5% Lilliefors Critical Value 0.118 Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

 Mean in Original Scale
 13426
 Mean in Log Scale
 0.0746

 SD in Original Scale
 121082
 SD in Log Scale
 3.081

 95% t UCL (assumes normality of ROS data)
 24522
 95% Percentile Bootstrap UCL
 25340

 95% BCA Bootstrap UCL
 31534
 95% Bootstrap t UCL
 42521

 95% H-UCL (Log ROS)
 261.6

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged) 1.383 KM Geo Mean 3.988 KM SD (logged) 2.459 3.594 95% Critical H Value (KM-Log) KM Standard Error of Mean (logged) 0.194 95% H-UCL (KM -Log) 133.9 KM SD (logged) 2.459 95% Critical H Value (KM-Log) 3.594 KM Standard Error of Mean (logged) 0.194

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 14203
 Mean in Log Scale
 2.543

 SD in Original Scale
 121230
 SD in Log Scale
 2.769

 95% t UCL (Assumes normality)
 25313
 95% H-Stat UCL
 1081

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

99% KM (Chebyshev) UCL 80874

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

Result (1,1-Dichloroethane)

General Statistics

Total Number of Observations	324	Number of Distinct Observations	255
Number of Detects	66	Number of Non-Detects	258
Number of Distinct Detects	66	Number of Distinct Non-Detects	193
Minimum Detect	1.41	Minimum Non-Detect	3.79
Maximum Detect	12200	Maximum Non-Detect	235000
Variance Detects	7615171	Percent Non-Detects	79.63%
Mean Detects	975.2	SD Detects	2760
Median Detects	34.4	CV Detects	2.83
Skewness Detects	3.33	Kurtosis Detects	10.24
Mean of Logged Detects	3.959	SD of Logged Detects	2.373

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.399	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.414	Lilliefors GOF Test
5% Lilliefors Critical Value	0.109	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

74.31	KM Standard Error of Mean	207.3	KM Mean
338.7	95% KM (BCA) UCL	1312	KM SD
341.6	95% KM (Percentile Bootstrap) UCL	329.9	95% KM (t) UCL
408.6	95% KM Bootstrap t UCL	329.5	95% KM (z) UCL
531.2	95% KM Chebyshev UCL	430.2	90% KM Chebyshev UCL
946.7	99% KM Chebyshev UCL	671.3	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic 6.707	A-D Test Statistic	Anderson-Darling GOF Test
A-D Critical Value 0.893	5% A-D Critical Value	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic 0.268	K-S Test Statistic	Kolmogorov-Smirnov GOF
K-S Critical Value 0.121	5% K-S Critical Value	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.243	k star (bias corrected MLE)	0.244	k hat (MLE)
4014	Theta star (bias corrected MLE)	3998	Theta hat (MLE)
32.07	nu star (bias corrected)	32.2	nu hat (MLE)
		975.2	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 $GROS\ may\ not\ be\ used\ when\ kstar\ of\ detects\ is\ small\ such\ as\ <1.0,\ especially\ when\ the\ sample\ size\ is\ small\ (e.g.,\ <15-20)$

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

198.7	Mean	0.01	Minimum
0.01	Median	12200	Maximum
6.538	CV	1299	SD
0.101	k star (bias corrected MLE)	0.0997	k hat (MLE)
1971	Theta star (bias corrected MLE)	1993	Theta hat (MLE)
65.32	nu star (bias corrected)	64.58	nu hat (MLE)
		0.0493	Adjusted Level of Significance (β)
47.65	Adjusted Chi Square Value (65.32, β)	47.72	Approximate Chi Square Value (65.32, α)
272.3	95% Gamma Adjusted UCL (use when n<50)	271.9	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	207.3	SD (KM)	1312
Variance (KM)	1720266	SE of Mean (KM)	74.31
k hat (KM)	0.025	k star (KM)	0.0268
nu hat (KM)	16.18	nu star (KM)	17.37
theta hat (KM)	8300	theta star (KM)	7734
80% gamma percentile (KM)	1.074	90% gamma percentile (KM)	88.01
95% gamma percentile (KM)	714.8	99% gamma percentile (KM)	5503

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (17.37, α)	8.934	Adjusted Chi Square Value (17.37, β)	8.907
95% Gamma Approximate KM-UCL (use when n>=50)	402.9	95% Gamma Adjusted KM-UCL (use when n<50)	404.1

Lilliefors Test Statistic 0.111 Lilliefors GOF Test

5% Lilliefors Critical Value 0.109 Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	199.3	Mean in Log Scale	0.419
SD in Original Scale	1299	SD in Log Scale	2.225
95% t UCL (assumes normality of ROS data)	318.3	95% Percentile Bootstrap UCL	326.9
95% BCA Bootstrap UCL	354.3	95% Bootstrap t UCL	378.1
95% H-UCL (Log ROS)	27.31		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	1.511	KM Geo Mean	4.532
KM SD (logged)	1.728	95% Critical H Value (KM-Log)	2.804
KM Standard Error of Mean (logged)	0.122	95% H-UCL (KM -Log)	26.42
KM SD (logged)	1.728	95% Critical H Value (KM-Log)	2.804
KM Standard Error of Mean (logged)	0.122		

DL/2 Statistics

DL/2 Normal	DL/2 Log-Transformed
DEE Holling	DEE LOG TIGHOLOTHIOG

 Mean in Original Scale
 1474
 Mean in Log Scale
 2.426

 SD in Original Scale
 9969
 SD in Log Scale
 2.438

 95% t UCL (Assumes normality)
 2387
 95% H-Stat UCL
 359

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 531.2

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

Result (1,1-Dichloroethene)

General Statistics

Total Number of Observations	324	Number of Distinct Observations	240
Number of Detects	30	Number of Non-Detects	294
Number of Distinct Detects	30	Number of Distinct Non-Detects	211
Minimum Detect	0.928	Minimum Non-Detect	3.79
Maximum Detect 13	36000	Maximum Non-Detect	235000
Variance Detects 1.	133E+9	Percent Non-Detects	90.74%
Mean Detects 14	4110	SD Detects	33663
Median Detects	103.3	CV Detects	2.386
Skewness Detects	3.049	Kurtosis Detects	9.001
Mean of Logged Detects	5.296	SD of Logged Detects	3.764

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.481	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.927	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.367	Lilliefors GOF Test
5% Lilliefors Critical Value	0.159	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	1318	KM Standard Error of Mean	616.8
KM SD	10892	95% KM (BCA) UCL	2490
95% KM (t) UCL	2335	95% KM (Percentile Bootstrap) UCL	2412
95% KM (z) UCL	2332	95% KM Bootstrap t UCL	3962
90% KM Chebyshev UCL	3168	95% KM Chebyshev UCL	4006
97.5% KM Chebyshev UCL	5169	99% KM Chebyshev UCL	7454

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	1.932	Anderson-Darling GOF Test
5% A-D Critical Value	0.927	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.27	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.179	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.181	k star (bias corrected MLE)	0.176	k hat (MLE)
78042	Theta star (bias corrected MLE)	80081	Theta hat (MLE)
10.85	nu star (bias corrected)	10.57	nu hat (MLE)
		14110	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 $GROS\ may\ not\ be\ used\ when\ kstar\ of\ detects\ is\ small\ such\ as\ <1.0,\ especially\ when\ the\ sample\ size\ is\ small\ (e.g.,\ <15-20)$

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

1306	Mean	0.01	Minimum
0.01	Median	136000	Maximum
8.333	CV	10887	SD
0.0785	k star (bias corrected MLE)	0.0771	k hat (MLE)
16653	Theta star (bias corrected MLE)	16943	Theta hat (MLE)
50.84	nu star (bias corrected)	49.97	nu hat (MLE)
		0.0493	Adjusted Level of Significance (β)
35.41	Adjusted Chi Square Value (50.84, β)	35.46	Approximate Chi Square Value (50.84, α)
1876	95% Gamma Adjusted UCL (use when n<50)	1873	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM) 1318	SD (KM)	10892
Variance (KM) 1.186E+8	SE of Mean (KM)	616.8
k hat (KM) 0.0146	k star (KM)	0.0166
nu hat (KM) 9.482	nu star (KM)	10.73
theta hat (KM) 90042	theta star (KM)	79587
80% gamma percentile (KM) 0.0634	90% gamma percentile (KM)	78.06
95% gamma percentile (KM) 2097	99% gamma percentile (KM)	37315

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (10.73, α)	4.401	Adjusted Chi Square Value (10.73, β)	4.383
95% Gamma Approximate KM-UCL (use when n>=50)	3211	95% Gamma Adjusted KM-UCL (use when n<50)	3225

Shapiro Wilk Test Statistic	0.921	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.927	Detected Data Not Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.153 Lilliefors GOF Test

5% Lilliefors Critical Value 0.159 Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Approximate Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

 Mean in Original Scale
 1307
 Mean in Log Scale
 -0.0822

 SD in Original Scale
 10887
 SD in Log Scale
 2.349

 95% t UCL (assumes normality of ROS data)
 2305
 95% Percentile Bootstrap UCL
 2479

 95% BCA Bootstrap UCL
 2873
 95% Bootstrap t UCL
 4082

 95% H-UCL (Log ROS)
 22.9

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged) 0.808 KM Geo Mean 2.244 KM SD (logged) 1.911 95% Critical H Value (KM-Log) 2.999 95% H-UCL (KM -Log) KM Standard Error of Mean (logged) 0.211 19.17 95% Critical H Value (KM-Log) KM SD (logged) 1.911 2.999 KM Standard Error of Mean (logged) 0.211

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 2205
 Mean in Log Scale
 2.28

 SD in Original Scale
 13313
 SD in Log Scale
 2.484

 95% t UCL (Assumes normality)
 3425
 95% H-Stat UCL
 352.8

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

99% KM (Chebyshev) UCL 7454

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

Result (1,2,4-Trimethylbenzene)

General Statistics

Total Number of Observations	324	Number of Distinct Observations	235
Number of Detects	28	Number of Non-Detects	296
Number of Distinct Detects	27	Number of Distinct Non-Detects	211
Minimum Detect	0.569	Minimum Non-Detect	3.79
Maximum Detect	20900	Maximum Non-Detect	235000
Variance Detects	18224096	Percent Non-Detects	91.36%
Mean Detects	1284	SD Detects	4269
Median Detects	69.15	CV Detects	3.326
Skewness Detects	4.174	Kurtosis Detects	18.03
Mean of Logged Detects	4.158	SD of Logged Detects	2.541

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.336	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.924	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.431	Lilliefors GOF Test
5% Lilliefors Critical Value	0.164	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	117.2	KM Standard Error of Mean	75.01
KM SD	1305	95% KM (BCA) UCL	259.3
95% KM (t) UCL	240.9	95% KM (Percentile Bootstrap) UCL	253.3
95% KM (z) UCL	240.5	95% KM Bootstrap t UCL	1506
90% KM Chebyshev UCL	342.2	95% KM Chebyshev UCL	444.1
97.5% KM Chebyshev UCL	585.6	99% KM Chebyshev UCL	863.5

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	2.335	Anderson-Darling GOF Test
5% A-D Critical Value	0.884	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.246	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.182	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.237	k star (bias corrected MLE)	0.239	k hat (MLE)
5420	Theta star (bias corrected MLE)	5380	Theta hat (MLE)
13.26	nu star (bias corrected)	13.36	nu hat (MLE)
		1284	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

110.9	Mean	0.01	Minimum
0.01	Median	20900	Maximum
11.59	CV	1286	SD
0.0966	k star (bias corrected MLE)	0.0955	k hat (MLE)
1148	Theta star (bias corrected MLE)	1162	Theta hat (MLE)
62.62	nu star (bias corrected)	61.86	nu hat (MLE)
		0.0493	Adjusted Level of Significance (β)
45.35	Adjusted Chi Square Value (62.62, β)	45.42	Approximate Chi Square Value (62.62, α)
153.2	95% Gamma Adjusted LICL (use when n<50)	153	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM) 117.2	SD (KM)	1305
Variance (KM) 1701850	SE of Mean (KM)	75.01
k hat (KM) 0.00807	k star (KM)	0.01
nu hat (KM) 5.227	nu star (KM)	6.512
theta hat (KM) 14525	theta star (KM)	11659
80% gamma percentile (KM) 1.4992E-6	90% gamma percentile (KM)	0.185
95% gamma percentile (KM) 40.2	99% gamma percentile (KM)	3110

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (6.51, α)	1.907	Adjusted Chi Square Value (6.51, β)	1.896
95% Gamma Approximate KM-UCL (use when n>=50)	400.1	95% Gamma Adjusted KM-UCL (use when n<50)	402.4

Shapiro Wilk Test Statistic	0.975	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.924	Detected Data appear Lognormal at 5% Significance Leve

Lilliefors Test Statistic 0.106 Lilliefors GOF Test

5% Lilliefors Critical Value 0.164 Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

 Mean in Original Scale
 111.5
 Mean in Log Scale
 -0.556

 SD in Original Scale
 1286
 SD in Log Scale
 1.877

 95% t UCL (assumes normality of ROS data)
 229.3
 95% Percentile Bootstrap UCL
 259.7

 95% BCA Bootstrap UCL
 324.4
 95% Bootstrap t UCL
 1424

 95% H-UCL (Log ROS)
 4.552

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged) 0.685 KM Geo Mean 1.984 KM SD (logged) 1.49 95% Critical H Value (KM-Log) 2.561 95% H-UCL (KM -Log) KM Standard Error of Mean (logged) 0.333 7.441 KM SD (logged) 95% Critical H Value (KM-Log) 1.49 2.561 KM Standard Error of Mean (logged) 0.333

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 1664
 Mean in Log Scale
 2.309

 SD in Original Scale
 10236
 SD in Log Scale
 2.484

 95% t UCL (Assumes normality)
 2602
 95% H-Stat UCL
 362.9

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 7.441

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

Result (1,3,5-Trimethylbenzene)

Total Number of Observations	324	Number of Distinct Observations	237
Number of Detects	22	Number of Non-Detects	302
Number of Distinct Detects	22	Number of Distinct Non-Detects	216
Minimum Detect	0.76	Minimum Non-Detect	3.79
Maximum Detect	5770	Maximum Non-Detect	235000
Variance Detects	1923180	Percent Non-Detects	93.21%
Mean Detects	611.8	SD Detects	1387
Median Detects	78.05	CV Detects	2.267
Skewness Detects	3.138	Kurtosis Detects	9.944
Mean of Logged Detects	3.906	SD of Logged Detects	2.821

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.495	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.911	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.351	Lilliefors GOF Test
5% Lilliefors Critical Value	0.184	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	46.06	KM Standard Error of Mean	23.1
KM SD	395.3	95% KM (BCA) UCL	87.86
95% KM (t) UCL	84.16	95% KM (Percentile Bootstrap) UCL	87.67
95% KM (z) UCL	84.05	95% KM Bootstrap t UCL	191.7
90% KM Chebyshev UCL	115.3	95% KM Chebyshev UCL	146.7
97.5% KM Chebyshev UCL	190.3	99% KM Chebyshev UCL	275.9

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.645	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.858	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.123	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.202	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.27	k star (bias corrected MLE)	0.278	k hat (MLE)
2262	Theta star (bias corrected MLE)	2200	Theta hat (MLE)
11.9	nu star (bias corrected)	12.23	nu hat (MLE)
		611.8	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs $\,$

 $GROS \ may \ not \ be \ used \ when \ kstar \ of \ detects \ is \ small \ such \ as <1.0, \ especially \ when \ the \ sample \ size \ is \ small \ (e.g., <15-20)$

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

41.55	Mean	0.01	Minimum
0.01	Median	5770	Maximum
9.284	CV	385.7	SD
0.105	k star (bias corrected MLE)	0.104	k hat (MLE)
394.7	Theta star (bias corrected MLE)	398.8	Theta hat (MLE)
68.22	nu star (bias corrected)	67.51	nu hat (MLE)
		0.0493	Adjusted Level of Significance (β)
50.14	Adjusted Chi Square Value (68.22, β)	50.21	Approximate Chi Square Value (68.22, α)
56.53	95% Gamma Adjusted UCL (use when n<50)	56.46	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	46.06	SD (KM)	395.3
Variance (KM)	156252	SE of Mean (KM)	23.1
k hat (KM)	0.0136	k star (KM)	0.0155
nu hat (KM)	8.798	nu star (KM)	10.05
theta hat (KM)	3392	theta star (KM)	2970
80% gamma percentile (KM)	9.5278E-4	90% gamma percentile (KM)	1.894
95% gamma percentile (KM)	63 13	99% gamma percentile (KM)	1305

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (10.05, α)	3.973	Adjusted Chi Square Value (10.05, β)	3.956
95% Gamma Approximate KM-UCL (use when n>=50)	116.5	95% Gamma Adjusted KM-UCL (use when n<50)	117

Shapiro Wilk Test Statistic	0.94	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.911	Detected Data appear Lognormal at 5% Significance Leve

Lilliefors Test Statistic 0.126 Lilliefors GOF Test

5% Lilliefors Critical Value 0.184 Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

0.562	Mean in Log Scale	43.29	Mean in Original Scale
1.391	SD in Log Scale	385.6	SD in Original Scale
81.24	95% Percentile Bootstrap UCL	78.63	95% t UCL (assumes normality of ROS data)
191.3	95% Bootstrap t UCL	108.2	95% BCA Bootstrap UCL
		5.58	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	0.608	KM Geo Mean	1.837
KM SD (logged)	1.342	95% Critical H Value (KM-Log)	2.419
KM Standard Error of Mean (logged)	0.238	95% H-UCL (KM -Log)	5.415
KM SD (logged)	1.342	95% Critical H Value (KM-Log)	2.419
KM Standard Error of Mean (logged)	0.238		

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 1595
 Mean in Log Scale
 2.28

 SD in Original Scale
 10172
 SD in Log Scale
 2.461

 95% t UCL (Assumes normality)
 2527
 95% H-Stat UCL
 330.8

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Approximate Gamma UCL 116.5

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

Result (2-Butanone)

General	Statistics
---------	------------

Total Number of Observations	324	Number of Distinct Observations	208
Number of Detects	30	Number of Non-Detects	294
Number of Distinct Detects	30	Number of Distinct Non-Detects	180
Minimum Detect	1.37	Minimum Non-Detect	18.9
Maximum Detect	445	Maximum Non-Detect 5	5880000
Variance Detects	18791	Percent Non-Detects	90.74%
Mean Detects	64.86	SD Detects	137.1
Median Detects	5.565	CV Detects	2.113
Skewness Detects	2.282	Kurtosis Detects	3.689
Mean of Logged Detects	2.399	SD of Logged Detects	1.786

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.499	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.927	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.379	Lilliefors GOF Test
5% Lilliefors Critical Value	0.159	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	12.73	KM Standard Error of Mean	3.618
KM SD	52.84	95% KM (BCA) UCL	19.3
95% KM (t) UCL	18.69	95% KM (Percentile Bootstrap) UCL	18.93
95% KM (z) UCL	18.68	95% KM Bootstrap t UCL	22.11
90% KM Chebyshev UCL	23.58	95% KM Chebyshev UCL	28.5
97.5% KM Chebyshev UCL	35.32	99% KM Chebyshev UCL	48.73

Gamma GOF Tests on Detected Observations Only

Test Statistic 3.269	Anderson-Darling GOF Test
Critical Value 0.837 Detected Data	Not Gamma Distributed at 5% Significance Level
Test Statistic 0.253	Kolmogorov-Smirnov GOF
Critical Value 0.172 Detected Data	Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.36	k star (bias corrected MLE)	0.375	k hat (MLE)
180.3	Theta star (bias corrected MLE)	173	Theta hat (MLE)
21.58	nu star (bias corrected)	22.5	nu hat (MLE)
		64.86	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

7.626	Mean	0.01	Minimum
0.01	Median	445	Maximum
5.938	CV	45.28	SD
0.148	k star (bias corrected MLE)	0.147	k hat (MLE)
51.56	Theta star (bias corrected MLE)	51.81	Theta hat (MLE)
95.84	nu star (bias corrected)	95.39	nu hat (MLE)
		0.049	Adjusted Level of Significance (β)
74.17	Adjusted Chi Square Value (95.84, β)	74.26	Approximate Chi Square Value (95.84, α)
9.853	95% Gamma Adjusted UCL (use when n<50)	9.842	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	12.73	SD (KM)	52.84
Variance (KM)	2792	SE of Mean (KM)	3.618
k hat (KM)	0.058	k star (KM)	0.0595
nu hat (KM)	37.59	nu star (KM)	38.58
theta hat (KM)	219.4	theta star (KM)	213.8
80% gamma percentile (KM)	3.005	90% gamma percentile (KM)	23.75
95% gamma percentile (KM)	71.2	99% gamma percentile (KM)	257.6

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (38.58, α)	25.35	Adjusted Chi Square Value (38.58, β)	25.3
95% Gamma Approximate KM-UCL (use when n>=50)	19.36	95% Gamma Adjusted KM-UCL (use when n<50)	19.4

Shapiro Wilk Test Statistic	0.857	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.927	Detected Data Not Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.192 Lilliefors GOF Test

5% Lilliefors Critical Value 0.159 Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	10.79	Mean in Log Scale	1.6
SD in Original Scale	44.66	SD in Log Scale	0.788
95% t UCL (assumes normality of ROS data)	14.88	95% Percentile Bootstrap UCL	15.16
95% BCA Bootstrap UCL	16.72	95% Bootstrap t UCL	17.74
95% H-UCL (Log ROS)	7.365		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	1.485	KM Geo Mean	4.416
KM SD (logged)	0.948	95% Critical H Value (KM-Log)	2.08
KM Standard Error of Mean (logged)	0.143	95% H-UCL (KM -Log)	7.727
KM SD (logged)	0.948	95% Critical H Value (KM-Log)	2.08
KM Standard Error of Mean (logged)	0.143		

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 39230
 Mean in Log Scale
 4.223

 SD in Original Scale
 254258
 SD in Log Scale
 3.061

 95% t UCL (Assumes normality)
 62531
 95% H-Stat UCL
 15460

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 28.5

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

Result (Acetone)

General Statistics

Total Number of Observations	324	Number of Distinct Observations	276
Number of Detects	177	Number of Non-Detects	147
Number of Distinct Detects	145	Number of Distinct Non-Detects	131
Minimum Detect	2.77	Minimum Non-Detect	39.4
Maximum Detect	757	Maximum Non-Detect 5	5880000
Variance Detects	3466	Percent Non-Detects	45.37%
Mean Detects	24.64	SD Detects	58.87
Median Detects	15	CV Detects	2.389
Skewness Detects	11.16	Kurtosis Detects	137.9
Mean of Logged Detects	2.727	SD of Logged Detects	0.827

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.27	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.355	Lilliefors GOF Test
5% Lilliefors Critical Value	0.067	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	22.84	KM Standard Error of Mean	3.52
KM SD	52.39	95% KM (BCA) UCL	30.06
95% KM (t) UCL	28.65	95% KM (Percentile Bootstrap) UCL	29.28
95% KM (z) UCL	28.63	95% KM Bootstrap t UCL	38.09
90% KM Chebyshev UCL	33.4	95% KM Chebyshev UCL	38.19
97.5% KM Chebyshev UCL	44.83	99% KM Chebyshey UCL	57.87

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	6.872	Anderson-Darling GOF Test
5% A-D Critical Value	0.779	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.159	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.0713	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

1.17	k star (bias corrected MLE)	1.187	k hat (MLE)
21.05	Theta star (bias corrected MLE)	20.76	Theta hat (MLE)
414.3	nu star (bias corrected)	420.1	nu hat (MLE)
		24.64	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	19.39
Maximum	757	Median	13.31
SD	44.02	CV	2.27
k hat (MLE)	1.395	k star (bias corrected MLE)	1.384
Theta hat (MLE)	13.91	Theta star (bias corrected MLE)	14.02
nu hat (MLE)	903.7	nu star (bias corrected)	896.6
Adjusted Level of Significance (β)	0.0493		
Approximate Chi Square Value (896.63, α)	828.1	Adjusted Chi Square Value (896.63, β)	827.8
95% Gamma Approximate UCL (use when n>=50)	21	95% Gamma Adjusted UCL (use when n<50)	21.01

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	22.84	SD (KM)	52.39
Variance (KM)	2745	SE of Mean (KM)	3.52
k hat (KM)	0.19	k star (KM)	0.19
nu hat (KM)	123.2	nu star (KM)	123.4
theta hat (KM)	120.2	theta star (KM)	120
80% gamma percentile (KM)	29.3	90% gamma percentile (KM)	69.04
95% gamma percentile (KM)	119.2	99% gamma percentile (KM)	258.4

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (123.39, α)	98.74	Adjusted Chi Square Value (123.39, β)	98.64
95% Gamma Approximate KM-UCL (use when n>=50)	28.55	95% Gamma Adjusted KM-UCL (use when n<50)	28.58

Shapiro Wilk Approximate Test Statistic	0.97	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0.0303	Detected Data Not Lognormal at 5% Significance Le

Lilliefors Test Statistic 0.0621 Lilliefors GOF Test

5% Lilliefors Critical Value 0.067 Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Approximate Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	20.16	Mean in Log Scale	2.705
SD in Original Scale	43.77	SD in Log Scale	0.621
95% t UCL (assumes normality of ROS data)	24.17	95% Percentile Bootstrap UCL	24.78
95% BCA Bootstrap UCL	27.91	95% Bootstrap t UCL	31.62
95% H-UCL (Log ROS)	19.34		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged) 2.697 KM Geo Mean 14.84 KM SD (logged) 0.794 95% Critical H Value (KM-Log) 1.966 0.0578 95% H-UCL (KM -Log) KM Standard Error of Mean (logged) 22.18 KM SD (logged) 95% Critical H Value (KM-Log) 0.794 1.966 KM Standard Error of Mean (logged) 0.0578

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 39245
 Mean in Log Scale
 4.524

 SD in Original Scale
 254256
 SD in Log Scale
 2.947

 95% t UCL (Assumes normality)
 62546
 95% H-Stat UCL
 14062

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 22.18

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

PARCADIS Design & Consultancy for natural and built assets

0.979

Mean

Result (Benzene)

Total Number of Observations	324	Number of Distinct Observations	237
Number of Detects	11	Number of Non-Detects	313
Number of Distinct Detects	11	Number of Distinct Non-Detects	226
Minimum Detect	0.683	Minimum Non-Detect	3.79
Maximum Detect	38.2	Maximum Non-Detect 2	235000
Variance Detects	127.1	Percent Non-Detects	96.6%
Mean Detects	5.697	SD Detects	11.27
Median Detects	1.28	CV Detects	1.979
Skewness Detects	2.888	Kurtosis Detects	8.568
Mean of Logged Detects	0.749	SD of Logged Detects	1.232

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.501	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.85	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.435	Lilliefors GOF Test
5% Lilliefors Critical Value	0.251	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	1.575	KM Standard Error of Mean	0.263
KM SD	2.616	95% KM (BCA) UCL	2.082
95% KM (t) UCL	2.008	95% KM (Percentile Bootstrap) UCL	2.013
95% KM (z) UCL	2.007	95% KM Bootstrap t UCL	2.275
90% KM Chebyshev UCL	2.363	95% KM Chebyshev UCL	2.72
97.5% KM Chebyshev UCL	3.215	99% KM Chebyshev UCL	4.188

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic 1.739	Anderson-Darling GOF Test
A-D Critical Value 0.772	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic 0.383	Kolmogorov-Smirnov GOF
K-S Critical Value 0.267	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.512	k star (bias corrected MLE)	0.621	k hat (MLE)
11.13	Theta star (bias corrected MLE)	9.178	Theta hat (MLE)
11.26	nu star (bias corrected)	13.66	nu hat (MLE)
		5.697	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs $\,$

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum 0.01

0.452	Median	38.2	Maximum
2.445	CV	2.394	SD
0.551	k star (bias corrected MLE)	0.554	k hat (MLE)
1.776	Theta star (bias corrected MLE)	1.766	Theta hat (MLE)
357.2	nu star (bias corrected)	359.2	nu hat (MLE)
		0.0493	Adjusted Level of Significance (β)
314.2	Adjusted Chi Square Value (357.20, β)	314.4	Approximate Chi Square Value (357.20, α)
1.113	95% Gamma Adjusted UCL (use when n<50)	1.112	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	1.575	SD (KM)	2.616
Variance (KM)	6.841	SE of Mean (KM)	0.263
k hat (KM)	0.363	k star (KM)	0.361
nu hat (KM)	235.1	nu star (KM)	234.2
theta hat (KM)	4.342	theta star (KM)	4.358
80% gamma percentile (KM)	2.508	90% gamma percentile (KM)	4.526
95% gamma percentile (KM)	6.776	99% gamma percentile (KM)	12.5

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (234.24, α)	199.8	Adjusted Chi Square Value (234.24, β)	199.7
95% Gamma Approximate KM-UCL (use when n>=50)	1.847	95% Gamma Adjusted KM-UCL (use when n<50)	1.848

Shapiro Wilk Test Statistic	0.772	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.85	Detected Data Not Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.284 Lilliefors GOF Test

5% Lilliefors Critical Value 0.251 Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

0.339	Mean in Log Scale	1.597	Mean in Original Scale
0.383	SD in Log Scale	2.177	SD in Original Scale
1.833	95% Percentile Bootstrap UCL	1.796	95% t UCL (assumes normality of ROS data)
2.324	95% Bootstrap t UCL	2.011	95% BCA Bootstrap UCL
		1.568	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	0.259	KM Geo Mean	1.295
KM SD (logged)	0.47	95% Critical H Value (KM-Log)	1.777
KM Standard Error of Mean (logged)	0.135	95% H-UCL (KM -Log)	1.515
KM SD (logged)	0.47	95% Critical H Value (KM-Log)	1.777
KM Standard Error of Mean (logged)	0.135		

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 1571
 Mean in Log Scale
 2.194

 SD in Original Scale
 10172
 SD in Log Scale
 2.388

 95% t UCL (Assumes normality)
 2503
 95% H-Stat UCL
 248

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 2.72

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

Result (Carbon tetrachloride)

General	Statistics
---------	------------

Total Number of Observations	324	Number of Distinct Observations	232
Number of Detects	5	Number of Non-Detects	319
Number of Distinct Detects	5	Number of Distinct Non-Detects	229
Minimum Detect	2.33	Minimum Non-Detect	3.79
Maximum Detect	21.2	Maximum Non-Detect 2	235000
Variance Detects	59.18	Percent Non-Detects	98.46%
Mean Detects	8.036	SD Detects	7.693
Median Detects	4.3	CV Detects	0.957
Skewness Detects	1.807	Kurtosis Detects	3.266
Mean of Logged Detects	1.772	SD of Logged Detects	0.85

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.784	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.286	Lilliefors GOF Test
5% Lilliefors Critical Value	0.343	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	2.686	KM Standard Error of Mean	0.231
KM SD	1.434	95% KM (BCA) UCL	4.071
95% KM (t) UCL	3.067	95% KM (Percentile Bootstrap) UCL	4.035
95% KM (z) UCL	3.066	95% KM Bootstrap t UCL	3.22
90% KM Chebyshev UCL	3.379	95% KM Chebyshev UCL	3.693
97.5% KM Chebyshev UCL	4.128	99% KM Chebyshev UCL	4.984

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.39	Anderson-Darling GOF Test	
5% A-D Critical Value	0.685	Detected data appear Gamma Distributed at 5% Significance Level	
K-S Test Statistic	0.286	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.361	Detected data appear Gamma Distributed at 5% Significance Level	

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.833	k star (bias corrected MLE)	1.75	k hat (MLE)
9.642	Theta star (bias corrected MLE)	4.592	Theta hat (MLE)
8.334	nu star (bias corrected)	17.5	nu hat (MLE)
		8.036	Mean (detects)

Mean 0.411

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 $GROS \ may \ not \ be \ used \ when \ kstar \ of \ detects \ is \ small \ such \ as <1.0, \ especially \ when \ the \ sample \ size \ is \ small \ (e.g., <15-20)$

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum 0.01

Maximum	21.2	Median	0.01
SD	1.429	CV	3.477
k hat (MLE)	0.266	k star (bias corrected MLE)	0.266
Theta hat (MLE)	1.544	Theta star (bias corrected MLE)	1.546
nu hat (MLE)	172.5	nu star (bias corrected)	172.3
Adjusted Level of Significance (β)	0.0493		
Approximate Chi Square Value (172.27, α)	142.9	Adjusted Chi Square Value (172.27, β)	142.8
95% Gamma Approximate UCL (use when n>=50)	0.496	95% Gamma Adjusted UCL (use when n<50)	0.496

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	2.686	SD (KM)	1.434
Variance (KM)	2.056	SE of Mean (KM)	0.231
k hat (KM)	3.51	k star (KM)	3.479
nu hat (KM)	2274	nu star (KM)	2254
theta hat (KM)	0.765	theta star (KM)	0.772
80% gamma percentile (KM)	3.764	90% gamma percentile (KM)	4.617
95% gamma percentile (KM)	5.407	99% gamma percentile (KM)	7.106

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (N/A, α)	2145	Adjusted Chi Square Value (N/A, β)	2145
95% Gamma Approximate KM-UCL (use when n>=50)	2.823	95% Gamma Adjusted KM-UCL (use when n<50)	2.824

Shapiro Wilk Test Statistic	0.943	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Detected Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.244 Lilliefors GOF Test

5% Lilliefors Critical Value 0.343 Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

0.734	Mean in Log Scale	2.19	Mean in Original Scale
0.269	SD in Log Scale	1.217	SD in Original Scale
2.319	95% Percentile Bootstrap UCL	2.301	95% t UCL (assumes normality of ROS data)
2.419	95% Bootstrap t UCL	2.394	95% BCA Bootstrap UCL
		2.215	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	0.94	KM Geo Mean	2.561
KM SD (logged)	0.251	95% Critical H Value (KM-Log)	1.695
KM Standard Error of Mean (logged)	0.0691	95% H-UCL (KM -Log)	2.706
KM SD (logged)	0.251	95% Critical H Value (KM-Log)	1.695
KM Standard Error of Mean (logged)	0.0691		

DL/2 Statistics

DL/2 Normal	DL/2 Log-Transformed
DELITORIA	DEE EOG TIGHOLOMIOG

 Mean in Original Scale
 1571
 Mean in Log Scale
 2.229

 SD in Original Scale
 10172
 SD in Log Scale
 2.371

 95% t UCL (Assumes normality)
 2503
 95% H-Stat UCL
 244.7

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 3.067

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

Result (Chloroethane)

Total Number of Observations	324	Number of Distinct Observations	240
Number of Detects	12	Number of Non-Detects	312
Number of Distinct Detects	12	Number of Distinct Non-Detects	229
Minimum Detect	1.39	Minimum Non-Detect	3.79
Maximum Detect	459	Maximum Non-Detect	235000
Variance Detects	16241	Percent Non-Detects	96.3%
Mean Detects	60.75	SD Detects	127.4
Median Detects	21.75	CV Detects	2.098
Skewness Detects	3.275	Kurtosis Detects	11.03
Mean of Logged Detects	2.856	SD of Logged Detects	1.668

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.483	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.859	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.376	Lilliefors GOF Test
5% Lilliefors Critical Value	0.243	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	4.752	KM Standard Error of Mean	1.748
KM SD	27.41	95% KM (BCA) UCL	8.316
95% KM (t) UCL	7.635	95% KM (Percentile Bootstrap) UCL	7.969
95% KM (z) UCL	7.626	95% KM Bootstrap t UCL	13.91
90% KM Chebyshev UCL	9.995	95% KM Chebyshev UCL	12.37
97.5% KM Chebyshev UCL	15.67	99% KM Chebyshev UCL	22.14

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.598	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.784	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.189	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.259	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.436	k star (bias corrected MLE)	0.507	k hat (MLE)
139.5	Theta star (bias corrected MLE)	119.9	Theta hat (MLE)
10.46	nu star (bias corrected)	12.16	nu hat (MLE)
		60.75	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 $GROS\ may\ not\ be\ used\ when\ kstar\ of\ detects\ is\ small\ such\ as\ <1.0,\ especially\ when\ the\ sample\ size\ is\ small\ (e.g.,\ <15-20)$

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	2.26
Maximum	459	Median	0.01
SD	26.17	CV	11.58
k hat (MLE)	0.149	k star (bias corrected MLE)	0.15
Theta hat (MLE)	15.12	Theta star (bias corrected MLE)	15.05
nu hat (MLE)	96.87	nu star (bias corrected)	97.3
Adjusted Level of Significance (β)	0.0493		
Approximate Chi Square Value (97.30, α)	75.55	Adjusted Chi Square Value (97.30, β)	75.46
95% Gamma Approximate UCL (use when n>=50)	2.91	95% Gamma Adjusted UCL (use when n<50)	2.914

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	4.752	SD (KM)	27.41
Variance (KM)	751.1	SE of Mean (KM)	1.748
k hat (KM)	0.0301	k star (KM)	0.0318
nu hat (KM)	19.48	nu star (KM)	20.63
theta hat (KM)	158.1	theta star (KM)	149.2
80% gamma percentile (KM)	0.0778	90% gamma percentile (KM)	3.209
95% gamma percentile (KM)	19.4	99% gamma percentile (KM)	120.7

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (20.63, α)	11.32	Adjusted Chi Square Value (20.63, β)	11.29
95% Gamma Approximate KM-UCL (use when n>=50)	8.661	95% Gamma Adjusted KM-UCL (use when n<50)	8.685

Shapiro Wilk Test Statistic	0.968	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.859	Detected Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.11 Lilliefors GOF Test

5% Lilliefors Critical Value 0.243 Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Scale 4.067	Mean in Log Scale	0.617
Scale 26.04	SD in Log Scale	0.701
S data) 6.453 95	5% Percentile Bootstrap UCL	6.965
p UCL 9.262	95% Bootstrap t UCL	16.9
ROS) 2.552		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	0.813	KM Geo Mean	2.254
KM SD (logged)	0.673	95% Critical H Value (KM-Log)	1.888
KM Standard Error of Mean (logged)	0.215	95% H-UCL (KM -Log)	3.033
KM SD (logged)	0.673	95% Critical H Value (KM-Log)	1.888
KM Standard Error of Mean (logged)	0.215		

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 1573
 Mean in Log Scale
 2.262

 SD in Original Scale
 10172
 SD in Log Scale
 2.381

 95% t UCL (Assumes normality)
 2505
 95% H-Stat UCL
 260.6

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Approximate Gamma UCL 8.661

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

Result (cis-1,2-Dichloroethene)

General Statistics

otal Number of Observations	324	Number of Distinct Observations	260
Number of Detects	115	Number of Non-Detects	209
Number of Distinct Detects	113	Number of Distinct Non-Detects	150
Minimum Detect	0.893	Minimum Non-Detect	3.79
Maximum Detect	252000	Maximum Non-Detect	89300
Variance Detects	1.329E+9	Percent Non-Detects	64.51%
Mean Detects	13478	SD Detects	36453
Median Detects	130	CV Detects	2.705
Skewness Detects	3.914	Kurtosis Detects	18.52
Mean of Logged Detects	5.238	SD of Logged Detects	3.514

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.45	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.39	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0829	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	4794	KM Standard Error of Mean	1260
KM SD	22571	95% KM (BCA) UCL	7008
95% KM (t) UCL	6872	95% KM (Percentile Bootstrap) UCL	6865
95% KM (z) UCL	6866	95% KM Bootstrap t UCL	7643
90% KM Chebyshev UCL	8574	95% KM Chebyshev UCL	10286
97.5% KM Chebyshev UCL	12662	99% KM Chebyshev UCL	17330

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	7.835	Anderson-Darling GOF Test
5% A-D Critical Value	0.942	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.221	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.0958	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.176	k star (bias corrected MLE)	0.177
Theta hat (MLE)	76686	Theta star (bias corrected MLE)	76161
nu hat (MLE)	40.42	nu star (bias corrected)	40.7
Mean (detects)	13478		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 $GROS \ may \ not \ be \ used \ when \ kstar \ of \ detects \ is \ small \ such \ as < 1.0, \ especially \ when \ the \ sample \ size \ is \ small \ (e.g., < 15-20)$

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimu	n 0.01	Mean	4784
Maximu	n 252000	Median	0.01
S	22599	CV	4.724
k hat (MLE	0.0863	k star (bias corrected MLE)	0.0875
Theta hat (MLI	55451	Theta star (bias corrected MLE)	54654
nu hat (MLE	55.9	nu star (bias corrected)	56.72
Adjusted Level of Significance (0.0493		
Approximate Chi Square Value (56.72,	a) 40.41	Adjusted Chi Square Value (56.72, β)	40.35
Gamma Approximate UCL (use when n>=5	0) 6715	95% Gamma Adjusted UCL (use when n<50)	6725

Estimates of Gamma Parameters using KM Estimates

Mean (KM) 4794	SD (KM) 22571
Variance (KM) 5.095E+8	SE of Mean (KM) 1260
k hat (KM) 0.0451	k star (KM) 0.0467
nu hat (KM) 29.23	nu star (KM) 30.29
theta hat (KM) 106272	theta star (KM) 102544
80% gamma percentile (KM) 507.8	90% gamma percentile (KM) 6674
95% gamma percentile (KM) 24839	99% gamma percentile (KM) 107040

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (30.29, α) 18.72 Adjusted Chi Square Value (30.29, β) 18.68 95% Gamma Approximate KM-UCL (use when n>=50) 7756 95% Gamma Adjusted KM-UCL (use when n<50) 7773

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic 0.925 Shapiro Wilk GOF Test

Lilliefors Test Statistic 0.0764 Lilliefors GOF Test

5% Lilliefors Critical Value 0.0829 Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Approximate Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

 Mean in Original Scale
 4785
 Mean in Log Scale
 2.15

 SD in Original Scale
 22599
 SD in Log Scale
 3.213

 95% t UCL (assumes normality of ROS data)
 6857
 95% Percentile Bootstrap UCL
 6956

 95% BCA Bootstrap UCL
 7637
 95% Bootstrap t UCL
 7570

 95% H-UCL (Log ROS)
 3358
 3358

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged) 2.331 KM Geo Mean 10.29 95% Critical H Value (KM-Log) KM SD (logged) 3.043 4.303 95% H-UCL (KM -Log) 2184 KM Standard Error of Mean (logged) 0.181 KM SD (logged) 95% Critical H Value (KM-Log) 3.043 4.303 KM Standard Error of Mean (logged) 0.181

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 4937
 Mean in Log Scale
 2.755

 SD in Original Scale
 22703
 SD in Log Scale
 3.001

 95% t UCL (Assumes normality)
 7017
 95% H-Stat UCL
 2890

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

99% KM (Chebyshev) UCL 17330

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

Result (Dichlorodifluoromethane)

Total Number of Observations	324	Number of Distinct Observations	234
Number of Detects	5	Number of Non-Detects	319
Number of Distinct Detects	5	Number of Distinct Non-Detects	229
Minimum Detect	1	Minimum Non-Detect	3.79
Maximum Detect	19	Maximum Non-Detect	1180000
Variance Detects	52.43	Percent Non-Detects	98.46%
Mean Detects	7.808	SD Detects	7.241
Median Detects	7.64	CV Detects	0.927
Skewness Detects	0.969	Kurtosis Detects	0.678
Mean of Logged Detects	1.573	SD of Logged Detects	1.216

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.909	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.207	Lilliefors GOF Test
5% Lilliefors Critical Value	0.343	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	1.584	KM Standard Error of Mean	0.358
KM SD	1.425	95% KM (BCA) UCL	4.017
95% KM (t) UCL	2.175	95% KM (Percentile Bootstrap) UCL	3.959
95% KM (z) UCL	2.173	95% KM Bootstrap t UCL	3.433
90% KM Chebyshev UCL	2.658	95% KM Chebyshev UCL	3.144
7.5% KM Chebyshev UCL	3.82	99% KM Chebyshev UCL	5.146

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.275	Anderson-Darling GOF Test
5% A-D Critical Value	0.69	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.22	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.363	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.603	k star (bias corrected MLE)	1.175	k hat (MLE)
12.94	Theta star (bias corrected MLE)	6.647	Theta hat (MLE)
6.032	nu star (bias corrected)	11.75	nu hat (MLE)
		7.808	Mean (detects)

Mean 0.913

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs $\,$

 $GROS\ may\ not\ be\ used\ when\ kstar\ of\ detects\ is\ small\ such\ as\ <1.0,\ especially\ when\ the\ sample\ size\ is\ small\ (e.g.,\ <15-20)$

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum 0.01

0.638	Median	19	Maximum
1.51	CV	1.379	SD
0.672	k star (bias corrected MLE)	0.676	k hat (MLE)
1.359	Theta star (bias corrected MLE)	1.35	Theta hat (MLE)
435.5	nu star (bias corrected)	438.3	nu hat (MLE)
		0.0493	Adjusted Level of Significance (β)
388	Adjusted Chi Square Value (435.53, β)	388.1	Approximate Chi Square Value (435.53, α)
1.025	95% Gamma Adjusted UCL (use when n<50)	1.025	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

1.584	SD (KM)	1.425
2.032	SE of Mean (KM)	0.358
1.235	k star (KM)	1.226
800.5	nu star (KM)	794.4
1.282	theta star (KM)	1.292
2.503	90% gamma percentile (KM)	3.469
4.42	99% gamma percentile (KM)	6.596
	2.032 1.235 800.5 1.282 2.503	2.032 SE of Mean (KM) 1.235 k star (KM) 800.5 nu star (KM) 1.282 theta star (KM) 2.503 90% gamma percentile (KM)

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (794.40, α)	730	Adjusted Chi Square Value (794.40, β)	729.7
95% Gamma Approximate KM-UCL (use when n>=50)	1.724	95% Gamma Adjusted KM-UCL (use when n<50)	1.725

Shapiro Wilk Test Statistic	0.932	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Detected Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.248 Lilliefors GOF Test

5% Lilliefors Critical Value 0.343 Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	1.508	Mean in Log Scale	0.321
SD in Original Scale	1.203	SD in Log Scale	0.356
95% t UCL (assumes normality of ROS data)	1.618	95% Percentile Bootstrap UCL	1.626
95% BCA Bootstrap UCL	1.674	95% Bootstrap t UCL	1.738
95% H-UCL (Log ROS)	1.519		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	0.344	KM Geo Mean	1.411
KM SD (logged)	0.399	95% Critical H Value (KM-Log)	1.747
KM Standard Error of Mean (logged)	0.247	95% H-UCL (KM -Log)	1.588
KM SD (logged)	0.399	95% Critical H Value (KM-Log)	1.747
KM Standard Error of Mean (logged)	0.247		

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 7857
 Mean in Log Scale
 2.733

 SD in Original Scale
 50950
 SD in Log Scale
 3.018

 95% t UCL (Assumes normality)
 12526
 95% H-Stat UCL
 2997

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 2.175

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

Result (Ethylbenzene)

General Statistics

Total Number of Observations	324	Number of Distinct Observations	244
Number of Detects	45	Number of Non-Detects	279
Number of Distinct Detects	45	Number of Distinct Non-Detects	200
Minimum Detect	0.767	Minimum Non-Detect	3.79
Maximum Detect	10100	Maximum Non-Detect	235000
Variance Detects	2904512	Percent Non-Detects	86.11%
Mean Detects	711.1	SD Detects	1704
Median Detects	82.6	CV Detects	2.397
Skewness Detects	4.251	Kurtosis Detects	21.36
Mean of Logged Detects	4.041	SD of Logged Detects	2.711

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.476	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.945	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.338	Lilliefors GOF Test
5% Lilliefors Critical Value	0.131	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	106.4	KM Standard Error of Mean	39.58
KM SD	688.8	95% KM (BCA) UCL	179.7
95% KM (t) UCL	171.7	95% KM (Percentile Bootstrap) UCL	174.8
95% KM (z) UCL	171.5	95% KM Bootstrap t UCL	244.2
90% KM Chebyshev UCL	225.1	95% KM Chebyshev UCL	278.9
97.5% KM Chebyshev UCL	353.6	99% KM Chebyshev UCL	500.2

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	1.474	Anderson-Darling GOF Test
5% A-D Critical Value	0.873	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.184	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.144	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.273	k star (bias corrected MLE)	0.277	k hat (MLE)
2605	Theta star (bias corrected MLE)	2571	Theta hat (MLE)
24.57	nu star (bias corrected)	24.9	nu hat (MLE)
		711.1	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

98.78	Mean	0.01	Minimum
0.01	Median	10100	Maximum
6.839	CV	675.5	SD
0.102	k star (bias corrected MLE)	0.101	k hat (MLE)
963.7	Theta star (bias corrected MLE)	974.3	Theta hat (MLE)
66.42	nu star (bias corrected)	65.69	nu hat (MLE)
		0.049	Adjusted Level of Significance (β)
48.59	Adjusted Chi Square Value (66.42, β)	48.66	Approximate Chi Square Value (66.42, α)
135	95% Gamma Adjusted UCL (use when n<50)	134.8	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	106.4	SD (KM)	688.8
Variance (KM)	474513	SE of Mean (KM)	39.58
k hat (KM)	0.0239	k star (KM)	0.0257
nu hat (KM)	15.46	nu star (KM)	16.65
theta hat (KM)	4460	theta star (KM)	4141
80% gamma percentile (KM)	0.402	90% gamma percentile (KM)	39.7
95% gamma percentile (KM)	349.6	99% gamma percentile (KM)	2852

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (16.65, α) 8.423 Adjusted Chi Square Value (16.65, β) 8.397 95% Gamma Approximate KM-UCL (use when n>=50) 210.3 95% Gamma Adjusted KM-UCL (use when n<50) 211

Shapiro Wilk Test Statistic	0.941	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.945	Detected Data Not Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.109 Lilliefors GOF Test

5% Lilliefors Critical Value 0.131 Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Approximate Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	100.4	Mean in Log Scale	0.828
SD in Original Scale	675.3	SD in Log Scale	1.809
95% t UCL (assumes normality of ROS data)	162.3	95% Percentile Bootstrap UCL	164.3
95% BCA Bootstrap UCL	191.6	95% Bootstrap t UCL	228.8
95% H-UCL (Log ROS)	15.73		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	0.954	KM Geo Mean	2.596
KM SD (logged)	1.73	95% Critical H Value (KM-Log)	2.806
KM Standard Error of Mean (logged)	0.157	95% H-UCL (KM -Log)	15.19
KM SD (logged)	1.73	95% Critical H Value (KM-Log)	2.806
KM Standard Error of Mean (logged)	0.157		

DL/2 Statistics

DL/2 Normal

Mean in Original Scale 1643

DL/2 Log-Transformed

Mean in

 Mean in Original Scale
 1643
 Mean in Log Scale
 2.34

 SD in Original Scale
 10180
 SD in Log Scale
 2.539

 95% t UCL (Assumes normality)
 2576
 95% H-Stat UCL
 439.2

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 15.19

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

Result (Isopropylbenzene)

General Statistics

Total Number of Observations	324	Number of Distinct Observations	235
Number of Detects	29	Number of Non-Detects	295
Number of Distinct Detects	29	Number of Distinct Non-Detects	209
Minimum Detect	0.958	Minimum Non-Detect	3.79
Maximum Detect	8970	Maximum Non-Detect	235000
Variance Detects 2	2785062	Percent Non-Detects	91.05%
Mean Detects	456.3	SD Detects	1669
Median Detects	45.4	CV Detects	3.657
Skewness Detects	5.094	Kurtosis Detects	26.65
Mean of Logged Detects	3.592	SD of Logged Detects	2.258

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.288	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.926	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.439	Lilliefors GOF Test
5% Lilliefors Critical Value	0.161	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

or of Mean 29.93	KM Standard Error of Mean	45.23	KM Mean
3CA) UCL 102.6	95% KM (BCA) UCL	518.2	KM SD
strap) UCL 100.3	95% KM (Percentile Bootstrap) UCL	94.61	95% KM (t) UCL
trap t UCL 438.7	95% KM Bootstrap t UCL	94.47	95% KM (z) UCL
shev UCL 175.7	95% KM Chebyshev UCL	135	90% KM Chebyshev UCL
shev UCL 343	99% KM Chebyshev UCL	232.2	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	2.161	A-D Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.867	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.234	K-S Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.178	5% K-S Critical Value

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.271	k star (bias corrected MLE)	0.276	k hat (MLE)
1686	Theta star (bias corrected MLE)	1652	Theta hat (MLE)
15.69	nu star (bias corrected)	16.02	nu hat (MLE)
		456.3	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	40.85
Maximum	8970	Median	0.01
SD	508.4	CV	12.44
k hat (MLE)	0.106	k star (bias corrected MLE)	0.107
Theta hat (MLE)	384.3	Theta star (bias corrected MLE)	380.5
nu hat (MLE)	68.88	nu star (bias corrected)	69.57
Adjusted Level of Significance (β)	0.0493		
Approximate Chi Square Value (69.57, α)	51.37	Adjusted Chi Square Value (69.57, β)	51.3
95% Gamma Approximate UCL (use when n>=50)	55.33	95% Gamma Adjusted UCL (use when n<50)	55.4

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	45.23	SD (KM)	518.2
Variance (KM)	268548	SE of Mean (KM)	29.93
k hat (KM)	0.00762	k star (KM)	0.00961
nu hat (KM)	4.937	nu star (KM)	6.225
theta hat (KM)	5937	theta star (KM)	4709
80% gamma percentile (KM)	2.1751E-7	90% gamma percentile (KM)	0.046
95% gamma percentile (KM)	12.82	99% gamma percentile (KM)	1183

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (6.22, α)	1.756	Adjusted Chi Square Value (6.22, β)	1.745
95% Gamma Approximate KM-UCL (use when n>=50)	160.4	95% Gamma Adjusted KM-UCL (use when n<50)	161.3

Shapiro Wilk Test Statistic	0.971	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.926	Detected Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.0805 Lilliefors GOF Test

5% Lilliefors Critical Value 0.161 Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	42.41	Mean in Log Scale	0.594
SD in Original Scale	508.3	SD in Log Scale	1.339
95% t UCL (assumes normality of ROS data)	88.98	95% Percentile Bootstrap UCL	96.28
95% BCA Bootstrap UCL	129.4	95% Bootstrap t UCL	459.8
95% H-UCL (Log ROS)	5.316		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged) 0.911 KM Geo Mean 2.486 KM SD (logged) 1.22 95% Critical H Value (KM-Log) 2.308 95% H-UCL (KM -Log) KM Standard Error of Mean (logged) 6.121 0.181 KM SD (logged) 95% Critical H Value (KM-Log) 1.22 2.308 KM Standard Error of Mean (logged) 0.181

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 1605
 Mean in Log Scale
 2.249

 SD in Original Scale
 10179
 SD in Log Scale
 2.438

 95% t UCL (Assumes normality)
 2537
 95% H-Stat UCL
 300.7

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 6.121

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

Result (m-,p-Xylene)

General Statistics

Total Number of Observations	324	Number of Distinct Observations	232
Number of Detects	36	Number of Non-Detects	288
Number of Distinct Detects	36	Number of Distinct Non-Detects	199
Minimum Detect	1.75	Minimum Non-Detect	7.58
Maximum Detect	35700	Maximum Non-Detect	471000
Variance Detects	47393661	Percent Non-Detects	88.89%
Mean Detects	3309	SD Detects	6884
Median Detects	173	CV Detects	2.081
Skewness Detects	3.4	Kurtosis Detects	13.93
Mean of Logged Detects	5.238	SD of Logged Detects	3.061

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.553	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.935	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.315	Lilliefors GOF Test
5% Lilliefors Critical Value	0.145	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	390.3	KM Standard Error of Mean	145.9
KM SD	2538	95% KM (BCA) UCL	643
95% KM (t) UCL	630.9	95% KM (Percentile Bootstrap) UCL	654.3
95% KM (z) UCL	630.3	95% KM Bootstrap t UCL	838.1
90% KM Chebyshev UCL	827.9	95% KM Chebyshev UCL	1026
97.5% KM Chebyshev UCL	1301	99% KM Chebyshev UCL	1842

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	atistic 1.311	A-D Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	/alue 0.883	5% A-D Critical Value
Kolmogorov-Smirnov GOF	atistic 0.164	K-S Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	/alue 0.161	5% K-S Critical Value

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.246	k star (bias corrected MLE)	0.248	k hat (MLE)
13451	Theta star (bias corrected MLE)	13334	Theta hat (MLE)
17.71	nu star (bias corrected)	17.87	nu hat (MLE)
		3309	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 $GROS \ may \ not \ be \ used \ when \ kstar \ of \ detects \ is \ small \ such \ as <1.0, \ especially \ when \ the \ sample \ size \ is \ small \ (e.g., <15-20)$

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

367.6	Mean	0.01	Minimum
0.01	Median	35700	Maximum
6.784	CV	2494	SD
0.0889	k star (bias corrected MLE)	0.0876	k hat (MLE)
4137	Theta star (bias corrected MLE)	4195	Theta hat (MLE)
57.59	nu star (bias corrected)	56.78	nu hat (MLE)
		0.0493	Adjusted Level of Significance (β)
41.08	Adjusted Chi Square Value (57.59, β)	41.15	Approximate Chi Square Value (57.59, α)
515.4	95% Gamma Adjusted UCL (use when n<50)	514.6	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	390.3	SD (KM)	2538
Variance (KM)	6440022	SE of Mean (KM)	145.9
k hat (KM)	0.0237	k star (KM)	0.0255
nu hat (KM)	15.33	nu star (KM)	16.52
theta hat (KM)	16498	theta star (KM)	15309
80% gamma percentile (KM)	1.389	90% gamma percentile (KM)	142.1
95% gamma percentile (KM)	1271	99% gamma percentile (KM)	10479

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (16.52, α)	8.333	Adjusted Chi Square Value (16.52, β)	8.307
95% Gamma Approximate KM-UCL (use when n>=50)	774.1	95% Gamma Adjusted KM-UCL (use when n<50)	776.5

Shapiro Wilk Test Statistic	0.923	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.935	Detected Data Not Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.128 Lilliefors GOF Test

5% Lilliefors Critical Value 0.145 Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Approximate Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

 Mean in Original Scale
 371.4
 Mean in Log Scale
 1.47

 SD in Original Scale
 2493
 SD in Log Scale
 1.906

 95% t UCL (assumes normality of ROS data)
 599.9
 95% Percentile Bootstrap UCL
 620.9

 95% BCA Bootstrap UCL
 726.3
 95% Bootstrap t UCL
 817.6

 95% H-UCL (Log ROS)
 36.74

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged) 1.771 KM Geo Mean 5.879 KM SD (logged) 1.697 95% Critical H Value (KM-Log) 2.771 95% H-UCL (KM -Log) KM Standard Error of Mean (logged) 0.157 32.23 KM SD (logged) 95% Critical H Value (KM-Log) 1.697 2.771 KM Standard Error of Mean (logged) 0.157

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 3466
 Mean in Log Scale
 3.06

 SD in Original Scale
 20461
 SD in Log Scale
 2.59

 95% t UCL (Assumes normality)
 5341
 95% H-Stat UCL
 1046

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 32.23

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

Result (Methylene chloride)

General Statistics

Total Number of Observations	324 Number of Distinct Observations		213
Number of Detects	75	Number of Non-Detects	249
Number of Distinct Detects	71	Number of Distinct Non-Detects	145
Minimum Detect	0.869	Minimum Non-Detect	15.4
Maximum Detect	1460	Maximum Non-Detect	1180000
Variance Detects	32745	Percent Non-Detects	76.85%
Mean Detects	51.9	SD Detects	181
Median Detects	3.01	CV Detects	3.487
Skewness Detects	6.673	Kurtosis Detects	50.81
Mean of Logged Detects	1.725	SD of Logged Detects	1.779

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.319	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.399	Lilliefors GOF Test
5% Lilliefors Critical Value	0.102	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	16.99	KM Standard Error of Mean	5.649
KM SD	94.51	95% KM (BCA) UCL	29.03
95% KM (t) UCL	26.3	95% KM (Percentile Bootstrap) UCL	27.13
95% KM (z) UCL	26.28	95% KM Bootstrap t UCL	37.67
90% KM Chebyshev UCL	33.93	95% KM Chebyshev UCL	41.61
97.5% KM Chebyshev UCL	52.26	99% KM Chebyshev UCL	73.19

Gamma GOF Tests on Detected Observations Only

11.81 Anderson-Darling GOF Test	A-D Test Statistic	Anderson-Darling GOF Test
0.863 Detected Data Not Gamma Distributed at 5% Si	5% A-D Critical Value	Detected Data Not Gamma Distributed at 5% Significance Level
0.375 Kolmogorov-Smirnov GOF	K-S Test Statistic	Kolmogorov-Smirnov GOF
0.112 Detected Data Not Gamma Distributed at 5% Si	5% K-S Critical Value	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.305	k star (bias corrected MLE)	0.309	k hat (MLE)
170.1	Theta star (bias corrected MLE)	168.2	Theta hat (MLE)
45.77	nu star (bias corrected)	46.29	nu hat (MLE)
		51.9	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

14.07	Mean	0.01	Minimum
0.01	Median	1460	Maximum
6.356	CV	89.46	SD
0.15	k star (bias corrected MLE)	0.15	k hat (MLE)
93.61	Theta star (bias corrected MLE)	94.03	Theta hat (MLE)
97.42	nu star (bias corrected)	96.99	nu hat (MLE)
	3	0.049	Adjusted Level of Significance (β)
75.57	Adjusted Chi Square Value (97.42, β)	75.66	Approximate Chi Square Value (97.42, α)
18.14	95% Gamma Adjusted UCL (use when n<50)	18.12	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	16.99	SD (KM)	94.51
Variance (KM)	8931	SE of Mean (KM)	5.649
k hat (KM)	0.0323	k star (KM)	0.0341
nu hat (KM)	20.93	nu star (KM)	22.07
theta hat (KM)	525.8	theta star (KM)	498.7
80% gamma percentile (KM)	0.411	90% gamma percentile (KM)	13.39
95% gamma percentile (KM)	73.22	99% gamma percentile (KM)	422.9

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (22.07, α)	12.39	Adjusted Chi Square Value (22.07, β)	12.36
95% Gamma Approximate KM-UCL (use when n>=50)	30.25	95% Gamma Adjusted KM-UCL (use when n<50)	30.33

Lilliefors Test Statistic 0.272 Lilliefors GOF Test

5% Lilliefors Critical Value 0.102 Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	15.21	Mean in Log Scale	1.354
SD in Original Scale	88.96	SD in Log Scale	1.03
95% t UCL (assumes normality of ROS data)	23.36	95% Percentile Bootstrap UCL	24.61
95% BCA Bootstrap UCL	30.74	95% Bootstrap t UCL	34.71
95% H-UCL (Log ROS)	7.444		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	1.182	KM Geo Mean	3.262
KM SD (logged)	1.158	95% Critical H Value (KM-Log)	2.252
KM Standard Error of Mean (logged)	0.0997	95% H-UCL (KM -Log)	7.37
KM SD (logged)	1.158	95% Critical H Value (KM-Log)	2.252
KM Standard Error of Mean (logged)	0.0997		

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 7842
 Mean in Log Scale
 3.366

 SD in Original Scale
 50952
 SD in Log Scale
 2.636

 95% t UCL (Assumes normality)
 12511
 95% H-Stat UCL
 1631

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 41.61

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

Result (Naphthalene)

Total Number of Observations	324	Number of Distinct Observations	236
Number of Detects	13	Number of Non-Detects	311
Number of Distinct Detects	13	Number of Distinct Non-Detects	223
Minimum Detect	0.78	Minimum Non-Detect	3.79
Maximum Detect	187	Maximum Non-Detect 2	235000
Variance Detects	3352	Percent Non-Detects	95.99%
Mean Detects	56.93	SD Detects	57.9
Median Detects	30.2	CV Detects	1.017
Skewness Detects	1.086	Kurtosis Detects	0.52
Mean of Logged Detects	3.254	SD of Logged Detects	1.629

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.868	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.866	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.216	Lilliefors GOF Test
5% Lilliefors Critical Value	0.234	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	4.187	KM Standard Error of Mean	1.172
KM SD	16.87	95% KM (BCA) UCL	7.759
95% KM (t) UCL	6.12	95% KM (Percentile Bootstrap) UCL	6.888
95% KM (z) UCL	6.114	95% KM Bootstrap t UCL	7.06
90% KM Chebyshev UCL	7.702	95% KM Chebyshev UCL	9.294
97.5% KM Chebyshev UCL	11.5	99% KM Chebyshev UCL	15.84

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.258	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Lev	0.77	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.168	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Lev	0.246	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.635	k star (bias corrected MLE)	0.758	k hat (MLE)
89.72	Theta star (bias corrected MLE)	75.08	Theta hat (MLE)
16.5	nu star (bias corrected)	19.72	nu hat (MLE)
		56.93	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

2.294	Mean	0.01	Minimum
0.01	Median	187	Maximum
6.889	CV	15.8	SD
0.151	k star (bias corrected MLE)	0.15	k hat (MLE)
15.22	Theta star (bias corrected MLE)	15.28	Theta hat (MLE)
97.69	nu star (bias corrected)	97.26	nu hat (MLE)
		0.0493	Adjusted Level of Significance (β)
75.81	Adjusted Chi Square Value (97.69, β)	75.89	Approximate Chi Square Value (97.69, α)
2.956	95% Gamma Adjusted UCL (use when n<50)	2.953	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

ivieari (Kivi)	4.107	SD (KIVI)	10.67
Variance (KM)	284.5	SE of Mean (KM)	1.172
k hat (KM)	0.0616	k star (KM)	0.0631
nu hat (KM)	39.94	nu star (KM)	40.9
theta hat (KM)	67.94	theta star (KM)	66.34
80% gamma percentile (KM)	1.161	90% gamma percentile (KM)	8.271
95% gamma percentile (KM)	23.71	99% gamma percentile (KM)	82.64

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (40.90, α)	27.24	Adjusted Chi Square Value (40.90, β)	27.19
95% Gamma Approximate KM-UCL (use when n>=50)	6.286	95% Gamma Adjusted KM-UCL (use when n<50)	6.298

Shapiro Wilk Test Statistic	0.916	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.866	Detected Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.185 Lilliefors GOF Test

5% Lilliefors Critical Value 0.234 Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	3.514	Mean in Log Scale	0.207
SD in Original Scale	15.65	SD in Log Scale	0.903
95% t UCL (assumes normality of ROS data)	4.948	95% Percentile Bootstrap UCL	5.063
95% BCA Bootstrap UCL	5.582	95% Bootstrap t UCL	5.844
95% H-UCL (Log ROS)	2.051		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	0.423	KM Geo Mean	1.527
KM SD (logged)	0.894	95% Critical H Value (KM-Log)	2.038
KM Standard Error of Mean (logged)	0.37	95% H-UCL (KM -Log)	2.519
KM SD (logged)	0.894	95% Critical H Value (KM-Log)	2.038
KM Standard Error of Mean (logged)	0.37		

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 1572
 Mean in Log Scale
 2.223

 SD in Original Scale
 10172
 SD in Log Scale
 2.39

 95% t UCL (Assumes normality)
 2504
 95% H-Stat UCL
 256.6

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 6.12

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

Result (n-Propylbenzene)

General	Statistics
---------	------------

Total Number of Observations	324	Number of Distinct Observations	238
Number of Detects	23	Number of Non-Detects	301
Number of Distinct Detects	23	Number of Distinct Non-Detects	215
Minimum Detect	0.859	Minimum Non-Detect	3.79
Maximum Detect	36400	Maximum Non-Detect 2	235000
Variance Detects	57531383	Percent Non-Detects	92.9%
Mean Detects	2193	SD Detects	7585
Median Detects	150	CV Detects	3.458
Skewness Detects	4.553	Kurtosis Detects	21.26
Mean of Logged Detects	4.666	SD of Logged Detects	2.663

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.314	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.914	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.409	Lilliefors GOF Test
5% Lilliefors Critical Value	0.18	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	163.1	KM Standard Error of Mean	119.8
KM SD	2082	95% KM (BCA) UCL	380.7
95% KM (t) UCL	360.7	95% KM (Percentile Bootstrap) UCL	390.2
95% KM (z) UCL	360.1	95% KM Bootstrap t UCL	1502
90% KM Chebyshev UCL	522.5	95% KM Chebyshev UCL	685.3
97.5% KM Chebyshev UCL	911.2	99% KM Chebyshev UCL	1355

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic 1.6	62	Anderson-Darling GOF Test
A-D Critical Value 0.8	B Detected Data	Not Gamma Distributed at 5% Significance Level
K-S Test Statistic 0.2	28	Kolmogorov-Smirnov GOF
K-S Critical Value 0.1	99 Detected Data	Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.235	k star (bias corrected MLE)	0.237	k hat (MLE)
9341	Theta star (bias corrected MLE)	9266	Theta hat (MLE)
10.8	nu star (bias corrected)	10.89	nu hat (MLE)
		2193	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	155.7
Maximum	36400	Median	0.01
SD	2058	CV	13.22
k hat (MLE)	0.0913	k star (bias corrected MLE)	0.0925
Theta hat (MLE)	1705	Theta star (bias corrected MLE)	1683
nu hat (MLE)	59.17	nu star (bias corrected)	59.95
Adjusted Level of Significance (β)	0.0493		
Approximate Chi Square Value (59.95, α)	43.15	Adjusted Chi Square Value (59.95, β)	43.08
95% Gamma Approximate UCL (use when n>=50)	216.4	95% Gamma Adjusted UCL (use when n<50)	216.7

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	163.1	SD (KM)	2082
Variance (KM)	4333569	SE of Mean (KM)	119.8
k hat (KM)	0.00613	k star (KM)	0.00814
nu hat (KM)	3.975	nu star (KM)	5.272
theta hat (KM)	26578	theta star (KM)	20042
80% gamma percentile (KM)	1.3884E-8	90% gamma percentile (KM)	0.0269
95% gamma percentile (KM)	20.73	99% gamma percentile (KM)	3972

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (5.27, α)	1.28	Adjusted Chi Square Value (5.27, β)	1.271
95% Gamma Approximate KM-UCL (use when n>=50)	671.6	95% Gamma Adjusted KM-UCL (use when n<50)	676.2

Shapiro Wilk Test Statistic	0.986	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.914	Detected Data appear Lognormal at 5% Significance Leve

Lilliefors Test Statistic 0.0913 Lilliefors GOF Test

5% Lilliefors Critical Value 0.18 Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale156.6Mean in Log Scale-0.147SD in Original Scale2058SD in Log Scale1.77895% t UCL (assumes normality of ROS data)345.295% Percentile Bootstrap UCL375.495% BCA Bootstrap UCL509.295% Bootstrap t UCL157395% H-UCL (Log ROS)5.562

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged) 0.722 KM Geo Mean 2.058 KM SD (logged) 1.419 95% Critical H Value (KM-Log) 2.492 95% H-UCL (KM -Log) 6.858 KM Standard Error of Mean (logged) 0.241 KM SD (logged) 95% Critical H Value (KM-Log) 1.419 2.492 KM Standard Error of Mean (logged) 0.241

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 1706
 Mean in Log Scale
 2.287

 SD in Original Scale
 10355
 SD in Log Scale
 2.484

 95% t UCL (Assumes normality)
 2655
 95% H-Stat UCL
 355.4

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 6.858

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

Result (o-Xylene)

General Statistics

Total Number of Observations	324	Number of Distinct Observations	236
Number of Detects	28	Number of Non-Detects	296
Number of Distinct Detects	28	Number of Distinct Non-Detects	210
Minimum Detect	0.978	Minimum Non-Detect	3.79
Maximum Detect	11700	Maximum Non-Detect	235000
Variance Detects	4808120	Percent Non-Detects	91.36%
Mean Detects	625.6	SD Detects	2193
Median Detects	56.35	CV Detects	3.505
Skewness Detects	5.124	Kurtosis Detects	26.74
Mean of Logged Detects	3.771	SD of Logged Detects	2.607

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.292	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.924	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.388	Lilliefors GOF Test
5% Lilliefors Critical Value	0.164	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

38.51	KM Standard Error of Mean	58.74	KM Mean
136.3	95% KM (BCA) UCL	668.6	KM SD
132	95% KM (Percentile Bootstrap) UCL	122.3	95% KM (t) UCL
413.5	95% KM Bootstrap t UCL	122.1	95% KM (z) UCL
226.6	95% KM Chebyshev UCL	174.3	90% KM Chebyshev UCL
441.9	99% KM Chebyshev UCL	299.2	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	1.41	Anderson-Darling GOF Test
5% A-D Critical Value	0.872	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.168	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.181	Detected data appear Gamma Distributed at 5% Significance Level

Detected data follow Appr. Gamma Distribution at 5% Significance Level

Gamma Statistics on Detected Data Only

0.259	k star (bias corrected MLE))	k hat (MLE)
2411	Theta star (bias corrected MLE)) 23	Theta hat (MLE)
14.53	nu star (bias corrected))	nu hat (MLE)
) 6	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

54.07	Mean	0.01	Minimum
0.01	Median	11700	Maximum
12.17	CV	658	SD
0.104	k star (bias corrected MLE)	0.103	k hat (MLE)
520.3	Theta star (bias corrected MLE)	525.9	Theta hat (MLE)
67.34	nu star (bias corrected)	66.62	nu hat (MLE)
		0.0493	Adjusted Level of Significance (β)
49.38	Adjusted Chi Square Value (67.34, β)	49.45	Approximate Chi Square Value (67.34, α)
73.73	95% Gamma Adjusted UCL (use when n<50)	73.62	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	58.74	SD (KM)	668.6
Variance (KM) 4	146960	SE of Mean (KM)	38.51
k hat (KM)	0.00772	k star (KM)	0.00971
nu hat (KM)	5.002	nu star (KM)	6.289
theta hat (KM)	7609	theta star (KM)	6052
80% gamma percentile (KM) 3	3.5425E-7	90% gamma percentile (KM)	0.0661
95% gamma percentile (KM)	17.4	99% gamma percentile (KM)	1542

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (6.29, α) 1.789 Adjusted Chi Square Value (6.29, β) 1.779 95% Gamma Approximate KM-UCL (use when n>=50) 206.5 95% Gamma Adjusted KM-UCL (use when n<50) 207.7

Shapiro Wilk Test Statistic	0.936	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.924	Detected Data appear Lognormal at 5% Significance Level

95% H-Stat UCL 317.8

Lilliefors Test Statistic 0.125 Lilliefors GOF Test

5% Lilliefors Critical Value 0.164 Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

0.866	Mean in Log Scale	56.22	Mean in Original Scale
1.371	SD in Log Scale	657.8	SD in Original Scale
128.5	95% Percentile Bootstrap UCL	116.5	95% t UCL (assumes normality of ROS data)
416.6	95% Bootstrap t UCL	202.2	95% BCA Bootstrap UCL
		7.329	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	0.823	KM Geo Mean	2.278
KM SD (logged)	1.293	95% Critical H Value (KM-Log)	2.374
KM Standard Error of Mean (logged)	0.141	95% H-UCL (KM -Log)	6.234
KM SD (logged)	1.293	95% Critical H Value (KM-Log)	2.374
KM Standard Error of Mean (logged)	0.141		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	1605	Mean in Log Scale	2.268
SD in Original Scale	10185	SD in Log Scale	2.451

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Approximate Gamma UCL 206.5

95% t UCL (Assumes normality) 2538

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

Result (p-Isopropyltoluene)

General Statistics

Total Number of Observations	324	Number of Distinct Observations	241
Number of Detects	35	Number of Non-Detects	289
Number of Distinct Detects	35	Number of Distinct Non-Detects	208
Minimum Detect	0.707	Minimum Non-Detect	3.79
Maximum Detect	71500	Maximum Non-Detect	235000
Variance Detects	1.458E+8	Percent Non-Detects	89.2%
Mean Detects	2388	SD Detects	12074
Median Detects	44.7	CV Detects	5.055
Skewness Detects	5.845	Kurtosis Detects	34.39
Mean of Logged Detects	3.788	SD of Logged Detects	2.697

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.207	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.934	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.473	Lilliefors GOF Test
5% Lilliefors Critical Value	0.148	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	264.9	KM Standard Error of Mean	227.2
KM SD	4006	95% KM (BCA) UCL	716.7
95% KM (t) UCL	639.8	95% KM (Percentile Bootstrap) UCL	712.1
95% KM (z) UCL	638.7	95% KM Bootstrap t UCL	8826
90% KM Chebyshev UCL	946.7	95% KM Chebyshev UCL	1255
97.5% KM Chebyshev UCL	1684	99% KM Chebyshev UCL	2526

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	4.376	Anderson-Darling GOF Test
A-D Critical Value (0.92	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic (0.321	Kolmogorov-Smirnov GOF
K-S Critical Value (0.166	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.19	k star (bias corrected MLE)	0.186	k hat (MLE)
12603	Theta star (bias corrected MLE)	12810	Theta hat (MLE)
13.27	nu star (bias corrected)	13.05	nu hat (MLE)
		2388	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 $GROS \ may \ not \ be \ used \ when \ kstar \ of \ detects \ is \ small \ such \ as < 1.0, \ especially \ when \ the \ sample \ size \ is \ small \ (e.g., < 15-20)$

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

258	Mean	0.01	Minimum
0.01	Median	71500	Maximum
15.45	CV	3987	SD
0.0903	k star (bias corrected MLE)	0.089	k hat (MLE)
2858	Theta star (bias corrected MLE)	2898	Theta hat (MLE)
58.5	nu star (bias corrected)	57.7	nu hat (MLE)
		0.0493	Adjusted Level of Significance (β)
41.85	Adjusted Chi Square Value (58.50, β)	41.91	Approximate Chi Square Value (58.50, α)
360.7	95% Gamma Adjusted UCL (use when n<50)	360.1	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM) 264.9	SD (KM) 400	06
Variance (KM) 16047577	SE of Mean (KM) 22	27.2
k hat (KM) 0.00437	k star (KM) 0.	.00639
nu hat (KM) 2.834	nu star (KM)	4.141
theta hat (KM) 60576	theta star (KM) 414	55
80% gamma percentile (KM) 1.600E-11	90% gamma percentile (KM) 0.	.00162
95% gamma percentile (KM) 7.644	99% gamma percentile (KM) 55°	18

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (4.14, α)	0.778	Adjusted Chi Square Value (4.14, β)	0.772
95% Gamma Approximate KM-UCL (use when n>=50)	1410	95% Gamma Adjusted KM-UCL (use when n<50)	1421

Shapiro Wilk Test Statistic	0.948	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.934	Detected Data appear Lognormal at 5% Significance Leve

Lilliefors Test Statistic 0.116 Lilliefors GOF Test

5% Lilliefors Critical Value 0.148 Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

 Mean in Original Scale
 259.6
 Mean in Log Scale
 0.679

 SD in Original Scale
 3987
 SD in Log Scale
 1.584

 95% t UCL (assumes normality of ROS data)
 625
 95% Percentile Bootstrap UCL
 696.6

 95% BCA Bootstrap UCL
 1155
 95% Bootstrap t UCL
 9280

 95% H-UCL (Log ROS)
 8.743

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged) 0.717 KM Geo Mean 2.049 KM SD (logged) 1.529 95% Critical H Value (KM-Log) 2.6 95% H-UCL (KM -Log) KM Standard Error of Mean (logged) 0.168 8.228 KM SD (logged) 95% Critical H Value (KM-Log) 1.529 2.6 KM Standard Error of Mean (logged) 0.168

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 1702
 Mean in Log Scale
 2.262

 SD in Original Scale
 10693
 SD in Log Scale
 2.471

 95% t UCL (Assumes normality)
 2682
 95% H-Stat UCL
 334

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 8.228

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

Result (sec-Butylbenzene)

General	Statistics
---------	------------

Total Number of Observations	324	Number of Distinct Observations	232
Number of Detects	8	Number of Non-Detects	316
Number of Distinct Detects	8	Number of Distinct Non-Detects	225
Minimum Detect	0.916	Minimum Non-Detect	3.79
Maximum Detect	1540	Maximum Non-Detect 2	235000
Variance Detects 2	283659	Percent Non-Detects	97.53%
Mean Detects	224.5	SD Detects	532.6
Median Detects	31.4	CV Detects	2.372
Skewness Detects	2.806	Kurtosis Detects	7.903
Mean of Logged Detects	3.327	SD of Logged Detects	2.336

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.475	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.818	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.464	Lilliefors GOF Test
5% Lilliefors Critical Value	0.283	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	7.358	KM Standard Error of Mean	5.466
KM SD	88.7	95% KM (BCA) UCL	18.3
95% KM (t) UCL	16.37	95% KM (Percentile Bootstrap) UCL	17.75
95% KM (z) UCL	16.35	95% KM Bootstrap t UCL	89.13
90% KM Chebyshev UCL	23.76	95% KM Chebyshev UCL	31.18
97.5% KM Chebyshev UCL	41.49	99% KM Chebyshev UCL	61.75

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.712	Anderson-Darling GOF Test
5% A-D Critical Value	0.793	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.291	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.316	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.287	k star (bias corrected MLE)	0.326	k hat (MLE)
782.2	Theta star (bias corrected MLE)	688.8	Theta hat (MLE)
4.593	nu star (bias corrected)	5.216	nu hat (MLE)
		224.5	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 $GROS \ may \ not \ be \ used \ when \ kstar \ of \ detects \ is \ small \ such \ as <1.0, \ especially \ when \ the \ sample \ size \ is \ small \ (e.g., <15-20)$

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

5.554	Mean	0.01	Minimum
0.01	Median	1540	Maximum
15.45	CV	85.82	SD
0.129	k star (bias corrected MLE)	0.128	k hat (MLE)
42.99	Theta star (bias corrected MLE)	43.28	Theta hat (MLE)
83.71	nu star (bias corrected)	83.15	nu hat (MLE)
		0.0493	Adjusted Level of Significance (β)
63.55	Adjusted Chi Square Value (83.71, β)	63.63	Approximate Chi Square Value (83.71, α)
7.317	95% Gamma Adjusted UCL (use when n<50)	7.308	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	7.358	SD (KM)	88.7
Variance (KM)	7867	SE of Mean (KM)	5.466
k hat (KM)	0.00688	k star (KM)	0.00888
nu hat (KM)	4.459	nu star (KM)	5.751
theta hat (KM)	1069	theta star (KM)	829
80% gamma percentile (KM)	5.6525E-9	90% gamma percentile (KM)	0.00328
95% gamma percentile (KM)	1.452	99% gamma percentile (KM)	186.7

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (5.75, α)	1.514	Adjusted Chi Square Value (5.75, β)	1.505
95% Gamma Approximate KM-UCL (use when n>=50)	27.95	95% Gamma Adjusted KM-UCL (use when n<50)	28.12

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.935	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.818	Detected Data appear Lognormal at 5% Significance Leve

Lilliefors Test Statistic 0.229 Lilliefors GOF Test

5% Lilliefors Critical Value 0.283 Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	6.744	Mean in Log Scale	80.0
SD in Original Scale	85.75	SD in Log Scale	0.893
95% t UCL (assumes normality of ROS data)	14.6	95% Percentile Bootstrap UCL	16.17
95% BCA Bootstrap UCL	25.53	95% Bootstrap t UCL	116.8
95% H-UCL (Log ROS)	1.785		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	0.303	KM Geo Mean	1.354
KM SD (logged)	0.712	95% Critical H Value (KM-Log)	1.912
KM Standard Error of Mean (logged)	0.221	95% H-UCL (KM -Log)	1.882
KM SD (logged)	0.712	95% Critical H Value (KM-Log)	1.912
KM Standard Error of Mean (logged)	0.221		

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 1573
 Mean in Log Scale
 2.219

 SD in Original Scale
 10172
 SD in Log Scale
 2.385

 95% t UCL (Assumes normality)
 2506
 95% H-Stat UCL
 252.3

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Approximate Gamma UCL 27.95

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

Result (Tetrachloroethene)

Total Number of Observations	324	Number of Distinct Observations	235
Number of Detects	8	Number of Non-Detects	316
Number of Distinct Detects	8	Number of Distinct Non-Detects	227
Minimum Detect	1.04	Minimum Non-Detect	3.79
Maximum Detect	36.2	Maximum Non-Detect 2	235000
Variance Detects	174.5	Percent Non-Detects	97.53%
Mean Detects	11.72	SD Detects	13.21
Median Detects	5.82	CV Detects	1.127
Skewness Detects	1.028	Kurtosis Detects	-0.0653
Mean of Logged Detects	1.656	SD of Logged Detects	1.477

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.831	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.818	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.269	Lilliefors GOF Test
5% Lilliefors Critical Value	0.283	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	1.797	KM Standard Error of Mean	0.287
KM SD	3.025	95% KM (BCA) UCL	2.394
95% KM (t) UCL	2.271	95% KM (Percentile Bootstrap) UCL	2.348
95% KM (z) UCL	2.27	95% KM Bootstrap t UCL	2.512
90% KM Chebyshev UCL	2.659	95% KM Chebyshev UCL	3.049
97.5% KM Chebyshev UCL	3.591	99% KM Chebyshev UCL	4.656

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.555	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.746	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.278	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.304	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.548	k star (bias corrected MLE)	0.744	k hat (MLE)
21.38	Theta star (bias corrected MLE)	15.76	Theta hat (MLE)
8.771	nu star (bias corrected)	11.9	nu hat (MLE)
		11.72	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	0.853
Maximum	36.2	Median	0.063
SD	2.822	CV	3.309
k hat (MLE)	0.349	k star (bias corrected MLE)	0.348
Theta hat (MLE)	2.441	Theta star (bias corrected MLE)	2.449
nu hat (MLE)	226.4	nu star (bias corrected)	225.6
Adjusted Level of Significance (β)	0.0493		
Approximate Chi Square Value (225.61, α)	191.8	Adjusted Chi Square Value (225.61, β)	191.7
95% Gamma Approximate UCL (use when n>=50)	1.003	95% Gamma Adjusted UCL (use when n<50)	1.003

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	1.797	SD (KM)	3.025
Variance (KM)	9.15	SE of Mean (KM)	0.287
k hat (KM)	0.353	k star (KM)	0.352
nu hat (KM)	228.7	nu star (KM)	227.9
theta hat (KM)	5.092	theta star (KM)	5.11
80% gamma percentile (KM)	2.848	90% gamma percentile (KM)	5.185
95% gamma percentile (KM)	7.801	99% gamma percentile (KM)	14.47

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (227.88, α)	193.9	Adjusted Chi Square Value (227.88, β)	193.8
95% Gamma Approximate KM-UCL (use when n>=50)	2.111	95% Gamma Adjusted KM-UCL (use when n<50)	2.113

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.859	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.818	Detected Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.244 Lilliefors GOF Test

5% Lilliefors Critical Value 0.283 Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

0.442	Mean in Log Scale	1.857	Mean in Original Scale
0.458	SD in Log Scale	2.57	SD in Original Scale
2.112	95% Percentile Bootstrap UCL	2.093	95% t UCL (assumes normality of ROS data)
2.333	95% Bootstrap t UCL	2.224	95% BCA Bootstrap UCL
		1.807	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	0.375	KM Geo Mean	1.455
KM SD (logged)	0.433	95% Critical H Value (KM-Log)	1.761
KM Standard Error of Mean (logged)	0.133	95% H-UCL (KM -Log)	1.667
KM SD (logged)	0.433	95% Critical H Value (KM-Log)	1.761
KM Standard Error of Mean (logged)	0.133		

DL/2 Statistics

DL/2 Normal	DL/2 Log-Transformed

 Mean in Original Scale
 1571
 Mean in Log Scale
 2.203

 SD in Original Scale
 10172
 SD in Log Scale
 2.378

 95% t UCL (Assumes normality)
 2503
 95% H-Stat UCL
 243.1

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 2.271

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

Result (Toluene)

General Statistics

Total Number of Observations	324	Number of Distinct Observations	253
Number of Detects	63	Number of Non-Detects	261
Number of Distinct Detects	60	Number of Distinct Non-Detects	196
Minimum Detect	0.828	Minimum Non-Detect	3.79
Maximum Detect	305000	Maximum Non-Detect	235000
Variance Detects	1.476E+9	Percent Non-Detects	80.56%
Mean Detects	5043	SD Detects	38415
Median Detects	3.69	CV Detects	7.618
Skewness Detects	7.928	Kurtosis Detects	62.9
Mean of Logged Detects	2.278	SD of Logged Detects	2.622

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.134	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.509	Lilliefors GOF Test
5% Lilliefors Critical Value	0.111	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	984.3	KM Standard Error of Mean	947.7
KM SD	16923	95% KM (BCA) UCL	2864
95% KM (t) UCL	2548	95% KM (Percentile Bootstrap) UCL	2862
95% KM (z) UCL	2543	95% KM Bootstrap t UCL 1	95276
90% KM Chebyshev UCL	3827	95% KM Chebyshev UCL	5115
97.5% KM Chebyshev UCL	6903	99% KM Chebyshev UCL 1	10414

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic 14	4.1	Anderson-Darling GOF Test
5% A-D Critical Value 0	.986	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic 0	.359	Kolmogorov-Smirnov GOF
5% K-S Critical Value 0	.128	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.131	k star (bias corrected MLE)	0.126	k hat (MLE)
38595	Theta star (bias corrected MLE)	39996	Theta hat (MLE)
16.46	nu star (bias corrected)	15.89	nu hat (MLE)
		5043	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 $GROS\ may\ not\ be\ used\ when\ kstar\ of\ detects\ is\ small\ such\ as\ <1.0,\ especially\ when\ the\ sample\ size\ is\ small\ (e.g.,\ <15-20)$

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	980.6
Maximum	305000	Median	0.01
SD	16949	CV	17.28
k hat (MLE)	0.0819	k star (bias corrected MLE)	0.0832
Theta hat (MLE)	11970	Theta star (bias corrected MLE)	11783
nu hat (MLE)	53.08	nu star (bias corrected)	53.93
Adjusted Level of Significance (β)	0.0493		
Approximate Chi Square Value (53.93, α)	38.05	Adjusted Chi Square Value (53.93, β)	38
95% Gamma Approximate UCL (use when n>=50)	1390	95% Gamma Adjusted UCL (use when n<50)	1392

Estimates of Gamma Parameters using KM Estimates

Mean (KM) 984.3	SD (KM)	16923
Variance (KM) 2.864E+8	SE of Mean (KM)	947.7
k hat (KM) 0.00338	k star (KM)	0.00541
nu hat (KM) 2.192	nu star (KM)	3.505
theta hat (KM) 290956	theta star (KM)	181962
80% gamma percentile (KM) 1.245E-13	90% gamma percentile (KM)	3.5637E-4
95% gamma percentile (KM) 7.815	99% gamma percentile (KM)	17581

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (3.51, α) 0.537 Adjusted Chi Square Value (3.51, β) 0.532 95% Gamma Approximate KM-UCL (use when n>=50) 6430 95% Gamma Adjusted KM-UCL (use when n<50) 6486

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic 0.83 Shapiro Wilk GOF Test

5% Shapiro Wilk P Value 1.2750E-9 Detected Data Not Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.183 Lilliefors GOF Test

5% Lilliefors Critical Value 0.111 Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

 Mean in Original Scale
 982.3
 Mean in Log Scale
 0.935

 SD in Original Scale
 16949
 SD in Log Scale
 1.423

 95% t UCL (assumes normality of ROS data)
 2536
 95% Percentile Bootstrap UCL
 2862

 95% BCA Bootstrap UCL
 3893
 95% Bootstrap t UCL
 194421

 95% H-UCL (Log ROS)
 8.546

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged) 0.718 KM Geo Mean 2.05 KM SD (logged) 1.497 95% Critical H Value (KM-Log) 2.569 95% H-UCL (KM -Log) KM Standard Error of Mean (logged) 0.103 7.788 KM SD (logged) 95% Critical H Value (KM-Log) 1.497 2.569 KM Standard Error of Mean (logged) 0.103

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 2520
 Mean in Log Scale
 2.211

 SD in Original Scale
 19690
 SD in Log Scale
 2.493

 95% t UCL (Assumes normality)
 4324
 95% H-Stat UCL
 338.1

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 5115

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

Result (trans-1,2-Dichloroethene)

General	Statistics
---------	------------

Total Number of Observations	324	Number of Distinct Observations	242
Number of Detects	18	Number of Non-Detects	306
Number of Distinct Detects	18	Number of Distinct Non-Detects	224
Minimum Detect	1.22	Minimum Non-Detect	3.79
Maximum Detect	1230	Maximum Non-Detect 2	235000
Variance Detects	82462	Percent Non-Detects	94.44%
Mean Detects	127.8	SD Detects	287.2
Median Detects	35.35	CV Detects	2.246
Skewness Detects	3.712	Kurtosis Detects	14.61
Mean of Logged Detects	3.237	SD of Logged Detects	2.025

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.465	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.897	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.366	Lilliefors GOF Test
5% Lilliefors Critical Value	0.202	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	10.07	KM Standard Error of Mean	4.449
KM SD	74.62	95% KM (BCA) UCL	18.91
95% KM (t) UCL	17.4	95% KM (Percentile Bootstrap) UCL	18.37
95% KM (z) UCL	17.38	95% KM Bootstrap t UCL	35.43
90% KM Chebyshev UCL	23.41	95% KM Chebyshev UCL	29.46
97.5% KM Chebyshev UCL	37.85	99% KM Chebyshev UCL	54.33

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.659	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Le	0.82	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.177	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Le	0.218	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.376	k star (bias corrected MLE)	0.407	k hat (MLE)
340.1	Theta star (bias corrected MLE)	314.3	Theta hat (MLE)
13.53	nu star (bias corrected)	14.64	nu hat (MLE)
		127.8	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 $GROS\ may\ not\ be\ used\ when\ kstar\ of\ detects\ is\ small\ such\ as\ <1.0,\ especially\ when\ the\ sample\ size\ is\ small\ (e.g.,\ <15-20)$

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

7.112	Mean	0.01	Minimum
0.01	Median	1230	Maximum
10.14	CV	72.11	SD
0.129	k star (bias corrected MLE)	0.128	k hat (MLE)
55.11	Theta star (bias corrected MLE)	55.48	Theta hat (MLE)
83.63	nu star (bias corrected)	83.06	nu hat (MLE)
		0.0493	Adjusted Level of Significance (β)
63.47	Adjusted Chi Square Value (83.63, β)	63.55	Approximate Chi Square Value (83.63, α)
9.37	95% Gamma Adjusted UCL (use when n<50)	9.359	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	10.07	SD (KM)	74.62
Variance (KM)	5568	SE of Mean (KM)	4.449
k hat (KM)	0.0182	k star (KM)	0.0201
nu hat (KM)	11.79	nu star (KM)	13.02
theta hat (KM)	553.2	theta star (KM)	501.1
80% gamma percentile (KM)	0.00428	90% gamma percentile (KM)	1.512
95% gamma percentile (KM)	23.27	99% gamma percentile (KM)	281.1

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (13.02, α)	5.903	Adjusted Chi Square Value (13.02, β)	5.882
95% Gamma Approximate KM-UCL (use when n>=50)	22.19	95% Gamma Adjusted KM-UCL (use when n<50)	22.27

5% Shapiro Wilk Critical Value	0.897	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.154	Lilliefors GOF Test
5% Lilliefors Critical Value	0.202	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	9.442	Mean in Log Scale	0.895
SD in Original Scale	71.9	SD in Log Scale	0.909
95% t UCL (assumes normality of ROS data)	16.03	95% Percentile Bootstrap UCL	16.87
95% BCA Bootstrap UCL	22.24	95% Bootstrap t UCL	34.37
95% H-UCL (Log ROS)	4.106		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	0.905	KM Geo Mean	2.473
KM SD (logged)	0.881	95% Critical H Value (KM-Log)	2.028
KM Standard Error of Mean (logged)	0.16	95% H-UCL (KM -Log)	4.024
KM SD (logged)	0.881	95% Critical H Value (KM-Log)	2.028
KM Standard Error of Mean (logged)	0.16		

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 1573
 Mean in Log Scale
 2.217

 SD in Original Scale
 10172
 SD in Log Scale
 2.38

 95% t UCL (Assumes normality)
 2505
 95% H-Stat UCL
 247.9

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Approximate Gamma UCL 22.19

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

PARCADIS Design & Consultancy for natural and built assets

Result (Trichloroethene)

General Statistics

Total Number of Observations 324	Number of Distinct Observations	268
Number of Detects 138	Number of Non-Detects	186
Number of Distinct Detects 136	Number of Distinct Non-Detects	138
Minimum Detect 0.906	Minimum Non-Detect	3.79
Maximum Detect 4380000	Maximum Non-Detect	9320
Variance Detects 4.008E+11	Percent Non-Detects	57.41%
Mean Detects 144399	SD Detects 6	633106
Median Detects 70.35	CV Detects	4.384
Skewness Detects 5.306	Kurtosis Detects	28.67
Mean of Logged Detects 5.082	SD of Logged Detects	3.913

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.258	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.445	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0758	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean 61508	KM Standard Error of Mean 23297
KM SD 417830	95% KM (BCA) UCL 102978
95% KM (t) UCL 99939	95% KM (Percentile Bootstrap) UCL 104384
95% KM (z) UCL 99828	95% KM Bootstrap t UCL 122385
90% KM Chebyshev UCL 131400	95% KM Chebyshev UCL 163058
97.5% KM Chebyshev UCL 206999	99% KM Chebyshev UCL 293313

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	19.46	Anderson-Darling GOF Test
5% A-D Critical Value	1	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.318	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.0909	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE) 0.117	k star (bias corrected MLE) 0.119
Theta hat (MLE) 1233756	Theta star (bias corrected MLE) 1210115
nu hat (MLE) 32.3	nu star (bias corrected) 32.93
Mean (detects) 144399	

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 $GROS \ may \ not \ be \ used \ when \ kstar \ of \ detects \ is \ small \ such \ as < 1.0, \ especially \ when \ the \ sample \ size \ is \ small \ (e.g., < 15-20)$

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	61503
Maximum	4380000	Median	0.01
SD	418477	CV	6.804
k hat (MLE)	0.0732	k star (bias corrected MLE)	0.0746
Theta hat (MLE)	839984	Theta star (bias corrected MLE)	824449
nu hat (MLE)	47.45	nu star (bias corrected)	48.34
Adjusted Level of Significance (β)	0.0493		
Approximate Chi Square Value (48.34, α)	33.38	Adjusted Chi Square Value (48.34, β)	33.33
95% Gamma Approximate UCL (use when n>=50)	89065	95% Gamma Adjusted UCL (use when n<50)	89213

Estimates of Gamma Parameters using KM Estimates

Mean (KM) 61508	SD (KM) 417830
Variance (KM) 1.746E+11	SE of Mean (KM) 23297
k hat (KM) 0.0217	k star (KM) 0.0235
nu hat (KM) 14.04	nu star (KM) 15.25
theta hat (KM) 2838372	theta star (KM) 2614342
80% gamma percentile (KM) 113.7	90% gamma percentile (KM) 17095
95% gamma percentile (KM) 180715	99% gamma percentile (KM) 1677564

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (15.25, α) 7.433 Adjusted Chi Square Value (15.25, β) 7.408 95% Gamma Approximate KM-UCL (use when n>=50) 126162 95% Gamma Adjusted KM-UCL (use when n<50) 126577

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic 0.892 Shapiro Wilk GOF Test

Lilliefors Test Statistic 0.103 Lilliefors GOF Test

5% Lilliefors Critical Value 0.0758 Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

 Mean in Original Scale
 61504
 Mean in Log Scale
 2.104

 SD in Original Scale
 418476
 SD in Log Scale
 3.719

 95% t UCL (assumes normality of ROS data)
 99855
 95% Percentile Bootstrap UCL
 102299

 95% BCA Bootstrap UCL
 110904
 95% Bootstrap t UCL
 121816

 95% H-UCL (Log ROS)
 23868

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged) 2.626 KM Geo Mean 13.81 KM SD (logged) 3.365 95% Critical H Value (KM-Log) 4.693 95% H-UCL (KM -Log) 9555 KM Standard Error of Mean (logged) 0.198 KM SD (logged) 95% Critical H Value (KM-Log) 3.365 4.693 KM Standard Error of Mean (logged) 0.198

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 61553
 Mean in Log Scale
 3.063

 SD in Original Scale
 418469
 SD in Log Scale
 3.318

 95% t UCL (Assumes normality)
 99903
 95% H-Stat UCL
 12373

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

99% KM (Chebyshev) UCL 293313

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

Result (Trichlorofluoromethane)

Total Number of Observations	324	Number of Distinct Observations	235
Number of Detects	5	Number of Non-Detects	319
Number of Distinct Detects	5	Number of Distinct Non-Detects	230
Minimum Detect	1.05	Minimum Non-Detect	3.79
Maximum Detect	33.6	Maximum Non-Detect 2	235000
Variance Detects	205.5	Percent Non-Detects	98.46%
Mean Detects	7.978	SD Detects	14.34
Median Detects	1.45	CV Detects	1.797
Skewness Detects	2.225	Kurtosis Detects	4.961
Mean of Logged Detects	1.01	SD of Logged Detects	1.445

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.588	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.445	Lilliefors GOF Test
5% Lilliefors Critical Value	0.343	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Standard Error of Mean 0.384	1.716	KM Mean
95% KM (BCA) UCL 2.63	2.23	KM SD
95% KM (Percentile Bootstrap) UCL 2.584	2.35	95% KM (t) UCL
95% KM Bootstrap t UCL 3.702	2.348	95% KM (z) UCL
95% KM Chebyshev UCL 3.391	2.869	90% KM Chebyshev UCL
99% KM Chebyshev UCL 5.54	4.116	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.919	Anderson-Darling GOF Test
5% A-D Critical Value	0.707	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.399	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.37	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.366	k star (bias corrected MLE)	0.582	k hat (MLE)
21.79	Theta star (bias corrected MLE)	13.71	Theta hat (MLE)
3.661	nu star (bias corrected)	5.819	nu hat (MLE)
		7.978	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 $GROS\ may\ not\ be\ used\ when\ kstar\ of\ detects\ is\ small\ such\ as\ <1.0,\ especially\ when\ the\ sample\ size\ is\ small\ (e.g.,\ <15-20)$

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	1.365
Maximum	33.6	Median	0.937
SD	2.19	CV	1.605
k hat (MLE)	0.638	k star (bias corrected MLE)	0.634
Theta hat (MLE)	2.14	Theta star (bias corrected MLE)	2.153
nu hat (MLE)	413.2	nu star (bias corrected)	410.7
Adjusted Level of Significance (β)	0.0493		
Approximate Chi Square Value (410.73, α)	364.7	Adjusted Chi Square Value (410.73, β)	364.6
95% Gamma Approximate UCL (use when n>=50)	1.537	95% Gamma Adjusted UCL (use when n<50)	1.537

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	1.716	SD (KM)	2.23
Variance (KM)	4.972	SE of Mean (KM)	0.384
k hat (KM)	0.592	k star (KM)	0.589
nu hat (KM)	383.9	nu star (KM)	381.6
theta hat (KM)	2.897	theta star (KM)	2.914
80% gamma percentile (KM)	2.829	90% gamma percentile (KM)	4.482
95% gamma percentile (KM)	6.217	99% gamma percentile (KM)	10.42

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (381.64, α)	337.4	Adjusted Chi Square Value (381.64, β)	337.2
95% Gamma Approximate KM-UCL (use when n>=50)	1.941	95% Gamma Adjusted KM-UCL (use when n<50)	1.942

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.749	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Detected Data Not Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.312 Lilliefors GOF Test

5% Lilliefors Critical Value 0.343 Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Approximate Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	1.76	Mean in Log Scale	0.456
SD in Original Scale	1.877	SD in Log Scale	0.389
95% t UCL (assumes normality of ROS data)	1.932	95% Percentile Bootstrap UCL	1.949
95% BCA Bootstrap UCL	2.079	95% Bootstrap t UCL	2.196
95% H-UCL (Log ROS)	1.767		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	0.398	KM Geo Mean	1.489
KM SD (logged)	0.412	95% Critical H Value (KM-Log)	1.753
KM Standard Error of Mean (logged)	0.199	95% H-UCL (KM -Log)	1.688
KM SD (logged)	0.412	95% Critical H Value (KM-Log)	1.753
KM Standard Error of Mean (logged)	0.199		

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 1571
 Mean in Log Scale
 2.21

 SD in Original Scale
 10172
 SD in Log Scale
 2.379

 95% t UCL (Assumes normality)
 2503
 95% H-Stat UCL
 245.6

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 1.688

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

PARCADIS Design & Consultancy for natural and built assets

Result (Vinyl chloride)

General	Statistics
---------	------------

Total Number of Observations	324	Number of Distinct Observations	252
Number of Detects	54	Number of Non-Detects	270
Number of Distinct Detects	54	Number of Distinct Non-Detects	200
Minimum Detect	0.661	Minimum Non-Detect	3.79
Maximum Detect	10200	Maximum Non-Detect	235000
Variance Detects	6943527	Percent Non-Detects	83.33%
Mean Detects	1355	SD Detects	2635
Median Detects	63.5	CV Detects	1.945
Skewness Detects	2.134	Kurtosis Detects	3.733
Mean of Logged Detects	4.214	SD of Logged Detects	3.029

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.583	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.365	Lilliefors GOF Test
5% Lilliefors Critical Value	0.12	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	234.1	KM Standard Error of Mean	67.8
KM SD	1194	95% KM (BCA) UCL	355.4
95% KM (t) UCL	346	95% KM (Percentile Bootstrap) UCL	352.2
95% KM (z) UCL	345.7	95% KM Bootstrap t UCL	385.4
90% KM Chebyshev UCL	437.5	95% KM Chebyshev UCL	529.7
97.5% KM Chebyshev UCL	657.6	99% KM Chebyshev UCL	908.7

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	2.485	A-D Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.893	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.183	K-S Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.133	5% K-S Critical Value

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.238	k star (bias corrected MLE)	0.239	k hat (MLE)
5696	Theta star (bias corrected MLE)	5674	Theta hat (MLE)
25.69	nu star (bias corrected)	25.79	nu hat (MLE)
		1355	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 $GROS\ may\ not\ be\ used\ when\ kstar\ of\ detects\ is\ small\ such\ as\ <1.0,\ especially\ when\ the\ sample\ size\ is\ small\ (e.g.,\ <15-20)$

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

225.8	Mean	0.01	Minimum
0.01	Median	10200	Maximum
5.231	CV	1181	SD
0.0967	k star (bias corrected MLE)	0.0955	k hat (MLE)
2336	Theta star (bias corrected MLE)	2365	Theta hat (MLE)
62.63	nu star (bias corrected)	61.87	nu hat (MLE)
		0.0493	Adjusted Level of Significance (β)
45.36	Adjusted Chi Square Value (62.63, β)	45.43	Approximate Chi Square Value (62.63, α)
311.8	95% Gamma Adjusted UCL (use when n<50)	311.3	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	234.1	SD (KM)	1194
Variance (KM)	1424544	SE of Mean (KM)	67.8
k hat (KM)	0.0385	k star (KM)	0.0402
nu hat (KM)	24.94	nu star (KM)	26.04
theta hat (KM)	6084	theta star (KM)	5827
80% gamma percentile (KM)	13.13	90% gamma percentile (KM)	256
95% gamma percentile (KM)	1126	99% gamma percentile (KM)	5524

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (26.04, α)	15.41	Adjusted Chi Square Value (26.04, β)	15.37
95% Gamma Approximate KM-UCL (use when n>=50)	395.6	95% Gamma Adjusted KM-UCL (use when n<50)	396.6

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic	0.92	Shapiro Wilk GOF Test
---	------	-----------------------

Lilliefors Test Statistic 0.0976 Lilliefors GOF Test

5% Lilliefors Critical Value 0.12 Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Approximate Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

 Mean in Original Scale
 227.5
 Mean in Log Scale
 1.025

 SD in Original Scale
 1181
 SD in Log Scale
 2.036

 95% t UCL (assumes normality of ROS data)
 335.7
 95% Percentile Bootstrap UCL
 341.9

 95% BCA Bootstrap UCL
 367
 95% Bootstrap t UCL
 376

 95% H-UCL (Log ROS)
 31.62
 31.62

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged) KM Geo Mean 3.047 KM SD (logged) 1.978 95% Critical H Value (KM-Log) 3.072 95% H-UCL (KM -Log) KM Standard Error of Mean (logged) 0.173 30.22 KM SD (logged) 95% Critical H Value (KM-Log) 1.978 3.072 KM Standard Error of Mean (logged) 0.173

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 1525
 Mean in Log Scale
 2.328

 SD in Original Scale
 9970
 SD in Log Scale
 2.467

 95% t UCL (Assumes normality)
 2439
 95% H-Stat UCL
 352.6

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 30.22

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

Result (Xylenes (total))

General Statistics

Total Number of Observations	217	Number of Distinct Observations	175
Number of Detects	22	Number of Non-Detects	195
Number of Distinct Detects	22	Number of Distinct Non-Detects	155
Minimum Detect	2.73	Minimum Non-Detect	7.69
Maximum Detect	47400	Maximum Non-Detect	471000
Variance Detects	1.009E+8	Percent Non-Detects	89.86%
Mean Detects	2747	SD Detects	10044
Median Detects	106.9	CV Detects	3.657
Skewness Detects	4.586	Kurtosis Detects	21.29
Mean of Logged Detects	4.716	SD of Logged Detects	2.587

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.291	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.911	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.404	Lilliefors GOF Test
5% Lilliefors Critical Value	0.184	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	299.9	KM Standard Error of Mean	235.6
KM SD	3310	95% KM (BCA) UCL	745.7
95% KM (t) UCL	689.1	95% KM (Percentile Bootstrap) UCL	759.2
95% KM (z) UCL	687.4	95% KM Bootstrap t UCL	3806
90% KM Chebyshev UCL	1007	95% KM Chebyshev UCL	1327
97.5% KM Chebyshev UCL	1771	99% KM Chebyshev UCL	2644

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	1.968	Anderson-Darling GOF Test
5% A-D Critical Value	0.884	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.262	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.205	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.225	k star (bias corrected MLE)	0.225	k hat (MLE)
12206	Theta star (bias corrected MLE)	12182	Theta hat (MLE)
9.902	nu star (bias corrected)	9.921	nu hat (MLE)
		2747	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

278.5	Mean	0.01	Minimum
0.01	Median	47400	Maximum
11.63	CV	3240	SD
0.0906	k star (bias corrected MLE)	0.0887	k hat (MLE)
3075	Theta star (bias corrected MLE)	3139	Theta hat (MLE)
39.3	nu star (bias corrected)	38.5	nu hat (MLE)
		0.0489	Adjusted Level of Significance (β)
25.87	Adjusted Chi Square Value (39.30, β)	25.94	Approximate Chi Square Value (39.30, α)
423.1	95% Gamma Adjusted UCL (use when n<50)	421.9	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	299.9	SD (KM)	3310
Variance (KM)	10956935	SE of Mean (KM)	235.6
k hat (KM)	0.00821	k star (KM)	0.0112
nu hat (KM)	3.563	nu star (KM)	4.847
theta hat (KM)	36532	theta star (KM)	26854
30% gamma percentile (KM)	3.2015E-5	90% gamma percentile (KM)	1.217
95% gamma percentile (KM)	155	99% gamma percentile (KM)	8190

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (4.85, α) 1.082 Adjusted Chi Square Value (4.85, β) 1.071 95% Gamma Approximate KM-UCL (use when n>=50) 1343 95% Gamma Adjusted KM-UCL (use when n<50) 1358

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.959	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.911	Detected Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.117 Lilliefors GOF Test

5% Lilliefors Critical Value 0.184 Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

 Mean in Original Scale
 280
 Mean in Log Scale
 0.737

 SD in Original Scale
 3240
 SD in Log Scale
 1.718

 95% t UCL (assumes normality of ROS data)
 643.4
 95% Percentile Bootstrap UCL
 706.9

 95% BCA Bootstrap UCL
 995.6
 95% Bootstrap t UCL
 3799

 95% H-UCL (Log ROS)
 12.74
 12.74

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged) 1.762 KM Geo Mean 5.823 KM SD (logged) 1.401 95% Critical H Value (KM-Log) 2.516 95% H-UCL (KM -Log) KM Standard Error of Mean (logged) 0.174 19.75 KM SD (logged) 95% Critical H Value (KM-Log) 1.401 2.516 KM Standard Error of Mean (logged) 0.174

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 4838
 Mean in Log Scale
 3.273

 SD in Original Scale
 24923
 SD in Log Scale
 2.738

 95% t UCL (Assumes normality)
 7633
 95% H-Stat UCL
 2378

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 19.75

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.14/20/2017 4:45:16 PM

From File HHRA Data for Review.xls

Full Precision OFF
Confidence Coefficient 95%
Number of Bootstrap Operations 2000

Result (1,1-dichloroethane)

Total Number of Observations	120	Number of Distinct Observations	57
Total Number of Observations	120	rumber of bistiliet observations	07
Number of Detects	41	Number of Non-Detects	79
Number of Distinct Detects	39	Number of Distinct Non-Detects	18
Minimum Detect	0.12	Minimum Non-Detect	1
Maximum Detect	2100	Maximum Non-Detect	5000
Variance Detects	147239	Percent Non-Detects	65.83%
Mean Detects	127.5	SD Detects	383.7
Median Detects	1.78	CV Detects	3.01
Skewness Detects	4.124	Kurtosis Detects	18.52
Mean of Logged Detects	1.372	SD of Logged Detects	2.76

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.393	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.941	Detected Data Not Normal at 5% Significance Leve
Lilliefors Test Statistic	0.37	Lilliefors GOF Test
5% Lilliefors Critical Value	0.137	Detected Data Not Normal at 5% Significance Leve

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	45.87	KM Standard Error of Mean	21.56
KM SD	231.2	95% KM (BCA) UCL	83.44
95% KM (t) UCL	81.61	95% KM (Percentile Bootstrap) UCL	84.93
95% KM (z) UCL	81.33	95% KM Bootstrap t UCL	140.4
90% KM Chebyshev UCL	110.5	95% KM Chebyshev UCL	139.8
97.5% KM Chebyshev UCL	180.5	99% KM Chebyshev UCL	260.4

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	4.064	A-D Test Statistic
Detected Data Not Gamma Distributed at 5% Significance	0.905	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.279	K-S Test Statistic
Detected Data Not Gamma Distributed at 5% Significance	0.153	5% K-S Critical Value

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.211	k star (bias corrected MLE)	0.21	k hat (MLE)
604.2	Theta star (bias corrected MLE)	606.7	Theta hat (MLE)
17.3	nu star (bias corrected)	17.23	nu hat (MLE)
		127 5	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small. For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

43.91	Mean	0.01	Minimum
0.01	Median	2100	Maximum
5.25	CV	230.6	SD
0.13	k star (bias corrected MLE)	0.127	k hat (MLE)
338.6	Theta star (bias corrected MLE)	344.9	Theta hat (MLE)
31.13	nu star (bias corrected)	30.56	nu hat (MLE)
		0.048	Adjusted Level of Significance (β)
19.27	Adjusted Chi Square Value (31.13, β)	19.38	Approximate Chi Square Value (31.13, α)
70.94	95% Gamma Adjusted UCL (use when n<50)	70.53	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	45.87	SD (KM)	231.2
Variance (KM)	53473	SE of Mean (KM)	21.56
k hat (KM)	0.0393	k star (KM)	0.0439
nu hat (KM)	9.442	nu star (KM)	10.54
theta hat (KM)	1166	theta star (KM)	1044
80% gamma percentile (KM)	3.787	90% gamma percentile (KM)	58.14
95% gamma percentile (KM)	231.1	99% gamma percentile (KM)	1048

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (10.54, α) 4.282 Adjusted Chi Square Value (10.54, β) 4.233 95% Gamma Approximate KM-UCL (use when n>=50) 112.9 95% Gamma Adjusted KM-UCL (use when n<50) 114.2

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.888	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.941	Detected Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.168	Lilliefors GOF Test
5% Lilliefors Critical Value	0.137	Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

Mean in Original Scale	44.34	Mean in Log Scale	0.0158
SD in Original Scale	230.5	SD in Log Scale	2.238
95% t UCL (assumes normality of ROS data)	79.22	95% Percentile Bootstrap UCL	82.01
95% BCA Bootstrap UCL	97.85	95% Bootstrap t UCL	138.1
95% H-UCL (Log ROS)	26.22		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

 KM Mean (logged)
 -0.00663
 KM Geo Mean
 0.993

 KM SD (logged)
 2.094
 95% Critical H Value (KM-Log)
 3.454

 KM Standard Error of Mean (logged)
 0.227
 95% H-UCL (KM -Log)
 17.26

 KM Standard Error of Mean (logged)
 2.094
 95% Critical H Value (KM-Log)
 3.454

 KM Standard Error of Mean (logged)
 0.227

DL/2 Statistics

 DL/2 Normal
 DL/2 Log-Transformed

 Mean in Original Scale
 109.6
 Mean in Log Scale
 1.715

 SD in Original Scale
 345.9
 SD in Log Scale
 2.556

95% t UCL (Assumes normality) 162 95% H-Stat UCL 375.8

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

DL/2 is not a recommended method, provided for comparisons and historical reasons

Suggested UCL to Use

95% KM (Chebyshev) UCL 139.8

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

ARCADIS Design & Consultance for natural and built assets

Result (1,1-dichloroethene)

General	Statistics
Goneral	Ciausucs

Total Number of Observations	120	Number of Distinct Observations	46
Number of Detects	32	Number of Non-Detects	88
Number of Distinct Detects	30	Number of Distinct Non-Detects	17
Minimum Detect	0.23	Minimum Non-Detect	1
Maximum Detect	1950	Maximum Non-Detect	5000
Variance Detects	173427	Percent Non-Detects	73.33%
Mean Detects	152.6	SD Detects	416.4
Median Detects	6.25	CV Detects	2.728
Skewness Detects	3.421	Kurtosis Detects	11.98
Mean of Logged Detects	1.869	SD of Logged Detects	2.796

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.423	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.93	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.422	Lilliefors GOF Test
5% Lilliefors Critical Value	0.154	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	42.85	KM Standard Error of Mean	20.97
KM SD	223.9	95% KM (BCA) UCL	81.16
95% KM (t) UCL	77.61	95% KM (Percentile Bootstrap) UCL	82.07
95% KM (z) UCL	77.34	95% KM Bootstrap t UCL	117.6
90% KM Chebyshev UCL	105.7	95% KM Chebyshev UCL	134.2
97.5% KM Chebyshev UCL	173.8	99% KM Chebyshev UCL	251.5

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	2.519	Anderson-Darling GOF Test
5% A-D Critical Value	0.891	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.214	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.171	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.228	k star (bias corrected MLE)	0.228	k hat (MLE)
670.7	Theta star (bias corrected MLE)	669.1	Theta hat (MLE)
14.57	nu star (bias corrected)	14.6	nu hat (MLE)
		152.6	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs $\,$

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

41.06	Mean	0.01	Minimum
0.01	Median	1950	Maximum
5.432	CV	223.1	SD
0.125	k star (bias corrected MLE)	0.122	k hat (MLE)
329.1	Theta star (bias corrected MLE)	335.8	Theta hat (MLE)
29.95	nu star (bias corrected)	29.35	nu hat (MLE)
		0.048	Adjusted Level of Significance (β)
18.34	Adjusted Chi Square Value (29.95, β)	18.45	Approximate Chi Square Value (29.95, α)
67.04	95% Gamma Adjusted UCL (use when n<50)	66.65	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	42.85	SD (KM)	223.9
Variance (KM)	50144	SE of Mean (KM)	20.97
k hat (KM)	0.0366	k star (KM)	0.0413
nu hat (KM)	8.788	nu star (KM)	9.902
theta hat (KM)	1170	theta star (KM)	1039
80% gamma percentile (KM)	2.706	90% gamma percentile (KM)	49.05
95% gamma percentile (KM)	209.1	99% gamma percentile (KM)	1002

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (9.90, α)	3.88	Adjusted Chi Square Value (9.90, β)	3.835
95% Gamma Approximate KM-UCL (use when n>=50)	109.3	95% Gamma Adjusted KM-UCL (use when n<50)	110.6

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.886	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.93	Detected Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.217	Lilliefors GOF Test
5% Lilliefors Critical Value	0.154	Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	41.98	Mean in Log Scale	0.237
SD in Original Scale	222.9	SD in Log Scale	2.189
95% t UCL (assumes normality of ROS data)	75.71	95% Percentile Bootstrap UCL	77.38
95% BCA Bootstrap UCL	93.71	95% Bootstrap t UCL	109.9
95% H-UCL (Log ROS)	28.53		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	0.081	KM Geo Mean	1.084
KM SD (logged)	1.957	95% Critical H Value (KM-Log)	3.284

Appendix B - ProUCL Output
ProUCL Output for All Groundwater Samples
AVX Corporation, Myrtle Beach Facility
Myrtle Beach, South Carolina

 KM Standard Error of Mean (logged)
 0.212
 95% H-UCL (KM -Log)
 13.25

 KM SD (logged)
 1.957
 95% Critical H Value (KM-Log)
 3.284

KM Standard Error of Mean (logged) 0.212

DL/2 Statistics

 DL/2 Normal
 DL/2 Log-Transformed

 Mean in Original Scale
 100.5
 Mean in Log Scale
 1.62

 SD in Original Scale
 332.6
 SD in Log Scale
 2.518

 95% t UCL (Assumes normality)
 150.8
 95% H-Stat UCL
 303.3

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 134.2

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

ARCADIS | Design & Consultancy for natural and built assets

Result (1,2,4-trimethylbenzene)

General Stat	ietice

27	Number of Distinct Observations	120	Total Number of Observations
12	Number of Non-Detects	8	Number of Detects
20	Number of Distinct Non-Detects	7	Number of Distinct Detects
1	Minimum Non-Detect	0.11	Minimum Detect
000	Maximum Non-Detect	28.8	Maximum Detect
93.33%	Percent Non-Detects	99.55	Variance Detects
9.977	SD Detects	4.126	Mean Detects
2.418	CV Detects	0.44	Median Detects
7.963	Kurtosis Detects	2.82	Skewness Detects
1.634	SD of Logged Detects	-0.237	Mean of Logged Detects

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.452	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.818	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.49	Lilliefors GOF Test
5% Lilliefors Critical Value	0.283	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.759	KM Standard Error of Mean	0.392
KM SD	3.202	95% KM (BCA) UCL	1.577
95% KM (t) UCL	1.408	95% KM (Percentile Bootstrap) UCL	1.459
95% KM (z) UCL	1.403	95% KM Bootstrap t UCL	6.329
90% KM Chebyshev UCL	1.934	95% KM Chebyshev UCL	2.467
97.5% KM Chebyshev UCL	3.206	99% KM Chebyshev UCL	4.658

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	1.437	Anderson-Darling GOF Test
5% A-D Critical Value	0.78	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.413	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.313	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.332	k star (bias corrected MLE)	0.398	k hat (MLE)
12.42	Theta star (bias corrected MLE)	10.36	Theta hat (MLE)
5.315	nu star (bias corrected)	6.37	nu hat (MLE)
		4 400	

Mean (detects) 4.126

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.745	Mean	0.01	Minimum
0.01	Median	28.8	Maximum
3.794	CV	2.828	SD
0.242	k star (bias corrected MLE)	0.242	k hat (MLE)
3.086	Theta star (bias corrected MLE)	3.08	Theta hat (MLE)
57.96	nu star (bias corrected)	58.08	nu hat (MLE)
		0.048	Adjusted Level of Significance (β)
41.29	Adjusted Chi Square Value (57.96, β)	41.46	Approximate Chi Square Value (57.96, α)
1.046	95% Gamma Adjusted UCL (use when n<50)	1.042	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.759	SD (KM)	3.202
Variance (KM)	10.25	SE of Mean (KM)	0.392
k hat (KM)	0.0562	k star (KM)	0.0603
nu hat (KM)	13.48	nu star (KM)	14.48
theta hat (KM)	13.51	theta star (KM)	12.58
80% gamma percentile (KM)	0.186	90% gamma percentile (KM)	1.436
95% gamma percentile (KM)	4.259	99% gamma percentile (KM)	15.27

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (14.48, α)	6.902	Adjusted Chi Square Value (14.48, β)	6.838
95% Gamma Approximate KM-UCL (use when n>=50)	1.592	95% Gamma Adjusted KM-UCL (use when n<50)	1.607

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.812	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.818	Detected Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.274	Lilliefors GOF Test
5% Lilliefors Critical Value	0.283	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Approximate Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.7	Mean in Log Scale	-1.042
SD in Original Scale	2.613	SD in Log Scale	0.915
95% t UCL (assumes normality of ROS data)	1.095	95% Percentile Bootstrap UCL	1.173
95% BCA Bootstrap UCL	1.459	95% Bootstrap t UCL	2.759
95% H-UCL (Log ROS)	0.642		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-1.017	KM Geo Mean	0.362
KM SD (logged)	0.768	95% Critical H Value (KM-Log)	2.024

Appendix B - ProUCL Output
ProUCL Output for All Groundwater Samples
AVX Corporation, Myrtle Beach Facility
Myrtle Beach, South Carolina

 KM Standard Error of Mean (logged)
 0.257
 95% H-UCL (KM -Log)
 0.56

 KM SD (logged)
 0.768
 95% Critical H Value (KM-Log)
 2.024

KM Standard Error of Mean (logged) 0.257

DL/2 Statistics

 DL/2 Normal
 DL/2 Log-Transformed

 Mean in Original Scale
 100.4
 Mean in Log Scale
 1.616

 SD in Original Scale
 350.8
 SD in Log Scale
 2.513

 95% t UCL (Assumes normality)
 153.5
 95% H-Stat UCL
 296.6

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 0.56

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

ARCADIS Design & Consultancy for natural and built assets

Result (2-butanone)

General	Statistics

Total Number of Observations	120	Number of Distinct Observations	27
Number of Detects	7	Number of Non-Detects	113
Number of Distinct Detects	7	Number of Distinct Non-Detects	20
Minimum Detect	0.94	Minimum Non-Detect	25
Maximum Detect	260	Maximum Non-Detect	125000
Variance Detects	8946	Percent Non-Detects	94.17%
Mean Detects	47.27	SD Detects	94.58
Median Detects	12.3	CV Detects	2.001
Skewness Detects	2.559	Kurtosis Detects	6.629
Mean of Logged Detects	2.368	SD of Logged Detects	1.867

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.559	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.803	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.403	Lilliefors GOF Test
5% Lilliefors Critical Value	0.304	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	11.1	KM Standard Error of Mean	4.729
KM SD	30.92	95% KM (BCA) UCL	21.05
95% KM (t) UCL	18.94	95% KM (Percentile Bootstrap) UCL	19.26
95% KM (z) UCL	18.88	95% KM Bootstrap t UCL	27.06
90% KM Chebyshev UCL	25.29	95% KM Chebyshev UCL	31.72
97.5% KM Chebyshev UCL	40.64	99% KM Chebyshev UCL	58.16

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.524	Anderson-Darling GOF Test
5% A-D Critical Value	0.762	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.262	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.33	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.436	k star (bias corrected MLE)	0.345
Theta hat (MLE)	108.4	Theta star (bias corrected MLE)	137.2
nu hat (MLE)	6.108	nu star (bias corrected)	4.824
Mean (detects)	47.27		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs $\,$

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

12	Wedi	0.01	WIIIIIIIIIII
0.01	Median	260	Maximum
2.409	CV	28.9	SD
0.19	k star (bias corrected MLE)	0.189	k hat (MLE)
63.3	Theta star (bias corrected MLE)	63.58	Theta hat (MLE)
45.5	nu star (bias corrected)	45.29	nu hat (MLE)
		0.048	Adjusted Level of Significance (β)
30.88	Adjusted Chi Square Value (45.50, β)	31.02	Approximate Chi Square Value (45.50, α)
17.68	95% Gamma Adjusted UCL (use when n<50)	17.6	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	11.1	SD (KM)	30.92
Variance (KM)	956	SE of Mean (KM)	4.729
k hat (KM)	0.129	k star (KM)	0.131
nu hat (KM)	30.96	nu star (KM)	31.52
theta hat (KM)	86.09	theta star (KM)	84.56
80% gamma percentile (KM)	10.72	90% gamma percentile (KM)	32.17
95% gamma percentile (KM)	62.56	99% gamma percentile (KM)	153.4

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (31.52, α)	19.69	Adjusted Chi Square Value (31.52, β)	19.58
95% Gamma Approximate KM-UCL (use when n>=50)	17.78	95% Gamma Adjusted KM-UCL (use when n<50)	17.88

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.975	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.803	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.148	Lilliefors GOF Test
5% Lilliefors Critical Value	0.304	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	9.694	Mean in Log Scale	1.515
SD in Original Scale	24.55	SD in Log Scale	1.153
95% t UCL (assumes normality of ROS data)	13.41	95% Percentile Bootstrap UCL	13.84
95% BCA Bootstrap UCL	16.59	95% Bootstrap t UCL	19.71
95% H-UCL (Log ROS)	11.37		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	1.582	KM Geo Mean	4.866
KM SD (logged)	1.158	95% Critical H Value (KM-Log)	2.377

Appendix B - ProUCL Output
ProUCL Output for All Groundwater Samples
AVX Corporation, Myrtle Beach Facility
Myrtle Beach, South Carolina

 KM Standard Error of Mean (logged)
 0.488
 95% H-UCL (KM -Log)
 12.25

 KM SD (logged)
 1.158
 95% Critical H Value (KM-Log)
 2.377

KM Standard Error of Mean (logged) 0.488

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

Mean in Original Scale2517Mean in Log Scale4.805SD in Original Scale8769SD in Log Scale2.55895% t UCL (Assumes normality)384495% H-Stat UCL8336

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Approximate Gamma UCL 17.78

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

ARCADIS Design & Consultancy for natural and built assets

Result (acetone)

Conoro	Statistics
General	JUDIUSIUS

Total Number of Observations	120	Number of Distinct Observations	42
Number of Detects	22	Number of Non-Detects	98
Number of Distinct Detects	22	Number of Distinct Non-Detects	20
Minimum Detect	1.21	Minimum Non-Detect	25
Maximum Detect	572	Maximum Non-Detect	125000
Variance Detects	14537	Percent Non-Detects	81.67%
Mean Detects	36.59	SD Detects	120.6
Median Detects	3.525	CV Detects	3.295
Skewness Detects	4.569	Kurtosis Detects	21.18
Mean of Logged Detects	1.892	SD of Logged Detects	1.484

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.302	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.911	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.412	Lilliefors GOF Test
5% Lilliefors Critical Value	0.184	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	13.97	KM Standard Error of Mean	7.61
KM SD	64.82	95% KM (BCA) UCL	28.8
95% KM (t) UCL	26.58	95% KM (Percentile Bootstrap) UCL	28.42
95% KM (z) UCL	26.48	95% KM Bootstrap t UCL	76.59
90% KM Chebyshev UCL	36.8	95% KM Chebyshev UCL	47.14
97.5% KM Chebyshev UCL	61.49	99% KM Chebyshev UCL	89.68

Gamma GOF Tests on Detected Observations Only

A-D Test Sta	atistic 3.31	Anderson-Darling GOF Test
5% A-D Critical \	/alue 0.829	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Sta	atistic 0.317	Kolmogorov-Smirnov GOF
5% K-S Critical \	/alue 0.199	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.387	k star (bias corrected MLE)	0.365
Theta hat (MLE)	94.5	Theta star (bias corrected MLE)	100.3
nu hat (MLE)	17.04	nu star (bias corrected)	16.05
Mean (detects)	36.59		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs $\,$

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

14.31	Mean	0.01	Minimum
0.01	Median	572	Maximum
3.825	CV	54.74	SD
0.183	k star (bias corrected MLE)	0.182	k hat (MLE)
78.16	Theta star (bias corrected MLE)	78.59	Theta hat (MLE)
43.95	nu star (bias corrected)	43.71	nu hat (MLE)
		0.048	Adjusted Level of Significance (β)
29.6	Adjusted Chi Square Value (43.95, β)	29.75	Approximate Chi Square Value (43.95, α)
21.25	95% Gamma Adjusted UCL (use when n<50)	21.15	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	13.97	SD (KM)	64.82
Variance (KM)	4202	SE of Mean (KM)	7.61
k hat (KM)	0.0464	k star (KM)	0.0508
nu hat (KM)	11.14	nu star (KM)	12.2
theta hat (KM)	300.9	theta star (KM)	274.8
80% gamma percentile (KM)	2.005	90% gamma percentile (KM)	21.77
95% gamma percentile (KM)	74.71	99% gamma percentile (KM)	301.9

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (12.20, α)	5.356	Adjusted Chi Square Value (12.20, β)	5.301
95% Gamma Approximate KM-UCL (use when n>=50)	31.8	95% Gamma Adjusted KM-UCL (use when n<50)	32.13

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.817	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.911	Detected Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.266	Lilliefors GOF Test
5% Lilliefors Critical Value	0.184	Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	11.57	Mean in Log Scale	1.526
SD in Original Scale	52.22	SD in Log Scale	1.017
95% t UCL (assumes normality of ROS data)	19.48	95% Percentile Bootstrap UCL	20.85
95% BCA Bootstrap UCL	26.25	95% Bootstrap t UCL	56.15
95% H-UCL (Log ROS)	9.502		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	1.447	KM Geo Mean	4.251
KM SD (logged)	0.999	95% Critical H Value (KM-Log)	2.222

Appendix B - ProUCL Output
ProUCL Output for All Groundwater Samples
AVX Corporation, Myrtle Beach Facility
Myrtle Beach, South Carolina

 KM Standard Error of Mean (logged)
 0.164
 95% H-UCL (KM -Log)
 8.584

 KM SD (logged)
 0.999
 95% Critical H Value (KM-Log)
 2.222

KM Standard Error of Mean (logged) 0.164

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

Mean in Original Scale2522Mean in Log Scale4.686SD in Original Scale8768SD in Log Scale2.71595% t UCL (Assumes normality)384895% H-Stat UCL12481

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 47.14

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

ARCADIS Design & Consultancy for natural and but lassets

Result (benzene)

General	Statistics
---------	-------------------

Total Number of Observations	120	Number of Distinct Observations	41
Number of Detects	25	Number of Non-Detects	95
Number of Distinct Detects	21	Number of Distinct Non-Detects	20
Minimum Detect	0.12	Minimum Non-Detect	1
Maximum Detect	2.06	Maximum Non-Detect	5000
Variance Detects	0.213	Percent Non-Detects	79.17%
Mean Detects	0.529	SD Detects	0.462
Median Detects	0.3	CV Detects	0.873
Skewness Detects	2.03	Kurtosis Detects	4.511
Mean of Logged Detects	-0.917	SD of Logged Detects	0.734

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.764	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.918	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.21	Lilliefors GOF Test
5% Lilliefors Critical Value	0.173	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.453	KM Standard Error of Mean	0.0595
KM SD	0.352	95% KM (BCA) UCL	0.556
95% KM (t) UCL	0.552	95% KM (Percentile Bootstrap) UCL	0.556
95% KM (z) UCL	0.551	95% KM Bootstrap t UCL	0.563
90% KM Chebyshev UCL	0.632	95% KM Chebyshev UCL	0.712
97.5% KM Chebyshev UCL	0.825	99% KM Chebyshev UCL	1.045

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.832	A-D Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Le	0.757	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.201	K-S Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Lo	0.177	5% K-S Critical Value

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	1.934	k star (bias corrected MLE)	1.729
Theta hat (MLE)	0.273	Theta star (bias corrected MLE)	0.306
nu hat (MLE)	96.7	nu star (bias corrected)	86.43
Mean (detects)	0.529		

Mean 0.436

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs $\,$

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum 0.01

0.376	Median	2.00	Maximum
0.708	CV	0.309	SD
2.019	k star (bias corrected MLE)	2.065	k hat (MLE)
0.216	Theta star (bias corrected MLE)	0.211	Theta hat (MLE)
484.6	nu star (bias corrected)	495.6	nu hat (MLE)
		0.048	Adjusted Level of Significance (β)
433.9	Adjusted Chi Square Value (484.55, β)	434.5	Approximate Chi Square Value (484.55, α)
0.487	95% Gamma Adjusted UCL (use when n<50)	0.486	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.453	SD (KM)	0.352
Variance (KM)	0.124	SE of Mean (KM)	0.0595
k hat (KM)	1.652	k star (KM)	1.617
nu hat (KM)	396.6	nu star (KM)	388
theta hat (KM)	0.274	theta star (KM)	0.28
80% gamma percentile (KM)	0.695	90% gamma percentile (KM)	0.927
95% gamma percentile (KM)	1.151	99% gamma percentile (KM)	1.655

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (388.01, α)	343.4	Adjusted Chi Square Value (388.01, β)	342.8
95% Gamma Approximate KM-UCL (use when n>=50)	0.512	95% Gamma Adjusted KM-UCL (use when n<50)	0.513

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.951	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.918	Detected Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.172	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.173	Detected Data appear Lognormal at 5% Significance Level	

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics	Using Impute	ed Non-Detects

Mean in Original Scale	0.424	Mean in Log Scale	-1.017
SD in Original Scale	0.275	SD in Log Scale	0.554
95% t UCL (assumes normality of ROS data)	0.466	95% Percentile Bootstrap UCL	0.464
95% BCA Bootstrap UCL	0.471	95% Bootstrap t UCL	0.474
95% H-UCL (Log ROS)	0.464		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-1.015	KM Geo Mean	0.362
KM SD (logged)	0.642	95% Critical H Value (KM-Log)	1.929

Appendix B - ProUCL Output
ProUCL Output for All Groundwater Samples
AVX Corporation, Myrtle Beach Facility
Myrtle Beach, South Carolina

 KM Standard Error of Mean (logged)
 0.124
 95% H-UCL (KM -Log)
 0.499

 KM SD (logged)
 0.642
 95% Critical H Value (KM-Log)
 1.929

KM Standard Error of Mean (logged) 0.124

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

Mean in Original Scale 100.8 Mean in Log S

 Mean in Original Scale
 100.8
 Mean in Log Scale
 1.568

 SD in Original Scale
 350.7
 SD in Log Scale
 2.584

 95% t UCL (Assumes normality)
 153.9
 95% H-Stat UCL
 356.1

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 0.499

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

PARCADIS | Design & Consultancy for natural and built assets |

Result (carbon disulfide)

Statistics

Total Number of Observations	120	Number of Distinct Observations	32
Number of Detects	14	Number of Non-Detects	106
Number of Distinct Detects	13	Number of Distinct Non-Detects	19
Minimum Detect	0.45	Minimum Non-Detect	1
Maximum Detect	35	Maximum Non-Detect	5000
Variance Detects	81.18	Percent Non-Detects	88.33%
Mean Detects	3.931	SD Detects	9.01
Median Detects	1.32	CV Detects	2.292
Skewness Detects	3.646	Kurtosis Detects	13.48
Mean of Logged Detects	0.396	SD of Logged Detects	1.186

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.401	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.874	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.437	Lilliefors GOF Test
5% Lilliefors Critical Value	0.226	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	1.213	KM Standard Error of Mean	0.462
KM SD	3.907	95% KM (BCA) UCL	2.163
95% KM (t) UCL	1.98	95% KM (Percentile Bootstrap) UCL	2.044
95% KM (z) UCL	1.974	95% KM Bootstrap t UCL	4.653
90% KM Chebyshev UCL	2.6	95% KM Chebyshev UCL	3.228
97.5% KM Chebyshev UCL	4.1	99% KM Chebyshev UCL	5.812

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	1.633	Anderson-Daning GOF Test
5% A-D Critical Value	0.781	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.277	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.24	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.631	k star (bias corrected MLE)	0.543
heta hat (MLE)	6.233	Theta star (bias corrected MLE)	7.238
nu hat (MLE)	17.66	nu star (bias corrected)	15.21
Mean (detects)	3 931		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs $\,$

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.774	Mean	0.01	Minimum
0.01	Median	35	Maximum
4.274	CV	3.308	SD
0.24	k star (bias corrected MLE)	0.24	k hat (MLE)
3.226	Theta star (bias corrected MLE)	3.22	Theta hat (MLE)
57.58	nu star (bias corrected)	57.69	nu hat (MLE)
		0.048	Adjusted Level of Significance (β)
40.97	Adjusted Chi Square Value (57.58, β)	41.14	Approximate Chi Square Value (57.58, α)
1.088	95% Gamma Adjusted UCL (use when n<50)	1.083	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	1.213	SD (KM)	3.907
Variance (KM)	15.27	SE of Mean (KM)	0.462
k hat (KM)	0.0965	k star (KM)	0.0996
nu hat (KM)	23.15	nu star (KM)	23.9
theta hat (KM)	12.58	theta star (KM)	12.18
80% gamma percentile (KM)	0.837	90% gamma percentile (KM)	3.224
95% gamma percentile (KM)	7.045	99% gamma percentile (KM)	19.31

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (23.90, α)	13.77	Adjusted Chi Square Value (23.90, β)	13.68
95% Gamma Approximate KM-UCL (use when n>=50)	2.106	95% Gamma Adjusted KM-UCL (use when n<50)	2.12

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.849	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.874	Detected Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.166	Lilliefors GOF Test
5% Lilliefors Critical Value	0.226	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Approximate Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	1.108	Mean in Log Scale	-0.413
SD in Original Scale	3.182	SD in Log Scale	0.809
95% t UCL (assumes normality of ROS data)	1.59	95% Percentile Bootstrap UCL	1.671
95% BCA Bootstrap UCL	2.023	95% Bootstrap t UCL	3.068
95% H-UCL (Log ROS)	1.069		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-0.382	KM Geo Mean	0.682
KM SD (logged)	0.667	95% Critical H Value (KM-Log)	1.947

Appendix B - ProUCL Output
ProUCL Output for All Groundwater Samples
AVX Corporation, Myrtle Beach Facility
Myrtle Beach, South Carolina

 KM Standard Error of Mean (logged)
 0.0992
 95% H-UCL (KM -Log)
 0.96

 KM SD (logged)
 0.667
 95% Critical H Value (KM-Log)
 1.947

KM Standard Error of Mean (logged) 0.0992

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 99.95
 Mean in Log Scale
 1.626

 SD in Original Scale
 350.8
 SD in Log Scale
 2.476

 95% t UCL (Assumes normality)
 153
 95% H-Stat UCL
 266.9

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 0.96

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

ARCADIS Design & Consultancy for natural and bull trassets

Result (cis-1,2-dichloroethene)

General	Statistics

Total Number of Observations 120	Number of Distinct Observations	104
Number of Detects 98	Number of Non-Detects	22
Number of Distinct Detects 97	Number of Distinct Non-Detects	8
Minimum Detect 0.11	Minimum Non-Detect	1
Maximum Detect 109000	Maximum Non-Detect	500
Variance Detects 1.572E+8	Percent Non-Detects	18.33%
Mean Detects 3398	SD Detects	12538
Median Detects 129	CV Detects	3.69
Skewness Detects 6.969	Kurtosis Detects	54.78
Mean of Logged Detects 4.748	SD of Logged Detects	3.218

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic 0.304 Normal GOF Test on Detected Observations Only

5% Shapiro Wilk P Value 0 Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic 0.393 Lilliefors GOF Test

5% Lilliefors Critical Value 0.0897 Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	2776	KM Standard Error of Mean	1041
KM SD	11349	95% KM (BCA) UCL	4770
95% KM (t) UCL	4503	95% KM (Percentile Bootstrap) UCL	4740
95% KM (z) UCL	4489	95% KM Bootstrap t UCL	7868
90% KM Chebyshev UCL	5900	95% KM Chebyshev UCL	7315
97.5% KM Chebyshev UCL	9279	99% KM Chebyshev UCL	13137

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic 3.424 Anderson-Darling GOF Test

5% A-D Critical Value 0.91 Detected Data Not Gamma Distributed at 5% Significance Level

K-S Test Statistic 0.147 Kolmogorov-Smirnov GOF

5% K-S Critical Value 0.1 Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.215	k star (bias corrected MLE)	0.215
Theta hat (MLE)	15797	Theta star (bias corrected MLE)	15781
nu hat (MLE)	42.16	nu star (bias corrected)	42.2
Mean (detects)	3398		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs $\,$

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	2775
Maximum	109000	Median	32.35
SD	11397	CV	4.107
k hat (MLE)	0.156	k star (bias corrected MLE)	0.158
Theta hat (MLE)	17776	Theta star (bias corrected MLE)	17589
nu hat (MLE)	37.47	nu star (bias corrected)	37.86
Adjusted Level of Significance (β)	0.048		
Approximate Chi Square Value (37.86, α)	24.77	Adjusted Chi Square Value (37.86, β)	24.64
95% Gamma Approximate UCL (use when n>=50)	4241	95% Gamma Adjusted UCL (use when n<50)	4263

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	2776	SD (KM)	11349
Variance (KM)	1.288E+8	SE of Mean (KM)	1041
k hat (KM)	0.0598	k star (KM)	0.0639
nu hat (KM)	14.36	nu star (KM)	15.34
theta hat (KM)	46392	theta star (KM)	43445
80% gamma percentile (KM)	795	90% gamma percentile (KM)	5546
95% gamma percentile (KM)	15755	99% gamma percentile (KM)	54494

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (15.34, α)	7.497	Adjusted Chi Square Value (15.34, β)	7.43
95% Gamma Approximate KM-UCL (use when n>=50)	5680	95% Gamma Adjusted KM-UCL (use when n<50)	5731

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk GOF Test	0.962	Shapiro Wilk Approximate Test Statistic
Detected Data Not Lognormal at 5% Significance Level	0.0361	5% Shapiro Wilk P Value
Lilliefors GOF Test	0.0875	Lilliefors Test Statistic
Detected Data appear Lognormal at 5% Significance Leve	0.0897	5% Lilliefors Critical Value

Detected Data appear Approximate Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

Mean in Original Scale	2775	Mean in Log Scale	3.844
SD in Original Scale	11397	SD in Log Scale	3.559
95% t UCL (assumes normality of ROS data)	4500	95% Percentile Bootstrap UCL	4542
95% BCA Bootstrap UCL	6046	95% Bootstrap t UCL	7737
95% H-UCL (Log ROS)	152663		

KM Mean (logged)	3.857	KM Geo Mean	47.32
KM SD (logged)	3.511	95% Critical H Value (KM-Log)	5.329

Appendix B - ProUCL Output
ProUCL Output for All Groundwater Samples
AVX Corporation, Myrtle Beach Facility
Myrtle Beach, South Carolina

 KM Standard Error of Mean (logged)
 0.328
 95% H-UCL (KM -Log) 125070

 KM SD (logged)
 3.511
 95% Critical H Value (KM-Log) 5.329

KM Standard Error of Mean (logged) 0.328

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 2780
 Mean in Log Scale
 4.008

 SD in Original Scale
 11396
 SD in Log Scale
 3.439

 95% t UCL (Assumes normality)
 4505
 95% H-Stat UCL 105925

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 125070

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

ARCADIS | Design & Consultancy for natural and built assets

Result (ethylbenzene)

l Statistics

		Number of Distinct Observations	27
		Number of Non-Detects	112
		Number of Distinct Non-Detects	20
	16	Minimum Non-Detect	1
	79	Maximum Non-Detect	5000
2	262	Percent Non-Detects	93.33%
6	566	SD Detects	0.512
5	465	CV Detects	0.905
1	434	Kurtosis Detects	6.485
;	318	SD of Logged Detects	0.711

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.66	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.818	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.411	Lilliefors GOF Test
5% Lilliefors Critical Value	0.283	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.417	KM Standard Error of Mean	0.0597
KM SD	0.23	95% KM (BCA) UCL	0.518
95% KM (t) UCL	0.516	95% KM (Percentile Bootstrap) UCL	0.517
95% KM (z) UCL	0.515	95% KM Bootstrap t UCL	0.518
90% KM Chebyshev UCL	0.596	95% KM Chebyshev UCL	0.677
97.5% KM Chebyshev UCL	0.79	99% KM Chebyshev UCL	1.011

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.716	Anderson-Darling GOF Test
5% A-D Critical Value	0.724	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.333	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.297	Detected Data Not Gamma Distributed at 5% Significance Level

Detected data follow Appr. Gamma Distribution at 5% Significance Level

Gamma Statistics on Detected Data Only

1.434	k star (bias corrected MLE)	2.161	k hat (MLE)
0.395	Theta star (bias corrected MLE)	0.262	Theta hat (MLE)
22.95	nu star (bias corrected)	34.58	nu hat (MLE)
		0.566	Mean (detects)

Mean 0.433

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs $\,$

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum 0.01

0.384	Median	1.79	Maximum
0.635	CV	0.275	SD
2.323	k star (bias corrected MLE)	2.377	k hat (MLE)
0.186	Theta star (bias corrected MLE)	0.182	Theta hat (MLE)
557.6	nu star (bias corrected)	570.6	nu hat (MLE)
		0.048	Adjusted Level of Significance (β)
503.3	Adjusted Chi Square Value (557.64, β)	503.9	Approximate Chi Square Value (557.64, α)
0.479	95% Gamma Adjusted UCL (use when n<50)	0.479	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.417	SD (KM)	0.23
Variance (KM)	0.0531	SE of Mean (KM)	0.0597
k hat (KM)	3.282	k star (KM)	3.206
nu hat (KM)	787.7	nu star (KM)	769.4
theta hat (KM)	0.127	theta star (KM)	0.13
80% gamma percentile (KM)	0.591	90% gamma percentile (KM)	0.73
95% gamma percentile (KM)	0.859	99% gamma percentile (KM)	1.139

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (769.38, α)	706	Adjusted Chi Square Value (769.38, β)	705.3
95% Gamma Approximate KM-UCL (use when n>=50)	0.455	95% Gamma Adjusted KM-UCL (use when n<50)	0.455

Lognormal GOF Test on Detected Observations Only Shapiro Wilk Test Statistic 0.892

Shapiro Wilk Test Statistic	0.892	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.818	Detected Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.284 Lilliefors GOF Test

5% Lilliefors Critical Value 0.283 Detected Data Not Lognormal at 5% Significance Level

Detected Data appear Approximate Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.423	Mean in Log Scale	-0.981
SD in Original Scale	0.229	SD in Log Scale	0.487
95% t UCL (assumes normality of ROS data)	0.457	95% Percentile Bootstrap UCL	0.456
95% BCA Bootstrap UCL	0.465	95% Bootstrap t UCL	0.464
95% H-UCL (Log ROS)	0.458		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-0.988	KM Geo Mean	0.372
KM SD (logged)	0.478	95% Critical H Value (KM-Log)	1.825
KM Standard Error of Mean (logged)	0.174	95% H-UCL (KM -Log)	0.452
KM SD (logged)	0.478	95% Critical H Value (KM-Log)	1.825
KM Standard Error of Mean (logged)	0.174		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed			
	Mean in Original Scale	100.8	Mean in Log Scale	1.62	
	SD in Original Scale	350.7	SD in Log Scale	2.524	
	95% t UCL (Assumes normality)	153.9	95% H-Stat UCL	309.1	

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Approximate Gamma UCL 0.455 95% GROS Approximate Gamma UCL 0.479

When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test

Recommendations are based upon data size, data distribution, and skewness.

ARCADIS Design & Consultancy for natural and built assets

Result (iron)

General Statistics

Total Number of Observations Number of Distinct Observations Number of Missing Observations Minimum Mean 5925 Maximum 17000 Median 3700 SD 6831 Std. Error of Mean 2415 Skewness 1.106 Coefficient of Variation 1.153

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic 0.789 Shapiro Wilk GOF Test 5% Shapiro Wilk Critical Value Data Not Normal at 5% Significance Level Lilliefors Test Statistic Lilliefors GOF Test 5% Lilliefors Critical Value 0.283 Data appear Normal at 5% Significance Level

Data appear Approximate Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness)

> 95% Student's-t UCL 10501 95% Adjusted-CLT UCL (Chen-1995) 10906 95% Modified-t UCL (Johnson-1978) 10658

> > Gamma GOF Test

A-D Test Statistic 0.288 Anderson-Darling Gamma GOF Test 5% A-D Critical Value 0.75 Detected data appear Gamma Distributed at 5% Significance Level K-S Test Statistic Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Level 5% K-S Critical Value 0.305

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE) k star (bias corrected MLE) 0.686 0.512 Theta hat (MLE) 8636 Theta star (bias corrected MLE) 11570 nu hat (MLE) 10.98 nu star (bias corrected) 8.194 MLE Mean (bias corrected) 5925 MLE Sd (bias corrected) 8280 Approximate Chi Square Value (0.05) 2.848 Adjusted Level of Significance 0.0195 Adjusted Chi Square Value 2.114

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 17048 95% Adjusted Gamma UCL (use when n<50) 22968

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.939 Shapiro Wilk Lognormal GOF Test 5% Shapiro Wilk Critical Value 0.818 Data appear Lognormal at 5% Significance Level Lilliefors Test Statistic 0.172 Lilliefors Lognormal GOF Test 0.283 5% Lilliefors Critical Value Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data 5.193 Mean of logged Data 7.804 Maximum of Logged Data SD of logged Data

Assuming Lognormal Distribution

95% H-UCL 235070 90% Chebyshev (MVUE) UCL 19466 95% Chebyshev (MVUE) UCL 25067 97.5% Chebyshev (MVUE) UCL 32839 99% Chebyshev (MVUE) UCL 48107

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL 9898 95% Jackknife UCL 10501 95% Standard Bootstrap UCL 9636 95% Bootstrap-t UCL 17769 95% Hall's Bootstrap UCL 36349 95% Percentile Bootstrap UCL 9790 95% BCA Bootstrap UCL 10618 90% Chebyshev(Mean, Sd) UCL 13171 95% Chebyshev(Mean, Sd) UCL 16453 97.5% Chebyshev(Mean, Sd) UCL 21008 99% Chebyshev(Mean, Sd) UCL 29956

Suggested UCL to Use

95% Student's-t UCL 10501

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

ARCADIS Design & Consultancy for natural and built assets

Result (m-,p-xylene)

General	Statistics
---------	------------

Total Number of Observations	120	Number of Distinct Observations	35
Number of Detects	17	Number of Non-Detects	103
Number of Distinct Detects	15	Number of Distinct Non-Detects	20
Minimum Detect	0.13	Minimum Non-Detect	2
Maximum Detect	2.42	Maximum Non-Detect	10000
Variance Detects	0.431	Percent Non-Detects	85.83%
Mean Detects	0.739	SD Detects	0.656
Median Detects	0.56	CV Detects	0.888
Skewness Detects	1.996	Kurtosis Detects	3.538
Mean of Logged Detects	-0.607	SD of Logged Detects	0.811

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.715	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.892	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.294	Lilliefors GOF Test
5% Lilliefors Critical Value	0.207	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.59	KM Standard Error of Mean	0.0784
KM SD	0.421	95% KM (BCA) UCL	0.715
95% KM (t) UCL	0.72	95% KM (Percentile Bootstrap) UCL	0.721
95% KM (z) UCL	0.719	95% KM Bootstrap t UCL	0.732
90% KM Chebyshev UCL	0.825	95% KM Chebyshev UCL	0.931
97.5% KM Chebyshev UCL	1.079	99% KM Chebyshev UCL	1.37

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.802	Anderson-Darling GOF Test
5% A-D Critical Value	0.752	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.2	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.212	Detected data appear Gamma Distributed at 5% Significance Level

Detected data follow Appr. Gamma Distribution at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	1.792	k star (bias corrected MLE)	1.515
Theta hat (MLE)	0.412	Theta star (bias corrected MLE)	0.488
nu hat (MLE)	60.93	nu star (bias corrected)	51.51
Mean (detects)	0.739		

Mean 0.587

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs $\,$

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum 0.01

Maximum	2.42	Median	0.508
SD	0.404	CV	0.688
k hat (MLE)	2.119	k star (bias corrected MLE)	2.071
Theta hat (MLE)	0.277	Theta star (bias corrected MLE)	0.283
nu hat (MLE)	508.5	nu star (bias corrected)	497.1
Adjusted Level of Significance (β)	0.048		
Approximate Chi Square Value (497.11, α)	446.4	Adjusted Chi Square Value (497.11, β)	445.8
95% Gamma Approximate UCL (use when n>=50)	0.654	95% Gamma Adjusted UCL (use when n<50)	0.655

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.59	SD (KM)	0.421
Variance (KM)	0.177	SE of Mean (KM)	0.0784
k hat (KM)	1.967	k star (KM)	1.923
nu hat (KM)	472	nu star (KM)	461.5
theta hat (KM)	0.3	theta star (KM)	0.307
80% gamma percentile (KM)	0.887	90% gamma percentile (KM)	1.158
95% gamma percentile (KM)	1.417	99% gamma percentile (KM)	1.992

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (461.53, α)	412.7	Adjusted Chi Square Value (461.53, β)	412.2
95% Gamma Approximate KM-UCL (use when n>=50)	0.66	95% Gamma Adjusted KM-UCL (use when n<50)	0.66

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.917	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.892	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.21	Lilliefors GOF Test
5% Lilliefors Critical Value	0.207	Detected Data Not Lognormal at 5% Significance Level

Detected Data appear Approximate Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.564	Mean in Log Scale	-0.743
SD in Original Scale	0.365	SD in Log Scale	0.586
95% t UCL (assumes normality of ROS data)	0.619	95% Percentile Bootstrap UCL	0.622
95% BCA Bootstrap UCL	0.626	95% Bootstrap t UCL	0.628
95% H-UCL (Log ROS)	0.625		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-0.741	KM Geo Mean	0.477
KM SD (logged)	0.679	95% Critical H Value (KM-Log)	1.956

 KM Standard Error of Mean (logged)
 0.163
 95% H-UCL (KM -Log)
 0.678

 KM SD (logged)
 0.679
 95% Critical H Value (KM-Log)
 1.956

KM Standard Error of Mean (logged) 0.163

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 201.6
 Mean in Log Scale
 2.235

 SD in Original Scale
 701.5
 SD in Log Scale
 2.615

 95% t UCL (Assumes normality)
 307.7
 95% H-Stat UCL
 768.2

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Approximate Gamma UCL 0.66

95% GROS Approximate Gamma UCL 0.654

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test

When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

PARCADIS Or natural and built assets

Result (Manganese)

General Statistics

 Minimum
 13
 Median
 63.5

 SD
 192.1
 Std. Error of Mean
 67.93

 Coefficient of Variation
 1.272
 Skewness
 1.403

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic 0.674 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.818 Data Not Normal at 5% Significance Level
Lilliefors Test Statistic 0.415 Lilliefors GOF Test

5% Lilliefors Critical Value 0.283 Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness)

95% Student's-t UCL 279.7 95% Adjusted-CLT UCL (Chen-1995) 298.7 95% Modified-t UCL (Johnson-1978) 285.3

Gamma GOF Test

A-D Test Statistic 0.783 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.742 Data Not Gamma Distributed at 5% Significance Level

K-S Test Statistic 0.347 Kolmogorov-Smirnov Gamma GOF Test

5% K-S Critical Value 0.303 Data Not Gamma Distributed at 5% Significance Level

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE) 0.833 k star (bias corrected MLE) 0.604 Theta star (bias corrected MLE) 250.1 Theta hat (MLE) 181.3 nu hat (MLE) nu star (bias corrected) 13.32 9.66 MLE Sd (bias corrected) 194.3 MLE Mean (bias corrected) 151 Approximate Chi Square Value (0.05) 3.731 Adjusted Level of Significance 0.0195 Adjusted Chi Square Value 2.859

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 391 95% Adjusted Gamma UCL (use when n<50) 510.2

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.887 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.818 Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic 0.273 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.283 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data 2.565 Mean of logged Data 4.308 Maximum of Logged Data 6.174 SD of logged Data 1.276

Assuming Lognormal Distribution

 95% H-UCL
 1233
 90% Chebyshev (MVUE) UCL
 343

 95% Chebyshev (MVUE) UCL
 433.1
 97.5% Chebyshev (MVUE) UCL
 558

 99% Chebyshev (MVUE) UCL
 803.4

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

 95% CLT UCL
 262.7
 95% Jackknife UCL
 279.7

 95% Standard Bootstrap UCL
 255.8
 95% Bootstrap+t UCL
 1029

 95% Hall's Bootstrap UCL
 1736
 95% Percentile Bootstrap UCL
 256.5

 95% BCA Bootstrap UCL
 293.9

 90% Chebyshev(Mean, Sd) UCL
 354.8
 95% Chebyshev(Mean, Sd) UCL
 447.1

 97.5% Chebyshev(Mean, Sd) UCL
 575.2
 99% Chebyshev(Mean, Sd) UCL
 826.9

Suggested UCL to Use

95% Chebyshev (Mean, Sd) UCL 447.1

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

ARCADIS | Design & Consultancy for natural and bulk assets

Result (Methyl tert-butyl ether)

Conoral	Statistics

Total Number of Observations	120	Number of Distinct Observations	27
Number of Detects	7	Number of Non-Detects	113
Number of Distinct Detects	7	Number of Distinct Non-Detects	20
Minimum Detect	0.13	Minimum Non-Detect	1
Maximum Detect	1.02	Maximum Non-Detect	5000
Variance Detects	0.0894	Percent Non-Detects	94.17%
Mean Detects	0.451	SD Detects	0.299
Median Detects	0.37	CV Detects	0.662
Skewness Detects	1.326	Kurtosis Detects	1.546
Mean of Logged Detects	-0.976	SD of Logged Detects	0.657

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.873	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.803	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.309	Lilliefors GOF Test

Detected Data appear Approximate Normal at 5% Significance Level

5% Lilliefors Critical Value 0.304

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.369	KM Standard Error of Mean	0.0717
KM SD	0.184	95% KM (BCA) UCL	0.502
95% KM (t) UCL	0.488	95% KM (Percentile Bootstrap) UCL	0.495
95% KM (z) UCL	0.487	95% KM Bootstrap t UCL	0.545
90% KM Chebyshev UCL	0.584	95% KM Chebyshev UCL	0.681
97.5% KM Chebyshev UCL	0.817	99% KM Chebyshev UCL	1.082

Detected Data Not Normal at 5% Significance Level

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.294	Anderson-Darling GOF Test
5% A-D Critical Value	0.712	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.249	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.314	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

1.767	k star (bias corrected MLE)	2.925	k hat (MLE)
0.256	Theta star (bias corrected MLE)	0.154	Theta hat (MLE)
24.73	nu star (bias corrected)	40.95	nu hat (MLE)
		0.451	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.365	Mean	0.0884	Minimum
0.34	Median	1.02	Maximum
0.445	CV	0.162	SD
5.131	k star (bias corrected MLE)	5.256	k hat (MLE)
0.0711	Theta star (bias corrected MLE)	0.0694	Theta hat (MLE)
1231	nu star (bias corrected)	1262	nu hat (MLE)
		0.048	Adjusted Level of Significance (β)
1150	Adjusted Chi Square Value (N/A, β)	1151	Approximate Chi Square Value (N/A, α)
0.39	95% Gamma Adjusted UCL (use when n<50)	0.39	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.369	SD (KM)	0.184
Variance (KM)	0.034	SE of Mean (KM)	0.0717
k hat (KM)	4	k star (KM)	3.906
nu hat (KM)	960.1	nu star (KM)	937.4
theta hat (KM)	0.0922	theta star (KM)	0.0945
80% gamma percentile (KM)	0.51	90% gamma percentile (KM)	0.619
95% gamma percentile (KM)	0.72	99% gamma percentile (KM)	0.935

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (937.41, α)	867.3	Adjusted Chi Square Value (937.41, β)	866.5
95% Gamma Approximate KM-UCL (use when n>=50)	0.399	95% Gamma Adjusted KM-UCL (use when n<50)	0.399

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.967	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.803	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.209	Lilliefors GOF Test
5% Lilliefors Critical Value	0.304	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.349	Mean in Log Scale	-1.147
SD in Original Scale	0.159	SD in Log Scale	0.44
95% t UCL (assumes normality of ROS data)	0.373	95% Percentile Bootstrap UCL	0.374
95% BCA Bootstrap UCL	0.374	95% Bootstrap t UCL	0.375
95% H-UCL (Log ROS)	0.376		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-1.12	KM Geo Mean	0.326
KM SD (logged)	0.509	95% Critical H Value (KM-Log)	1.843

 KM Standard Error of Mean (logged)
 0.213
 95% H-UCL (KM -Log)
 0.405

 KM SD (logged)
 0.509
 95% Critical H Value (KM-Log)
 1.843

KM Standard Error of Mean (logged) 0.213

DL/2 Statistics

 DL/2 Normal
 DL/2 Log-Transformed

 Mean in Original Scale
 100.8
 Mean in Log Scale
 1.611

 SD in Original Scale
 350.7
 SD in Log Scale
 2.531

 95% t UCL (Assumes normality)
 153.9
 95% H-Stat UCL
 313.2

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 0.488

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

ARCADIS Design & Consultancy for natural and built assets

Result (Naphthalene)

General	Statistics

Total Number of Observations	120	Number of Distinct Observations	32
Number of Detects	12	Number of Non-Detects	108
Number of Distinct Detects	12	Number of Distinct Non-Detects	20
Minimum Detect	0.12	Minimum Non-Detect	1
Maximum Detect	1140	Maximum Non-Detect	5000
Variance Detects	111252	Percent Non-Detects	90%
Mean Detects	137.5	SD Detects	333.5
Median Detects	5.27	CV Detects	2.425
Skewness Detects	2.945	Kurtosis Detects	8.903
Mean of Logged Detects	1.862	SD of Logged Detects	2.912

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.485	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.859	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.445	Lilliefors GOF Test
5% Lilliefors Critical Value	0.243	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	15.51	KM Standard Error of Mean	10.87
KM SD	111.4	95% KM (BCA) UCL	33.19
95% KM (t) UCL	33.52	95% KM (Percentile Bootstrap) UCL	35.45
95% KM (z) UCL	33.38	95% KM Bootstrap t UCL	204.5
90% KM Chebyshev UCL	48.11	95% KM Chebyshev UCL	62.87
97.5% KM Chebyshev UCL	83.37	99% KM Chebyshev UCL	123.6

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.956	Anderson-Darling GOF Test
5% A-D Critical Value	0.855	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.251	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.27	Detected data appear Gamma Distributed at 5% Significance Level

Detected data follow Appr. Gamma Distribution at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.234	k star (bias corrected MLE)	0.231
Theta hat (MLE)	586.8	Theta star (bias corrected MLE)	594.6
nu hat (MLE)	5.625	nu star (bias corrected)	5.552
Mean (detects)	137.5		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs $\,$

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

14.68	Mean	0.01	Minimum
0.01	Median	1140	Maximum
7.467	CV	109.6	SD
0.127	k star (bias corrected MLE)	0.124	k hat (MLE)
115.8	Theta star (bias corrected MLE)	118.1	Theta hat (MLE)
30.41	nu star (bias corrected)	29.82	nu hat (MLE)
		0.048	Adjusted Level of Significance (β)
18.71	Adjusted Chi Square Value (30.41, β)	18.82	Approximate Chi Square Value (30.41, α)
23.86	95% Gamma Adjusted UCL (use when n<50)	23.72	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	15.51	SD (KM)	111.4
Variance (KM)	12404	SE of Mean (KM)	10.87
k hat (KM)	0.0194	k star (KM)	0.0245
nu hat (KM)	4.654	nu star (KM)	5.871
theta hat (KM)	799.8	theta star (KM)	634
80% gamma percentile (KM)	0.0397	90% gamma percentile (KM)	4.929
95% gamma percentile (KM)	47.96	99% gamma percentile (KM)	419.9

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (5.87, α)	1.574	Adjusted Chi Square Value (5.87, β)	1.548
95% Gamma Approximate KM-UCL (use when n>=50)	57.84	95% Gamma Adjusted KM-UCL (use when n<50)	58.83

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.914	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.859	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.234	Lilliefors GOF Test
5% Lilliefors Critical Value	0.243	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	14.94	Mean in Log Scale	-0.483
SD in Original Scale	109.4	SD in Log Scale	1.927
95% t UCL (assumes normality of ROS data)	31.5	95% Percentile Bootstrap UCL	33.25

2L (assumes normality of ROS data) 31.5 95% Percentile Bootstrap UCL 33.25 95% BCA Bootstrap UCL 47.26 95% Bootstrap t UCL 272.9 95% H-UCL (Log ROS) 7.005

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-0.411	KM Geo Mean	0.663
KM SD (logged)	1.456	95% Critical H Value (KM-Log)	2.693

 KM Standard Error of Mean (logged)
 0.325
 95% H-UCL (KM -Log)
 2.74

 KM SD (logged)
 1.456
 95% Critical H Value (KM-Log)
 2.693

KM Standard Error of Mean (logged) 0.325

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 113.5
 Mean in Log Scale
 1.78

 SD in Original Scale
 363.9
 SD in Log Scale
 2.563

 95% t UCL (Assumes normality)
 168.6
 95% H-Stat UCL
 410

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Approximate Gamma UCL 57.84

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

Result (o-Xylene)

General Statistics

Total Number of Observations	120	Number of Distinct Observations	29
Number of Detects	9	Number of Non-Detects	111
Number of Distinct Detects	9	Number of Distinct Non-Detects	20
Minimum Detect	0.11	Minimum Non-Detect	1
Maximum Detect	2.17	Maximum Non-Detect	5000
Variance Detects	0.392	Percent Non-Detects	92.5%
Mean Detects	0.628	SD Detects	0.626
Median Detects	0.48	CV Detects	0.997
Skewness Detects	2.209	Kurtosis Detects	5.563
Mean of Logged Detects	-0.826	SD of Logged Detects	0.899

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.745	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.829	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.257	Lilliefors GOF Test
5% Lilliefors Critical Value	0.274	Detected Data appear Normal at 5% Significance Level
5		N 1 - FOV OI - 17 - 1 - 1

Detected Data appear Approximate Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

0.0943	KM Standard Error of Mean	0.467	KM Mean
0.618	95% KM (BCA) UCL	0.333	KM SD
0.62	95% KM (Percentile Bootstrap) UCL	0.623	95% KM (t) UCL
0.655	95% KM Bootstrap t UCL	0.622	95% KM (z) UCL
0.878	95% KM Chebyshev UCL	0.75	90% KM Chebyshev UCL
1.405	99% KM Chebyshev UCL	1.056	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.324	Anderson-Darling GOF Test
5% A-D Critical Value	0.734	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.147	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.284	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

1.096	k star (bias corrected MLE)	1.532	k hat (MLE)
0.573	Theta star (bias corrected MLE)	0.41	Theta hat (MLE)
19.72	nu star (bias corrected)	27.58	nu hat (MLE)
		0.628	Mean (detects)

Mean 0.469

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum 0.01

Maximum	2.17	Median	0.396
SD	0.344	CV	0.734
k hat (MLE)	1.762	k star (bias corrected MLE)	1.724
Theta hat (MLE)	0.266	Theta star (bias corrected MLE)	0.272
nu hat (MLE)	423	nu star (bias corrected)	413.7
Adjusted Level of Significance (β)	0.048		
Approximate Chi Square Value (413.74, α)	367.6	Adjusted Chi Square Value (413.74, β)	367.1
95% Gamma Approximate UCL (use when n>=50)	0.528	95% Gamma Adjusted UCL (use when n<50)	0.528

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.467	SD (KM)	0.333
Variance (KM)	0.111	SE of Mean (KM)	0.0943
k hat (KM)	1.969	k star (KM)	1.925
nu hat (KM)	472.5	nu star (KM)	462.1
theta hat (KM)	0.237	theta star (KM)	0.243
80% gamma percentile (KM)	0.703	90% gamma percentile (KM)	0.917
95% gamma percentile (KM)	1.121	99% gamma percentile (KM)	1.577

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (462.05, α)	413.2	Adjusted Chi Square Value (462.05, β)	412.7
95% Gamma Approximate KM-UCL (use when n>=50)	0.522	95% Gamma Adjusted KM-UCL (use when n<50)	0.523

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.969	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.829	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.179	Lilliefors GOF Test
5% Lilliefors Critical Value	0.274	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS	Statistics Using Imputed Non-Detects	
in Original Scale	0.444	

Mean in Original Scale	0.444	Mean in Log Scale	-1.014
SD in Original Scale	0.31	SD in Log Scale	0.64
95% t UCL (assumes normality of ROS data)	0.491	95% Percentile Bootstrap UCL	0.492
95% BCA Bootstrap UCL	0.496	95% Bootstrap t UCL	0.496
95% H-UCL (Log ROS)	0.499		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

doing fav doubleto on Loggod Data and Abouting Logitoma Dioabation						
KM Mean (logged)	-0.993	KM Geo Mean	0.371			
KM SD (logged)	0.706	95% Critical H Value (KM-Log)	1.977			

 KM Standard Error of Mean (logged)
 0.249
 95% H-UCL (KM -Log)
 0.54

 KM SD (logged)
 0.706
 95% Critical H Value (KM-Log)
 1.977

KM Standard Error of Mean (logged) 0.249

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 100.8
 Mean in Log Scale
 1.618

 SD in Original Scale
 350.7
 SD in Log Scale
 2.531

 95% t UCL (Assumes normality)
 153.9
 95% H-Stat UCL
 315

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 0.623

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

ARCADIS Design & Consultancy for natural and built assets

Result (tert-Butylbenzene)

	istics

Total Number of Observations	120	Number of Distinct Observations	27
Number of Detects	7	Number of Non-Detects	113
Number of Distinct Detects	7	Number of Distinct Non-Detects	20
Minimum Detect	0.16	Minimum Non-Detect	1
Maximum Detect	1.89	Maximum Non-Detect	5000
Variance Detects	0.351	Percent Non-Detects	94.17%
Mean Detects	0.981	SD Detects	0.593
Median Detects	0.99	CV Detects	0.604
Skewness Detects	0.221	Kurtosis Detects	-0.474
Mean of Logged Detects	-0.25	SD of Logged Detects	0.835

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.979	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.803	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.168	Lilliefors GOF Test
5% Lilliefors Critical Value	0.304	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.652	KM Standard Error of Mean	0.167
KM SD	0.381	95% KM (BCA) UCL	1.001
95% KM (t) UCL	0.928	95% KM (Percentile Bootstrap) UCL	0.993
95% KM (z) UCL	0.926	95% KM Bootstrap t UCL	1.221
90% KM Chebyshev UCL	1.152	95% KM Chebyshev UCL	1.379
97.5% KM Chebyshev UCL	1.694	99% KM Chebyshev UCL	2.312

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic (0.254	Anderson-Darling GOF Test
5% A-D Critical Value	0.714	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic (0.191	Kolmogorov-Smirnov GOF
5% K-S Critical Value (0.315	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	2.318	k star (bias corrected MLE)	1.42
neta hat (MLE)	0.423	Theta star (bias corrected MLE)	0.691
nu hat (MLE)	32.45	nu star (bias corrected)	19.88
Mean (detects)	0 981		

Mean 0.609

95% Gamma Adjusted UCL (use when n<50) 0.654

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs $\,$

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.559	Median	1.89	Maximum
0.472	CV	0.287	SD
4.674	k star (bias corrected MLE)	4.788	k hat (MLE)
0.13	Theta star (bias corrected MLE)	0.127	Theta hat (MLE)
1122	nu star (bias corrected)	1149	nu hat (MLE)
		0.048	Adjusted Level of Significance (β)
1044	Adjusted Chi Square Value (N/A, β)	1045	Approximate Chi Square Value (N/A, α)

Estimates of Gamma Parameters using KM Estimates

Minimum 0.154

95% Gamma Approximate UCL (use when n>=50) 0.654

Mean (KM)	0.652	SD (KM)	0.381
Variance (KM)	0.145	SE of Mean (KM)	0.167
k hat (KM)	2.93	k star (KM)	2.862
nu hat (KM)	703.2	nu star (KM)	686.9
theta hat (KM)	0.222	theta star (KM)	0.228
80% gamma percentile (KM)	0.935	90% gamma percentile (KM)	1.168
95% gamma percentile (KM)	1.386	99% gamma percentile (KM)	1.86

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (686.92, α)	627.1	Adjusted Chi Square Value (686.92, β)	626.4
95% Gamma Approximate KM-UCL (use when n>=50)	0.714	95% Gamma Adjusted KM-UCL (use when n<50)	0.715

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.903	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.803	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.233	Lilliefors GOF Test
5% Lilliefors Critical Value	0.304	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

Lognormal ROS	Statistics Using Imputed Non-Detects		
Mean in Original Scale	0.536	Mean in Log Scale	-0.753
SD in Original Scale	0.286	SD in Log Scale	0.513
95% t UCL (assumes normality of ROS data)	0.579	95% Percentile Bootstrap UCL	0.58
95% BCA Bootstrap UCL	0.58	95% Bootstrap t UCL	0.583

95% H-UCL (Log ROS) 0.586

an (logged)	-0.653	KM Geo Mean	0.521
SD (logged)	0.734	95% Critical H Value (KM-Log)	1.998

 KM Standard Error of Mean (logged)
 0.363
 95% H-UCL (KM -Log)
 0.779

 KM SD (logged)
 0.734
 95% Critical H Value (KM-Log)
 1.998

KM Standard Error of Mean (logged) 0.363

DL/2 Statistics

 DL/2 Normal
 DL/2 Log-Transformed

 Mean in Original Scale
 100.8
 Mean in Log Scale
 1.654

 SD in Original Scale
 350.7
 SD in Log Scale
 2.496

 95% t UCL (Assumes normality)
 153.9
 95% H-Stat UCL
 291.9

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 0.928

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

PARCADIS | Design & Consultancy | for natural and | pull assets | pull

Result (Toluene)

Statistics

Total Number of Observations	120	Number of Distinct Observations	45
Number of Detects	27	Number of Non-Detects	93
Number of Distinct Detects	25	Number of Distinct Non-Detects	20
Minimum Detect	0.15	Minimum Non-Detect	1
Maximum Detect	110	Maximum Non-Detect	5000
Variance Detects	747.1	Percent Non-Detects	77.5%
Mean Detects	9.911	SD Detects	27.33
Median Detects	0.45	CV Detects	2.758
Skewness Detects	3.077	Kurtosis Detects	8.824
Mean of Logged Detects	-0.217	SD of Logged Detects	1.89

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.41	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.923	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.463	Lilliefors GOF Test
5% Lilliefors Critical Value	0.167	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	3.255	KM Standard Error of Mean	1.601
KMSD	15.1	95% KM (BCA) UCL	6.185
95% KM (t) UCL	5.909	95% KM (Percentile Bootstrap) UCL	5.993
95% KM (z) UCL	5.889	95% KM Bootstrap t UCL	10.83
90% KM Chebyshev UCL	8.058	95% KM Chebyshev UCL	10.23
97.5% KM Chebyshev UCL	13.25	99% KM Chebyshev UCL	19.18

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	5.006	Anderson-Darling GOF Test
% A-D Critical Value	0.864	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.391	Kolmogorov-Smirnov GOF
% K-S Critical Value	0.184	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

).278	k hat (MLE)	k star (bias corrected MLE)	0.272
5.64	Theta hat (MLE)	Theta star (bias corrected MLE)	36.45
5.02	nu hat (MLE)	nu star (bias corrected)	14.68
9.911	Mean (detects)		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs $\,$

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

3.526	Mean	0.01	Minimum
0.01	Median	110	Maximum
3.881	CV	13.69	SD
0.202	k star (bias corrected MLE)	0.202	k hat (MLE)
17.42	Theta star (bias corrected MLE)	17.46	Theta hat (MLE)
48.59	nu star (bias corrected)	48.46	nu hat (MLE)
		0.048	Adjusted Level of Significance (β)
33.43	Adjusted Chi Square Value (48.59, β)	33.59	Approximate Chi Square Value (48.59, α)
5.124	95% Gamma Adjusted UCL (use when n<50)	5.101	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	3.255	SD (KM)	15.1
Variance (KM)	228	SE of Mean (KM)	1.601
k hat (KM)	0.0465	k star (KM)	0.0509
nu hat (KM)	11.16	nu star (KM)	12.21
theta hat (KM)	70.04	theta star (KM)	63.99
80% gamma percentile (KM)	0.469	90% gamma percentile (KM)	5.081
95% gamma percentile (KM)	17.42	99% gamma percentile (KM)	70.33

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (12.21, α)	5.366	Adjusted Chi Square Value (12.21, β)	5.31
95% Gamma Approximate KM-UCL (use when n>=50)	7.408	95% Gamma Adjusted KM-UCL (use when n<50)	7.485

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.749	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.923	Detected Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.274	Lilliefors GOF Test
5% Lilliefors Critical Value	0.167	Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	2.793	Mean in Log Scale	-0.651
SD in Original Scale	13.36	SD in Log Scale	1.279
95% t UCL (assumes normality of ROS data)	4.814	95% Percentile Bootstrap UCL	4.895
95% BCA Bootstrap UCL	6.121	95% Bootstrap t UCL	8.762
95% H-UCL (Log ROS)	1.583		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged) -0.781 KM Geo Mean 0.458

KM SD (logged)	1.199	95% Critical H Value (KM-Log)	2.418
KM Standard Error of Mean (logged)	0.164	95% H-UCL (KM -Log)	1.226
KM SD (logged)	1.199	95% Critical H Value (KM-Log)	2.418
KM Standard Error of Mean (logged)	0.164		

DL/2 Statistics

 DL/2 Normal

 Mean in Original Scale
 102.8
 Mean in Log Scale
 1.683

 SD in Original Scale
 350.4
 SD in Log Scale
 2.599

 95% t UCL (Assumes normality)
 155.8
 95% H-Stat UCL
 419

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 10.23

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

ARCADIS Design & Consultancy for natural and built assets

Result (trans-1,2-Dichloroethene)

acii, soutii caroiiiia			
s-1,2-Dichloroethene)			
T. W. J. (8)		ral Statistics	45
Total Number of Observations	120	Number of Distinct Observations	45
Number of Detects	30	Number of Non-Detects	90
Number of Distinct Detects	29	Number of Distinct Non-Detects	17
Minimum Detect	0.14	Minimum Non-Detect	1
Maximum Detect	142	Maximum Non-Detect	5000
Variance Detects	1405	Percent Non-Detects	75%
Mean Detects	20.12	SD Detects	37.49
Median Detects	2.57	CV Detects	1.86
Skewness Detects	2.314	Kurtosis Detects	4.62
Mean of Logged Detects	1.085	SD of Logged Detects	2.23
Norr	nal GOE I	Font on Detecto Only	
Norr Shapiro Wilk Test Statistic	0.596	Fest on Detects Only Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.927	Detected Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.336	-	
5% Lilliefors Critical Value	0.159		
		mal at 5% Significance Level	
		•	
Kaplan-Meier (KM) Statistics usir KM Mean	ng Normal 6.685	Critical Values and other Nonparametric UCLs KM Standard Error of Mean	2.28
KM SD	22.24	95% KM (BCA) UCL	10.7
95% KM (t) UCL	10.47	95% KM (Percentile Bootstrap) UCL	10.5
95% KM (z) UCL	10.44	95% KM Bootstrap t UCL	13.0
90% KM Chebyshev UCL	13.54	95% KM Chebyshev UCL	16.6
97.5% KM Chebyshev UCL	20.96	99% KM Chebyshev UCL	29.4
Gamma GOF	Tests on	Detected Observations Only	
A-D Test Statistic	1.189	Anderson-Darling GOF Test	
5% A-D Critical Value	0.842	_	evel
K-S Test Statistic	0.153	•	
		_	Lovel
5% K-S Critical Value	0.172 pr. Gamm	Detected data appear Gamma Distributed at 5% Significance a Distribution at 5% Significance Level	Level
2555555 data 1511511 / p	pir Gaillin	2000 2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
		s on Detected Data Only	0.00
k hat (MLE)	0.351	k star (bias corrected MLE)	0.33
Theta hat (MLE)	57.34	Theta star (bias corrected MLE)	59.5
nu hat (MLE)	21.05	nu star (bias corrected)	20.2
Mean (detects)	20.12		
Gamma ROS	Statistics	s using Imputed Non-Detects	
GROS may not be used when data	set has >	50% NDs with many tied observations at multiple DLs	
GROS may not be used when kstar of detects is	small suc	ch as <1.0, especially when the sample size is small (e.g., <15-20)	
		nay yield incorrect values of UCLs and BTVs	
	-	when the sample size is small.	
		s may be computed using gamma distribution on KM estimates	-
Minimum	0.01	Mean	5.74
Maximum	142	Median	0.01
SD	20.49	CV	3.56
k hat (MLE)	0.174	k star (bias corrected MLE)	0.17
Theta hat (MLE)	32.98	Theta star (bias corrected MLE)	32.7
nu hat (MLE)	41.84	nu star (bias corrected)	42.1
Adjusted Level of Significance (β)	0.048	()	
, , , , , , , , , , , , , , , , , , , ,		Adjusted Chi Square Value (42.12. P)	20.1
Approximate Chi Square Value (42.12, α) 95% Gamma Approximate UCL (use when n>=50)	28.25 8.573	Adjusted Chi Square Value (42.12, β) 95% Gamma Adjusted UCL (use when n<50)	28.1 8.6
те по те			
Estimates of G Mean (KM)	amma Pa 6.685	arameters using KM Estimates SD (KM)	22.2
Variance (KM)	494.6	SE of Mean (KM)	2.28
,			
k hat (KM)	0.0904		0.09
nu hat (KM)	21.69	nu star (KM)	22.4
theta hat (KM)	73.98	theta star (KM)	71.3
80% gamma percentile (KM)	4.2	90% gamma percentile (KM)	17.2
95% gamma percentile (KM)	38.92	99% gamma percentile (KM)	109.7
0	na Kanla-	h_Majar (KM) Statistice	
Gamn Approximate Chi Square Value (22.48, α)	na Kapian 12.7	-Meier (KM) Statistics Adjusted Chi Square Value (22.48, β)	12.6
% Gamma Approximate KM-UCL (use when n>=50)	11.83	95% Gamma Adjusted KM-UCL (use when n<50)	11.9
I canormal CC)F Teet a-	n Detected Observations Only	
Lognormal GC Shapiro Wilk Test Statistic	0.927 0.927	n Detected Observations Only Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.927	·	el
Lilliefors Test Statistic	0.103		- •
			ro!
5% Lilliefors Critical Value Detected Data ap	0.159 opear Log	Detected Data appear Lognormal at 5% Significance Lev normal at 5% Significance Level	ei
	,	-	
•		cs Using Imputed Non-Detects	
Mean in Original Scale	5.752	•	-0.32
SD in Original Scale	20.32	SD in Log Scale	1.81

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

SD in Original Scale 20.32

95% BCA Bootstrap UCL 10.12

95% H-UCL (Log ROS) 6.311

95% t UCL (assumes normality of ROS data) 8.827

KM Mean (logged)	-0.378	KM Geo Mean	0.685
KM SD (logged)	1.737	95% Critical H Value (KM-Log)	3.019

SD in Log Scale 1.814

95% Bootstrap t UCL 11.33

95% Percentile Bootstrap UCL 9.204

KM Standard Error of Mean (logged) 0.231 95% H-UCL (KM -Log) 5.012 KM SD (logged) 1.737 95% Critical H Value (KM-Log) 3.019

KM Standard Error of Mean (logged) 0.231

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed Mean in Original Scale 98.26 Mean in Log Scale 1.533 SD in Original Scale 350.7 SD in Log Scale 2.537 95% t UCL (Assumes normality) 151.3 95% H-Stat UCL 295.4

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Approximate Gamma UCL 11.83

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

ARCADIS Design & Consultancy for natural and built assets

Result (Trichloroethene)

General	Statistics
---------	-------------------

Total Number of Observations	120	Number of Distinct Observations	87
Number of Detects	78	Number of Non-Detects	42
Number of Distinct Detects	73	Number of Distinct Non-Detects	14
Minimum Detect	0.23	Minimum Non-Detect	1
Maximum Detect	261000	Maximum Non-Detect	800
Variance Detects	1.267E+9	Percent Non-Detects	35%
Mean Detects	7771	SD Detects	35590
Median Detects	44.05	CV Detects	4.58
Skewness Detects	5.99	Kurtosis Detects	38.18
Mean of Logged Detects	3.578	SD of Logged Detects	3.686

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.251	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.447	Lilliefors GOF Test
5% Lilliefors Critical Value	0.1	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	5053	KM Standard Error of Mean	2641
KM SD	28749	95% KM (BCA) UCL	10767
95% KM (t) UCL	9432	95% KM (Percentile Bootstrap) UCL	9825
95% KM (z) UCL	9398	95% KM Bootstrap t UCL	22298
90% KM Chebyshev UCL	12977	95% KM Chebyshev UCL	16567
97.5% KM Chebyshev UCL	21548	99% KM Chebyshev UCL	31334

Gamma GOF Tests on Detected Observations Only

7.477	Anderson-Darling GOF Test
0.971	Detected Data Not Gamma Distributed at 5% Significance Level
0.24	Kolmogorov-Smirnov GOF
0.114	Detected Data Not Gamma Distributed at 5% Significance Level
	0.971 0.24

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.147	k star (bias corrected MLE)	0.144	k hat (MLE)
52952	Theta star (bias corrected MLE)	54064	Theta hat (MLE)
22.89	nu star (bias corrected)	22.42	nu hat (MLE)
		7771	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs $\,$

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

WIIIIIIIIIII	0.01	Wedit	3031
Maximum	261000	Median	1.015
SD	28869	CV	5.715
k hat (MLE)	0.103	k star (bias corrected MLE)	0.106
Theta hat (MLE)	48809	Theta star (bias corrected MLE)	47448
nu hat (MLE)	24.84	nu star (bias corrected)	25.55
Adjusted Level of Significance (β)	0.048		
Approximate Chi Square Value (25.55, α)	15.03	Adjusted Chi Square Value (25.55, β)	14.93
95% Gamma Approximate UCL (use when n>=50)	8585	95% Gamma Adjusted UCL (use when n<50)	8641

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	5053	SD (KM)	28749
Variance (KM)	8.265E+8	SE of Mean (KM)	2641
k hat (KM)	0.0309	k star (KM)	0.0357
nu hat (KM)	7.415	nu star (KM)	8.563
theta hat (KM)	163555	theta star (KM)	141629
80% gamma percentile (KM)	157.5	90% gamma percentile (KM)	4400
95% gamma percentile (KM)	22539	99% gamma percentile (KM)	124029

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (8.56, α) 3.065 Adjusted Chi Square Value (8.56, β) 3.025 95% Gamma Approximate KM-UCL (use when n>=50) 14117 95% Gamma Adjusted KM-UCL (use when n<50) 14302

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic 0.928	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value 1.9505E-4	Detected Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic 0.116	Lilliefors GOF Test
5% Lilliefors Critical Value 0.1	Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	5052	Mean in Log Scale	2.196
SD in Original Scale	28869	SD in Log Scale	3.684
95% t UCL (assumes normality of ROS data)	9421	95% Percentile Bootstrap UCL	9698
95% BCA Bootstrap UCL	12044	95% Bootstrap t UCL	21083
95% H-UCL (Log ROS)	52201		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	2.222	KM Geo Mean	9.225
KM SD (logged)	3.567	95% Critical H Value (KM-Log)	5.405

 KM Standard Error of Mean (logged)
 0.336
 95% H-UCL (KM -Log)
 31274

 KM SD (logged)
 3.567
 95% Critical H Value (KM-Log)
 5.405

KM Standard Error of Mean (logged) 0.336

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 5063
 Mean in Log Scale
 2.79

 SD in Original Scale
 28867
 SD in Log Scale
 3.414

 95% t UCL (Assumes normality)
 9432
 95% H-Stat UCL
 28071

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

99% KM (Chebyshev) UCL 31334

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

Result (Vinyl chloride)

General Statistics

Total Number of Observations	120	Number of Distinct Observations	91
Number of Detects	80	Number of Non-Detects	40
Number of Distinct Detects	79	Number of Distinct Non-Detects	13
Minimum Detect	0.25	Minimum Non-Detect	1
Maximum Detect	14900	Maximum Non-Detect	5000
Variance Detects	4284178	Percent Non-Detects	33.33%
Mean Detects	799.7	SD Detects	2070
Median Detects	32.8	CV Detects	2.588
Skewness Detects	4.738	Kurtosis Detects	27.98
Mean of Logged Detects	3.59	SD of Logged Detects	2.999

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic 0.455

Normal GOF Test on Detected Observations Only

5% Shapiro Wilk P Value 0 Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic 0.35

Lilliefors GOF Test

5% Lilliefors Critical Value 0.0991

Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	537.6	KM Standard Error of Mean	158.4
KM SD	1722	95% KM (BCA) UCL	844.8
95% KM (t) UCL	800.3	95% KM (Percentile Bootstrap) UCL	815.3
95% KM (z) UCL	798.2	95% KM Bootstrap t UCL	1006
90% KM Chebyshev UCL	1013	95% KM Chebyshev UCL	1228
97.5% KM Chebyshev UCL	1527	99% KM Chebyshev UCL	2114

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic 3.476 Anderson-Darling GOF Test

5% A-D Critical Value 0.899 Detected Data Not Gamma Distributed at 5% Significance Level

K-S Test Statistic 0.168 Kolmogorov-Smirnov GOF

5% K-S Critical Value 0.11 Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.232	k star (bias corrected MLE)	0.232
Theta hat (MLE)	3443	Theta star (bias corrected MLE)	3449
nu hat (MLE)	37.16	nu star (bias corrected)	37.1
Mean (detects)	799.7		

Mean 533.1

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs $\,$

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum 0.01

Maximum	14900	Median	2.145
SD	1728	CV	3.242
k hat (MLE)	0.143	k star (bias corrected MLE)	0.145
Theta hat (MLE)	3733	Theta star (bias corrected MLE)	3682
nu hat (MLE)	34.27	nu star (bias corrected)	34.75
Adjusted Level of Significance (β)	0.048		
Approximate Chi Square Value (34.75, α)	22.26	Adjusted Chi Square Value (34.75, β)	22.14
95% Gamma Approximate UCL (use when n>=50)	832.1	95% Gamma Adjusted UCL (use when n<50)	836.6

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	537.6	SD (KM)	1722
Variance (KM)	2966359	SE of Mean (KM)	158.4
k hat (KM)	0.0974	k star (KM)	0.101
nu hat (KM)	23.39	nu star (KM)	24.14
theta hat (KM)	5517	theta star (KM)	5346
80% gamma percentile (KM)	376.1	90% gamma percentile (KM)	1434
95% gamma percentile (KM)	3120	99% gamma percentile (KM)	8516

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (24.14, α)	13.95	Adjusted Chi Square Value (24.14, β)	13.86
95% Gamma Approximate KM-UCL (use when n>=50)	930.1	95% Gamma Adjusted KM-UCL (use when n<50)	936.4

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic 0.932	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value 3.3889E-4	Detected Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic 0.0978	Lilliefors GOF Test
5% Lilliefors Critical Value 0.0991	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Approximate Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	533.7	Mean in Log Scale	2.209	
SD in Original Scale	1728	SD in Log Scale	3.309	
95% t UCL (assumes normality of ROS data)	795.3	95% Percentile Bootstrap UCL	829.4	
95% BCA Bootstrap UCL	881.4	95% Bootstrap t UCL	998.1	
95% H-UCL (Log ROS)	10084			

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	2.375	KM Geo Mean	10.75
KM SD (logged)	3.083	95% Critical H Value (KM-Log)	4.75

 KM Standard Error of Mean (logged)
 0.293
 95% H-UCL (KM -Log)
 4766

 KM SD (logged)
 3.083
 95% Critical H Value (KM-Log)
 4.75

KM Standard Error of Mean (logged) 0.293

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 562.8
 Mean in Log Scale
 2.809

 SD in Original Scale
 1735
 SD in Log Scale
 3.008

 95% t UCL (Assumes normality)
 825.3
 95% H-Stat UCL
 5505

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 4766

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.15/4/2017 4:15:02 PM

From File HHRA Data for Review.xls

Full Precision OFF
Confidence Coefficient 95%
Number of Bootstrap Operations 2000

Result (1,1-Dichloroethane)

General Statistics

Total Number of Observations	27	Number of Distinct Observations	15
Number of Detects	8	Number of Non-Detects	19
Number of Distinct Detects	8	Number of Distinct Non-Detects	7
Minimum Detect	0.12	Minimum Non-Detect	1
Maximum Detect	2100	Maximum Non-Detect	5000
Variance Detects	616446	Percent Non-Detects	70.37%
Mean Detects	400.5	SD Detects	785.1
Median Detects	1.05	CV Detects	1.96
Skewness Detects	1.912	Kurtosis Detects	2.967
Mean of Logged Detects	1.433	SD of Logged Detects	3.914

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.606	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.818	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.44	Lilliefors GOF Test
5% Lilliefors Critical Value	0.283	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	123.5	KM Standard Error of Mean	93.78
KM SD	447.3	95% KM (BCA) UCL	285.6
95% KM (t) UCL	283.5	95% KM (Percentile Bootstrap) UCL	285.4
95% KM (z) UCL	277.8	95% KM Bootstrap t UCL	21308
90% KM Chebyshev UCL	404.9	95% KM Chebyshev UCL	532.3
97.5% KM Chebyshev UCL	709.2	99% KM Chebyshev UCL	1057

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	1.013	A-D Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.867	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.309	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.327	5% K-S Critical Value

Detected data follow Appr. Gamma Distribution at 5% Significance Level

Gamma Statistics on Detected Data Only

0.187	k star (bias corrected MLE)	0.166	k hat (MLE)
2140	Theta star (bias corrected MLE)	2412	Theta hat (MLE)
2.994	nu star (bias corrected)	2.657	nu hat (MLE)
		400.5	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

118.7	Mean	0.01	Minimum
0.01	Median	2100	Maximum
3.775	CV	448	SD
0.119	k star (bias corrected MLE)	0.106	k hat (MLE)
996.8	Theta star (bias corrected MLE)	1118	Theta hat (MLE)
6.429	nu star (bias corrected)	5.732	nu hat (MLE)
		0.0401	Adjusted Level of Significance (β)
1.71	Adjusted Chi Square Value (6.43, β)	1.863	Approximate Chi Square Value (6.43, α)
446.1	95% Gamma Adjusted UCL (use when n<50)	409.6	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

447.3	SD (KM)	123.5	Mean (KM)
93.78	SE of Mean (KM)	200058	Variance (KM)
0.0925	k star (KM)	0.0763	k hat (KM)
4.995	nu star (KM)	4.119	nu hat (KM)
1336	theta star (KM)	1619	theta hat (KM)
317.5	90% gamma percentile (KM)	76.08	80% gamma percentile (KM)

95% gamma percentile (KM) 719.3

99% gamma percentile (KM) 2040

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (4.99, α) 1.15 Adjusted Chi Square Value (4.99, β) 1.038 95% Gamma Approximate KM-UCL (use when n>=50) 536.6 95% Gamma Adjusted KM-UCL (use when n<50) 594.3

95% Gamma Adjusted KM-UCL (use when k<=1 and 15 < n < 50)

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk GOF Test	0.819	Shapiro Wilk Test Statistic
Detected Data appear Lognormal at 5% Significance Leve	0.818	5% Shapiro Wilk Critical Value
Lilliefors GOF Test	0.242	Lilliefors Test Statistic
Detected Data appear Lognormal at 5% Significance Leve	0.283	5% Lilliefors Critical Value

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	119.2	Mean in Log Scale	-0.462
SD in Original Scale	447.8	SD in Log Scale	2.803
95% t UCL (assumes normality of ROS data)	266.2	95% Percentile Bootstrap UCL	275.1
95% BCA Bootstrap UCL	355	95% Bootstrap t UCL	23718
95% H-UCL (Log ROS)	624		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-0.536	KM Geo Mean	0.585
KM SD (logged)	2.488	95% Critical H Value (KM-Log)	4.86
KM Standard Error of Mean (logged)	0.554	95% H-UCL (KM -Log)	138.3
KM SD (logged)	2.488	95% Critical H Value (KM-Log)	4.86
1010: 1 15 (11 (1 1)	0.554		

KM Standard Error of Mean (logged) 0.554

DL/2 Statistics

DL/2 Normal	DL/2 Log-Transformed			
Mean in Original Scale	217.6	Mean in Log Scale	1.267	
SD in Original Scale	637.8	SD in Log Scale	2.808	
95% t UCL (Assumes normality)	427	95% H-Stat UCL	3599	

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Gamma Distributed at 5% Significance Level

Suggested UCL to Use

nma Adjusted KM-UCL (use when $k \le 1$ and $15 \le n \le 50$ but $k \le 1$) 594.3

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

4.069

Mean

Result (Acetone)

Total Number of Observations	27	Number of Distinct Observations	14
Number of Detects	5	Number of Non-Detects	22
Number of Distinct Detects	5	Number of Distinct Non-Detects	9
Minimum Detect	1.21	Minimum Non-Detect	25
Maximum Detect	8.16	Maximum Non-Detect	125000
Variance Detects	6.378	Percent Non-Detects	81.48%
Mean Detects	4.126	SD Detects	2.526
Median Detects	3.9	CV Detects	0.612
Skewness Detects	1.042	Kurtosis Detects	2.372
Mean of Logged Detects	1.249	SD of Logged Detects	0.686

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.904	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.31	Lilliefors GOF Test
5% Lilliefors Critical Value	0.343	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

	KM Mean	4.126	KM Standard Error of Mean	1.129
	KM SD	2.259	95% KM (BCA) UCL	6.11
	95% KM (t) UCL	6.052	95% KM (Percentile Bootstrap) UCL	6.11
	95% KM (z) UCL	5.984	95% KM Bootstrap t UCL	7.666
	90% KM Chebyshev UCL	7.514	95% KM Chebyshev UCL	9.049
9	7.5% KM Chebyshev UCL	11.18	99% KM Chebyshev UCL	15.36

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.334	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.682	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.236	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.359	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

1.386	k star (bias corrected MLE)	3.131	k hat (MLE)
2.978	Theta star (bias corrected MLE)	1.318	Theta hat (MLE)
13.86	nu star (bias corrected)	31.31	nu hat (MLE)
		4.126	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 $GROS \ may \ not \ be \ used \ when \ kstar \ of \ detects \ is \ small \ such \ as < 1.0, \ especially \ when \ the \ sample \ size \ is \ small \ (e.g., < 15-20)$

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum 0.761

Maximum	8.978	Median	3.845
SD	1.985	CV	0.488
k hat (MLE)	3.966	k star (bias corrected MLE)	3.55
Theta hat (MLE)	1.026	Theta star (bias corrected MLE)	1.146
nu hat (MLE)	214.2	nu star (bias corrected)	191.7
Adjusted Level of Significance (β)	0.0401		
Approximate Chi Square Value (191.70, α)	160.7	Adjusted Chi Square Value (191.70, β)	158.9
95% Gamma Approximate UCL (use when n>=50)	4.855	95% Gamma Adjusted UCL (use when n<50)	4.91

Estimates of Gamma Parameters using KM Estimates

) (KM) 2.259	SD (KM)	4.126	Mean (KM)
n (KM) 1.129	SE of Mean (KM)	5.103	Variance (KM)
r (KM) 2.99	k star (KM)	3.336	k hat (KM)
r (KM) 161.5	nu star (KM)	180.2	nu hat (KM)
r (KM) 1.38	theta star (KM)	1.237	theta hat (KM)
e (KM) 7.325	90% gamma percentile (KM)	5.887	30% gamma percentile (KM)
e (KM) 11.58	99% gamma percentile (KM)	8.667	95% gamma percentile (KM)

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (161.47, α)	133.1	Adjusted Chi Square Value (161.47, β)	131.4
95% Gamma Approximate KM-UCL (use when n>=50)	5.006	95% Gamma Adjusted KM-UCL (use when n<50)	5.068

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.924	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Detected Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.268 Lilliefors GOF Test

5% Lilliefors Critical Value 0.343 Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

1.249	Mean in Log Scale	3.9	Mean in Original Scale
0.533	SD in Log Scale	2.7	SD in Original Scale
4.661	95% Percentile Bootstrap UCL	4.6	95% t UCL (assumes normality of ROS data)
4.891	95% Bootstrap t UCL	4.7	95% BCA Bootstrap UCL
		4.9	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	1.249	KM Geo Mean	3.488
KM SD (logged)	0.613	95% Critical H Value (KM-Log)	2.075
KM Standard Error of Mean (logged)	0.307	95% H-UCL (KM -Log)	5.403
KM SD (logged)	0.613	95% Critical H Value (KM-Log)	2.075
KM Standard Error of Mean (logged)	0.307		

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 4901
 Mean in Log Scale
 4.268

 SD in Original Scale
 16613
 SD in Log Scale
 2.826

 95% t UCL (Assumes normality)
 10354
 95% H-Stat UCL
 78999

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 6.052

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Result (cis-1,2-Dichloroethene)

General Statistics

Total Number of Observations	27	Number of Distinct Observations	20
Number of Detects	18	Number of Non-Detects	9
Number of Distinct Detects	18	Number of Distinct Non-Detects	2
Minimum Detect	0.22	Minimum Non-Detect	1
Maximum Detect	109000	Maximum Non-Detect	160
Variance Detects (6.539E+8	Percent Non-Detects	33.33%
Mean Detects	7097	SD Detects	25572
Median Detects	310	CV Detects	3.603
Skewness Detects	4.169	Kurtosis Detects	17.53
Mean of Logged Detects	4.871	SD of Logged Detects	3.505

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.303	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.897	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.471	Lilliefors GOF Test
5% Lilliefors Critical Value	0.202	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	4732	KM Standard Error of Mean 4072
KM SD	20565	95% KM (BCA) UCL 13193
95% KM (t) UCL	11678	95% KM (Percentile Bootstrap) UCL 12721
95% KM (z) UCL	11430	95% KM Bootstrap t UCL 213739
90% KM Chebyshev UCL	16949	95% KM Chebyshev UCL 22483
97.5% KM Chebyshev UCL	30164	99% KM Chebyshev UCL 45252

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	1.322	Anderson-Darling GOF Test
5% A-D Critical Value	0.902	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.28	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.227	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.192	k star (bias corrected MLE)	0.186	k hat (MLE)
36925	Theta star (bias corrected MLE)	38116	Theta hat (MLE)
6.919	nu star (bias corrected)	6.703	nu hat (MLE)
		7097	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

4731	Mean	0.01	Minimum
3.54	Median	109000	Maximum
4.43	CV	20957	SD
0.129	k star (bias corrected MLE)	0.118	k hat (MLE)
36566	Theta star (bias corrected MLE)	40168	Theta hat (MLE)
6.987	nu star (bias corrected)	6.36	nu hat (MLE)
		0.0401	Adjusted Level of Significance (β)
1.996	Adjusted Chi Square Value (6.99, β)	2.163	Approximate Chi Square Value (6.99, α)
16561	95% Gamma Adjusted UCL (use when n<50)	15280	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM) 473	SE SE) (KM)	20565
Variance (KM) 4.229	9E+8 SE of Mear	ı (KM)	4072
k hat (KM) 0.	.0529 k sta	r (KM)	0.0717
nu hat (KM) 2	2.859 nu sta	r (KM)	3.874
theta hat (KM) 8937	79 theta sta	r (KM)	65948
80% gamma percentile (KM) 179	90% gamma percentile	e (KM)	10406
95% gamma percentile (KM) 2729	92 99% gamma percentile	e (KM)	88164

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (3.87, α) 0.673 Adjusted Chi Square Value (3.87, β) 0.596 95% Gamma Approximate KM-UCL (use when n>=50) 27251 95% Gamma Adjusted KM-UCL (use when n<50) 30757

95% Gamma Adjusted KM-UCL (use when k<=1 and 15 < n < 50)

Shapiro Wilk Test Statistic 0.949 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.897 Detected Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.161 Lilliefors GOF Test

5% Lilliefors Critical Value 0.202 Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale 4731 Mean in Log Scale 2.837

SD in Original Scale 20957 SD in Log Scale 4.226

95% t UCL (assumes normality of ROS data) 11610 95% Percentile Bootstrap UCL 12460

95% BCA Bootstrap UCL 20501 95% Bootstrap t UCL 219900

95% H-UCL (Log ROS) 91177650

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged) 3.002 KM Geo Mean 20.13 KM SD (logged) 95% Critical H Value (KM-Log) 7.284 3.873 95% H-UCL (KM -Log) 9186896 KM Standard Error of Mean (logged) 0.789 KM SD (logged) 3.873 95% Critical H Value (KM-Log) KM Standard Error of Mean (logged) 0.789

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 4734
 Mean in Log Scale
 3.204

 SD in Original Scale
 20956
 SD in Log Scale
 3.832

 95% t UCL (Assumes normality)
 11613
 95% H-Stat UCL 8587603

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

99% KM (Chebyshev) UCL 45252

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

Result (Naphthalene)

_	
Canaral	Statistics

Total Number of Observations	27	Number of Distinct Observations	13
Number of Detects	5	Number of Non-Detects	22
Number of Distinct Detects	5	Number of Distinct Non-Detects	8
Minimum Detect	0.53	Minimum Non-Detect	1
Maximum Detect	1140	Maximum Non-Detect	5000
Variance Detects	249757	Percent Non-Detects	81.48%
Mean Detects	246.6	SD Detects	499.8
Median Detects	39.8	CV Detects	2.026
Skewness Detects	2.228	Kurtosis Detects	4.972
Mean of Logged Detects	3.221	SD of Logged Detects	2.779

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.586	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.458	Lilliefors GOF Test
5% Lilliefors Critical Value	0.343	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	50.55	KM Standard Error of Mean	49.81
KM SD	222.7	95% KM (BCA) UCL	144.1
95% KM (t) UCL	135.5	95% KM (Percentile Bootstrap) UCL	140.1
95% KM (z) UCL	132.5	95% KM Bootstrap t UCL	930.3
90% KM Chebyshev UCL	200	95% KM Chebyshev UCL	267.7
97.5% KM Chebyshev UCL	361.6	99% KM Chebyshey UCL	546.2

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.439	Anderson-Darling GOF Test
6 A-D Critical Value	0.739	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.346	Kolmogorov-Smirnov GOF
6 K-S Critical Value	0.38	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.254	k star (bias corrected MLE)	0.301	k hat (MLE)
971.4	Theta star (bias corrected MLE)	818.4	Theta hat (MLE)
2.539	nu star (bias corrected)	3.014	nu hat (MLE)
		246.6	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs $\,$

 $GROS\ may\ not\ be\ used\ when\ kstar\ of\ detects\ is\ small\ such\ as\ <1.0,\ especially\ when\ the\ sample\ size\ is\ small\ (e.g.,\ <15-20)$

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

45.68	Mean	0.01	Minimum
0.01	Median	1140	Maximum
4.794	CV	219	SD
0.126	k star (bias corrected MLE)	0.114	k hat (MLE)
361.5	Theta star (bias corrected MLE)	399.3	Theta hat (MLE)
6.824	nu star (bias corrected)	6.177	nu hat (MLE)
		0.0401	Adjusted Level of Significance (β)
1.911	Adjusted Chi Square Value (6.82, β)	2.074	Approximate Chi Square Value (6.82, α)
163.1	95% Gamma Adjusted UCL (use when n<50)	150.3	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	50.55	SD (KM)	222.7
Variance (KM)	49597	SE of Mean (KM)	49.81
k hat (KM)	0.0515	k star (KM)	0.0705
nu hat (KM)	2.782	nu star (KM)	3.807
theta hat (KM)	981.1	theta star (KM)	717.1
80% gamma percentile (KM)	18.4	90% gamma percentile (KM)	109.7
95% gamma percentile (KM)	291	99% gamma percentile (KM)	949.6

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (3.81, α) 0.647 Adjusted Chi Square Value (3.81, β) 0.572 95% Gamma Approximate KM-UCL (use when n>=50) 297.5 95% Gamma Adjusted KM-UCL (use when n<50) 336.2

95% Gamma Adjusted KM-UCL (use when k<=1 and 15 < n < 50)

5% Shapiro Wilk Critical Value 0.762 Detected Data appear Lognormal at 5% Significance Level Lilliefors Test Statistic 0.222 Lilliefors GOF Test

5% Lilliefors Critical Value 0.343 Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale 46.54 Mean in Log Scale -0.132
SD in Original Scale 218.8 SD in Log Scale 2.46
95% t UCL (assumes normality of ROS data) 118.4 95% Percentile Bootstrap UCL 130.7
95% BCA Bootstrap UCL 174 95% Bootstrap t UCL 1316
95% H-UCL (Log ROS) 183.9

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged) 0.273 KM Geo Mean 1.315 KM SD (logged) 95% Critical H Value (KM-Log) 1.967 3.983 0.472 95% H-UCL (KM -Log) KM Standard Error of Mean (logged) 42.29 KM SD (logged) 1.967 95% Critical H Value (KM-Log) 3.983 KM Standard Error of Mean (logged) 0.472

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 238.7
 Mean in Log Scale
 1.823

 SD in Original Scale
 687.1
 SD in Log Scale
 2.706

 95% t UCL (Assumes normality)
 464.3
 95% H-Stat UCL
 3881

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

nma Adjusted KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) 336.2

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

0.392

Mean

Result (Toluene)

Total Number of Observations	27	Number of Distinct Observations	15
Number of Detects	6	Number of Non-Detects	21
Number of Distinct Detects	6	Number of Distinct Non-Detects	9
Minimum Detect	0.15	Minimum Non-Detect	1
Maximum Detect	0.73	Maximum Non-Detect	5000
Variance Detects	0.063	Percent Non-Detects	77.78%
Mean Detects	0.4	SD Detects	0.251
Median Detects	0.295	CV Detects	0.627
Skewness Detects	0.747	Kurtosis Detects	-1.816
Mean of Logged Detects	-1.082	SD of Logged Detects	0.633

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.829	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.788	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.277	Lilliefors GOF Test
5% Lilliefors Critical Value	0.325	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.4	KM Standard Error of Mean	0.102
KM SD	0.229	95% KM (BCA) UCL	0.596
95% KM (t) UCL	0.575	95% KM (Percentile Bootstrap) UCL	0.573
95% KM (z) UCL	0.568	95% KM Bootstrap t UCL	0.961
90% KM Chebyshev UCL	0.707	95% KM Chebyshev UCL	0.847
97.5% KM Chebyshev UCL	1.04	99% KM Chebyshev UCL	1.419

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.436	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.701	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.233	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.334	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

1.695	k star (bias corrected MLE)	3.168	k hat (MLE)
0.236	Theta star (bias corrected MLE)	0.126	Theta hat (MLE)
20.34	nu star (bias corrected)	38.02	nu hat (MLE)
		0.4	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 $GROS\ may\ not\ be\ used\ when\ kstar\ of\ detects\ is\ small\ such\ as\ <1.0,\ especially\ when\ the\ sample\ size\ is\ small\ (e.g.,\ <15-20)$

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum 0.0859

Maximum	0.831	Median	0.371
SD	0.19	CV	0.484
k hat (MLE)	4.221	k star (bias corrected MLE)	3.776
Theta hat (MLE)	0.0928	Theta star (bias corrected MLE)	0.104
nu hat (MLE)	227.9	nu star (bias corrected)	203.9
Adjusted Level of Significance (β)	0.0401		
Approximate Chi Square Value (203.92, α)	171.9	Adjusted Chi Square Value (203.92, β)	170
95% Gamma Approximate UCL (use when n>=50)	0.465	95% Gamma Adjusted UCL (use when n<50)	0.47

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.4	SD (KM)	0.229
Variance (KM)	0.0525	SE of Mean (KM)	0.102
k hat (KM)	3.05	k star (KM)	2.735
nu hat (KM)	164.7	nu star (KM)	147.7
theta hat (KM)	0.131	theta star (KM)	0.146
80% gamma percentile (KM)	0.577	90% gamma percentile (KM)	0.724
95% gamma percentile (KM)	0.862	99% gamma percentile (KM)	1.163

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (147.71, α)	120.6	Adjusted Chi Square Value (147.71, β)	119.1
95% Gamma Approximate KM-UCL (use when n>=50)	0.49	95% Gamma Adjusted KM-UCL (use when n<50)	0.496

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.912	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.788	Detected Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.208 Lilliefors GOF Test

5% Lilliefors Critical Value 0.325 Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.379	Mean in Log Scale	-1.082
SD in Original Scale	0.19	SD in Log Scale	0.485
95% t UCL (assumes normality of ROS data)	0.442	95% Percentile Bootstrap UCL	0.441
95% BCA Bootstrap UCL	0.452	95% Bootstrap t UCL	0.452
95% H-UCL (Log ROS)	0.459		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-1.082	KM Geo Mean	0.339
KM SD (logged)	0.577	95% Critical H Value (KM-Log)	2.04
KM Standard Error of Mean (logged)	0.258	95% H-UCL (KM -Log)	0.504
KM SD (logged)	0.577	95% Critical H Value (KM-Log)	2.04
KM Standard Error of Mean (logged)	0.258		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	196.1	Mean in Log Scale	1.199
SD in Original Scale	664.5	SD in Log Scale	2.673

95% t UCL (Assumes normality) 414.2 95% H-Stat UCL 1785

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 0.575

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Result (trans-1,2-Dichloroethene)

C	Statistics
General	SIMILSHES

Total Number of Observations	27	Number of Distinct Observations	12
Number of Detects	5	Number of Non-Detects	22
Number of Distinct Detects	5	Number of Distinct Non-Detects	7
Minimum Detect	0.35	Minimum Non-Detect	1
Maximum Detect	13.6	Maximum Non-Detect	5000
Variance Detects	30.96	Percent Non-Detects	81.48%
Mean Detects	6.2	SD Detects	5.564
Median Detects	5.8	CV Detects	0.897
Skewness Detects	0.353	Kurtosis Detects	-1.718
Mean of Logged Detects	1.2	SD of Logged Detects	1.513

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.941	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.201	Lilliefors GOF Test
5% Lilliefors Critical Value	0.343	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	1.907	KM Standard Error of Mean	0.926
KM SD	3.609	95% KM (BCA) UCL	4.227
95% KM (t) UCL	3.486	95% KM (Percentile Bootstrap) UCL	3.689
95% KM (z) UCL	3.429	95% KM Bootstrap t UCL	3.632
90% KM Chebyshev UCL	4.684	95% KM Chebyshev UCL	5.942
97.5% KM Chebyshev UCL	7.688	99% KM Chebyshev UCL	11.12

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.275	Anderson-Darling GOF Test
5% A-D Critical Value	0.693	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.213	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.365	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.506	k star (bias corrected MLE)	0.932	k hat (MLE)
12.25	Theta star (bias corrected MLE)	6.651	Theta hat (MLE)
5.062	nu star (bias corrected)	9.323	nu hat (MLE)
		6.2	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 $GROS \ may \ not \ be \ used \ when \ kstar \ of \ detects \ is \ small \ such \ as <1.0, \ especially \ when \ the \ sample \ size \ is \ small \ (e.g., <15-20)$

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

1.584	Mean	0.01	Minimum
0.0403	Median	13.6	Maximum
2.034	CV	3.221	SD
0.276	k star (bias corrected MLE)	0.282	k hat (MLE)
5.744	Theta star (bias corrected MLE)	5.608	Theta hat (MLE)
14.89	nu star (bias corrected)	15.25	nu hat (MLE)
		0.0401	Adjusted Level of Significance (β)
6.843	Adjusted Chi Square Value (14.89, β)	7.184	Approximate Chi Square Value (14.89, α)
3.446	95% Gamma Adjusted UCL (use when n<50)	3.282	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	1.907	SD (KM)	3.609
Variance (KM)	13.03	SE of Mean (KM)	0.926
k hat (KM)	0.279	k star (KM)	0.273
nu hat (KM)	15.07	nu star (KM)	14.73
theta hat (KM)	6.832	theta star (KM)	6.99
80% gamma percentile (KM)	2.849	90% gamma percentile (KM)	5.681
95% gamma percentile (KM)	8.988	99% gamma percentile (KM)	17.69

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (14.73, α)	7.073	Adjusted Chi Square Value (14.73, β)	6.735
95% Gamma Approximate KM-UCL (use when n>=50)	3.97	95% Gamma Adjusted KM-UCL (use when n<50)	4.17

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.909	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Detected Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.244 Lilliefors GOF Test

5% Lilliefors Critical Value 0.343 Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	1.614	Mean in Log Scale	-0.544
SD in Original Scale	3.144	SD in Log Scale	1.375
95% t UCL (assumes normality of ROS data)	2.647	95% Percentile Bootstrap UCL	2.673
95% BCA Bootstrap UCL	3.071	95% Bootstrap t UCL	4.144
95% H-UCL (Log ROS)	3.397		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-0.443	KM Geo Mean	0.642
KM SD (logged)	1.216	95% Critical H Value (KM-Log)	2.815
KM Standard Error of Mean (logged)	0.316	95% H-UCL (KM -Log)	2.633
KM SD (logged)	1.216	95% Critical H Value (KM-Log)	2.815
KM Standard Error of Mean (logged)	0.316		

DL/2 Statistics

DL/2 Normal	DL/2 Log-Transformed
DL/2 Normal	DL/2 Log-1 ransformed

 Mean in Original Scale
 195.8
 Mean in Log Scale
 1.244

 SD in Original Scale
 664.6
 SD in Log Scale
 2.593

 95% t UCL (Assumes normality)
 414
 95% H-Stat UCL
 1301

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 3.486

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Result (Trichloroethene)

General Statistics

Total Number of Observations	27	Number of Distinct Observations	19
Number of Detects	14	Number of Non-Detects	13
Number of Distinct Detects	14	Number of Distinct Non-Detects	5
Minimum Detect	0.38	Minimum Non-Detect	1
Maximum Detect	261000	Maximum Non-Detect	200
Variance Detects	6.310E+9	Percent Non-Detects	48.15%
Mean Detects	30455	SD Detects	79437
Median Detects	62.35	CV Detects	2.608
Skewness Detects	2.56	Kurtosis Detects	5.85
Mean of Logged Detects	4.163	SD of Logged Detects	4.247

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.448	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.874	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.504	Lilliefors GOF Test
5% Lilliefors Critical Value	0.226	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	15794	KM Standard Error of Mean	11420
KM SD	57182	95% KM (BCA) UCL	37644
95% KM (t) UCL	35272	95% KM (Percentile Bootstrap) UCL	35154
95% KM (z) UCL	34578	95% KM Bootstrap t UCL	7728360
90% KM Chebyshev UCL	50054	95% KM Chebyshev UCL	65572
97.5% KM Chebyshev UCL	87111	99% KM Chebyshev UCL	129421

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	1.831	Anderson-Darling GOF Test
5% A-D Critical Value	0.944	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.377	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.259	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE) 0.128	k star (bias corrected MLE) 0.148
Theta hat (MLE) 238615	Theta star (bias corrected MLE) 205914
nu hat (MLE) 3.574	nu star (bias corrected) 4.141
Mean (detects) 30455	

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 $GROS \ may \ not \ be \ used \ when \ kstar \ of \ detects \ is \ small \ such \ as < 1.0, \ especially \ when \ the \ sample \ size \ is \ small \ (e.g., < 15-20)$

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	15792
Maximum	261000	Median	0.38
SD	58271	CV	3.69
k hat (MLE)	0.0851	k star (bias corrected MLE)	0.1
Theta hat (MLE)	185459	Theta star (bias corrected MLE)	157319
nu hat (MLE)	4.598	nu star (bias corrected)	5.42
Adjusted Level of Significance (β)	0.0401		
Approximate Chi Square Value (5.42, α)	1.351	Adjusted Chi Square Value (5.42, β)	1.227
95% Gamma Approximate UCL (use when n>=50)	63347	95% Gamma Adjusted UCL (use when n<50)	69751

Estimates of Gamma Parameters using KM Estimates

Mean (KM) 15794	SD (KM) 57182
Variance (KM) 3.270E+9	SE of Mean (KM) 11420
k hat (KM) 0.0763	k star (KM) 0.0925
nu hat (KM) 4.119	nu star (KM) 4.995
theta hat (KM) 207029	theta star (KM) 170738
80% gamma percentile (KM) 9728	90% gamma percentile (KM) 40590
95% gamma percentile (KM) 91969	99% gamma percentile (KM) 260769

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value $(5.00, \alpha)$ 1.15 Adjusted Chi Square Value $(5.00, \beta)$ 1.038 95% Gamma Approximate KM-UCL (use when n>=50) 68605 95% Gamma Adjusted KM-UCL (use when n<50) 75972

95% Gamma Adjusted KM-UCL (use when k<=1 and 15 < n < 50)

5% Shapiro Wilk Critical Value 0.874 Detected Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.176 Lilliefors GOF Test

5% Lilliefors Critical Value 0.226 Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

 Mean in Original Scale
 15792
 Mean in Log Scale
 1.565

 SD in Original Scale
 58271
 SD in Log Scale
 4.34

 95% t UCL (assumes normality of ROS data)
 34919
 95% Percentile Bootstrap UCL
 35151

 95% BCA Bootstrap UCL
 44829
 95% Bootstrap t UCL
 8225477

 95% H-UCL (Log ROS)
 59020321

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

 KM Mean (logged)
 1.963
 KM Geo Mean
 7.117

 KM SD (logged)
 3.797
 95% Critical H Value (KM-Log)
 7.15

 KM Standard Error of Mean (logged)
 0.776
 95% H-UCL (KM -Log)
 1978366

 KM SD (logged)
 3.797
 95% Critical H Value (KM-Log)
 7.15

KM Standard Error of Mean (logged) 0.776

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 15800
 Mean in Log Scale
 2.439

 SD in Original Scale
 58269
 SD in Log Scale
 3.794

 95% t UCL (Assumes normality)
 34926
 95% H-Stat UCL 3105875

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

99% KM (Chebyshev) UCL 129421

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

Result (Vinyl chloride)

Camanal	Statistics
Caenerai	STATISTICS

Total Number of Observations	27	Number of Distinct Observations	19
Number of Detects	11	Number of Non-Detects	16
Number of Distinct Detects	11	Number of Distinct Non-Detects	8
Minimum Detect	0.3	Minimum Non-Detect	1
Maximum Detect	4620	Maximum Non-Detect	5000
Variance Detects	2575090	Percent Non-Detects	59.26%
Mean Detects	729.1	SD Detects	1605
Median Detects	6.69	CV Detects	2.201
Skewness Detects	2.094	Kurtosis Detects	3.263
Mean of Logged Detects	2.881	SD of Logged Detects	3.203

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.525	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.85	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.474	Lilliefors GOF Test
5% Lilliefors Critical Value	0.251	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

217.7	KM Standard Error of Mean	309.3	KM Mean
751.1	95% KM (BCA) UCL	1058	KM SD
686	95% KM (Percentile Bootstrap) UCL	680.5	95% KM (t) UCL
15244	95% KM Bootstrap t UCL	667.3	95% KM (z) UCL
1258	95% KM Chebyshev UCL	962.3	90% KM Chebyshev UCL
2475	99% KM Chebyshev UCL	1669	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	1.128	A-D Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Leve	0.863	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.304	K-S Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Leve	0.282	5% K-S Critical Value

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.205	k star (bias corrected MLE)	0.199	k hat (MLE)
3557	Theta star (bias corrected MLE)	3673	Theta hat (MLE)
4.51	nu star (bias corrected)	4.368	nu hat (MLE)
		729.1	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

297	Mean	0.01	Minimum
0.01	Median	4620	Maximum
3.569	CV	1060	SD
0.123	k star (bias corrected MLE)	0.111	k hat (MLE)
2415	Theta star (bias corrected MLE)	2686	Theta hat (MLE)
6.642	nu star (bias corrected)	5.972	nu hat (MLE)
		0.0401	Adjusted Level of Significance (β)
1.818	Adjusted Chi Square Value (6.64, β)	1.976	Approximate Chi Square Value (6.64, α)
1085	95% Gamma Adjusted UCL (use when n<50)	998 4	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	309.3	SD (KM)	1058
Variance (KM)	1119681	SE of Mean (KM)	217.7
k hat (KM)	0.0854	k star (KM)	0.101
nu hat (KM)	4.614	nu star (KM)	5.435
theta hat (KM)	3620	theta star (KM)	3073
80% gamma percentile (KM)	216.6	90% gamma percentile (KM)	825.4
95% gamma percentile (KM)	1795	99% gamma percentile (KM)	4898

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (5.43, α) 1.358 Adjusted Chi Square Value (5.43, β) 95% Gamma Approximate KM-UCL (use when n>=50) 1238 95% Gamma Adjusted KM-UCL (use when n<50) 1363

95% Gamma Adjusted KM-UCL (use when k<=1 and 15 < n < 50)

5% Shapiro Wilk Critical Value 0.85 Detected Data appear Lognormal at 5% Significance Level Lilliefors Test Statistic 0.166 **Lilliefors GOF Test**

5% Lilliefors Critical Value 0.251 Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale 297.4 Mean in Log Scale 0.355
SD in Original Scale 1060 SD in Log Scale 3.191
95% t UCL (assumes normality of ROS data) 645.3 95% Percentile Bootstrap UCL 645.7
95% BCA Bootstrap UCL 823.5 95% Bootstrap t UCL 14414
95% H-UCL (Log ROS) 10384

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged) 0.83 KM Geo Mean 2.293 KM SD (logged) 95% Critical H Value (KM-Log) 2.742 5.296 0.589 95% H-UCL (KM -Log) 1696 KM Standard Error of Mean (logged) KM SD (logged) 2.742 95% Critical H Value (KM-Log) 5.296 KM Standard Error of Mean (logged) 0.589

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 395.1
 Mean in Log Scale
 1.804

 SD in Original Scale
 1138
 SD in Log Scale
 2.901

 95% t UCL (Assumes normality)
 768.5
 95% H-Stat UCL
 9734

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

99% KM (Chebyshev) UCL 2475

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.14/20/2017 4:33:01 PM

From File HHRA Data for Review.xls

Full Precision OFF
Confidence Coefficient 95%
Number of Bootstrap Operations 2000

Result (1,1-Dichloroethane)

General Statistics

Total Number of Observations	94	Number of Distinct Observations	47
Number of Detects	33	Number of Non-Detects	61
Number of Distinct Detects	31	Number of Distinct Non-Detects	16
Minimum Detect	0.17	Minimum Non-Detect	1
Maximum Detect	810	Maximum Non-Detect	2000
Variance Detects	26051	Percent Non-Detects	64.89%
Mean Detects	61.29	SD Detects	161.4
Median Detects	1.85	CV Detects	2.633
Skewness Detects	3.839	Kurtosis Detects	15.74
Mean of Logged Detects	1.357	SD of Logged Detects	2.484

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.438	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.931	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.352	Lilliefors GOF Test
5% Lilliefors Critical Value	0.152	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	24.06	KM Standard Error of Mean	10.79
KM SD	100.5	95% KM (BCA) UCL	45.89
95% KM (t) UCL	41.99	95% KM (Percentile Bootstrap) UCL	44.18
95% KM (z) UCL	41.81	95% KM Bootstrap t UCL	73.96
90% KM Chebyshev UCL	56.43	95% KM Chebyshev UCL	71.09
97.5% KM Chebyshev UCL	91.44	99% KM Chebyshev UCL	131.4

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	2.81	Anderson-Darling GOF Test
A-D Critical Value	0.877	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.281	Kolmogorov-Smirnov GOF
K-S Critical Value	0.168	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.256	k star (bias corrected MLE)	0.253
Theta hat (MLE)	239	Theta star (bias corrected MLE)	241.9
nu hat (MLE)	16.93	nu star (bias corrected)	16.72
Mean (detects)	61 29		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

$For gamma\ distributed\ detected\ data,\ BTVs\ and\ UCLs\ may\ be\ computed\ using\ gamma\ distribution\ on\ KM\ estimates$

Minimum	0.01	Mean	22.1
Maximum	810	Median	0.01
SD	99.08	CV	4.483
k hat (MLE)	0.145	k star (bias corrected MLE)	0.147
Theta hat (MLE)	152.5	Theta star (bias corrected MLE)	149.9
nu hat (MLE)	27.24	nu star (bias corrected)	27.71
Adjusted Level of Significance (β)	0.0474		
Approximate Chi Square Value (27.71, α)	16.7	Adjusted Chi Square Value (27.71, β)	16.57
95% Gamma Approximate UCL (use when n>=50)	36.66	95% Gamma Adjusted UCL (use when n<50)	36.96

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	24.06	SD (KM)	100.5
Variance (KM)	10104	SE of Mean (KM)	10.79
k hat (KM)	0.0573	k star (KM)	0.0626
nu hat (KM)	10.77	nu star (KM)	11.76
theta hat (KM)	419.9	theta star (KM)	384.6
80% gamma percentile (KM)	6.517	90% gamma percentile (KM)	47.15
95% gamma percentile (KM)	136	99% gamma percentile (KM)	476.7

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (11.76, α)	5.071	Adjusted Chi Square Value (11.76, β)	5.003
95% Gamma Approximate KM-UCL (use when n>=50)	55.81	95% Gamma Adjusted KM-UCL (use when n<50)	56.58

Lognormal GOF Test on Detected Observations Only

•		•
Shapiro Wilk Test Statistic	0.892	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.931	Detected Data Not Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.162 Lilliefors GOF Test

5% Lilliefors Critical Value 0.152 Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	22.32	Mean in Log Scale	0.14
SD in Original Scale	98.97	SD in Log Scale	2.027
95% t UCL (assumes normality of ROS data)	39.28	95% Percentile Bootstrap UCL	40.65
95% BCA Bootstrap UCL	53.13	95% Bootstrap t UCL	78.21
95% H-UCL (Log ROS)	18.45		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	0.14	KM Geo Mean	1.15
KM SD (logged)	1.95	95% Critical H Value (KM-Log)	3.337
KM Standard Error of Mean (logged)	0.243	95% H-UCL (KM -Log)	15.12
KM SD (logged)	1.95	95% Critical H Value (KM-Log)	3.337
KM Standard Error of Mean (logged)	0.243		

DL/2 Statistics

DL/2 Normal	DL/2 Log-Transformed		
Mean in Original Scale	77.45	Mean in Log Scale	1.819
SD in Original Scale	187.3	SD in Log Scale	2.479
95% t UCL (Assumes normality)	109.5	95% H-Stat UCL	375.1

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 71.09

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

Result (1,1-Dichloroethene)

Total Number of Observations	94	Number of Distinct Observations	41
Number of Detects	29	Number of Non-Detects	65
Number of Distinct Detects	27	Number of Distinct Non-Detects	15
Minimum Detect	0.23	Minimum Non-Detect	1
Maximum Detect	1030	Maximum Non-Detect	2000
Variance Detects	37698	Percent Non-Detects	69.15%
Mean Detects	64.02	SD Detects	194.2
Median Detects	1.12	CV Detects	3.033
Skewness Detects	4.753	Kurtosis Detects	23.84
Mean of Logged Detects	1.488	SD of Logged Detects	2.531

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.356	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.926	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.372	Lilliefors GOF Test
5% Lilliefors Critical Value	0.161	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	21.86	KM Standard Error of Mean	11.78
KM SD	110.9	95% KM (BCA) UCL	44.45
95% KM (t) UCL	41.44	95% KM (Percentile Bootstrap) UCL	45.22
95% KM (z) UCL	41.24	95% KM Bootstrap t UCL	97.53
90% KM Chebyshev UCL	57.21	95% KM Chebyshev UCL	73.22
97.5% KM Chebyshev UCL	95.44	99% KM Chebyshev UCL	139.1

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	2.16	Anderson-Darling GOF Test
5% A-D Critical Value	0.873	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.25	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.178	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.259	k star (bias corrected MLE)	0.264	k hat (MLE)
246.8	Theta star (bias corrected MLE)	242.8	Theta hat (MLE)
15.04	nu star (bias corrected)	15.29	nu hat (MLE)
		64.02	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small. For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	20.45
Maximum	1030	Median	0.01
SD	110.6	CV	5.408
k hat (MLE)	0.142	k star (bias corrected MLE)	0.145
Theta hat (MLE)	143.7	Theta star (bias corrected MLE)	141.2
nu hat (MLE)	26.75	nu star (bias corrected)	27.23
Adjusted Level of Significance (β)	0.0474		
Approximate Chi Square Value (27.23, α)	16.33	Adjusted Chi Square Value (27.23, β)	16.19
95% Gamma Approximate UCL (use when n>=50)	34.09	95% Gamma Adjusted UCL (use when n<50)	34.37

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	21.86	SD (KM)	110.9
Variance (KM)	12305	SE of Mean (KM)	11.78
k hat (KM)	0.0389	k star (KM)	0.0447
nu hat (KM)	7.304	nu star (KM)	8.404
theta hat (KM)	562.8	theta star (KM)	489.1
80% gamma percentile (KM)	1.942	90% gamma percentile (KM)	28.49
95% gamma percentile (KM)	111.1	99% gamma percentile (KM)	496.5

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (8.40, α)	2.971	Adjusted Chi Square Value (8.40, β)	2.921
95% Gamma Approximate KM-UCL (use when n>=50)	61.84	95% Gamma Adjusted KM-UCL (use when n<50)	62.9

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.872	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.926	Detected Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.241	Lilliefors GOF Test
5% Lilliefors Critical Value	0.161	Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

0.276	Mean in Log Scale	20.85	Mean in Original Scale
1.964	SD in Log Scale	110.4	SD in Original Scale
41.18	95% Percentile Bootstrap UCL	39.77	95% t UCL (assumes normality of ROS data)
117.3	95% Bootstrap t UCL	57.55	95% BCA Bootstrap UCL

95% H-UCL (Log ROS) 17.97

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged) 0.104 KM Geo Mean 1.109 KM SD (logged) 1.876 95% Critical H Value (KM-Log) 3.243 KM Standard Error of Mean (logged) 95% H-UCL (KM -Log) 0.23 12.11 KM SD (logged) 95% Critical H Value (KM-Log) 1.876 3.243 KM Standard Error of Mean (logged) 0.23

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 67.47
 Mean in Log Scale
 1.664

 SD in Original Scale
 171.7
 SD in Log Scale
 2.467

 95% t UCL (Assumes normality)
 96.89
 95% H-Stat UCL
 309.1

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 73.22

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

ARCADIS | Design & Const

Result (1,2,4-Trimethylbenzene)

Canaral	Statistics
General	SIGUSTICS

Total Number of Observations	94	Number of Distinct Observations	23
Number of Detects	5	Number of Non-Detects	89
Number of Distinct Detects	4	Number of Distinct Non-Detects	19
Minimum Detect	0.11	Minimum Non-Detect	1
Maximum Detect	1.2	Maximum Non-Detect	2000
Variance Detects	0.166	Percent Non-Detects	94.68%
Mean Detects	0.512	SD Detects	0.407
Median Detects	0.42	CV Detects	0.795
Skewness Detects	1.596	Kurtosis Detects	3.419
Mean of Logged Detects	-0.93	SD of Logged Detects	0.848

Normal GOF Test on Detects Only

		•
Shapiro Wilk Test Statistic	0.798	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.389	Lilliefors GOF Test
5% Lilliefors Critical Value	0.343	Detected Data Not Normal at 5% Significance Level

Detected Data appear Approximate Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.361	KM Standard Error of Mean	0.0761
KM SD	0.187	95% KM (BCA) UCL	N/A
95% KM (t) UCL	0.487	95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	0.486	95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	0.589	95% KM Chebyshev UCL	0.693
97.5% KM Chebyshev UCL	0.836	99% KM Chebyshey UCL	1.118

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.502	Anderson-Darling GOF Test
5% A-D Critical Value	0.684	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.315	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.36	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.96	k star (bias corrected MLE)	2.068	k hat (MLE)
0.533	Theta star (bias corrected MLE)	0.248	Theta hat (MLE)
9.604	nu star (bias corrected)	20.68	nu hat (MLE)
		0.512	Moon (dotacts)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.076	Mean	0.368
Maximum	1.2	Median	0.334
SD	0.188	CV	0.512
k hat (MLE)	4.099	k star (bias corrected MLE)	3.975
Theta hat (MLE)	0.0897	Theta star (bias corrected MLE)	0.0925
nu hat (MLE)	770.6	nu star (bias corrected)	747.4
Adjusted Level of Significance (β)	0.0474		
Approximate Chi Square Value (747.39, α)	685	Adjusted Chi Square Value (747.39, β)	684
95% Gamma Approximate UCL (use when n>=50)	0.401	95% Gamma Adjusted UCL (use when n<50)	0.402

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.361	SD (KM)	0.187
Variance (KM)	0.0348	SE of Mean (KM)	0.0761
k hat (KM)	3.742	k star (KM)	3.63
nu hat (KM)	703.6	nu star (KM)	682.4
theta hat (KM)	0.0965	theta star (KM)	0.0994
80% gamma percentile (KM)	0.503	90% gamma percentile (KM)	0.615
95% gamma percentile (KM)	0.718	99% gamma percentile (KM)	0.94

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (682.44, α)	622.8	Adjusted Chi Square Value (682.44, β)	622
95% Gamma Approximate KM-UCL (use when n>=50)	0.396	95% Gamma Adjusted KM-UCL (use when n<50)	0.396

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.883	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.318	Lilliefors GOF Test
5% Lilliefors Critical Value	0.343	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Mean in Original Scale	0.34	Mean in Log Scale	-1.2
SD in Original Scale	0.179	SD in Log Scale	0.496
95% t UCL (assumes normality of ROS data)	0.371	95% Percentile Bootstrap UCL	0.372
95% BCA Bootstrap UCL	0.375	95% Bootstrap t UCL	0.374

95% H-UCL (Log ROS) 0.374

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-1.175	KM Geo Mean	0.309
KM SD (logged)	0.609	95% Critical H Value (KM-Log)	1.923
KM Standard Error of Mean (logged)	0.317	95% H-UCL (KM -Log)	0.42
KM SD (logged)	0.609	95% Critical H Value (KM-Log)	1.923
KM Standard Error of Mean (logged)	0.317		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	72.36	Mean in Log Scale	1.689

 SD in Original Scale
 175
 SD in Log Scale
 2.512

 95% t UCL (Assumes normality)
 102.3
 95% H-Stat UCL
 366.7

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 0.487

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

ARCADIS Design & Consultancy for natural and bullt assets

Result (2-Butanone)

General	Statistics

Total Number of Observations	94	Number of Distinct Observations	25
Number of Detects	6	Number of Non-Detects	88
Number of Distinct Detects	6	Number of Distinct Non-Detects	19
Minimum Detect	0.94	Minimum Non-Detect	25
Maximum Detect	260	Maximum Non-Detect	50000
Variance Detects	10262	Percent Non-Detects	93.62%
Mean Detects	54.77	SD Detects	101.3
Median Detects	13.45	CV Detects	1.85
Skewness Detects	2.37	Kurtosis Detects	5.68
Mean of Logged Detects	2.627	SD of Logged Detects	1.903

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.602	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.788	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.405	Lilliefors GOF Test
5% Lilliefors Critical Value	0.325	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	13.58	KM Standard Error of Mean	6.049
KM SD	35.2	95% KM (BCA) UCL	25.91
95% KM (t) UCL	23.63	95% KM (Percentile Bootstrap) UCL	24.22
95% KM (z) UCL	23.53	95% KM Bootstrap t UCL	32.51
90% KM Chebyshev UCL	31.73	95% KM Chebyshev UCL	39.95
97.5% KM Chebyshev UCL	51.36	99% KM Chebyshev UCL	73.77

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.419	Anderson-Darling GOF Test
5% A-D Critical Value	0.741	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.256	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.35	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.467	k star (bias corrected MLE)	0.344
Theta hat (MLE)	117.4	Theta star (bias corrected MLE)	159
nu hat (MLE)	5.6	nu star (bias corrected)	4.133
Mean (detects)	54.77		

Mean 13.07 Median 0.01

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

Minimum 0.01

Maximum 260

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

SD	31.47	CV	2.408
k hat (MLE)	0.188	k star (bias corrected MLE)	0.189
Theta hat (MLE)	69.63	Theta star (bias corrected MLE)	69.22
nu hat (MLE)	35.28	nu star (bias corrected)	35.49
Adjusted Level of Significance (β)	0.0474		
Approximate Chi Square Value (35.49, α)	22.86	Adjusted Chi Square Value (35.49, β)	22.7
95% Gamma Approximate UCL (use when n>=50)	20.29	95% Gamma Adjusted UCL (use when n<50)	20.43

Estimates of Gamma Parameters using KM Estimates

Variance (KM) 1239 SE of Mean (KM) 6.	049
k hat (KM) 0.149 k star (KM) 0.	151
nu hat (KM) 27.98 nu star (KM) 28	.42
theta hat (KM) 91.25 theta star (KM) 89	.84
80% gamma percentile (KM) 14.88 90% gamma percentile (KM) 40	.31
95% gamma percentile (KM) 74.63 99% gamma percentile (KM) 174	.1

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (28.42, α)	17.25	Adjusted Chi Square Value (28.42, β)	17.12
95% Gamma Approximate KM-UCL (use when n>=50)	22.37	95% Gamma Adjusted KM-UCL (use when n<50)	22.54

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.986	Snapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.788	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.155	Lilliefors GOF Test
5% Lilliefors Critical Value	0.325	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

1.674	Mean in Log Scale	11.19	Mean in Original Scale
1.135	SD in Log Scale	27.45	SD in Original Scale
16.31	95% Percentile Bootstrap UCL	15.89	95% t UCL (assumes normality of ROS data)
24.01	95% Bootstrap t UCL	20.43	95% BCA Bootstrap UCL

95% H-UCL (Log ROS) 13.44

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged) 1.774 KM Geo Mean 5.892 KM SD (logged) 1.228 95% Critical H Value (KM-Log) 2.483 KM Standard Error of Mean (logged) 95% H-UCL (KM -Log) 0.58 17.18 KM SD (logged) 95% Critical H Value (KM-Log) 2.483 1.228 KM Standard Error of Mean (logged)

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 1805
 Mean in Log Scale
 4.885

 SD in Original Scale
 4376
 SD in Log Scale
 2.533

 95% t UCL (Assumes normality)
 2555
 95% H-Stat UCL
 9599

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Approximate Gamma UCL 22.37

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

ARCADIS | Design & Consultancy for natural and built assets

Result (Acetone)

General	Statistics

Total Number of Observations	94	Number of Distinct Observations	36
Number of Detects	17	Number of Non-Detects	77
Number of Distinct Detects	17	Number of Distinct Non-Detects	19
Minimum Detect	2.03	Minimum Non-Detect	25
Maximum Detect	572	Maximum Non-Detect	50000
Variance Detects	18652	Percent Non-Detects	81.91%
Mean Detects	46.14	SD Detects	136.6
Median Detects	3.46	CV Detects	2.96
Skewness Detects	4.018	Kurtosis Detects	16.37
Mean of Logged Detects	2.081	SD of Logged Detects	1.615

Normal GOF Test on Detects Only

Snapiro Wilk Test Statistic	0.35	Snapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.892	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.431	Lilliefors GOF Test
5% Lilliefors Critical Value	0.207	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	17.11	KM Standard Error of Mean	10.13
KM SD	74.39	95% KM (BCA) UCL	36.42
95% KM (t) UCL	33.94	95% KM (Percentile Bootstrap) UCL	35
95% KM (z) UCL	33.77	95% KM Bootstrap t UCL	95.9
90% KM Chebyshev UCL	47.49	95% KM Chebyshev UCL	61.25
97.5% KM Chebyshev UCL	80.35	99% KM Chebyshey UCL	117.9

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	2.341	Anderson-Darling GOF Test
5% A-D Critical Value	0.824	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.295	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.224	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.351	k star (bias corrected MLE)	0.379	k hat (MLE)
131.3	Theta star (bias corrected MLE)	121.7	Theta hat (MLE)
11.95	nu star (bias corrected)	12.89	nu hat (MLE)
		16 11	Moon (dotacts)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

15.3	Mean	0.01	Minimum
0.01	Median	572	Maximum
3.99	CV	61.05	SD
0.175	k star (bias corrected MLE)	0.173	k hat (MLE)
87.64	Theta star (bias corrected MLE)	88.44	Theta hat (MLE)
32.82	nu star (bias corrected)	32.53	nu hat (MLE)
		0.0474	Adjusted Level of Significance (β)
20.58	Adjusted Chi Square Value (32.82, β)	20.73	Approximate Chi Square Value (32.82, α)
24.41	95% Gamma Adjusted UCL (use when n<50)	24.23	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	17.11	SD (KM)	74.39
Variance (KM)	5534	SE of Mean (KM)	10.13
k hat (KM)	0.0529	k star (KM)	0.0583
nu hat (KM)	9.949	nu star (KM)	10.97
theta hat (KM)	323.4	theta star (KM)	293.4
80% gamma percentile (KM)	3.809	90% gamma percentile (KM)	31.28
95% gamma percentile (KM)	95.3	99% gamma percentile (KM)	349.5

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (10.97, α)	4.554	Adjusted Chi Square Value (10.97, β)	4.489
95% Gamma Approximate KM-UCL (use when n>=50)	41.21	95% Gamma Adjusted KM-UCL (use when n<50)	41.8

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.804	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.892	Detected Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.279	Lilliefors GOF Test
5% Lilliefors Critical Value	0.207	Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

Mean in Original Scale	13.5	Mean in Log Scale	1.589
SD in Original Scale	58.91	SD in Log Scale	1.077
95% t UCL (assumes normality of ROS data)	23.6	95% Percentile Bootstrap UCL	25.82
95% BCA Bootstrap UCL	32.59	95% Bootstrap t UCL	69.48

95% H-UCL (Log ROS) 11.34

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

1.506 KM Mean (logged) KM Geo Mean 4.507 KM SD (logged) 1.084 95% Critical H Value (KM-Log) 2.332 KM Standard Error of Mean (logged) 95% H-UCL (KM -Log) 0.195 10.54 95% Critical H Value (KM-Log) KM SD (logged) 1.084 2.332 KM Standard Error of Mean (logged) 0.195

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 1811
 Mean in Log Scale
 4.784

 SD in Original Scale
 4374
 SD in Log Scale
 2.681

 95% t UCL (Assumes normality)
 2561
 95% H-Stat UCL
 14390

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 61.25

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

ARCADIS | Design & Consultancy bull rassets

Result (Benzene)

Canaral	Statistics
General	SIGUSTICS

Total Number of Observations	94	Number of Distinct Observations	36
Number of Detects	21	Number of Non-Detects	73
Number of Distinct Detects	17	Number of Distinct Non-Detects	19
Minimum Detect	0.12	Minimum Non-Detect	1
Maximum Detect	1.05	Maximum Non-Detect	2000
Variance Detects	0.0671	Percent Non-Detects	77.66%
Mean Detects	0.409	SD Detects	0.259
Median Detects	0.3	CV Detects	0.634
Skewness Detects	1.062	Kurtosis Detects	0.23
Mean of Logged Detects	-1.074	SD of Logged Detects	0.607

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.868	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.908	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.234	Lilliefors GOF Test
5% Lilliefors Critical Value	0.188	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

r of Mean 0.0504	KM Standard Error of Mean	0.393	KM Mean
CA) UCL 0.479	95% KM (BCA) UCL	0.234	KM SD
rap) UCL 0.476	95% KM (Percentile Bootstrap) UCL	0.476	95% KM (t) UCL
rap t UCL 0.497	95% KM Bootstrap t UCL	0.475	95% KM (z) UCL
shev UCL 0.612	95% KM Chebyshev UCL	0.544	90% KM Chebyshev UCL
shev UCL 0.894	99% KM Chebyshev UCL	0.707	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.655	Anderson-Darling GOF Test
5% A-D Critical Value	0.75	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.191	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.191	Detected Data Not Gamma Distributed at 5% Significance Level

Detected data follow Appr. Gamma Distribution at 5% Significance Level

Gamma Statistics on Detected Data Only

2.564	k star (bias corrected MLE)	2.954	k hat (MLE)
0.159	Theta star (bias corrected MLE)	0.138	Theta hat (MLE)
107.7	nu star (bias corrected)	124.1	nu hat (MLE)
		0.409	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.0832	Mean	0.378
Maximum	1.05	Median	0.351
SD	0.185	CV	0.488
k hat (MLE)	4.424	k star (bias corrected MLE)	4.29
Theta hat (MLE)	0.0854	Theta star (bias corrected MLE)	0.0881
nu hat (MLE)	831.7	nu star (bias corrected)	806.5
Adjusted Level of Significance (β)	0.0474		
Approximate Chi Square Value (806.50, α)	741.6	Adjusted Chi Square Value (806.50, β)	740.6
95% Gamma Approximate UCL (use when n>=50)	0.411	95% Gamma Adjusted UCL (use when n<50)	0.411

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.393	SD (KM)	0.234
Variance (KM)	0.0549	SE of Mean (KM)	0.0504
k hat (KM)	2.805	k star (KM)	2.723
nu hat (KM)	527.4	nu star (KM)	511.9
theta hat (KM)	0.14	theta star (KM)	0.144
80% gamma percentile (KM)	0.566	90% gamma percentile (KM)	0.711
95% gamma percentile (KM)	0.847	99% gamma percentile (KM)	1.143

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (511.93, α)	460.5	Adjusted Chi Square Value (511.93, β)	459.7
95% Gamma Approximate KM-UCL (use when n>=50)	0.436	95% Gamma Adjusted KM-UCL (use when n<50)	0.437

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.953	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.908	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.156	Lilliefors GOF Test
5% Lilliefors Critical Value	0.188	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Mean in Original Scale	0.367	Mean in Log Scale	-1.11
SD in Original Scale	0.179	SD in Log Scale	0.463
95% t UCL (assumes normality of ROS data)	0.397	95% Percentile Bootstrap UCL	0.397
95% BCA Bootstrap UCL	0.399	95% Bootstrap t UCL	0.4

95% H-UCL (Log ROS) 0.4

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged) -1.102 KM Geo Mean 0.332 KM SD (logged) 0.572 95% Critical H Value (KM-Log) 1.896 95% H-UCL (KM -Log) KM Standard Error of Mean (logged) 0.126 0.438 95% Critical H Value (KM-Log) KM SD (logged) 0.572 1.896 KM Standard Error of Mean (logged) 0.126

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 72.32
 Mean in Log Scale
 1.599

 SD in Original Scale
 175
 SD in Log Scale
 2.604

 95% t UCL (Assumes normality)
 102.3
 95% H-Stat UCL
 456.8

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Approximate Gamma UCL 0.436 95% GROS Approximate Gamma UCL 0.411

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

ARCADIS Design & Consultancy for natural and built assets

Result (Carbon disulfide)

O	Statistics
Ceneral	STATISTICS

Total Number of Observations	94	Number of Distinct Observations	28
Number of Detects	10	Number of Non-Detects	84
Number of Distinct Detects	10	Number of Distinct Non-Detects	18
Minimum Detect	0.45	Minimum Non-Detect	1
Maximum Detect	35	Maximum Non-Detect	2000
Variance Detects	112.8	Percent Non-Detects	89.36%
Mean Detects	4.952	SD Detects	10.62
Median Detects	1.57	CV Detects	2.145
Skewness Detects	3.091	Kurtosis Detects	9.666
Mean of Logged Detects	0.514	SD of Logged Detects	1.335

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.463	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.842	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.445	Lilliefors GOF Test
5% Lilliefors Critical Value	0.262	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

	KM Mean	1.335	KM Standard Error of Mean	0.617
	KM SD	4.474	95% KM (BCA) UCL	2.709
95%	KM (t) UCL	2.361	95% KM (Percentile Bootstrap) UCL	2.495
95%	KM (z) UCL	2.35	95% KM Bootstrap t UCL	6.788
90% KM Chel	byshev UCL	3.187	95% KM Chebyshev UCL	4.025
97.5% KM Chel	byshev UCL	5.189	99% KM Chebyshev UCL	7.476

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	1.167	A-D Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.771	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.301	K-S Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.279	5% K-S Critical Value

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.468	k star (bias corrected MLE)	0.573	k hat (MLE)
10.59	Theta star (bias corrected MLE)	8.642	Theta hat (MLE)
9.355	nu star (bias corrected)	11.46	nu hat (MLE)
		4 052	Moan (dotacts)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	0.819
Maximum	35	Median	0.01
SD	3.708	CV	4.526
k hat (MLE)	0.234	k star (bias corrected MLE)	0.234
Theta hat (MLE)	3.498	Theta star (bias corrected MLE)	3.504
nu hat (MLE)	44.02	nu star (bias corrected)	43.95
Adjusted Level of Significance (β)	0.0474		
Approximate Chi Square Value (43.95, α)	29.74	Adjusted Chi Square Value (43.95, β)	29.56
95% Gamma Approximate UCL (use when n>=50)	1.21	95% Gamma Adjusted UCL (use when n<50)	1.218

Estimates of Gamma Parameters using KM Estimates

	•		
Mean (KM)	1.335	SD (KM)	4.474
Variance (KM)	20.02	SE of Mean (KM)	0.617
k hat (KM)	0.0891	k star (KM)	0.0933
nu hat (KM)	16.74	nu star (KM)	17.54
theta hat (KM)	14.99	theta star (KM)	14.31
80% gamma percentile (KM)	0.834	90% gamma percentile (KM)	3.446
95% gamma percentile (KM)	7.773	99% gamma percentile (KM)	21.95

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (17.54, α)	9.061	Adjusted Chi Square Value (17.54, β)	8.966
95% Gamma Approximate KM-UCL (use when n>=50)	2.585	95% Gamma Adjusted KM-UCL (use when n<50)	2.612

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.863	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.842	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.173	Lilliefors GOF Test
5% Lilliefors Critical Value	0.262	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Mean in Original Scale	1.163	Mean in Log Scale	-0.479
SD in Original Scale	3.588	SD in Log Scale	0.897
95% t UCL (assumes normality of ROS data)	1.778	95% Percentile Bootstrap UCL	1.896
95% BCA Bootstrap UCL	2.277	95% Bootstrap t UCL	3.922

95% H-UCL (Log ROS) 1.13

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged) -0.406 KM Geo Mean 0.666 KM SD (logged) 95% Critical H Value (KM-Log) 2.038 KM Standard Error of Mean (logged) 95% H-UCL (KM -Log) 0.119 1.008 95% Critical H Value (KM-Log) KM SD (logged) 0.724 2.038 KM Standard Error of Mean (logged) 0.119

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	71.39	Mean in Log Scale	1.722
SD in Original Scale	174.9	SD in Log Scale	2.448

 SD in Original Scale
 174.9
 SD in Log Scale
 2.448

 95% t UCL (Assumes normality)
 101.4
 95% H-Stat UCL
 307.8

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 1.008

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

Result (cis-1,2-Dichloroethene)

General Statistics

Total Number of Observations	94	Number of Distinct Observations	85
Number of Detects	80	Number of Non-Detects	14
Number of Distinct Detects	79	Number of Distinct Non-Detects	7
Minimum Detect	0.11	Minimum Non-Detect	1
Maximum Detect	52700	Maximum Non-Detect	500
Variance Detects	48494074	Percent Non-Detects	14.89%
Mean Detects	2566	SD Detects	6964
Median Detects	86.7	CV Detects	2.714
Skewness Detects	5.272	Kurtosis Detects	34.53
Mean of Logged Detects	4.721	SD of Logged Detects	3.172

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic 0.428 Normal GOF Test on Detected Observations Only 5% Shapiro Wilk P Value 0 Detected Data Not Normal at 5% Significance Level Lilliefors Test Statistic 0.356 Lilliefors GOF Test 5% Lilliefors Critical Value 0.0991 Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	2185	KM Standard Error of Mean	669.3
KM SD	6449	95% KM (BCA) UCL	3368
95% KM (t) UCL	3297	95% KM (Percentile Bootstrap) UCL	3343
95% KM (z) UCL	3286	95% KM Bootstrap t UCL	4136
90% KM Chebyshev UCL	4193	95% KM Chebyshev UCL	5103
97.5% KM Chebyshev UCL	6365	99% KM Chebyshev UCL	8845

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	2.407	A-D Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.9	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.15	K-S Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Leve	0.11	5% K-S Critical Value

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.23	k star (bias corrected MLE)	MLE)	k hat (MLE)
11167	Theta star (bias corrected MLE)	MLE) 111	Theta hat (MLE)
36.76	nu star (bias corrected)	MLE) 3	nu hat (MLE)
		ects) 25	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	2183
Maximum	52700	Median	33.65
SD	6484	CV	2.969
k hat (MLE)	0.173	k star (bias corrected MLE)	0.174
Theta hat (MLE)	12639	Theta star (bias corrected MLE)	12525
nu hat (MLE)	32.48	nu star (bias corrected)	32.77
Adjusted Level of Significance (β)	0.0474		
Approximate Chi Square Value (32.77, α)	20.69	Adjusted Chi Square Value (32.77, β)	20.54
amma Approximate UCL (use when n>=50)	3459	95% Gamma Adjusted UCL (use when n<50)	3484

Estimates of Gamma Parameters using KM Estimates

95% Gamma Approximate UCL (use when n>=50) 3459

Mean (KM)	2185	SD (KM)	6449
Variance (KM)	41583290	SE of Mean (KM)	669.3
k hat (KM)	0.115	k star (KM)	0.118
nu hat (KM)	21.59	nu star (KM)	22.23
theta hat (KM)	19031	theta star (KM)	18479
80% gamma percentile (KM)	1884	90% gamma percentile (KM)	6165
95% gamma percentile (KM)	12491	99% gamma percentile (KM)	31872

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (22.23, α) 12.51 Adjusted Chi Square Value (22.23, β) 12.4 95% Gamma Approximate KM-UCL (use when n>=50) 3883 95% Gamma Adjusted KM-UCL (use when n<50) 3918

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic	0.958	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0.0374	Detected Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.0875	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0991	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Approximate Lognormal at 5% Significance Level

4.043	Mean in Log Scale	le 2	Mean in Original Scale	
3.409	SD in Log Scale	le 6	SD in Original Scale	
3428	95% Percentile Bootstrap UCL	a) 3	95% t UCL (assumes normality of ROS data)	
4266	95% Bootstrap t UCL	L 3	95% BCA Bootstrap UCL	

95% H-UCL (Log ROS) 124354

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 2190
 Mean in Log Scale
 4.189

 SD in Original Scale
 6482
 SD in Log Scale
 3.323

 95% t UCL (Assumes normality)
 3300
 95% H-Stat UCL
 98560

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

97.5% KM (Chebyshev) UCL 6365

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

ARCADIS Design & Consultancy for natural and built assets

Result (Ethylbenzene)

Total Number of Observations	94	Number of Distinct Observations	23
Number of Detects	5	Number of Non-Detects	89
Number of Distinct Detects	4	Number of Distinct Non-Detects	19
Minimum Detect	0.16	Minimum Non-Detect	1
Maximum Detect	0.5	Maximum Non-Detect	2000
Variance Detects	0.0259	Percent Non-Detects	94.68%
Mean Detects	0.362	SD Detects	0.161
Median Detects	0.43	CV Detects	0.445
Skewness Detects	-0.553	Kurtosis Detects	-2.756
Mean of Logged Detects	-1.115	SD of Logged Detects	0.525

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.831	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.264	Lilliefors GOF Test
5% Lilliefors Critical Value	0.343	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.362	KM Standard Error of Mean	0.072
KM SD	0.144	95% KM (BCA) UCL	N/A
95% KM (t) UCL	0.482	95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	0.48	95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	0.578	95% KM Chebyshev UCL	0.676
97.5% KM Chebyshev UCL	0.812	99% KM Chebyshev UCL	1.078

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.547	Anderson-Darling GOF Test
5% A-D Critical Value	0.681	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.308	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.358	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

2.212	k star (bias corrected MLE)	5.197	k hat (MLE)
0.164	Theta star (bias corrected MLE)	0.0697	Theta hat (MLE)
22.12	nu star (bias corrected)	51.97	nu hat (MLE)
		0.362	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.0753	Mean	0.365
Maximum	0.838	Median	0.349
SD	0.148	CV	0.406
k hat (MLE)	5.78	k star (bias corrected MLE)	5.603
Theta hat (MLE)	0.0631	Theta star (bias corrected MLE)	0.0651
nu hat (MLE)	1087	nu star (bias corrected)	1053
Adjusted Level of Significance (β)	0.0474		
Approximate Chi Square Value (N/A, α)	979	Adjusted Chi Square Value (N/A, β)	977.9
95% Gamma Approximate UCL (use when n>=50)	0.393	95% Gamma Adjusted UCL (use when n<50)	0.393

Estimates of Gamma Parameters using KM Estimates Mean (KM) 0.362

Wican (Rivi)	0.002	CD (RW)	0.144
Variance (KM)	0.0207	SE of Mean (KM)	0.072
k hat (KM)	6.32	k star (KM)	6.125
nu hat (KM)	1188	nu star (KM)	1152
theta hat (KM)	0.0573	theta star (KM)	0.0591
80% gamma percentile (KM)	0.476	90% gamma percentile (KM)	0.558
95% gamma percentile (KM)	0.631	99% gamma percentile (KM)	0.786

SD (KM) 0 144

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (N/A, α)	1074	Adjusted Chi Square Value (N/A, β)	1073
95% Gamma Approximate KM-UCL (use when n>=50)	0.388	95% Gamma Adjusted KM-UCL (use when n<50)	0.389

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.827	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.297	Lilliefors GOF Test
5% Lilliefors Critical Value	0.343	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

-1.115	Mean in Log Scale	0.368	Mean in Original Scale
0.486	SD in Log Scale	0.186	SD in Original Scale
0.399	95% Percentile Bootstrap UCL	0.4	95% t UCL (assumes normality of ROS data)
0.405	95% Bootstrap t UCL	0.403	95% BCA Bootstrap UCL

95% H-UCL (Log ROS) 0.405

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged) -1.115 KM Geo Mean 0.328 KM SD (logged) 95% Critical H Value (KM-Log) 1.832 KM Standard Error of Mean (logged) 95% H-UCL (KM -Log) 0.235 0.4 KM SD (logged) 95% Critical H Value (KM-Log) 0.47 1.832 KM Standard Error of Mean (logged) 0.235

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 72.35
 Mean in Log Scale
 1.679

 SD in Original Scale
 175
 SD in Log Scale
 2.519

 95% t UCL (Assumes normality)
 102.3
 95% H-Stat UCL
 371.5

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 0.482

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

Result (Iron)

General Statistics

Total Number of Observations 8 Number of Distinct Observations 8 Number of Missing Observations 0

Minimum 180 Mean 5925

Maximum 17000 Median 3700

SD 6831 Std. Error of Mean 2415

Coefficient of Variation 1.153 Skewness 1.106

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic 0.789 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.818 Data Not Normal at 5% Significance Level
Lilliefors Test Statistic 0.275 Lilliefors GOF Test

5% Lilliefors Critical Value 0.283 Data appear Normal at 5% Significance Level

Data appear Approximate Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness)

95% Student's-t UCL 10501 95% Adjusted-CLT UCL (Chen-1995) 10906 95% Modified-t UCL (Johnson-1978) 10658

Gamma GOF Test

A-D Test Statistic 0.288 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.75 Detected data appear Gamma Distributed at 5% Significance Level

K-S Test Statistic 0.164 Kolmogorov-Smirnov Gamma GOF Test

5% K-S Critical Value 0.305 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE) 0.686 k star (bias corrected MLE) 0.512 Theta hat (MLE) 8636 Theta star (bias corrected MLE) 11570 nu hat (MLE) 10.98 nu star (bias corrected) 8.194 MLE Mean (bias corrected) 5925 MLE Sd (bias corrected) 8280 Approximate Chi Square Value (0.05) 2.848 Adjusted Level of Significance 0.0195 Adjusted Chi Square Value 2.114

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 17048 95% Adjusted Gamma UCL (use when n<50) 22968

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.939 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.818 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.172 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.283 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data 5.193 Mean of logged Data 7.804
Maximum of Logged Data 9.741 SD of logged Data 1.648

Assuming Lognormal Distribution

95% H-UCL 235070 90% Chebyshev (MVUE) UCL 19466
95% Chebyshev (MVUE) UCL 25067 97.5% Chebyshev (MVUE) UCL 32839

99% Chebyshev (MVUE) UCL 48107

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

 95% CLT UCL
 9898
 95% Jackknife UCL
 10501

 95% Standard Bootstrap UCL
 9614
 95% Bootstrap+t UCL
 16035

 95% Hall's Bootstrap UCL
 36408
 95% Percentile Bootstrap UCL
 9965

 95% BCA Bootstrap UCL
 10450

 90% Chebyshev(Mean, Sd) UCL
 13171
 95% Chebyshev(Mean, Sd) UCL
 16453

 97.5% Chebyshev(Mean, Sd) UCL
 21008
 99% Chebyshev(Mean, Sd) UCL
 29956

Suggested UCL to Use

95% Student's-t UCL 10501

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

ARCADIS for built

Result (m-,p-Xylene)

l Statistics

Total Number of Observations	94	Number of Distinct Observations	32
Number of Detects	14	Number of Non-Detects	80
Number of Distinct Detects	13	Number of Distinct Non-Detects	19
Minimum Detect	0.13	Minimum Non-Detect	2
Maximum Detect	2.32	Maximum Non-Detect	4000
Variance Detects	0.289	Percent Non-Detects	85.11%
Mean Detects	0.615	SD Detects	0.538
Median Detects	0.56	CV Detects	0.874
Skewness Detects	2.673	Kurtosis Detects	8.773
Mean of Logged Detects	-0.756	SD of Logged Detects	0.767

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.682	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.874	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.302	Lilliefors GOF Test
5% Lilliefors Critical Value	0.226	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.529	KM Standard Error of Mean	0.0768
KM SD	0.357	95% KM (BCA) UCL	0.659
95% KM (t) UCL	0.656	95% KM (Percentile Bootstrap) UCL	0.653
95% KM (z) UCL	0.655	95% KM Bootstrap t UCL	0.672
90% KM Chebyshev UCL	0.759	95% KM Chebyshev UCL	0.864
97.5% KM Chebyshev UCL	1.008	99% KM Chebyshev UCL	1.293

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.704	Anderson-Darling GOF Test
5% A-D Critical Value	0.746	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.201	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.232	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

1.622	k star (bias corrected MLE)	2.003	k hat (MLE)
0.379	Theta star (bias corrected MLE)	0.307	Theta hat (MLE)
45.41	nu star (bias corrected)	56.1	nu hat (MLE)
		0.615	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.524	Mean	0.0226	Minimum
0.465	Median	2.32	Maximum
0.644	CV	0.338	SD
2.424	k star (bias corrected MLE)	2.497	k hat (MLE)
0.216	Theta star (bias corrected MLE)	0.21	Theta hat (MLE)
455.8	nu star (bias corrected)	469.4	nu hat (MLE)
		0.0474	Adjusted Level of Significance (β)
406.6	Adjusted Chi Square Value (455.78, β)	407.3	Approximate Chi Square Value (455.78, α)
0.588	95% Gamma Adjusted UCL (use when n<50)	0.587	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.529	SD (KM)	0.357
Variance (KM)	0.127	SE of Mean (KM)	0.0768
k hat (KM)	2.197	k star (KM)	2.134
nu hat (KM)	413.1	nu star (KM)	401.2
theta hat (KM)	0.241	theta star (KM)	0.248
80% gamma percentile (KM)	0.785	90% gamma percentile (KM)	1.013
95% gamma percentile (KM)	1.229	99% gamma percentile (KM)	1.706

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (401.23, α)	355.8	Adjusted Chi Square Value (401.23, β)	355.1
95% Gamma Approximate KM-UCL (use when n>=50)	0.596	95% Gamma Adjusted KM-UCL (use when n<50)	0.597

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.904	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.874	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.225	Lilliefors GOF Test
5% Lilliefors Critical Value	0.226	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Mean in Original Scale	0.502	Mean in Log Scale	-0.84
SD in Original Scale	0.308	SD in Log Scale	0.554
95% t UCL (assumes normality of ROS data)	0.555	95% Percentile Bootstrap UCL	0.555
95% BCA Bootstrap UCL	0.568	95% Bootstrap t UCL	0.566

95% H-UCL (Log ROS) 0.561

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

0.433 KM Mean (logged) -0.837 KM Geo Mean KM SD (logged) 0.662 95% Critical H Value (KM-Log) 1.976 KM Standard Error of Mean (logged) 95% H-UCL (KM -Log) 0.178 0.617 KM SD (logged) 95% Critical H Value (KM-Log) 0.662 1.976 KM Standard Error of Mean (logged) 0.178

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed Mean in Log Scale 2.282 Mean in Original Scale 144.7

SD in Original Scale 350 SD in Log Scale 2.63 95% H-Stat UCL 985.8 95% t UCL (Assumes normality) 204.6

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Approximate Gamma UCL 95% GROS Approximate Gamma UCL 0.587

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

Result (Manganese)

General Statistics

Total Number of Observations	8	Number of Distinct Observations	8
		Number of Missing Observations	0
Minimum	13	Mean	151
Maximum	480	Median	63.5
SD	192.1	Std. Error of Mean	67.93
Coefficient of Variation	1.272	Skewness	1.403

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.674	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.818	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.415	Lilliefors GOF Test
5% Lilliefors Critical Value	0.283	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL	95% UCLs (Adjusted for Skewness)
----------------	----------------------------------

95% Student's-t UCL 279.7 95% Adjusted-CLT UCL (Chen-1995) 298.7 95% Modified-t UCL (Johnson-1978) 285.3

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.783	A-D Test Statistic
Data Not Gamma Distributed at 5% Significance	0.742	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.347	K-S Test Statistic
Data Not Gamma Distributed at 5% Significance	0.303	5% K-S Critical Value

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

	k hat (MLE)	0.833	k star (bias corrected MLE)	0.604
Thet	a hat (MLE)	181.3	Theta star (bias corrected MLE)	250.1
n	u hat (MLE)	13.32	nu star (bias corrected)	9.66
MLE Mean (bia	s corrected)	151	MLE Sd (bias corrected)	194.3
			Approximate Chi Square Value (0.05)	3.731
Adjusted Level of	Significance	0.0195	Adjusted Chi Square Value	2.859

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 391 95% Adjusted Gamma UCL (use when n<50) 510.2

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.887	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.818	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.273	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.283	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	2.565	Mean of logged Data	4.308
Maximum of Logged Data	6.174	SD of logged Data	1.276

Assuming Lognormal Distribution

95% H-UCL	1233	90% Chebyshev (MVUE) UCL	343
95% Chebyshev (MVUE) UCL	433.1	97.5% Chebyshev (MVUE) UCL	558
99% Chebyshev (MVUE) UCL	803.4		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	262.7	95% Jackknife UCL	279.7
95% Standard Bootstrap UCL	256.4	95% Bootstrap-t UCL	1010
95% Hall's Bootstrap UCL	1523	95% Percentile Bootstrap UCL	261.3
95% BCA Bootstrap UCL	296.9		
90% Chebyshev(Mean, Sd) UCL	354.8	95% Chebyshev(Mean, Sd) UCL	447.1
97.5% Chebyshev(Mean, Sd) UCL	575.2	99% Chebyshev(Mean, Sd) UCL	826.9

Suggested UCL to Use

95% Chebyshev (Mean, Sd) UCL 447.1

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

 $\label{thm:commendations} \mbox{Recommendations are based upon data size, data distribution, and skewness.}$

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

ARCADIS Design & Consultancy for natural and built assets

Result (Methyl tert-butyl ether)

General Statistics

Total Number of Observations	94	Number of Distinct Observations	26
Number of Detects	7	Number of Non-Detects	87
Number of Distinct Detects	7	Number of Distinct Non-Detects	19
Minimum Detect	0.13	Minimum Non-Detect	1
Maximum Detect	1.02	Maximum Non-Detect	2000
Variance Detects	0.0894	Percent Non-Detects	92.55%
Mean Detects	0.451	SD Detects	0.299
Median Detects	0.37	CV Detects	0.662
Skewness Detects	1.326	Kurtosis Detects	1.546
Mean of Logged Detects	-0.976	SD of Logged Detects	0.657

Normal GOF Test on Detects Only

		·
Shapiro Wilk Test Statistic	0.873	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.803	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.309	Lilliefors GOF Test
5% Lilliefors Critical Value	0.304	Detected Data Not Normal at 5% Significance Level

Detected Data appear Approximate Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

0.0722	KM Standard Error of Mean	0.373	KM Mean
0.508	95% KM (BCA) UCL	0.191	KM SD
0.496	95% KM (Percentile Bootstrap) UCL	0.493	95% KM (t) UCL
0.552	95% KM Bootstrap t UCL	0.492	95% KM (z) UCL
0.687	95% KM Chebyshev UCL	0.589	90% KM Chebyshev UCL
1.091	99% KM Chebyshev UCL	0.823	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.294	Anderson-Darling GOF Test	
5% A-D Critical Value	0.712	Detected data appear Gamma Distributed at 5% Significance Level	
K-S Test Statistic	0.249	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.314	Detected data appear Gamma Distributed at 5% Significance Level	

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	2.925	k star (bias corrected MLE)	1.767
Theta hat (MLE)	0.154	Theta star (bias corrected MLE)	0.256
nu hat (MLE)	40.95	nu star (bias corrected)	24.73
Mean (detects)	0.451		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.0869	Mean	0.367
Maximum	1.02	Median	0.342
SD	0.164	CV	0.449
k hat (MLE)	5.176	k star (bias corrected MLE)	5.018
Theta hat (MLE)	0.0708	Theta star (bias corrected MLE)	0.073
nu hat (MLE)	973.1	nu star (bias corrected)	943.4
Adjusted Level of Significance (β)	0.0474		
Approximate Chi Square Value (943.37, α)	873.1	Adjusted Chi Square Value (943.37, β)	872
95% Gamma Approximate UCL (use when n>=50)	0.396	95% Gamma Adjusted UCL (use when n<50)	0.397

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.373	SD (KM)	0.191
Variance (KM)	0.0363	SE of Mean (KM)	0.0722
k hat (KM)	3.825	k star (KM)	3.71
nu hat (KM)	719.1	nu star (KM)	697.4
theta hat (KM)	0.0975	theta star (KM)	0.101
80% gamma percentile (KM)	0.519	90% gamma percentile (KM)	0.632
95% gamma percentile (KM)	0.737	99% gamma percentile (KM)	0.963

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (697.44, α)	637.2	Adjusted Chi Square Value (697.44, β)	636.3
95% Gamma Approximate KM-UCL (use when n>=50)	0.408	95% Gamma Adjusted KM-UCL (use when n<50)	0.409

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.967	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.803	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.209	Lilliefors GOF Test
5% Lilliefors Critical Value	0.304	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Mean in Original Scale	0.352	Mean in Log Scale	-1.139
SD in Original Scale	0.16	SD in Log Scale	0.436
95% t UCL (assumes normality of ROS data)	0.379	95% Percentile Bootstrap UCL	0.38
95% BCA Bootstrap UCL	0.383	95% Bootstrap t UCL	0.38

95% H-UCL (Log ROS) 0.382

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-1.114	KM Geo Mean	0.328
KM SD (logged)	0.516	95% Critical H Value (KM-Log)	1.859
KM Standard Error of Mean (logged)	0.213	95% H-UCL (KM -Log)	0.414
KM SD (logged)	0.516	95% Critical H Value (KM-Log)	1.859
KM Standard Error of Mean (logged)	0.213		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	72.36	Mean in Log Scale	1.681
SD in Original Scale	175	SD in Log Scale	2.52
95% t UCL (Assumes normality)	102.3	95% H-Stat UCL	373.4

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 0.493

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

ARCADIS | Design & Consultancy for natural and built assets

Result (Naphthalene)

O	Statistics

Total Number of Observations	94	Number of Distinct Observations	26
Number of Detects	7	Number of Non-Detects	87
Number of Distinct Detects	7	Number of Distinct Non-Detects	19
Minimum Detect	0.12	Minimum Non-Detect	1
Maximum Detect	383	Maximum Non-Detect	2000
Variance Detects	20461	Percent Non-Detects	92.55%
Mean Detects	59.64	SD Detects	143
Median Detects	0.71	CV Detects	2.399
Skewness Detects	2.612	Kurtosis Detects	6.855
Mean of Logged Detects	0.891	SD of Logged Detects	2.785

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.501	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.803	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.436	Lilliefors GOF Test
5% Lilliefors Critical Value	0.304	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	5.744	KM Standard Error of Mean	5.032
KM SD	42.1	95% KM (BCA) UCL	15.87
95% KM (t) UCL	14.1	95% KM (Percentile Bootstrap) UCL	14.95
95% KM (z) UCL	14.02	95% KM Bootstrap t UCL	241.5
90% KM Chebyshev UCL	20.84	95% KM Chebyshev UCL	27.68
97.5% KM Chebyshev UCL	37.17	99% KM Chebyshev UCL	55.81

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	1.034	Anderson-Darling GOF Test
5% A-D Critical Value	0.813	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.4	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.341	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.224	k star (bias corrected MLE)	0.226	k hat (MLE)
265.9	Theta star (bias corrected MLE)	264.1	Theta hat (MLE)
3.14	nu star (bias corrected)	3.161	nu hat (MLE)
		59.64	Mean (detects)

Mean 6.537

Median 0.01

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum 0.01

Maximum 383

SD	40.16	CV	6.143
k hat (MLE)	0.144	k star (bias corrected MLE)	0.147
Theta hat (MLE)	45.32	Theta star (bias corrected MLE)	44.55
nu hat (MLE)	27.12	nu star (bias corrected)	27.59
Adjusted Level of Significance (β)	0.0474		
Approximate Chi Square Value (27.59, α)	16.61	Adjusted Chi Square Value (27.59, β)	16.48
95% Gamma Approximate UCL (use when n>=50)	10.86	95% Gamma Adjusted UCL (use when n<50)	10.95

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	5.744	SD (KM)	42.1
Variance (KM)	1773	SE of Mean (KM)	5.032
k hat (KM)	0.0186	k star (KM)	0.0251
nu hat (KM)	3.499	nu star (KM)	4.72
theta hat (KM)	308.6	theta star (KM)	228.7
80% gamma percentile (KM)	0.0181	90% gamma percentile (KM)	1.99
95% gamma percentile (KM)	18.35	99% gamma percentile (KM)	154.7

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (4.72, α)	1.025	Adjusted Chi Square Value (4.72, β)	1
95% Gamma Approximate KM-UCL (use when n>=50)	26.44	95% Gamma Adjusted KM-UCL (use when n<50)	27.12

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.837	Snapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.803	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.334	Lilliefors GOF Test
5% Lilliefors Critical Value	0.304	Detected Data Not Lognormal at 5% Significance Level

Detected Data appear Approximate Lognormal at 5% Significance Level

-0.689	Mean in Log Scale	5.307	Mean in Original Scale
1.521	SD in Log Scale	39.52	SD in Original Scale
13.27	95% Percentile Bootstrap UCL	12.08	95% t UCL (assumes normality of ROS data)
162.5	95% Bootstrap t UCL	18.48	95% BCA Bootstrap UCL

95% H-UCL (Log ROS) 2.486

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

0.535 KM Mean (logged) -0.625 KM Geo Mean KM SD (logged) 1.181 95% Critical H Value (KM-Log) 2.432 KM Standard Error of Mean (logged) 95% H-UCL (KM -Log) 0.408 1.449 95% Critical H Value (KM-Log) 2.432 KM SD (logged) 1.181 KM Standard Error of Mean (logged) 0.408

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 76.35
 Mean in Log Scale
 1.741

 SD in Original Scale
 177.8
 SD in Log Scale
 2.533

 95% t UCL (Assumes normality)
 106.8
 95% H-Stat UCL
 414.8

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 27.68

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

ARCADIS Design & Consultancy for natural and bullt assets

Result (o-Xylene)

Conorol	Statistics
General	SIGUSTICS

Total Number of Observations	94	Number of Distinct Observations	24
Number of Detects	5	Number of Non-Detects	89
Number of Distinct Detects	5	Number of Distinct Non-Detects	19
Minimum Detect	0.11	Minimum Non-Detect	1
Maximum Detect	0.54	Maximum Non-Detect	2000
Variance Detects	0.0374	Percent Non-Detects	94.68%
Mean Detects	0.352	SD Detects	0.193
Median Detects	0.45	CV Detects	0.549
Skewness Detects	-0.552	Kurtosis Detects	-2.706
Mean of Logged Detects	-1.214	SD of Logged Detects	0.707

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.858	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.294	Lilliefors GOF Test
5% Lilliefors Critical Value	0.343	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

0.0865	KM Standard Error of Mean	0.352	KM Mean
0.488	95% KM (BCA) UCL	0.173	KM SD
0.495	95% KM (Percentile Bootstrap) UCL	0.496	95% KM (t) UCL
0.501	95% KM Bootstrap t UCL	0.494	95% KM (z) UCL
0.729	95% KM Chebyshev UCL	0.611	90% KM Chebyshev UCL
1.212	99% KM Chebyshev UCL	0.892	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.53	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance	0.682	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.338	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance	0.359	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	3.097	k star (bias corrected MLE)	1.372
Theta hat (MLE)	0.114	Theta star (bias corrected MLE)	0.257
nu hat (MLE)	30.97	nu star (bias corrected)	13.72
Mean (detects)	0.352		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.357	Mean	0.0363	Minimum
0.331	Median	0.967	Maximum
0.505	CV	0.18	SD
3.517	k star (bias corrected MLE)	3.625	k hat (MLE)
0.101	Theta star (bias corrected MLE)	0.0984	Theta hat (MLE)
661.2	nu star (bias corrected)	681.6	nu hat (MLE)
		0.0474	Adjusted Level of Significance (β)
601.6	Adjusted Chi Square Value (661.15, β)	602.5	Approximate Chi Square Value (661.15, α)
0.392	95% Gamma Adjusted UCL (use when n<50)	0.391	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.352	SD (KM)	0.173
Variance (KM)	0.0299	SE of Mean (KM)	0.0865
k hat (KM)	4.145	k star (KM)	4.019
nu hat (KM)	779.2	nu star (KM)	755.6
theta hat (KM)	0.0849	theta star (KM)	0.0876
80% gamma percentile (KM)	0.485	90% gamma percentile (KM)	0.587
95% gamma percentile (KM)	0.681	99% gamma percentile (KM)	0.882

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (755.63, α)	692.8	Adjusted Chi Square Value (755.63, β)	691.9
95% Gamma Approximate KM-UCL (use when n>=50)	0.384	95% Gamma Adjusted KM-UCL (use when n<50)	0.384

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.838	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.322	Lilliefors GOF Test
5% Lilliefors Critical Value	0.343	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Mean in Original Scale	0.366	Mean in Log Scale	-1.214
SD in Original Scale	0.257	SD in Log Scale	0.655
95% t UCL (assumes normality of ROS data)	0.41	95% Percentile Bootstrap UCL	0.413
95% BCA Bootstrap UCL	0.418	95% Bootstrap t UCL	0.416

95% H-UCL (Log ROS) 0.421

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-1.214	KM Geo Mean	0.297
KM SD (logged)	0.632	95% Critical H Value (KM-Log)	1.945
(M Standard Error of Mean (logged)	0.316	95% H-UCL (KM -Log)	0.412
KM SD (logged)	0.632	95% Critical H Value (KM-Log)	1.945
M Standard Error of Mean (logged)	0.316		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	72.35	Mean in Log Scale	1.674
SD in Original Scale	175	SD in Log Scale	2.527
95% t UCL (Assumes normality)	102.3	95% H-Stat UCL	379.2

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 0.496

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

ARCADIS Design & Consultancy for natural and built assets

Result (tert-Butylbenzene)

Canaral	Statistics
General	SIMISHES

Total Number of Observations	94	Number of Distinct Observations	25
Number of Detects	6	Number of Non-Detects	88
Number of Distinct Detects	6	Number of Distinct Non-Detects	19
Minimum Detect	0.16	Minimum Non-Detect	1
Maximum Detect	1.89	Maximum Non-Detect	2000
Variance Detects	0.355	Percent Non-Detects	93.62%
Mean Detects	1.07	SD Detects	0.596
Median Detects	1.02	CV Detects	0.557
Skewness Detects	-0.183	Kurtosis Detects	0.306
Mean of Logged Detects	-0.158	SD of Logged Detects	0.876

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.976	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.788	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.18	Lilliefors GOF Test
5% Lilliefors Critical Value	0.325	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

	KM Mean	0.714	KM Standard Error of Mean	0.213
	KM SD	0.417	95% KM (BCA) UCL	1.045
	95% KM (t) UCL	1.068	95% KM (Percentile Bootstrap) UCL	1.039
	95% KM (z) UCL	1.064	95% KM Bootstrap t UCL	1.798
90% K	M Chebyshev UCL	1.353	95% KM Chebyshev UCL	1.642
97.5% K	M Chebyshev UCL	2.043	99% KM Chebyshev UCL	2.832

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.427	Anderson-Darling GOF Test
5% A-D Critical Value	0.703	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.259	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.335	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

1.295	k star (bias corrected MLE)	2.367	k hat (MLE)
0.827	Theta star (bias corrected MLE)	0.452	Theta hat (MLE)
15.53	nu star (bias corrected)	28.4	nu hat (MLE)
		1.07	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small. For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.16	Mean	0.659
Maximum	1.89	Median	0.611
SD	0.289	CV	0.439
k hat (MLE)	5.521	k star (bias corrected MLE)	5.352
Theta hat (MLE)	0.119	Theta star (bias corrected MLE)	0.123
nu hat (MLE)	1038	nu star (bias corrected)	1006
Adjusted Level of Significance (β)	0.0474		
Approximate Chi Square Value (N/A, α)	933.5	Adjusted Chi Square Value (N/A, β)	932.5
95% Gamma Approximate UCL (use when n>=50)	0.71	95% Gamma Adjusted UCL (use when n<50)	0.711

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.714	SD (KM)	0.417
Variance (KM)	0.174	SE of Mean (KM)	0.213
k hat (KM)	2.94	k star (KM)	2.854
nu hat (KM)	552.8	nu star (KM)	536.5
theta hat (KM)	0.243	theta star (KM)	0.25
80% gamma percentile (KM)	1.025	90% gamma percentile (KM)	1.281
95% gamma percentile (KM)	1.521	99% gamma percentile (KM)	2.042

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (536.47, α)	483.8	Adjusted Chi Square Value (536.47, β)	483
95% Gamma Approximate KM-UCL (use when n>=50)	0.792	95% Gamma Adjusted KM-UCL (use when n<50)	0.793

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.817	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.788	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.309	Lilliefors GOF Test
5% Lilliefors Critical Value	0.325	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Mean in Original Scale	0.55	Mean in Log Scale	-0.73	
SD in Original Scale	0.297	SD in Log Scale	0.519	
95% t UCL (assumes normality of ROS data)	0.6	95% Percentile Bootstrap UCL	0.6	
95% BCA Bootstrap UCL	0.607	95% Bootstrap t UCL	0.607	

95% H-UCL (Log ROS) 0.609

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged) -0.607 KM Geo Mean 0.545 KM SD (logged) 0.835 95% Critical H Value (KM-Log) 2.095 KM Standard Error of Mean (logged) 95% H-UCL (KM -Log) 0.481 0.925 KM SD (logged) 95% Critical H Value (KM-Log) 0.835 2.095 KM Standard Error of Mean (logged) 0.481

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 72.4
 Mean in Log Scale
 1.736

 SD in Original Scale
 175
 SD in Log Scale
 2.471

 95% t UCL (Assumes normality)
 102.4
 95% H-Stat UCL
 336.8

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 1.068

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

ARCADIS Design & Consultancy for natural and built assets

Result (Toluene)

General	Statistics

Total Number of Observations	94	Number of Distinct Observations	40
Number of Detects	21	Number of Non-Detects	73
Number of Distinct Detects	21	Number of Distinct Non-Detects	19
Minimum Detect	0.15	Minimum Non-Detect	1
Maximum Detect	110	Maximum Non-Detect	2000
Variance Detects	936.3	Percent Non-Detects	77.66%
Mean Detects	12.63	SD Detects	30.6
Median Detects	0.49	CV Detects	2.423
Skewness Detects	2.632	Kurtosis Detects	6.11
Mean of Logged Detects	0.0307	SD of Logged Detects	2.062

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.47	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.908	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.443	Lilliefors GOF Test
5% Lilliefors Critical Value	0 188	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	4.136	KM Standard Error of Mean	2.093
KM SD	17.17	95% KM (BCA) UCL	8.222
95% KM (t) UCL	7.613	95% KM (Percentile Bootstrap) UCL	8.004
95% KM (z) UCL	7.578	95% KM Bootstrap t UCL	13.96
90% KM Chebyshev UCL	10.41	95% KM Chebyshev UCL	13.26
97.5% KM Chebyshev UCL	17.21	99% KM Chebyshev UCL	24.96

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	3.34	A-D Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.857	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.353	K-S Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.206	5% K-S Critical Value

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.271	k star (bias corrected MLE)	0.279	k hat (MLE)
46.68	Theta star (bias corrected MLE)	45.33	Theta hat (MLE)
11.36	nu star (bias corrected)	11.7	nu hat (MLE)
		12.63	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

4.021	Mean	0.01	Minimum
0.01	Median	110	Maximum
3.805	CV	15.3	SD
0.194	k star (bias corrected MLE)	0.193	k hat (MLE)
20.75	Theta star (bias corrected MLE)	20.86	Theta hat (MLE)
36.42	nu star (bias corrected)	36.25	nu hat (MLE)
		0.0474	Adjusted Level of Significance (β)
23.45	Adjusted Chi Square Value (36.42, β)	23.61	Approximate Chi Square Value (36.42, α)
6.246	95% Gamma Adjusted UCL (use when n<50)	6.203	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	4.136	SD (KM)	17.17
Variance (KM)	294.7	SE of Mean (KM)	2.093
k hat (KM)	0.058	k star (KM)	0.0633
nu hat (KM)	10.91	nu star (KM)	11.9
theta hat (KM)	71.26	theta star (KM)	65.36
80% gamma percentile (KM)	1.154	90% gamma percentile (KM)	8.19
95% gamma percentile (KM)	23.43	99% gamma percentile (KM)	81.53

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (11.90, α)	5.16	Adjusted Chi Square Value (11.90, β)	5.09
95% Gamma Approximate KM-UCL (use when n>=50)	9.538	95% Gamma Adjusted KM-UCL (use when n<50)	9.667

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.783	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.908	Detected Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.259	Lilliefors GOF Test
5% Lilliefors Critical Value	0.188	Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

-0.56	Mean in Log Scale	3.434	Mean in Original Scale
1.375	SD in Log Scale	15.05	SD in Original Scale
6.213	95% Percentile Bootstrap UCL	6.013	95% t UCL (assumes normality of ROS data)
15.96	95% Bootstrap t UCL	7.234	95% BCA Bootstrap UCL

95% H-UCL (Log ROS) 2.145

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-0.686	KM Geo Mean	0.503
KM SD (logged)	1.319	95% Critical H Value (KM-Log)	2.582
KM Standard Error of Mean (logged)	0.201	95% H-UCL (KM -Log)	1.712
KM SD (logged)	1.319	95% Critical H Value (KM-Log)	2.582
KM Standard Error of Mean (logged)	0.201		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	74.93	Mean in Log Scale	1.797
SD in Original Scale	174.6	SD in Log Scale	2.574
95% t UCL (Assumes normality)	104 8	95% H-Stat UCI	501 6

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 13.26

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

ARCADIS Design & Consultancy for natural and little assets

Result (trans-1,2-Dichloroethene)

O	Statistics
Ceneral	STATISTICS

Total Number of Observations	94	Number of Distinct Observations	39
Number of Detects	25	Number of Non-Detects	69
Number of Distinct Detects	24	Number of Distinct Non-Detects	16
Minimum Detect	0.14	Minimum Non-Detect	1
Maximum Detect	142	Maximum Non-Detect	2000
Variance Detects	1645	Percent Non-Detects	73.4%
Mean Detects	22.9	SD Detects	40.55
Median Detects	2.16	CV Detects	1.771
Skewness Detects	2.029	Kurtosis Detects	3.225
Mean of Logged Detects	1.062	SD of Logged Detects	2.376

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.63	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.918	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.326	Lilliefors GOF Test
5% Lilliefors Critical Value	0.173	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	8.018	KM Standard Error of Mean	2.918
KM SD	24.98	95% KM (BCA) UCL	12.99
95% KM (t) UCL	12.87	95% KM (Percentile Bootstrap) UCL	13.16
95% KM (z) UCL	12.82	95% KM Bootstrap t UCL	15.9
90% KM Chebyshev UCL	16.77	95% KM Chebyshev UCL	20.74
97.5% KM Chebyshev UCL	26.24	99% KM Chebyshev UCL	37.06

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	1.15	Anderson-Darling GOF Test
5% A-D Critical Value	0.845	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.172	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.189	Detected data appear Gamma Distributed at 5% Significance Level

Detected data follow Appr. Gamma Distribution at 5% Significance Level

Gamma Statistics on Detected Data Only

0.316	k star (bias corrected MLE)	0.328	k hat (MLE)
72.54	Theta star (bias corrected MLE)	69.72	Theta hat (MLE)
15.78	nu star (bias corrected)	16.42	nu hat (MLE)
		22.9	Mean (detects)

Mean 6.967

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs This is especially true when the sample size is small.

Minimum 0.01

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.01	Median	142	Maximum
3.3	CV	22.99	SD
0.177	k star (bias corrected MLE)	0.175	k hat (MLE)
39.39	Theta star (bias corrected MLE)	39.72	Theta hat (MLE)
33.26	nu star (bias corrected)	32.98	nu hat (MLE)
		0.0474	Adjusted Level of Significance (β)
20.92	Adjusted Chi Square Value (33.26, β)	21.07	Approximate Chi Square Value (33.26, α)
11.08	95% Gamma Adjusted UCL (use when n<50)	11	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	8.018	SD (KM)	24.98
Variance (KM)	623.8	SE of Mean (KM)	2.918
k hat (KM)	0.103	k star (KM)	0.107
nu hat (KM)	19.38	nu star (KM)	20.09
theta hat (KM)	77.8	theta star (KM)	75.03
80% gamma percentile (KM)	6.102	90% gamma percentile (KM)	21.9
95% gamma percentile (KM)	46.32	99% gamma percentile (KM)	123.2

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (20.09, α)	10.92	Adjusted Chi Square Value (20.09, β)	10.81
95% Gamma Approximate KM-UCL (use when n>=50)	14.75	95% Gamma Adjusted KM-UCL (use when n<50)	14.9

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.91	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.918	Detected Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.133	Lilliefors GOF Test
5% Lilliefors Critical Value	0.173	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Approximate Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects			
Mean in Original Scale	6.833	Mean in Log Scale	-0.266
SD in Original Scale	22.81	SD in Log Scale	1.869
95% t UCL (assumes normality of ROS data)	10.74	95% Percentile Bootstrap UCL	11.08
95% BCA Bootstrap UCL	12.33	95% Bootstrap t UCL	14.17

95% H-UCL (Log ROS) 8.219

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged) -0.351 KM Geo Mean 0.704 KM SD (logged) 1.83 95% Critical H Value (KM-Log) 3.186 KM Standard Error of Mean (logged) 95% H-UCL (KM -Log) 0.267 6.871 95% Critical H Value (KM-Log) KM SD (logged) 1.83 3.186 KM Standard Error of Mean (logged) 0.267

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 69.19
 Mean in Log Scale
 1.592

 SD in Original Scale
 174.2
 SD in Log Scale
 2.526

 95% t UCL (Assumes normality)
 99.05
 95% H-Stat UCL
 349.4

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Approximate Gamma UCL 14.75

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

ARCADIS | Design & Consultancy bullt assets

Result (Trichloroethene)

0	Statistics
General	SIBIISTICS

otal Number of Observations	94	Number of Distinct Observations	73
Number of Detects	64	Number of Non-Detects	30
Number of Distinct Detects	60	Number of Distinct Non-Detects	13
Minimum Detect	0.23	Minimum Non-Detect	1
Maximum Detect	64200	Maximum Non-Detect	800
Variance Detects	1.067E+8	Percent Non-Detects	31.91%
Mean Detects	2809	SD Detects	10327
Median Detects	30.4	CV Detects	3.677
Skewness Detects	4.782	Kurtosis Detects	23.74
Mean of Logged Detects	3.45	SD of Logged Detects	3.577

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic 0.313 Normal GOF Test on Detected Observations Only

5% Shapiro Wilk P Value 0 Detected Data Not Normal at 5% Significance Level

Lilliefors Test Statistic 0.416 Lilliefors GOF Test

5% Lilliefors Critical Value 0.111 Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	1915	KM Standard Error of Mean	889.3
KM SD	8555	95% KM (BCA) UCL	3762
95% KM (t) UCL	3392	95% KM (Percentile Bootstrap) UCL	3495
95% KM (z) UCL	3377	95% KM Bootstrap t UCL	8829
90% KM Chebyshev UCL	4583	95% KM Chebyshev UCL	5791
97.5% KM Chebyshev UCL	7469	99% KM Chebyshev UCL	10763

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic 4.306 Anderson-Darling GOF Test

5% A-D Critical Value 0.945 Detected Data Not Gamma Distributed at 5% Significance Level

K-S Test Statistic 0.172 Kolmogorov-Smirnov GOF

5% K-S Critical Value 0.125 Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.171	k star (bias corrected MLE)	0.168	k hat (MLE)
16445	Theta star (bias corrected MLE)	16692	Theta hat (MLE)
21.86	nu star (bias corrected)	21.54	nu hat (MLE)
		2809	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum 0.01 Mean 1912 Maximum 64200 Median 1.3 SD 8601 CV 4.498 k hat (MLE) 0.119 k star (bias corrected MLE) 0.122 Theta hat (MLE) 16082 Theta star (bias corrected MLE) 15648 nu hat (MLE) 22.36 nu star (bias corrected) 22.98 Adjusted Level of Significance (β) 0.0474

Approximate Chi Square Value (22.98, α) 13.07 Adjusted Chi Square Value (22.98, β) 12.96 95% Gamma Approximate UCL (use when n>=50) 3361 95% Gamma Adjusted UCL (use when n<50) 3391

Estimates of Gamma Parameters using KM Estimates

 Mean (KM)
 1915
 SD (KM)
 8555

 Variance (KM)
 73185147
 SE of Mean (KM)
 889.3

 k hat (KM)
 0.0501
 k star (KM)
 0.0556

 nu hat (KM)
 9.417
 nu star (KM)
 10.45

 theta hat (KM)
 38224
 theta star (KM)
 34446

 80% gamma percentile (KM)
 368.7
 90% gamma percentile (KM)
 3322

 95% gamma percentile (KM)
 10530
 99% gamma percentile (KM)
 39896

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (10.45, α) 4.225 Adjusted Chi Square Value (10.45, β) 4.163 95% Gamma Approximate KM-UCL (use when n>=50) 4736 95% Gamma Adjusted KM-UCL (use when n<50) 4806

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic 0.923 **Shapiro Wilk GOF Test**5% Shapiro Wilk P Value 5.2276E-4 Detected Data Not Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.119 **Lilliefors GOF Test**

5% Lilliefors Critical Value 0.111 Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

Mean in Original Scale	1913	Mean in Log Scale	2.307
SD in Original Scale	8601	SD in Log Scale	3.515
95% t UCL (assumes normality of ROS data)	3387	95% Percentile Bootstrap UCL	3594
95% BCA Bootstrap UCL	4128	95% Bootstrap t UCL	5307

95% H-UCL (Log ROS) 35309

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged) 2.283 KM Geo Mean 9.802 KM SD (logged) 3.477 95% Critical H Value (KM-Log) 5.401 KM Standard Error of Mean (logged) 95% H-UCL (KM -Log) 29015 0.371 95% Critical H Value (KM-Log) 5.401 KM SD (logged) 3.477 KM Standard Error of Mean (logged) 0.371

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 1925
 Mean in Log Scale
 2.853

 SD in Original Scale
 8598
 SD in Log Scale
 3.313

 95% t UCL (Assumes normality)
 3399
 95% H-Stat UCL
 24825

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

99% KM (Chebyshev) UCL 10763

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

ARCADIS | Design & Consultancy for natural and built assets

Result (Vinyl chloride)

General Statistic

Total Number of Observations	94	Number of Distinct Observations	76
Number of Detects	69	Number of Non-Detects	25
Number of Distinct Detects	68	Number of Distinct Non-Detects	9
Minimum Detect	0.25	Minimum Non-Detect	1
Maximum Detect	14900	Maximum Non-Detect	800
Variance Detects	4597584	Percent Non-Detects	26.6%
Mean Detects	810.9	SD Detects	2144
Median Detects	36	CV Detects	2.644
Skewness Detects	4.855	Kurtosis Detects	28.33
Mean of Logged Detects	3.703	SD of Logged Detects	2.975

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic 0.44 Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value 0 Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic 0.353 Lilliefors GOF Test
5% Lilliefors Critical Value 0.107 Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	597.1	KM Standard Error of Mean	193.1
KM SD	1858	95% KM (BCA) UCL	1005
95% KM (t) UCL	917.9	95% KM (Percentile Bootstrap) UCL	962.1
95% KM (z) UCL	914.7	95% KM Bootstrap t UCL	1167
90% KM Chebyshev UCL	1176	95% KM Chebyshev UCL	1439
97.5% KM Chebyshev UCL	1803	99% KM Chebyshev UCL	2518

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	2.698	Anderson-Darling GOF Test
5% A-D Critical Value	0.896	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.169	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.118	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.239	k star (bias corrected MLE)	0.238
Theta hat (MLE)	3395	Theta star (bias corrected MLE)	3405
nu hat (MLE)	32.96	nu star (bias corrected)	32.86
Mean (detects)	810.9		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

95% Gamma Approximate UCL (use when n>=50) 968

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	595.2
Maximum	14900	Median	3.62
SD	1869	CV	3.139
k hat (MLE)	0.156	k star (bias corrected MLE)	0.158
Theta hat (MLE)	3814	Theta star (bias corrected MLE)	3763
nu hat (MLE)	29.34	nu star (bias corrected)	29.74
Adjusted Level of Significance (β)	0.0474		
Approximate Chi Square Value (29.74, α)	18.29	Adjusted Chi Square Value (29.74, β)	18.15

95% Gamma Adjusted UCL (use when n<50) 975.4

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	597.1	SD (KM)	1858
Variance (KM)	3452445	SE of Mean (KM)	193.1
k hat (KM)	0.103	k star (KM)	0.107
nu hat (KM)	19.41	nu star (KM)	20.13
theta hat (KM)	5782	theta star (KM)	5577
80% gamma percentile (KM)	455.4	90% gamma percentile (KM)	1632
95% gamma percentile (KM)	3449	99% gamma percentile (KM)	9164

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (20.13, α) 10.95 Adjusted Chi Square Value (20.13, β) 10.84 95% Gamma Approximate KM-UCL (use when n>=50) 1098 95% Gamma Adjusted KM-UCL (use when n<50) 1109

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic	0.932	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0.00117	Detected Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.119	Lilliefors GOF Test
5% Lilliefors Critical Value	0.107	Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

Mean in Original Scale	595.8	Mean in Log Scale	2.609
SD in Original Scale	1868	SD in Log Scale	3.267
95% t UCL (assumes normality of ROS data)	916	95% Percentile Bootstrap UCL	936.6
95% BCA Bootstrap UCL	1111	95% Bootstrap t UCL	1179

95% H-UCL (Log ROS) 15936

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

 KM Mean (logged)
 2.742
 KM Geo Mean
 15.52

 KM SD (logged)
 3.073
 95% Critical H Value (KM-Log)
 4.838

 KM Standard Error of Mean (logged)
 0.327
 95% H-UCL (KM -Log)
 8145

 KM Standard Error of Mean (logged)
 3.073
 95% Critical H Value (KM-Log)
 4.838

 KM Standard Error of Mean (logged)
 0.327

DL/2 Statistics

DL/2 Normal	DL/2 Log-Transformed
-------------	----------------------

 Mean in Original Scale
 604.9
 Mean in Log Scale
 3.061

 SD in Original Scale
 1866
 SD in Log Scale
 2.999

 95% t UCL (Assumes normality)
 924.7
 95% H-Stat UCL
 8361

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 1439

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.14/25/2017 3:37:18 PM

From File Book1.xls

Full Precision OFF
Confidence Coefficient 95%
Number of Bootstrap Operations 2000

Result (1,1-Dichloroethane)

General Statistics

Total Number of Observations	74	Number of Distinct Observations	45
Number of Detects	33	Number of Non-Detects	41
Number of Distinct Detects	31	Number of Distinct Non-Detects	14
Minimum Detect	0.12	Minimum Non-Detect	1
Maximum Detect	2100	Maximum Non-Detect	5000
Variance Detects	179126	Percent Non-Detects	55.41%
Mean Detects	158	SD Detects	423.2
Median Detects	1.87	CV Detects	2.679
Skewness Detects	3.666	Kurtosis Detects	14.54
Mean of Logged Detects	1.707	SD of Logged Detects	2.941

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.439	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.931	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.373	Lilliefors GOF Test
5% Lilliefors Critical Value	0.152	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	73.31	KM Standard Error of Mean	34.77
KM SD	291.6	95% KM (BCA) UCL	135.3
95% KM (t) UCL	131.2	95% KM (Percentile Bootstrap) UCL	136.4
95% KM (z) UCL	130.5	95% KM Bootstrap t UCL	222.5
90% KM Chebyshev UCL	177.6	95% KM Chebyshev UCL	224.9
97.5% KM Chebyshev UCL	290.4	99% KM Chebyshev UCL	419.2

Gamma GOF Tests on Detected Observations Only

59 Anderson-Darling GOF Test	2.459	A-D Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Le	0.898	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.225	K-S Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Le	0.169	5% K-S Critical Value

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.217	k star (bias corrected MLE)	0.217	k hat (MLE)
727.7	Theta star (bias corrected MLE)	729.5	Theta hat (MLE)
14.33	nu star (bias corrected)	14.29	nu hat (MLE)
		158	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs $\,$

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	70.46
Maximum	2100	Median	0.01
SD	291.2	CV	4.132
k hat (MLE)	0.13	k star (bias corrected MLE)	0.134
Theta hat (MLE)	542.9	Theta star (bias corrected MLE)	527.7
nu hat (MLE)	19.21	nu star (bias corrected)	19.76
Adjusted Level of Significance (β)	0.0468		
Approximate Chi Square Value (19.76, α)	10.68	Adjusted Chi Square Value (19.76, β)	10.54
95% Gamma Approximate UCL (use when n>=50)	130.4	95% Gamma Adjusted UCL (use when n<50)	132.1

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	73.31	SD (KM)	291.6
Variance (KM)	85009	SE of Mean (KM)	34.77
k hat (KM)	0.0632	k star (KM)	0.0697
nu hat (KM)	9.356	nu star (KM)	10.31
theta hat (KM)	1160	theta star (KM)	1052
80% gamma percentile (KM)	25.96	90% gamma percentile (KM)	157.6
95% gamma percentile (KM)	421.4	99% gamma percentile (KM)	1384

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (10.31, α)	4.136	Adjusted Chi Square Value (10.31, β)	4.059
95% Gamma Approximate KM-UCL (use when n>=50)	182.7	95% Gamma Adjusted KM-UCL (use when n<50)	186.2

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.899	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.931	Detected Data Not Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.159 Lilliefors GOF Test

5% Lilliefors Critical Value 0.152 Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	71.07	Mean in Log Scale	0.43
SD in Original Scale	291	SD in Log Scale	2.504
95% t UCL (assumes normality of ROS data)	127.4	95% Percentile Bootstrap UCL	130
95% BCA Bootstrap UCL	170.6	95% Bootstrap t UCL	215.4
95% H-UCL (Log ROS)	116.9		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	0.359	KM Geo Mean	1.432
KM SD (logged)	2.448	95% Critical H Value (KM-Log)	4.005
KM Standard Error of Mean (logged)	0.316	95% H-UCL (KM -Log)	90.27
KM SD (logged)	2.448	95% Critical H Value (KM-Log)	4.005
KM Standard Error of Mean (logged)	0.316		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	134.6	Mean in Log Scale	1.582
SD in Original Scale	418.9	SD in Log Scale	2.677
95% t UCL (Assumes normality)	215.7	95% H-Stat UCL	675.7

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 224.9

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

Result (1,1-Dichloroethene)

General	Statistics

Total Number of Observations	74	Number of Distinct Observations	34
Number of Detects	22	Number of Non-Detects	52
Number of Distinct Detects	21	Number of Distinct Non-Detects	13
Minimum Detect	0.25	Minimum Non-Detect	1
Maximum Detect	1950	Maximum Non-Detect	5000
Variance Detects	243613	Percent Non-Detects	70.27%
Mean Detects	204.7	SD Detects	493.6
Median Detects	9.65	CV Detects	2.412
Skewness Detects	2.79	Kurtosis Detects	7.552
Mean of Logged Detects	2.213	SD of Logged Detects	2.91

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.473	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.911	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.445	Lilliefors GOF Test
5% Lilliefors Critical Value	0 184	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	63.78	KM Standard Error of Mean	34.09
KM SD	282.6	95% KM (BCA) UCL	128.6
95% KM (t) UCL	120.6	95% KM (Percentile Bootstrap) UCL	122.2
95% KM (z) UCL	119.9	95% KM Bootstrap t UCL	168.8
90% KM Chebyshev UCL	166.1	95% KM Chebyshev UCL	212.4
97.5% KM Chebyshev UCL	276.7	99% KM Chebyshey UCL	403

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	1.683	Anderson-Darling GOF Test
5% A-D Critical Value	0.881	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.22	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.204	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.23	k star (bias corrected MLE)	0.231	k hat (MLE)
889.3	Theta star (bias corrected MLE)	884.5	Theta hat (MLE)
10.13	nu star (bias corrected)	10.18	nu hat (MLE)
		204.7	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	60.86
Maximum	1950	Median	0.01
SD	281	CV	4.617
k hat (MLE)	0.119	k star (bias corrected MLE)	0.123
Theta hat (MLE)	512.4	Theta star (bias corrected MLE)	494.9
nu hat (MLE)	17.58	nu star (bias corrected)	18.2
Adjusted Level of Significance (β)	0.0468		
Approximate Chi Square Value (18.20, α)	9.534	Adjusted Chi Square Value (18.20, β)	9.409
95% Gamma Approximate UCL (use when n>=50)	116.2	95% Gamma Adjusted UCL (use when n<50)	117.7

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	63.78	SD (KM)	282.6
Variance (KM)	79835	SE of Mean (KM)	34.09
k hat (KM)	0.0509	k star (KM)	0.0579
nu hat (KM)	7.54	nu star (KM)	8.568
theta hat (KM)	1252	theta star (KM)	1102
80% gamma percentile (KM)	13.89	90% gamma percentile (KM)	115.7
95% gamma percentile (KM)	354.5	99% gamma percentile (KM)	1306

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (8.57, α)	3.068	Adjusted Chi Square Value (8.57, β)	3.003
95% Gamma Approximate KM-UCL (use when n>=50)	178.1	95% Gamma Adjusted KM-UCL (use when n<50)	182

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.887	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.911	Detected Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.219	Lilliefors GOF Test
5% Lilliefors Critical Value	0.184	Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

Mean in Original Scale	62.1	Mean in Log Scale	0.449
SD in Original Scale	280.7	SD in Log Scale	2.345
95% t UCL (assumes normality of ROS data)	116.5	95% Percentile Bootstrap UCL	125.3
95% BCA Bootstrap UCL	151.2	95% Bootstrap t UCL	522.5

95% H-UCL (Log ROS) 70.73

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	0.325	KM Geo Mean	1.384
KM SD (logged)	2.122	95% Critical H Value (KM-Log)	3.574
KM Standard Error of Mean (logged)	0.283	95% H-UCL (KM -Log)	31.99
KM SD (logged)	2.122	95% Critical H Value (KM-Log)	3.574
KM Standard Error of Mean (logged)	0.283		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	131.5	Mean in Log Scale	1.535
SD in Original Scale	414.1	SD in Log Scale	2.628
95% t UCL (Assumes normality)	211.7	95% H-Stat UCL	542.5

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 212.4

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

Result (1,2,4-Trimethylbenzene)

General Statistics

Total Number of Observations	74	Number of Distinct Observations	22
Number of Detects	5	Number of Non-Detects	69
Number of Distinct Detects	5	Number of Distinct Non-Detects	17
Minimum Detect	0.11	Minimum Non-Detect	1
Maximum Detect	28.8	Maximum Non-Detect	5000
Variance Detects	159.8	Percent Non-Detects	93.24%
Mean Detects	6.196	SD Detects	12.64
Median Detects	0.46	CV Detects	2.04
Skewness Detects	2.231	Kurtosis Detects	4.98
Mean of Logged Detects	-0.0634	SD of Logged Detects	2.093

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.58	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.454	Lilliefors GOF Test
5% Lilliefors Critical Value	0.343	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.911	KM Standard Error of Mean	0.625
KM SD	3.949	95% KM (BCA) UCL	2.245
95% KM (t) UCL	1.953	95% KM (Percentile Bootstrap) UCL	2.049
95% KM (z) UCL	1.94	95% KM Bootstrap t UCL	10.14
90% KM Chebyshev UCL	2.787	95% KM Chebyshev UCL	3.637
97.5% KM Chebyshev UCL	4.817	99% KM Chebyshev UCL	7.134

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.715	Anderson-Darling GOF Test
5% A-D Critical Value	0.731	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.375	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.378	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.355	k star (bias corrected MLE)	0.275
Theta hat (MLE)	17.43	Theta star (bias corrected MLE)	22.49
nu hat (MLE)	3.554	nu star (bias corrected)	2.755
Mean (detects)	6.196		

Mean

Median

0.995

0.01

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

Minimum 0.01

Maximum 28.8

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

3.588	CV	3.57	SD
0.233	k star (bias corrected MLE)	0.233	k hat (MLE)
4.271	Theta star (bias corrected MLE)	4.263	Theta hat (MLE)
34.48	nu star (bias corrected)	34.55	nu hat (MLE)
		0.0468	Adjusted Level of Significance (β)
21.85	Adjusted Chi Square Value (34.48, β)	22.05	Approximate Chi Square Value (34.48, α)
1.57	95% Gamma Adjusted UCL (use when n<50)	1.556	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.911	SD (KM)	3.949
Variance (KM)	15.6	SE of Mean (KM)	0.625
k hat (KM)	0.0532	k star (KM)	0.0601
nu hat (KM)	7.875	nu star (KM)	8.889
theta hat (KM)	17.12	theta star (KM)	15.17
80% gamma percentile (KM)	0.221	90% gamma percentile (KM)	1.716
95% gamma percentile (KM)	5.107	99% gamma percentile (KM)	18.37

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (8.89, α)	3.26	Adjusted Chi Square Value (8.89, β)	3.193
95% Gamma Approximate KM-UCL (use when n>=50)	2.484	95% Gamma Adjusted KM-UCL (use when n<50)	2.537

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.891	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.255	Lilliefors GOF Test
5% Lilliefors Critical Value	0.343	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

-1.222	Mean in Log Scale	0.825	Mean in Original Scale
1.152	SD in Log Scale	3.327	SD in Original Scale
1.588	95% Percentile Bootstrap UCL	1.469	95% t UCL (assumes normality of ROS data)
4.7	95% Bootstrap t UCL	2.075	95% BCA Bootstrap UCL

95% H-UCL (Log ROS) 0.791

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

 KM Mean (logged)
 -1.154
 KM Geo Mean
 0.315

 KM SD (logged)
 0.933
 95% Critical H Value (KM-Log)
 2.192

 KM Standard Error of Mean (logged)
 0.417
 95% H-UCL (KM -Log)
 0.619

 KM Standard Error of Mean (logged)
 0.933
 95% Critical H Value (KM-Log)
 2.192

 KM Standard Error of Mean (logged)
 0.417

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed
Maan in Original Cools	110.7	Maan :

 Mean in Original Scale
 119.7
 Mean in Log Scale
 1.457

 SD in Original Scale
 426.2
 SD in Log Scale
 2.587

 95% t UCL (Assumes normality)
 202.2
 95% H-Stat UCL
 433.2

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Approximate Gamma UCL 2.484

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

Result (Acetone)

General	Statistics

Total Number of Observations	74	Number of Distinct Observations	31
Number of Detects	14	Number of Non-Detects	60
Number of Distinct Detects	14	Number of Distinct Non-Detects	17
Minimum Detect	1.21	Minimum Non-Detect	25
Maximum Detect	32	Maximum Non-Detect	125000
Variance Detects	61.68	Percent Non-Detects	81.08%
Mean Detects	5.652	SD Detects	7.854
Median Detects	3.35	CV Detects	1.39
Skewness Detects	3.334	Kurtosis Detects	11.7
Mean of Logged Detects	1.318	SD of Logged Detects	8.0

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.509	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.874	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.366	Lilliefors GOF Test
5% Lilliefors Critical Value	0.226	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	4.392	KM Standard Error of Mean	0.971
KM SD	5.023	95% KM (BCA) UCL	6.13
95% KM (t) UCL	6.011	95% KM (Percentile Bootstrap) UCL	6.185
95% KM (z) UCL	5.99	95% KM Bootstrap t UCL	8.264
90% KM Chebyshev UCL	7.306	95% KM Chebyshev UCL	8.627
97.5% KM Chebyshev UCL	10.46	99% KM Chebyshev UCL	14.06

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	1.396	Anderson-Darling GOF Test
5% A-D Critical Value	0.753	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.313	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.233	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

1.109	k star (bias corrected MLE)	1.351	k hat (MLE)
5.095	Theta star (bias corrected MLE)	4.183	Theta hat (MLE)
31.06	nu star (bias corrected)	37.84	nu hat (MLE)
		5 652	Mean (detects)

Mean 4.377

Median 3.325

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs This is especially true when the sample size is small.

Minimum 0.01

Maximum 32

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

1.078	CV	4.716	SD
0.663	k star (bias corrected MLE)	0.682	k hat (MLE)
6.598	Theta star (bias corrected MLE)	6.418	Theta hat (MLE)
98.18	nu star (bias corrected)	100.9	nu hat (MLE)
		0.0468	Adjusted Level of Significance (β)
75.94	Adjusted Chi Square Value (98.18, β)	76.32	Approximate Chi Square Value (98.18, α)
5.659	95% Gamma Adjusted UCL (use when n<50)	5.631	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	4.392	SD (KM)	5.023
Variance (KM)	25.23	SE of Mean (KM)	0.971
k hat (KM)	0.765	k star (KM)	0.743
nu hat (KM)	113.2	nu star (KM)	109.9
theta hat (KM)	5.745	theta star (KM)	5.915
80% gamma percentile (KM)	7.204	90% gamma percentile (KM)	10.87
95% gamma percentile (KM)	14.64	99% gamma percentile (KM)	23.57

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (109.90, α)	86.7	Adjusted Chi Square Value (109.90, β)	86.29
95% Gamma Approximate KM-UCL (use when n>=50)	5.567	95% Gamma Adjusted KM-UCL (use when n<50)	5.594

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.869	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.874	Detected Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.244	Lilliefors GOF Test
5% Lilliefors Critical Value	0.226	Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

1.236	Mean in Log Scale	4.18	Mean in Original Scale
0.576	SD in Log Scale	3.838	SD in Original Scale
4.996	95% Percentile Bootstrap UCL	4.923	95% t UCL (assumes normality of ROS data)
5.461	95% Bootstrap t UCL	5.235	95% BCA Bootstrap UCL

95% H-UCL (Log ROS) 4.618

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged) 1.216 KM Geo Mean 3.373 KM SD (logged) 0.625 95% Critical H Value (KM-Log) 1.936 KM Standard Error of Mean (logged) 95% H-UCL (KM -Log) 0.156 4.725 KM SD (logged) 95% Critical H Value (KM-Log) 0.625 1.936 KM Standard Error of Mean (logged) 0.156

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 3007
 Mean in Log Scale
 4.473

 SD in Original Scale
 10653
 SD in Log Scale
 2.83

 95% t UCL (Assumes normality)
 5071
 95% H-Stat UCL
 21528

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 8.627

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

Result (Benzene)

0	Statistics
Caenerai	STATISTICS

Total Number of Observations	74	Number of Distinct Observations	30
Number of Detects	13	Number of Non-Detects	61
Number of Distinct Detects	13	Number of Distinct Non-Detects	17
Minimum Detect	0.12	Minimum Non-Detect	1
Maximum Detect	2.06	Maximum Non-Detect	5000
Variance Detects	0.331	Percent Non-Detects	82.43%
Mean Detects	0.614	SD Detects	0.576
Median Detects	0.36	CV Detects	0.938
Skewness Detects	1.758	Kurtosis Detects	2.657
Mean of Logged Detects	-0.824	SD of Logged Detects	0.833

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.774	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.866	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.239	Lilliefors GOF Test
5% Lilliefors Critical Value	0.234	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.475	KM Standard Error of Mean	0.0856
KM SD	0.387	95% KM (BCA) UCL	0.629
95% KM (t) UCL	0.617	95% KM (Percentile Bootstrap) UCL	0.615
95% KM (z) UCL	0.615	95% KM Bootstrap t UCL	0.653
90% KM Chebyshev UCL	0.731	95% KM Chebyshev UCL	0.848
97.5% KM Chebyshev UCL	1.009	99% KM Chebyshev UCL	1.327

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.504	Anderson-Darling GOF Test
5% A-D Critical Value	0.748	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.191	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.241	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

1.307	k star (bias corrected MLE)	1.633	k hat (MLE)
0.47	Theta star (bias corrected MLE)	0.376	Theta hat (MLE)
33.99	nu star (bias corrected)	42.45	nu hat (MLE)
		0.614	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.457	Mean	0.01	Minimum
0.389	Median	2.06	Maximum
0.755	CV	0.345	SD
1.705	k star (bias corrected MLE)	1.767	k hat (MLE)
0.268	Theta star (bias corrected MLE)	0.259	Theta hat (MLE)
252.3	nu star (bias corrected)	261.6	nu hat (MLE)
		0.0468	Adjusted Level of Significance (β)
215.9	Adjusted Chi Square Value (252.31, β)	216.5	Approximate Chi Square Value (252.31, α)
0.534	95% Gamma Adjusted UCL (use when n<50)	0.533	5% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.475	SD (KM)	0.387
Variance (KM)	0.15	SE of Mean (KM)	0.0856
k hat (KM)	1.505	k star (KM)	1.453
nu hat (KM)	222.7	nu star (KM)	215
theta hat (KM)	0.315	theta star (KM)	0.327
80% gamma percentile (KM)	0.737	90% gamma percentile (KM)	0.997
95% gamma percentile (KM)	1.249	99% gamma percentile (KM)	1.822

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (215.04, α)	182.1	Adjusted Chi Square Value (215.04, β)	181.5
95% Gamma Approximate KM-UCL (use when n>=50)	0.56	95% Gamma Adjusted KM-UCL (use when n<50)	0.562

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.957	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.866	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.166	Lilliefors GOF Test
5% Lilliefors Critical Value	0.234	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Mean in Original Scale	0.442	Mean in Log Scale	-0.994
SD in Original Scale	0.31	SD in Log Scale	0.587
95% t UCL (assumes normality of ROS data)	0.502	95% Percentile Bootstrap UCL	0.501
95% BCA Bootstrap UCL	0.52	95% Bootstrap t UCL	0.518

95% H-UCL (Log ROS) 0.501

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged) -0.989 KM Geo Mean 0.372 KM SD (logged) 0.674 95% Critical H Value (KM-Log) KM Standard Error of Mean (logged) 95% H-UCL (KM -Log) 0.183 0.545 KM SD (logged) 95% Critical H Value (KM-Log) 0.674 1.969 KM Standard Error of Mean (logged) 0.183

DL/2 Statistics

DL/2 Normal			DL/2 Log-Transformed	
Mean	in Original Scale	120.4	Mean in Log Scale	1.46
SD	in Original Scale	426.1	SD in Log Scale	2.623
95% t UCL (Ass	umes normality)	202.9	95% H-Stat UCL	493.7

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Approximate Gamma UCL 0.56 95% GROS Approximate Gamma UCL 0.533

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

Result (Carbon disulfide)

Conorol	Statistics
General	SIGUSTICS

Total Number of Observations	74	Number of Distinct Observations	27
Number of Detects	11	Number of Non-Detects	63
Number of Distinct Detects	11	Number of Distinct Non-Detects	16
Minimum Detect	0.45	Minimum Non-Detect	1
Maximum Detect	35	Maximum Non-Detect	5000
Variance Detects	102.4	Percent Non-Detects	85.14%
Mean Detects	4.673	SD Detects	10.12
Median Detects	1.5	CV Detects	2.166
Skewness Detects	3.244	Kurtosis Detects	10.64
Mean of Logged Detects	0.538	SD of Logged Detects	1.245

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.443	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.85	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.445	Lilliefors GOF Test
5% Lilliefors Critical Value	0.251	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

	KM Mean	1.509	KM Standard Error of Mean	0.707
	KM SD	4.791	95% KM (BCA) UCL	3.009
95%	KM (t) UCL	2.687	95% KM (Percentile Bootstrap) UCL	2.836
95%	KM (z) UCL	2.672	95% KM Bootstrap t UCL	7.875
90% KM Cheb	yshev UCL	3.629	95% KM Chebyshev UCL	4.59
97.5% KM Cheb	yshev UCL	5.923	99% KM Chebyshev UCL	8.541

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	1.286	Anderson-Darling GOF Test
5% A-D Critical Value	0.773	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.303	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.267	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.614	k star (bias corrected MLE)	0.507
Theta hat (MLE)	7.616	Theta star (bias corrected MLE)	9.22
nu hat (MLE)	13.5	nu star (bias corrected)	11.15
Mean (detects)	4.673		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small. For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	0.863
Maximum	35	Median	0.01
SD	4.114	CV	4.765
k hat (MLE)	0.233	k star (bias corrected MLE)	0.233
Theta hat (MLE)	3.706	Theta star (bias corrected MLE)	3.712
nu hat (MLE)	34.48	nu star (bias corrected)	34.41
Adjusted Level of Significance (β)	0.0468		
Approximate Chi Square Value (34.41, α)	22	Adjusted Chi Square Value (34.41, β)	21.8
95% Gamma Approximate UCL (use when n>=50)	1.351	95% Gamma Adjusted UCL (use when n<50)	1.363

Estimates of Gamma Parameters using KM Estimates

		<u>9</u>	
Mean (KM)	1.509	SD (KM)	4.791
Variance (KM)	22.95	SE of Mean (KM)	0.707
k hat (KM)	0.0992	k star (KM)	0.104
nu hat (KM)	14.69	nu star (KM)	15.42
theta hat (KM)	15.21	theta star (KM)	14.48
80% gamma percentile (KM)	1.11	90% gamma percentile (KM)	4.083
95% gamma percentile (KM)	8.736	99% gamma percentile (KM)	23.48

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (15.42, α)	7.557	Adjusted Chi Square Value (15.42, β)	7.447
95% Gamma Approximate KM-UCL (use when n>=50)	3.08	95% Gamma Adjusted KM-UCL (use when n<50)	3.126

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.875	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.85	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.174	Lilliefors GOF Test
5% Lilliefors Critical Value	0.251	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Mean in Original Scale	1.293	Mean in Log Scale	-0.406
SD in Original Scale	4.027	SD in Log Scale	0.892
95% t UCL (assumes normality of ROS data)	2.073	95% Percentile Bootstrap UCL	2.203
95% BCA Bootstrap UCL	2.751	95% Bootstrap t UCL	5.282

95% H-UCL (Log ROS) 1.242

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged) -0.293 KM Geo Mean 0.746 KM SD (logged) 95% Critical H Value (KM-Log) 2.034 KM Standard Error of Mean (logged) 95% H-UCL (KM -Log) 0.138 1.189 KM SD (logged) 95% Critical H Value (KM-Log) 0.757 2.034 KM Standard Error of Mean (logged) 0.138

DL/2 Statistics

DL/2 Normal	DL/2 Log-Transformed
-------------	----------------------

 Mean in Original Scale
 119.1
 Mean in Log Scale
 1.498

 SD in Original Scale
 426.2
 SD in Log Scale
 2.527

 95% t UCL (Assumes normality)
 201.6
 95% H-Stat UCL
 367.9

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 1.189

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

Result (cis-1,2-Dichloroethene)

General Statistics

Total Number of Observations	74	Number of Distinct Observations	61
Number of Detects	58	Number of Non-Detects	16
Number of Distinct Detects	58	Number of Distinct Non-Detects	3
Minimum Detect	0.22	Minimum Non-Detect	1
Maximum Detect	109000	Maximum Non-Detect	160
Variance Detects	2.518E+8	Percent Non-Detects	21.62%
Mean Detects	4579	SD Detects	15867
Median Detects	207.5	CV Detects	3.465
Skewness Detects	5.681	Kurtosis Detects	35.06
Mean of Logged Detects	4.769	SD of Logged Detects	3.499

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.323	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.386	Lilliefors GOF Test
5% Lilliefors Critical Value	0.116	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	3589	KM Standard Error of Mean	1648
KM SD	14052	95% KM (BCA) UCL	6887
95% KM (t) UCL	6335	95% KM (Percentile Bootstrap) UCL	6454
95% KM (z) UCL	6300	95% KM Bootstrap t UCL	14060
90% KM Chebyshev UCL	8533	95% KM Chebyshev UCL	10772
97.5% KM Chebyshev UCL	13880	99% KM Chebyshev UCL	19985

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	1.937	Anderson-Darling GOF Test
5% A-D Critical Value	0.913	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.155	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.13	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.202	k star (bias corrected MLE)	0.201	k hat (MLE)
22666	Theta star (bias corrected MLE)	22790	Theta hat (MLE)
23.43	nu star (bias corrected)	23.31	nu hat (MLE)
		4579	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	3589
Maximum	109000	Median	26.75
SD	14148	CV	3.942
k hat (MLE)	0.142	k star (bias corrected MLE)	0.146
Theta hat (MLE)	25225	Theta star (bias corrected MLE)	24663
nu hat (MLE)	21.06	nu star (bias corrected)	21.54
Adjusted Level of Significance (β)	0.0468		
Approximate Chi Square Value (21.54, α)	11.99	Adjusted Chi Square Value (21.54, β)	11.85
95% Gamma Approximate UCL (use when n>=50)	6446	95% Gamma Adjusted UCL (use when n<50)	6523

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	3589	SD (KM)	14052
Variance (KM)	1.975E+8	SE of Mean (KM)	1648
k hat (KM)	0.0652	k star (KM)	0.0716
nu hat (KM)	9.656	nu star (KM)	10.6
theta hat (KM)	55016	theta star (KM)	50127
80% gamma percentile (KM)	1354	90% gamma percentile (KM)	7882
95% gamma percentile (KM)	20698	99% gamma percentile (KM)	66940

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (10.60, α)	4.319	Adjusted Chi Square Value (10.60, β)	4.239
95% Gamma Approximate KM-UCL (use when n>=50)	8808	95% Gamma Adjusted KM-UCL (use when n<50)	8973

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic	0.942	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0.0132	Detected Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.111	Lilliefors GOF Test
5% Lilliefors Critical Value	0.116	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Approximate Lognormal at 5% Significance Level

Mean in Original Scale	3589	Mean in Log Scale	3.615
SD in Original Scale	14148	SD in Log Scale	3.892
95% t UCL (assumes normality of ROS data)	6329	95% Percentile Bootstrap UCL	6354
95% BCA Bootstrap UCL	8416	95% Bootstrap t UCL	14303

95% H-UCL (Log ROS) 1119860

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

 KM Mean (logged)
 3.668
 KM Geo Mean
 39.17

 KM SD (logged)
 3.74
 95% Critical H Value (KM-Log)
 5.798

 KM Standard Error of Mean (logged)
 0.442
 95% H-UCL (KM -Log)
 5.398

 KM Standard Error of Mean (logged)
 0.442
 95% Critical H Value (KM-Log)
 5.798

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 3590
 Mean in Log Scale
 3.707

 SD in Original Scale
 14148
 SD in Log Scale
 3.766

 95% t UCL (Assumes normality)
 6330
 95% H-Stat UCL 641374

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

97.5% KM (Chebyshev) UCL 13880

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

Result (Ethylbenzene)

0	Statistics
Caenerai	STATISTICS

Total Number of Observations	74	Number of Distinct Observations	22
Number of Detects	5	Number of Non-Detects	69
Number of Distinct Detects	5	Number of Distinct Non-Detects	17
Minimum Detect	0.22	Minimum Non-Detect	1
Maximum Detect	1.79	Maximum Non-Detect	5000
Variance Detects	0.401	Percent Non-Detects	93.24%
Mean Detects	0.674	SD Detects	0.633
Median Detects	0.43	CV Detects	0.94
Skewness Detects	2.066	Kurtosis Detects	4.45
Mean of Logged Detects	-0.664	SD of Logged Detects	0.768

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.714	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.396	Lilliefors GOF Test
5% Lilliefors Critical Value	0 343	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.433	KM Standard Error of Mean	0.0725
KM SD	0.251	95% KM (BCA) UCL	0.559
95% KM (t) UCL	0.553	95% KM (Percentile Bootstrap) UCL	0.556
95% KM (z) UCL	0.552	95% KM Bootstrap t UCL	0.567
90% KM Chebyshev UCL	0.65	95% KM Chebyshev UCL	0.749
97.5% KM Chebyshev UCL	0.885	99% KM Chebyshev UCL	1.154

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic 0.573	A-D Test Statistic 0.573	Anderson-Darling GOF Test
% A-D Critical Value 0.684	% A-D Critical Value 0.684 Detected data	a appear Gamma Distributed at 5% Significance Level
K-S Test Statistic 0.344	K-S Test Statistic 0.344	Kolmogorov-Smirnov GOF
% K-S Critical Value 0.36	% K-S Critical Value 0.36 Detected data	a appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

	k star	(bias cor	rected M	LE)	0.935
The	neta star	(bias cor	rected M	LE)	0.721
	nu	ı star (bia	s correct	ed)	9.35

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	0.449
Maximum	1.79	Median	0.396
SD	0.298	CV	0.664
k hat (MLE)	2.151	k star (bias corrected MLE)	2.073
Theta hat (MLE)	0.209	Theta star (bias corrected MLE)	0.216
nu hat (MLE)	318.4	nu star (bias corrected)	306.8
Adjusted Level of Significance (β)	0.0468		
Approximate Chi Square Value (306.84, α)	267.3	Adjusted Chi Square Value (306.84, β)	266.5
95% Gamma Approximate UCL (use when n>=50)	0.515	95% Gamma Adjusted UCL (use when n<50)	0.517

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.433	SD (KM)	0.251
Variance (KM)	0.0628	SE of Mean (KM)	0.0725
k hat (KM)	2.983	k star (KM)	2.871
nu hat (KM)	441.4	nu star (KM)	424.9
theta hat (KM)	0.145	theta star (KM)	0.151
80% gamma percentile (KM)	0.62	90% gamma percentile (KM)	0.775
95% gamma percentile (KM)	0.92	99% gamma percentile (KM)	1.234

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (424.85, α)	378.1	Adjusted Chi Square Value (424.85, β)	377.2
95% Gamma Approximate KM-UCL (use when n>=50)	0.486	95% Gamma Adjusted KM-UCL (use when n<50)	0.487

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.892	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.295	Lilliefors GOF Test
5% Lilliefors Critical Value	0.343	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

-0.924	Mean in Log Scale	0.447	Mean in Original Scale
0.479	SD in Log Scale	0.248	SD in Original Scale
0.495	95% Percentile Bootstrap UCL	0.495	95% t UCL (assumes normality of ROS data)
0.507	95% Bootstrap t UCL	0.502	95% BCA Bootstrap UCL

95% H-UCL (Log ROS) 0.494

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged) -0.934 KM Geo Mean 0.393 KM SD (logged) 0.407 95% Critical H Value (KM-Log) 1.8 KM Standard Error of Mean (logged) 95% H-UCL (KM -Log) 0.182 0.465 95% Critical H Value (KM-Log) KM SD (logged) 0.407 1.8 KM Standard Error of Mean (logged) 0.182

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 120.4
 Mean in Log Scale
 1.485

 SD in Original Scale
 426.1
 SD in Log Scale
 2.586

 95% t UCL (Assumes normality)
 202.9
 95% H-Stat UCL
 444

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Approximate Gamma UCL 0.486

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

Result (m-,p-Xylene)

O	Statistics
Caenerai	SIMISTICS

74	Number of Distinct Observations	25
8	Number of Non-Detects	66
8	Number of Distinct Non-Detects	17
0.13	Minimum Non-Detect	2
2.42	Maximum Non-Detect	10000
0.543	Percent Non-Detects	89.19%
0.735	SD Detects	0.737
0.585	CV Detects	1.002
2.056	Kurtosis Detects	4.801
-0.696	SD of Logged Detects	0.96
	8 8 0.13 2.42 0.543 0.735 0.585 2.056	8 Number of Non-Detects 8 Number of Distinct Non-Detects 0.13 Minimum Non-Detect 2.42 Maximum Non-Detect 0.543 Percent Non-Detects 0.735 SD Detects 0.585 CV Detects 2.056 Kurtosis Detects

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.766	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.818	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.285	Lilliefors GOF Test
5% Lilliefors Critical Value	0.283	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.546	KM Standard Error of Mean	0.124
KM SD	0.418	95% KM (BCA) UCL	0.771
95% KM (t) UCL	0.752	95% KM (Percentile Bootstrap) UCL	0.743
95% KM (z) UCL	0.75	95% KM Bootstrap t UCL	8.0
90% KM Chebyshev UCL	0.917	95% KM Chebyshev UCL	1.085
97.5% KM Chebyshev UCL	1.318	99% KM Chebyshev UCL	1.776

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic 0.305	Anderson-Darling GOF Test
5% A-D Critical Value 0.729 De	tected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic 0.181	Kolmogorov-Smirnov GOF
5% K-S Critical Value 0.299 De	tected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.977	k star (bias corrected MLE)	1.43	k hat (MLE)
0.752	Theta star (bias corrected MLE)	0.514	Theta hat (MLE)
15.64	nu star (bias corrected)	22.89	nu hat (MLE)
		0.735	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

ean 0.537	Mean	0.01	Minimum
ian 0.454	Median	2.42	Maximum
CV 0.744	CV	0.4	SD
LE) 1.732	k star (bias corrected MLE)	1.796	k hat (MLE)
LE) 0.31	Theta star (bias corrected MLE)	0.299	Theta hat (MLE)
ed) 256.3	nu star (bias corrected)	265.8	nu hat (MLE)
		0.0468	Adjusted Level of Significance (β)
-, β) 219.6	Adjusted Chi Square Value (256.34, β)	220.3	Approximate Chi Square Value (256.34, α)
50) 0.627	95% Gamma Adjusted UCL (use when n<50)	0.625	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM) 0.546	SD (KM)	0.418
Variance (KM) 0.175 SE of Me	an (KM)	0.124
k hat (KM) 1.709 k s	tar (KM)	1.649
nu hat (KM) 252.9 nu s	tar (KM)	244
theta hat (KM) 0.32 theta s	tar (KM)	0.331
80% gamma percentile (KM) 0.836 90% gamma percent	tile (KM)	1.113
95% gamma percentile (KM) 1.379 99% gamma percent	tile (KM)	1.978

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (244.00, α)	208.8	Adjusted Chi Square Value (244.00, β)	208.2
95% Gamma Approximate KM-UCL (use when n>=50)	0.638	95% Gamma Adjusted KM-UCL (use when n<50)	0.64

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.952	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.818	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.166	Lilliefors GOF Test
5% Lilliefors Critical Value	0.283	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Mean in Original Scale	0.502	Mean in Log Scale	-0.9
SD in Original Scale	0.369	SD in Log Scale	0.653
95% t UCL (assumes normality of ROS data)	0.573	95% Percentile Bootstrap UCL	0.575
95% BCA Bootstrap UCL	0.588	95% Bootstrap t UCL	0.592

95% H-UCL (Log ROS) 0.584

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged) -0.873 KM Geo Mean 0.418 KM SD (logged) 95% Critical H Value (KM-Log) 2.042 KM Standard Error of Mean (logged) 95% H-UCL (KM -Log) 0.287 0.672 KM SD (logged) 95% Critical H Value (KM-Log) 0.765 2.042 KM Standard Error of Mean (logged) 0.287

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 240.7
 Mean in Log Scale
 2.101

 SD in Original Scale
 852.2
 SD in Log Scale
 2.67

 95% t UCL (Assumes normality)
 405.7
 95% H-Stat UCL
 1109

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Approximate Gamma UCL 0.638

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

Result (Naphthalene)

Total Number of Observations	74	Number of Distinct Observations	23
Number of Detects	6	Number of Non-Detects	68
Number of Distinct Detects	6	Number of Distinct Non-Detects	17
Minimum Detect	0.53	Minimum Non-Detect	1
Maximum Detect	1140	Maximum Non-Detect	5000
Variance Detects	209858	Percent Non-Detects	91.89%
Mean Detects	205.7	SD Detects	458.1
Median Detects	24.65	CV Detects	2.227
Skewness Detects	2.44	Kurtosis Detects	5.964
Mean of Logged Detects	2.691	SD of Logged Detects	2.805

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.532	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.788	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.472	Lilliefors GOF Test
5% Lilliefors Critical Value	0.325	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	18.38	KM Standard Error of Mean	17.47
KM SD	134.3	95% KM (BCA) UCL	53.16
95% KM (t) UCL	47.49	95% KM (Percentile Bootstrap) UCL	50.29
95% KM (z) UCL	47.12	95% KM Bootstrap t UCL	350
90% KM Chebyshev UCL	70.79	95% KM Chebyshev UCL	94.53
97.5% KM Chebyshev UCL	127.5	99% KM Chebyshev UCL	192.2

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	
78 Detected data appear Gamma Distributed at 5% Significant	nificance Level
Kolmogorov-Smirnov GOF	
Detected data appear Gamma Distributed at 5% Signifi	gnificance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.267	k star (bias corrected MLE)	0.244
Theta hat (MLE)	771.2	Theta star (bias corrected MLE)	841.4
nu hat (MLE)	3.201	nu star (bias corrected)	2.934
Mean (detects)	205.7		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	16.69
Maximum	1140	Median	0.01
SD	132.5	CV	7.943
k hat (MLE)	0.117	k star (bias corrected MLE)	0.121
Theta hat (MLE)	143.1	Theta star (bias corrected MLE)	138.1
nu hat (MLE)	17.26	nu star (bias corrected)	17.89
Adjusted Level of Significance (β)	0.0468		
Approximate Chi Square Value (17.89, α)	9.311	Adjusted Chi Square Value (17.89, β)	9.188
95% Gamma Approximate UCL (use when n>=50)	32.06	95% Gamma Adjusted UCL (use when n<50)	32.49

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	18.38	SD (KM)	134.3
Variance (KM)	18035	SE of Mean (KM)	17.47
k hat (KM)	0.0187	k star (KM)	0.027
nu hat (KM)	2.773	nu star (KM)	3.994
theta hat (KM)	981.1	theta star (KM)	681.2
80% gamma percentile (KM)	0.1	90% gamma percentile (KM)	7.968
95% gamma percentile (KM)	63.88	99% gamma percentile (KM)	487.3

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (3.99, α)	0.719	Adjusted Chi Square Value (3.99, β)	0.694
95% Gamma Approximate KM-UCL (use when n>=50)	102.1	95% Gamma Adjusted KM-UCL (use when n<50)	105.9

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.948	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.788	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.184	Lilliefors GOF Test
5% Lilliefors Critical Value	0.325	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

-1.359	Mean in Log Scale	17.25	Mean in Original Scale
2.247	SD in Log Scale	132.5	SD in Original Scale
47.58	95% Percentile Bootstrap UCL	42.91	95% t UCL (assumes normality of ROS data)
473	95% Bootstrap t UCL	65.11	95% BCA Bootstrap UCL

95% H-UCL (Log ROS) 8.576

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged) -0.271 KM Geo Mean 0.762 KM SD (logged) 1.281 95% Critical H Value (KM-Log) 2.548 KM Standard Error of Mean (logged) 95% H-UCL (KM -Log) 0.185 2.537 95% Critical H Value (KM-Log) KM SD (logged) 1.281 2.548 KM Standard Error of Mean (logged) 0.185

DL/2 Statistics

 DL/2 Normal

 Mean in Original Scale
 135.9
 Mean in Log Scale
 1.689

 SD in Original Scale
 441.9
 SD in Log Scale
 2.615

 95% t UCL (Assumes normality)
 221.5
 95% H-Stat UCL
 603.4

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Approximate Gamma UCL 102.1

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

Result (o-Xylene)

OI	Statistics

Total Number of Observations	74	Number of Distinct Observations	23
Number of Detects	6	Number of Non-Detects	68
Number of Distinct Detects	6	Number of Distinct Non-Detects	17
Minimum Detect	0.11	Minimum Non-Detect	1
Maximum Detect	2.17	Maximum Non-Detect	5000
Variance Detects	0.562	Percent Non-Detects	91.89%
Mean Detects	0.747	SD Detects	0.749
Median Detects	0.57	CV Detects	1.004
Skewness Detects	1.748	Kurtosis Detects	3.416
Mean of Logged Detects	-0.718	SD of Logged Detects	1.054

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.823	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.788	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.279	Lilliefors GOF Test
5% Lilliefors Critical Value	0.325	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

0.14	KM Standard Error of Mean	0.508	KM Mean
0.758	95% KM (BCA) UCL	0.388	KM SD
0.756	95% KM (Percentile Bootstrap) UCL	0.742	95% KM (t) UCL
0.803	95% KM Bootstrap t UCL	0.739	95% KM (z) UCL
1.119	95% KM Chebyshev UCL	0.929	90% KM Chebyshev UCL
1.903	99% KM Chebyshev UCL	1.383	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.208	Anderson-Darling GOF Test
5% A-D Critical Value	0.71	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.162	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.339	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.77	k star (bias corrected MLE)	1.317	k hat (MLE)
0.97	Theta star (bias corrected MLE)	0.567	Theta hat (MLE)
9.236	nu star (bias corrected)	15.81	nu hat (MLE)
		0.747	Moan (dotacts)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small. For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.0204	Mean	0.502
Maximum	2.17	Median	0.423
SD	0.364	CV	0.726
k hat (MLE)	1.996	k star (bias corrected MLE)	1.924
Theta hat (MLE)	0.251	Theta star (bias corrected MLE)	0.261
nu hat (MLE)	295.4	nu star (bias corrected)	284.8
Adjusted Level of Significance (β)	0.0468		
Approximate Chi Square Value (284.79, α)	246.7	Adjusted Chi Square Value (284.79, β)	246
95% Gamma Approximate UCL (use when n>=50)	0.579	95% Gamma Adjusted UCL (use when n<50)	0.581

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.508	SD (KM)	0.388
Variance (KM)	0.15	SE of Mean (KM)	0.14
k hat (KM)	1.72	k star (KM)	1.659
nu hat (KM)	254.5	nu star (KM)	245.5
theta hat (KM)	0.296	theta star (KM)	0.306
80% gamma percentile (KM)	0.777	90% gamma percentile (KM)	1.033
95% gamma percentile (KM)	1.28	99% gamma percentile (KM)	1.834

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (245.51, α)	210.2	Adjusted Chi Square Value (245.51, β)	209.6
95% Gamma Approximate KM-UCL (use when n>=50)	0.593	95% Gamma Adjusted KM-UCL (use when n<50)	0.595

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.984	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.788	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.16	Lilliefors GOF Test
5% Lilliefors Critical Value	0.325	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS			
Mean in Original Scale	0.454	Mean in Log Scale	-1.017
SD in Original Scale	0.344	SD in Log Scale	0.681
95% t UCL (assumes normality of ROS data)	0.521	95% Percentile Bootstrap UCL	0.525
95% BCA Bootstrap UCL	0.531	95% Bootstrap t UCL	0.537

95% H-UCL (Log ROS) 0.534

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-0.968	KM Geo Mean	0.38
KM SD (logged)	0.803	95% Critical H Value (KM-Log)	2.077
KM Standard Error of Mean (logged)	0.366	95% H-UCL (KM -Log)	0.638
KM SD (logged)	0.803	95% Critical H Value (KM-Log)	2.077
KM Standard Error of Mean (logged)	0.366		

DL/2 Statistics

DL/2 Normal	DL/2 Log-Transformed		
Mean in Original Scale	120.4	Mean in Log Scale	1.481
SD in Original Scale	426.1	SD in Log Scale	2.597
95% t UCL (Assumes normality)	202.9	95% H-Stat UCL	460.8

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 0.742

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

Result (Toluene)

General	Statistics

Total Number of Observations	74	Number of Distinct Observations	31
Number of Detects	15	Number of Non-Detects	59
Number of Distinct Detects	14	Number of Distinct Non-Detects	17
Minimum Detect	0.15	Minimum Non-Detect	1
Maximum Detect	0.73	Maximum Non-Detect	5000
Variance Detects	0.0412	Percent Non-Detects	79.73%
Mean Detects	0.362	SD Detects	0.203
Median Detects	0.27	CV Detects	0.56
Skewness Detects	0.839	Kurtosis Detects	-0.791
Mean of Logged Detects	-1.156	SD of Logged Detects	0.543

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.858	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.881	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.21	Lilliefors GOF Test
5% Lilliefors Critical Value	0.22	Detected Data appear Normal at 5% Significance Level

Detected Data appear Approximate Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

0.0524	KM Standard Error of Mean	0.362	KM Mean
0.454	95% KM (BCA) UCL	0.196	KM SD
0.446	95% KM (Percentile Bootstrap) UCL	0.449	95% KM (t) UCL
0.472	95% KM Bootstrap t UCL	0.448	95% KM (z) UCL
0.59	95% KM Chebyshev UCL	0.519	90% KM Chebyshev UCL
0.883	99% KM Chebyshev UCL	0.689	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.553	Anderson-Darling GOF Test
5% A-D Critical Value	0.741	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.175	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.223	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

3.028	k star (bias corrected MLE)	3.73	k hat (MLE)
0.12	Theta star (bias corrected MLE)	0.0971	Theta hat (MLE)
90.84	nu star (bias corrected)	111.9	nu hat (MLE)
		0.363	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.0607	Mean	0.355
Maximum	0.844	Median	0.334
SD	0.166	CV	0.467
k hat (MLE)	4.562	k star (bias corrected MLE)	4.387
Theta hat (MLE)	0.0777	Theta star (bias corrected MLE)	0.0808
nu hat (MLE)	675.2	nu star (bias corrected)	649.2
I of Significance (β)	0.0468		

Adjusted Level of Significance (β) 0.0468
Approximate Chi Square Value (649.20, α) 591.1
Adjusted Chi Square Value (649.20, β) 590
95% Gamma Approximate UCL (use when n>=50) 0.389
95% Gamma Adjusted UCL (use when n<50) 0.39

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.362	SD (KM)	0.196
Variance (KM)	0.0384	SE of Mean (KM)	0.0524
k hat (KM)	3.411	k star (KM)	3.282
nu hat (KM)	504.9	nu star (KM)	485.7
theta hat (KM)	0.106	theta star (KM)	0.11
80% gamma percentile (KM)	0.511	90% gamma percentile (KM)	0.63
95% gamma percentile (KM)	0.741	99% gamma percentile (KM)	0.979

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (485.72, α) 435.6 Adjusted Chi Square Value (485.72, β) 434.7 95% Gamma Approximate KM-UCL (use when n>=50) 0.404 95% Gamma Adjusted KM-UCL (use when n<50) 0.405

Lognormal GOF Test on Detected Observations Only

Snapiro wiik Test Statistic	0.925	Snapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.881	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.144	Lilliefors GOF Test
5% Lilliefors Critical Value	0.22	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Mean in Original Scale	0.347	Mean in Log Scale	-1.156
SD in Original Scale	0.161	SD in Log Scale	0.445
95% t UCL (assumes normality of ROS data)	0.379	95% Percentile Bootstrap UCL	0.378
95% BCA Bootstrap UCL	0.382	95% Bootstrap t UCL	0.383

1.367

95% H-UCL (Log ROS) 0.382

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged) -1.156 KM Geo Mean 0.315 KM SD (logged) 0.524 95% Critical H Value (KM-Log) KM Standard Error of Mean (logged) 95% H-UCL (KM -Log) 0.14 0.405 95% Critical H Value (KM-Log) KM SD (logged) 0.524 1.869 KM Standard Error of Mean (logged) 0.14

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed
Mean in Original Scale	120.3	Mean in Log Scale

 SD in Original Scale
 426.1
 SD in Log Scale
 2.688

 95% t UCL (Assumes normality)
 202.8
 95% H-Stat UCL
 567.2

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 0.449

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

Result (trans-1,2-Dichloroethene)

Total Number of Observations	74	Number of Distinct Observations	31
Number of Detects	19	Number of Non-Detects	55
Number of Distinct Detects	19	Number of Distinct Non-Detects	12
Minimum Detect	0.14	Minimum Non-Detect	1
Maximum Detect	142	Maximum Non-Detect	5000
Variance Detects	1385	Percent Non-Detects	74.32%
Mean Detects	18.59	SD Detects	37.21
Median Detects	1.55	CV Detects	2.002
Skewness Detects	2.644	Kurtosis Detects	6.93
Mean of Logged Detects	1.016	SD of Logged Detects	2.151

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.567	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.901	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.343	Lilliefors GOF Test
5% Lilliefors Critical Value	0 197	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	6.485	KM Standard Error of Mean	2.962
KM SD	22.15	95% KM (BCA) UCL	12.39
95% KM (t) UCL	11.42	95% KM (Percentile Bootstrap) UCL	11.69
95% KM (z) UCL	11.36	95% KM Bootstrap t UCL	20.23
90% KM Chebyshev UCL	15.37	95% KM Chebyshev UCL	19.4
97.5% KM Chebyshev UCL	24.98	99% KM Chebyshev UCL	35.96

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.977	A-D Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Lev	0.832	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.219	K-S Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Lev	0.214	5% K-S Critical Value

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.332	k star (bias corrected MLE)	0.352	k hat (MLE)
56.04	Theta star (bias corrected MLE)	52.77	Theta hat (MLE)
12.61	nu star (bias corrected)	13.39	nu hat (MLE)
		18.59	Mean (detects)

Mean 5.188

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum 0.01

Maximum	142	Median	0.01
SD	20.2	CV	3.893
k hat (MLE)	0.174	k star (bias corrected MLE)	0.176
Theta hat (MLE)	29.89	Theta star (bias corrected MLE)	29.55
nu hat (MLE)	25.69	nu star (bias corrected)	25.98
Adjusted Level of Significance (β)	0.0468		
Approximate Chi Square Value (25.98, α)	15.37	Adjusted Chi Square Value (25.98, β)	15.2
95% Gamma Approximate UCL (use when n>=50)	8.773	95% Gamma Adjusted UCL (use when n<50)	8.866

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	6.485	SD (KM)	22.15
Variance (KM)	490.8	SE of Mean (KM)	2.962
k hat (KM)	0.0857	k star (KM)	0.0912
nu hat (KM)	12.68	nu star (KM)	13.5
theta hat (KM)	75.69	theta star (KM)	71.09
80% gamma percentile (KM)	3.905	90% gamma percentile (KM)	16.55
95% gamma percentile (KM)	37.78	99% gamma percentile (KM)	107.8

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (13.50, α)	6.231	Adjusted Chi Square Value (13.50, β)	6.133
95% Gamma Approximate KM-UCL (use when n>=50)	14.05	95% Gamma Adjusted KM-UCL (use when n<50)	14.28

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.947	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.901	Detected Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.132	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.197	Detected Data appear Lognormal at 5% Significance Level	

Detected Data appear Lognormal at 5% Significance Level

-0.294	Mean in Log Scale	5.438	Mean in Original Scale
1.721	SD in Log Scale	20.07	SD in Original Scale
9.445	95% Percentile Bootstrap UCL	9.325	95% t UCL (assumes normality of ROS data)
18.94	95% Bootstrap t UCL	11.92	95% BCA Bootstrap UCL

95% H-UCL (Log ROS) 6.081

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-0.265	KM Geo Mean	0.767
KM SD (logged)	1.639	95% Critical H Value (KM-Log)	2.964
KM Standard Error of Mean (logged)	0.287	95% H-UCL (KM -Log)	5.187
KM SD (logged)	1.639	95% Critical H Value (KM-Log)	2.964
KM Standard Error of Mean (logged)	0.287		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	120.7	Mean in Log Scale	1.433
SD in Original Scale	426.1	SD in Log Scale	2.641
95% t UCL (Assumes normality)	203.2	95% H-Stat UCL	511.6

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 5.187

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

Result (Trichloroethene)

General Statistics

Total Number of Observations 74	Number of Distinct Observations	57
Number of Detects 55	Number of Non-Detects	19
Number of Distinct Detects 51	Number of Distinct Non-Detects	6
Minimum Detect 0.23	Minimum Non-Detect	1
Maximum Detect 261000	Maximum Non-Detect	200
Variance Detects 1.758E+9	Percent Non-Detects	25.68%
Mean Detects 9984	SD Detects	41931
Median Detects 46.8	CV Detects	4.2
Skewness Detects 5.109	Kurtosis Detects	27.24
Mean of Logged Detects 3.547	SD of Logged Detects	3.857

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic 0.274 Normal GOF Test on Detected Observations Only

5% Shapiro Wilk P Value 0 Detected Data Not Normal at 5% Significance Level

Lilliefors Test Statistic 0.465 Lilliefors GOF Test

5% Lilliefors Critical Value 0.119 Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

 KM Mean
 7421
 KM Standard Error of Mean
 4233

 KM SD
 36084
 95% KM (BCA) UCL
 15322

 95% KM (t) UCL
 14474
 95% KM (Percentile Bootstrap) UCL
 15135

 95% KM (z) UCL
 14384
 95% KM Bootstrap t UCL
 37695

 90% KM Chebyshev UCL
 20121
 95% KM Chebyshev UCL
 25874

 97.5% KM Chebyshev UCL
 33858
 99% KM Chebyshev UCL
 49542

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic 5.487 Anderson-Darling GOF Test

5% A-D Critical Value 0.973 Detected Data Not Gamma Distributed at 5% Significance Level

K-S Test Statistic 0.247 Kolmogorov-Smirnov GOF

5% K-S Critical Value 0.136 Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE) 0.137 k star (bias corrected MLE) 0.142
Theta hat (MLE) 72627 Theta star (bias corrected MLE) 70264
nu hat (MLE) 15.12 nu star (bias corrected) 15.63
Mean (detects) 9984

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum 0.01 Mean 7421 Maximum 261000 Median 1.495 SD 36330 CV4.896 k hat (MLE) 0.108 k star (bias corrected MLE) 0.112 Theta hat (MLE) 68805 Theta star (bias corrected MLE) 65969 nu hat (MLE) 15.96 nu star (bias corrected) 16.65 Adjusted Level of Significance (β) 0.0468 Adjusted Chi Square Value (16.65, β) 8.305

Approximate Chi Square Value (16.65, α) 8.421 Adjusted Chi Square Value (16.65, β) 8.30 95% Gamma Approximate UCL (use when n>=50) 14670 95% Gamma Adjusted UCL (use when n<50) 14876

Estimates of Gamma Parameters using KM Estimates

 Mean (KM)
 7421
 SD (KM)
 36084

 Variance (KM)
 1.302E+9
 SE of Mean (KM)
 4233

 k hat (KM)
 0.0423
 k star (KM)
 0.0496

 nu hat (KM)
 6.26
 nu star (KM)
 7.34

 theta hat (KM)
 175446
 theta star (KM)
 149641

 80% gamma percentile (KM)
 977.8
 90% gamma percentile (KM)
 11206

 95% gamma percentile (KM)
 39354
 99% gamma percentile (KM)
 161951

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value $(7.34, \alpha)$ 2.359 Adjusted Chi Square Value $(7.34, \beta)$ 2.303 95% Gamma Approximate KM-UCL (use when n>=50) 23091 95% Gamma Adjusted KM-UCL (use when n<50) 23648

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic 0.916 Shapiro Wilk GOF Test

5% Shapiro Wilk P Value 7.4205E-4 Detected Data Not Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.157 Lilliefors GOF Test

5% Lilliefors Critical Value 0.119 Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

Mean in Original Scale	7421	Mean in Log Scale	2.472
SD in Original Scale	36330	SD in Log Scale	3.907
95% t UCL (assumes normality of ROS data)	14457	95% Percentile Bootstrap UCL	14900
95% BCA Bootstrap UCL	18821	95% Bootstrap t UCL	37653

95% H-UCL (Log ROS) 386700

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

 KM Mean (logged)
 2.495
 KM Geo Mean
 12.12

 KM SD (logged)
 3.783
 95% Critical H Value (KM-Log)
 5.86

 KM Standard Error of Mean (logged)
 0.448
 95% H-UCL (KM -Log)
 207856

 KM Standard Error of Mean (logged)
 3.783
 95% Critical H Value (KM-Log)
 5.86

 KM Standard Error of Mean (logged)
 0.448

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 7424
 Mean in Log Scale
 2.723

 SD in Original Scale
 36329
 SD in Log Scale
 3.723

 95% t UCL (Assumes normality)
 14459
 95% H-Stat UCL 193148

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

99% KM (Chebyshev) UCL 49542

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

Result (Vinyl chloride)

General	Statistics

Total Number of Observations	74	Number of Distinct Observations	55
Number of Detects	47	Number of Non-Detects	27
Number of Distinct Detects	46	Number of Distinct Non-Detects	9
Minimum Detect	0.25	Minimum Non-Detect	1
Maximum Detect	4620	Maximum Non-Detect	5000
Variance Detects	877746	Percent Non-Detects	36.49%
Mean Detects	450	SD Detects	936.9
Median Detects	17.8	CV Detects	2.082
Skewness Detects	2.903	Kurtosis Detects	9.253
Mean of Logged Detects	3.271	SD of Logged Detects	2.895

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.562	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.946	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.332	Lilliefors GOF Test
5% Lilliefors Critical Value	0 128	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	290.5	KM Standard Error of Mean	91.57
KM SD	774	95% KM (BCA) UCL	462.3
95% KM (t) UCL	443.1	95% KM (Percentile Bootstrap) UCL	449.8
95% KM (z) UCL	441.2	95% KM Bootstrap t UCL	524.9
90% KM Chebyshev UCL	565.3	95% KM Chebyshev UCL	689.7
97.5% KM Chebyshev UCL	862.4	99% KM Chebyshey UCL	1202

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	2.114	Anderson-Darling GOF Test
5% A-D Critical Value	0.887	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.19	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.142	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.25	k star (bias corrected MLE)	0.248
Theta hat (MLE)	1799	Theta star (bias corrected MLE)	1812
nu hat (MLE)	23.52	nu star (bias corrected)	23.35
Mean (detects)	450		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

	Minimum	0.01	Mean	285.8
	Maximum	4620	Median	1.59
	SD	775	CV	2.712
	k hat (MLE)	0.147	k star (bias corrected MLE)	0.15
	Theta hat (MLE)	1949	Theta star (bias corrected MLE)	1909
	nu hat (MLE)	21.7	nu star (bias corrected)	22.16
	Adjusted Level of Significance (β)	0.0468		
	Approximate Chi Square Value (22.16, α)	12.46	Adjusted Chi Square Value (22.16, β)	12.31
95% G	amma Approximate UCL (use when n>=50)	508.4	95% Gamma Adjusted UCL (use when n<50)	514.4

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	290.5	SD (KM)	774
Variance (KM)	599089	SE of Mean (KM)	91.57
k hat (KM)	0.141	k star (KM)	0.144
nu hat (KM)	20.85	nu star (KM)	21.34
theta hat (KM)	2062	theta star (KM)	2015
80% gamma percentile (KM)	305.9	90% gamma percentile (KM)	856.5
95% gamma percentile (KM)	1611	99% gamma percentile (KM)	3819

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (21.34, α)	11.85	Adjusted Chi Square Value (21.34, β)	11.71
95% Gamma Approximate KM-UCL (use when n>=50)	523.4	95% Gamma Adjusted KM-UCL (use when n<50)	529.7

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.933	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.946	Detected Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.115	Lilliefors GOF Test
5% Lilliefors Critical Value	0.128	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Approximate Lognormal at 5% Significance Level

Mean in Original Scale	286.4	Mean in Log Scale	1.889
SD in Original Scale	774.8	SD in Log Scale	3.108
95% t UCL (assumes normality of ROS data)	436.4	95% Percentile Bootstrap UCL	440.6
95% BCA Bootstrap UCL	470.5	95% Bootstrap t UCL	533

95% H-UCL (Log ROS) 4937

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	2.003	KM Geo Mean	7.414
KM SD (logged)	2.934	95% Critical H Value (KM-Log)	4.669
KM Standard Error of Mean (logged)	0.358	95% H-UCL (KM -Log)	2731
KM SD (logged)	2.934	95% Critical H Value (KM-Log)	4.669
KM Standard Error of Mean (logged)	0.358		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	323.6	Mean in Log Scale	2.428
SD in Original Scale	814.4	SD in Log Scale	2.889
95% t UCL (Assumes normality)	481.3	95% H-Stat UCL	3493

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 689.7

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

Arcadis U.S., Inc.

6041 Wallace Road Extension Suite 300 Wexford, Pennsylvania 15090 Tel 724 742 9180 Fax 724 742 9189

www.arcadis.com

APPENDIX C

Costing Details

APPENDIX C-1

Costing Tables

	REMEDIAL ALTERNATIVE NUMBER						
TARGET ZONES FOR REMEDIATION	1	2	3	4	5	6	
Source Vadose Zone (VZ)	NA	EXC	EXC	EXC	IST	IST	
Source Saturated Zone (SZ)	NA	ERD	P&T	DGR	IST	IST	
Dissolved Phase Area - Downgradient (DPA)	NA	ERD	P&T	DGR	ERD	DGR	
Total Estimated Capital Costs	\$0	\$ 2,618,961	\$ 1,483,299	\$ 2,796,065	\$ 11,423,491	\$ 11,997,007	
Total Estimated Operating Costs (Not Discounted)	\$0	\$ 2,618,560	\$ 2,894,400	\$ 3,272,000	\$ 1,918,060	\$ 3,272,000	
Total Estimated Costs (Not Discounted)	\$0	\$ 5,237,521	\$ 4,377,699	\$ 6,068,065	\$ 13,341,551	\$ 15,269,007	
Total Estimated Net Present Value Costs	\$0	\$ 5,009,611	\$ 2,777,047	\$ 4,640,170	\$ 13,197,583	\$ 13,841,112	
Total Estimated Net Present Value Costs (Rounded to Nearest \$1000)	\$0	\$ 5,010,000	\$ 2,777,000	\$ 4,640,000	\$ 13,198,000	\$ 13,841,000	
Time Years	0	5 (+10 for MNA)	30	20 (+10 For MNA)	5 (+10 for MNA)	20 (+10 For MNA)	

REMEDIAL COMPONENT OPTIONS
No Further Action (NFA)
Excavation (EXC)
In-Situ Thermal (IST)
Enhanced Reductive Dechlorination (ERD)
Pump and Treat (P&T)
Dynamic Groundwater Recirculation (DGR)

Notes

- 1. Total Estimated Net Present Value Costs are representative of remediation time at a discount rate of 7%.
- 2. Assumes a maximum project life of 30 years. For Total Estimated Net Presnt Value Costs, a 7% discount rate was applied per *A Guide to Developing and Documenting Cost Estimates During the Feasibility Study,* EPA 540-R-00-002 OSWER 9355.0-75; July 2000.
- 3. All costs are based on an accuracy of +50/-30% (USEPA 2000).
- 4. Cost estimates were prepared in 2019 and are expressed in 2019 dollars.

MNA = monitored natural attenuation

AVX MB FS Costs - Draft final - Feb

Source Vadose Zone - Excavation	Unit	Unit Price Quantity		Extension		
Mobilization/Demobilization	Lump Sum	\$	40,000	1	\$	40,000
Pre-Characterization	Lump Sum	\$	45,000	1	\$	45,000
Excavation to Depth	Cubic Yard	\$	40	4,241	\$	169,630
Excavation Protection	Allowance	\$	15,000	1	\$	15,000
Air Monitoring & Mitigation	Allowance	\$	25,000	1	\$	25,000
Backfill with Structural Fill	Cubic Yard	\$	45	4,241	\$	190,833
Site Restoration	1000 Feet	\$	1,500	11	\$	17,175
T&D Landfill Non-Hazardous	Ton	\$	100	6,043	\$	604,306
T&D Landfill Hazardous <60 mg/kg	Ton	\$	575	318	\$	182,882
T&D Incineration Hazardous >60 mg/kg	Ton	\$	1,300	0	\$	-
Project Management	Lump Sum	\$	1,289,825	0.05	\$	64,491
Engineering	Lump Sum	\$	1,289,825	0.05	\$	64,491
Construction Management	Lump Sum	\$	2,453,823	0.05	\$	64,491
Total					\$	1,483,299

Assumptions

- 1. Cost estimate is based on Arcadis' past experience and vendor estimates using 2018 costs.
- 2. Mobile lab will not be needed for screening of excavated lifts prior to separation for disposal.
- 3. Dewatering will not be needed at these specified depths.
- 4. Transportation & Disposal (T&D) costs are provided based on T&D for excavated remediation activities at AVX's facility in Conway, SC in 2018.
- 5. Assume T&D costs include direct loading into highway trucks.
- 6. Assume fraction splits for non-hazardous, hazardous (landfill), and hazardous (incineration) are consistent across all excavation areas.
- 7. Milligrams per kilogram (mg/kg).
- 8. Assume safety procedures/infrastructure systems are included in excavation protection.

7%	Discount Rate	Capital Cost	Operating	Total Costs	Total Net Present Value	
Year	Discount Factor	Capital Cost	Cost	Total Costs	Costs	
0	1.000	\$ 1,483,299	\$ -	\$ 1,483,299	\$ 1,483,299	
1	0.966	\$ -	\$ -	\$ -	\$ -	
2	0.901	\$ -	\$ -	\$ -	\$ -	
3	0.840	\$ -	\$ -	\$ -	\$ -	
4	0.783	\$ -	\$ -	\$ -	\$ -	
5	0.730	\$ -	\$ -	\$ -	\$ -	
6	0.681	\$ -	\$ -	\$ -	\$ -	
7	0.635	\$ -	\$ -	\$ -	\$ -	
8	0.592	\$ -	\$ -	\$ -	\$ -	
9	0.552	\$ -	\$ -	\$ -	\$ -	
10	0.514	\$ -	\$ -	\$ -	\$ -	
11	0.480	\$ -	\$ -	\$ -	\$ -	
12	0.447	\$ -	\$ -	\$ -	\$ -	
13	0.417	\$ -	\$ -	\$ -	\$ -	
14	0.389	\$ -	\$ -	\$ -	\$ -	
15	0.362	\$ -	\$ -	\$ -	\$ -	
16	0.338	\$ -	\$ -	\$ -	\$ -	
17	0.315	\$ -	\$ -	\$ -	\$ -	
18	0.294	\$ -	\$ -	\$ -	\$ -	
19	0.274	\$ -	\$ -	\$ -	\$ -	
20	0.255	\$ -	\$ -	\$ -	\$ -	
21	0.238	\$ -	\$ -	\$ -	\$ -	
22	0.222	\$ -	\$ -	\$ -	\$ -	
23	0.207	\$ -	\$ -	\$ -	\$ -	
24	0.193	\$ -	\$ -	\$ -	\$ -	
25	0.180	\$ -	\$ -	\$ -	\$ -	
26	0.168	\$ -	\$ -	\$ -	\$ -	
27	0.156	\$ -	\$ -	\$ -	\$ -	
28	0.146	\$ -	\$ -	\$ -	\$ -	
29	0.136	\$ -	\$ -	\$ -	\$ -	
30	0.127	\$ -	\$ -	\$ -	\$ -	
Total		\$ 1,483,299	\$ -	\$ 1,483,299	\$ 1,483,299	

AVX MB FS Costs - Draft final - Feb

									ARCADIS	to the state of th
t Rate Factor	С	apital Cost	0	perating Cost	T	otal Costs	To	otal Net Present Value Costs		
1.000	\$	10,684,241	\$	-	\$	10,684,241	\$	10,684,241		
0.966	\$	-	\$	-	\$	-	\$	-		
0.901	\$	-	\$	-	\$	-	\$	-		

\$

\$

\$

\$

\$

\$

\$

\$

\$

\$

\$

\$

\$

\$

\$

\$

\$

-\$

\$ 10,684,241 \$

-

-

-

-

-

-\$

_ \$

Assumptions

Total Power Usage

Total Gas Usage

1. Cost estimate is based on Arcadis U.S., Inc. (Arcadis') past experience and vendor estimates using 2018 costs.

kWh

Total

MMRtu

- 2. Well quantities and associated numbers provided by Cascade in 2018.
- 3. Assume thermal design takes 8 to 10 weeks.
- 4. Assume construction takes 16 weeks and operation takes an additional 35 weeks.
- 5. Assume demobilization takes 5 weeks.
- 6. Assume Arcadis Construction Oversight includes 2 people at 50 hours per week.
- 7. Assume Arcadis PM includes 15 hours per week.
- 8. Transportation & Disposal (T&D) costs are provided based on T&D for excavated remediation activities at AVX's facility in Conway, SC in 2018.

0.12 14,500,000 \$

3 12

40.000

\$

1,740,000

\$ 10,684,241

124,800

- 9. Assume T&D costs include direct loading into highway trucks.
- 10. Assume fraction splits for non-hazardous, hazardous (landfill), and hazardous (incineration) are consistent across all thermal areas.

\$

11. Milligram per kilogram (mg/kg).

1/1 AVX MB FS Costs - Draft final - Feb

7% Discount

Year Discount I

0.840 \$

0.783 \$

0.730 \$

0.681 \$

0.635 \$

0.592 \$

0.552 \$

0.514 \$

0.480 \$

0.447 \$

0.417 \$

0.389 \$

0.362 \$

0.338 \$

0.315 \$

0.294 \$

0.274 \$

0.255 \$

0.238 \$

0.222 \$

0.207 \$

0.193 \$

0.180 \$

0.168 \$

0.156 \$

0.146 \$

0.136 \$

0.127 \$

\$

\$

\$

\$

\$

\$

\$

\$

\$

\$

\$

\$

\$

\$

\$

\$

\$

\$

\$

\$

\$

\$

-\$ -\$

-\$ _ \$

-\$

\$ 10,684,241 \$

-\$ -\$

-

\$

\$

\$

\$

\$

\$

\$

\$

\$

\$

\$

\$

\$

\$

\$

\$

\$

\$

\$

\$

\$

\$

-

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Total

Source Saturated Zone - ERD	Unit	U	nit Price	Quantity	E	ktension
Mobilization/demobilization - Track mounted Geoprobe, support vehicle and two man crew	Lump Sum	\$	4,400	1	\$	4,400
Mobilization/demobilization - ATV mounted rotary drill rig, support vehicle and three man crew	Lump Sum	\$	9,200	1	\$	9,200
Temporary decontamination pad installed	Each	\$	200	1	\$	200
· · ·		\$	2,150	20	\$	43,000
Geoprobe Direct Push rig & two man crew	Day	_			÷	
Per Diem - two man crew	Day	\$	300	20	\$	6,000
Hand augering - Performance Monitoring Wells	Each	\$	125	14	\$	1,750
4 1/4" hollow stem auger drilling	Linear Foot	\$	22	490	\$	10,780
2" x 15' x .010" stainless steel well screen installed 2" PVC Schedule 40 well riser installed	Each Linear Foot	\$	450 21	14 280	\$	6,300
	Linear Foot	\$	21	280	Þ	5,880
4" steel protective casing installed with a 2' x 2' x 4' wire reinforced concrete pad	Each	\$	275	14	\$	3,850
Well development - one hour per well	Hour	\$	125	14	\$	1,750
Decontamination	Hour	\$	275	10	\$	2,750
55 gallon drums filled and staged on site	Each	\$	65	40	\$	2,600
Per Diem - two man crew	Day	\$	300	10	\$	3,000
Hand augering - Injection Wells	Each	\$	125	19	\$	2,375
6 5/8" hollow stem auger drilling	Linear Foot	\$	28	675	\$	18,900
4" x 15' x .010" stainless steel well screen installed	Each	\$	610	19	\$	11,590
4" PVC Schedule 40 well riser installed	Linear Foot	\$	28	390	\$	10,920
6" steel protective casing installed with a 2' x 2' x 4' wire reinforced concrete pad	Each	\$	325	19	\$	6,175
Well development - one hour per well	Hour	\$	225	19	\$	4,275
Decontamination	Hour	\$	250	43	\$	10,750
55 gallon drums filled and staged on site	Each	\$	65	280	\$	18,200
Per Diem - two man crew	Day	\$	300	45	\$	13,500
Additional crew member for pads and IDW management	Day	\$	950	10	\$	9,500
T&D Landfill Non-Hazardous	Ton	\$	100	11	\$	1,108
T&D Landfill Hazardous <60 mg/kg	Ton	\$	575	0.6	\$	335
T&D Incineration Hazardous >60 mg/kg	Ton	\$	1,300	0.0	\$	-
Baseline Sampling - Equipment Rental	Week	\$	3,000	1	\$	3,000
Baseline Sampling - Analytical	Event	\$	1,000	1	\$	1,000
Baseline Sampling - Labor & Miscellaneous	Event	\$	8.000	1	\$	8.000
Local Contractor Support	Event	\$	5.000	6	\$	30.000
Building/Equipment/Utility Installation	Lump Sum	\$	125,000	0.25	\$	31,250
Piping	Foot	\$	24	500	\$	12,205
Injection Field Equipment	Week	\$	500	24	\$	12,000
Molasses Storage Tank install & setup	Each	\$	7,000	0.25	\$	1,750
Molasses Storage Tank Install & Setup	Month	\$	1,000	9	\$	9,000
Molasses - per 4000 gallon delivery	Delivery	\$	9,000	29	\$	256,500
Lodging	Day	\$	125	72	\$	9,000
Per Diem	Day	\$	50	72	\$	3,600
Transportation (rental + gas and/or mileage)	Day	\$	125	72	\$	9,000
Tolls/Parking	Day	\$	20	72	\$	1,440
Semi-Annual Sampling - Equipment Rental	Week	\$	1,000	10	\$	10,000
Semi-Annual Sampling - Analytical	Event	\$	1,000	10	\$	10,000
Semi-Annual Sampling - Labor & Miscellaneous	Event	\$	8.000	10	\$	80,000
Water Use	Gallon	\$	0.003	5,700,000	\$	15,960
Well Back flush/Maintenance	Year	\$	6,000	3	\$	18,000
Miscellaneous Equipment/Supplies	Day	\$	500	72	\$	36,000
Reporting	Year	\$	20,000	5	\$	100,000
Monitored Natural Attenuation	Year	\$	10,000	10	\$	100,000
Project Management	Lump Sum	\$	868,793	0.05	\$	43,440
Engineering	Lump Sum	\$	866,793	0.05	\$	43,340
Construction Management	Lump Sum	\$	866,793	0.05	\$	43,340
Total		۳	500,135	0.00		,096,912
Total		_			Ψ	,000,012

7% Year	Discount Rate	Capital Cost	0	perating Cost	To	otal Costs	Total Net Present
Tour	Discount l'actor						
					١.		
0	1.000	\$ 396,412	\$	173,500	\$	569,912	\$ 569,912
1	0.966	\$ -	\$	173,500	\$	173,500	\$ 167,567
2	0.901	\$ -	\$	173,500	\$	173,500	\$ 156,238
3	0.840	\$ -	\$	40,000	\$	40,000	\$ 33,585
4	0.783	\$ -	\$	40,000	\$	40,000	\$ 31,315
5	0.730	\$ -	\$	10,000	\$	10,000	\$ 7,299
6	0.681	\$ -	\$	10,000	\$	10,000	\$ 6,806
7	0.635	\$ -	\$	10,000	\$	10,000	\$ 6,346
8	0.592	\$ -	\$	10,000	\$	10,000	\$ 5,917
9	0.552	\$ -	\$	10,000	\$	10,000	\$ 5,517
10	0.514	\$ -	\$	10,000	\$	10,000	\$ 5,144
11	0.480	\$ -	\$	10,000	\$	10,000	\$ 4,796
12	0.447	\$ -	\$	10,000	\$	10,000	\$ 4,472
13	0.417	\$ -	\$	10,000	\$	10,000	\$ 4,169
14	0.389	\$ -	\$	10,000	\$	10,000	\$ 3,888
15	0.362	\$ -	\$	-	\$	-	\$ -
16	0.338	\$ -	\$	-	\$	-	\$ -
17	0.315	\$ -	\$	-	\$	-	\$ -
18	0.294	\$ -	\$	-	\$	-	\$ -
19	0.274	\$ -	\$	-	\$	-	\$ -
20	0.255	\$ -	\$	-	\$	-	\$ -
21	0.238	\$ -	\$	-	\$	-	\$ -
22	0.222	\$ -	\$	-	\$	-	\$ -
23	0.207	\$ -	\$	-	\$	-	\$ -
24	0.193	\$ -	\$	-	\$	-	\$ -
25	0.180	\$ -	\$	-	\$	-	\$ -
26	0.168	\$ -	\$	-	\$	-	\$ -
27	0.156	\$ -	\$	-	\$	-	\$ -
28	0.146	\$ -	\$	-	\$	-	\$ -
29	0.136	\$ -	\$	-	\$	-	\$ -
30	0.127	\$ -	\$	-	\$	-	\$ -
Total		\$ 396,412	\$	700,500	\$	1,096,912	\$ 1,012,970

Total NPV Operating Costs \$ 616,558

Assumptions

- 1. Cost estimate is based on Arcadis U.S., Inc. (Arcadis') past experience and vendor estimates using 2018 costs 2. Well quantities and associated numbers provided by Parratt Wolf in 2018 cost estimate.
- 3. Assume "active" portion of ERD is 5 years (6 injections spread out over 4 years with the 5th year required to burn out the TOC).
- 4. Assume it will take 2 weeks to complete injections across 10 wells and an injection event for Transect No. 4 takes 4 weeks total.
- 5. Assume 1 full injection event in Transect 4 initially spaced out 6 months apart with time between events lengthening over the course of the active remedy so that the last injection is at year 4.
- 6. Assume 2 crew per 1 injection for 4 events per injection and 6 days per event for lodging, per diem, transportation, and tolls/parking. Unit costs based on rates/cost for ERD in OU-2.
- Assume 2% Molasses by v/v injection and 50,000 gallons solution per well.

 Assume \$2.80 per thousand gallon for water use.
- 9. Assume 1 week to baseline sample and each semi-annual sampling event for 14 performance monitoring wells.
- 10. Building/Equipment/Utility installation from Beyond Contracting cost estimate.
- 11. Transportation & Disposal (T&D) costs are provided based on T&D for excavated remediation activities at AVX's facility in Conway, SC in 2018.
- 12. Assume T&D costs include direct loading into highway trucks.
- 13. Assume fraction splits for non-hazardous, hazardous (landfill), and hazardous (incineration) are consistent across all ERD areas.
- 13. Addition and individual indi

AVX MB FS Costs - Draft final - Feb 1/1

Downgradient Groundwater - ERD	Unit		Unit Price	Quantity	E	xtension
Mobilization/demobilization - Track mounted Geoprobe, support vehicle and two man crew	Lump Sum	\$	4,400	1	\$	4,400
Mobilization/demobilization - ATV mounted rotary drill rig,		_	0.000		_	0.000
support vehicle and three man crew	Lump Sum	\$	9,200	1	\$	9,200
Temporary decontamination pad installed	Each	\$	200	1	\$	200
Geoprobe Direct Push rig & two man crew	Day	\$	2,150	20	\$	43,000
Per Diem - two man crew	Day	\$	300	20	\$	6,000
Hand augering - Performance Monitoring Wells	Each	\$	125	14	\$	1,750
4 1/4" hollow stem auger drilling	Linear Foot	\$	22	490	\$	10,780
2" x 15' x .010" stainless steel well screen installed	Each	\$	450	14	\$	6,300
2" PVC Schedule 40 well riser installed	Linear Foot	\$	21	280	\$	5,880
4" steel protective casing installed with a 2' x 2' x 4' wire reinforced concrete pad	Each	\$	275	14	\$	3,850
Well development - one hour per well	Hour	\$	125	14	\$	1.750
Decontamination	Hour	\$	275	10	\$	2.750
55 gallon drums filled and staged on site	Each	\$	65	40	\$	2,730
Per Diem - two man crew	Day	\$	300	10	\$	3,000
Hand augering - Injection Wells	Each	\$	125	39	\$	4,875
6 5/8" hollow stem auger drilling	Linear Foot	\$	28	1335	\$	37,380
4" x 15' x .010" stainless steel well screen installed	Each	\$	610	39	\$	23,790
4" PVC Schedule 40 well riser installed	Linear Foot	\$	28	750	\$	21,000
6" steel protective casing installed with a 2' x 2' x 4' wire	Each	\$	325	39	\$	12,675
reinforced concrete pad		Ľ			Ľ	
Well development - one hour per well	Hour	\$	225	39	\$	8,775
Decontamination	Hour	\$	250	43	\$	10,750
55 gallon drums filled and staged on site	Each	\$	65	280	\$	18,200
Per Diem - two man crew	Day	\$	300	45	\$	13,500
Additional crew member for pads and IDW management	Day	\$	950	10	\$	9,500
T&D Landfill Non-Hazardous	Ton	\$	100	19	\$	1,941
T&D Landfill Hazardous <60 mg/kg	Ton	\$	575	1	\$	588
T&D Incineration Hazardous >60 mg/kg	Ton	\$	1,300	0.0	\$	-
Baseline Sampling - Equipment Rental	Week	\$	3,000	2	\$	6,000
Baseline Sampling - Analytical	Event	\$	1,000	1	\$	1,000
Baseline Sampling - Labor & Miscellaneous	Event	\$	8,000	1	\$	8,000
Local Contractor Support	Event	\$	5,000	54	\$	270,000
Building/Equipment/Utility Installation	Lump Sum	\$	125,000	0.75	\$	93,750
Piping	Foot	\$	21	1,300	\$	27,167
Injection Field Equipment	Week	\$	500	72	\$	36,000
Molasses Storage Tank install & setup	Each	\$	7,000	0.75	\$	5,250
Molasses Storage Tank	Month	\$	1,000	27	\$	27,000
Molasses - per 4000 gallon delivery	Delivery	\$	9,000	59	\$	526,500
Lodging	Day	\$	125	648	\$	81,000
Per Diem	Day	\$	50	648	\$	32,400
Transportation (rental + gas and/or mileage)	Day	\$	125	648	\$	81,000
Tolls/Parking	Day	\$	20	648	\$	12,960
Semi-Annual Sampling - Equipment Rental	Week	\$	1,000	20	\$	20,000
Semi-Annual Sampling - Analytical	Event	\$	1,000	20	\$	20,000
Semi-Annual Sampling - Labor & Miscellaneous	Event	\$	8,000	20	\$	160,000
Water Use	Gallon	\$	0.003	39,000,000	\$	109,200
Well Back flush/Maintenance	Year	\$	6,000	3	\$	18,000
Miscellaneous Equipment/Supplies	Day	\$	500	648	\$	324,000
Reporting	Year	\$		5	\$	100,000
Monitored Natural Attenuation	Year	\$	10,000	10	\$	100,000
Project Management	Lump Sum	\$	2,225,661	0.05	\$	111,283
Engineering	Lump Sum		2,223,661	0.05	\$	111,183
Construction Management	Lump Sum		2,223,661	0.05	\$	111,183
Total		~	,,,-			2,657,310

7% Year	Discount Rate	Capital Cost	C	perating Cost	T	otal Costs		Fotal Net Present
rear	Discount Factor						v	ilue Costs
			١.					
0	1.000	\$ 739,250	\$	566,020	\$	1,305,270	\$	1,305,270
1	0.966	\$ -	\$	566,020	\$	566,020	\$	546,664
2	0.901	\$ -	\$	566,020	\$	566,020	\$	509,706
3	0.840	\$ -	\$	60,000	\$	60,000	\$	50,378
4	0.783	\$ -	\$	60,000	\$	60,000	\$	46,972
5	0.730	\$ -	\$	10,000	\$	10,000	\$	7,299
6	0.681	\$ -	\$	10,000	\$	10,000	\$	6,806
7	0.635	\$ -	\$	10,000	\$	10,000	\$	6,346
8	0.592	\$ -	\$	10,000	\$	10,000	\$	5,917
9	0.552	\$ -	\$	10,000	\$	10,000	\$	5,517
10	0.514	\$ -	\$	10,000	\$	10,000	\$	5,144
11	0.480	\$ -	\$	10,000	\$	10,000	\$	4,796
12	0.447	\$ -	\$	10,000	\$	10,000	\$	4,472
13	0.417	\$ -	\$	10,000	\$	10,000	\$	4,169
14	0.389	\$ -	\$	10,000	\$	10,000	\$	3,888
15	0.362	\$ -	\$	-	\$	-	\$	-
16	0.338	\$ -	\$	-	\$	-	\$	-
17	0.315	\$ -	\$	-	\$	-	\$	-
18	0.294	\$ -	\$	-	\$	-	\$	-
19	0.274	\$ -	\$	-	\$	-	\$	-
20	0.255	\$ -	\$	-	\$	-	\$	-
21	0.238	\$ -	\$	-	\$	-	\$	-
22	0.222	\$ -	\$	-	\$	-	\$	-
23	0.207	\$ -	\$	-	\$	-	\$	-
24	0.193	\$ -	\$	-	\$	-	\$	-
25	0.180	\$ -	\$	-	\$	-	\$	-
26	0.168	\$ -	\$	-	\$	-	\$	-
27	0.156	\$ -	\$	-	\$	-	\$	-
28	0.146	\$ -	\$	-	\$	-	\$	-
29	0.136	\$ -	\$	-	\$	-	\$	-
30	0.127	\$ -	\$	-	\$	-	\$	-
Total		\$ 739,250		1,918,060		2,657,310		2,513,342

Total NPV Operating Costs \$ 1,774,092

- 1. Cost estimate is based on Arcadis U.S., Inc. (Arcadis') past experience and vendor estimates using 2018 costs. 2. Well quantities and associated numbers provided by Parratt Wolf in 2018 cost estimate.
- 3. Assume "active" portion of ERD is 5 years (6 injections spread out over 4 years with the 5th year required to burn out the TOC).
- 4. Assume it will take 2 weeks to complete injections across 10 wells and an injection event for Transect No. 1, 2, and 3 will take 12 weeks total.
- 5. Assume 1 full injection event in Transects 1, 2 and 3 initially spaced out 6 months apart with time between events lengthening over the course of the active remedy so that the last injection is at year 4.
- 6. Assume 2 crew per 1 injection for 4 events per injection and 6 days per event for lodging, per diem, transportation, and tolls/parking. Unit costs based on OU-2 rates.
- 7. Assume 2% Molasses by v/v injection and 50,000 gallons solution per well. 8. Assume \$2.80 per gallon for water use.
- 9. Assume 2 weeks to baseline sample and each semi-annual sampling event for 39 performance monitoring wells.
- 10. Building/Equipment/Utility installation from Beyond Contracting cost estimate.

 11. Transportation & Disposal (T&D) costs are provided based on T&D for excavated remediation activities at AVX's facility in Conway, SC in 2018.
- 12. Assume T&D costs include direct loading into highway trucks.
- 13. Assume fraction splits for non-hazardous, hazardous (landfill), and hazardous (incineration) are consistent across all ERD areas.
- 14. Milligram per kilogram (mg/kg).15. Unit cost for Piping provided by 2013 RSMeans with 7.79% inflation to reflect 2019 costs.

AVX MB FS Costs - Draft final - Feb 1/1

Downgradient GW - Pump and Treat	Unit	Unit Price		rice Quantity		Extension
Routine Operation & Maintenance	Month	\$	5,000	360	\$	1,800,000
Laboratory Analytical	Month	\$	1,000	360	\$	360,000
Reporting	Year	\$	6,000	30	\$	180,000
Permit Renewal	Five Years	\$	5,000	6	\$	30,000
Consumables/Equipment	Year	\$	5,000	30	\$	150,000
Electricity	kWh	\$	0.12	3,120,000	\$	374,400
Total					\$	2,894,400

Assumptions

- 1. Cost estimate is based on Arcadis U.S., Inc. (Arcadis') past experience and vendor estimates using 2018 costs.
- 2. Assume Routine Operation & Maintenance is \$5,000 a month for 1 technician/operator twice a week.
- 3. Assume Pump and Treat system to operate for 30 years.
- 4. Assume 16 horsepower total for blower and pumps.

7%	Discount Rate	Capital Cost	Operating Cost	Т	otal Costs	То	tal Net Present Value Costs
Year	Discount Factor						Value Costs
0	1.000	\$ -	\$ 96,480	\$	96,480	\$	96,480
1	0.966	\$ -	\$ 96,480	\$	96,480	\$	93,181
2	0.901	\$ -	\$ 96,480	\$	96,480	\$	86,881
3	0.840	\$ -	\$ 96,480	\$	96,480	\$	81,007
4	0.783	\$ -	\$ 96,480	\$	96,480	\$	75,531
5	0.730	\$ -	\$ 96,480	\$	96,480	\$	70,424
6	0.681	\$ -	\$ 96,480	\$	96,480	\$	65,663
7	0.635	\$ -	\$ 96,480	\$	96,480	\$	61,224
8	0.592	\$ -	\$ 96,480	\$	96,480	\$	57,085
9	0.552	\$ -	\$ 96,480	\$	96,480	\$	53,226
10	0.514	\$ -	\$ 96,480	\$	96,480	\$	49,627
11	0.480	\$ -	\$ 96,480	\$	96,480	\$	46,272
12	0.447	\$ -	\$ 96,480	\$	96,480	\$	43,144
13	0.417	\$ -	\$ 96,480	\$	96,480	\$	40,227
14	0.389	\$ -	\$ 96,480	\$	96,480	\$	37,507
15	0.362	\$ -	\$ 96,480	\$	96,480	\$	34,972
16	0.338	\$ -	\$ 96,480	\$	96,480	\$	32,607
17	0.315	\$ -	\$ 96,480	\$	96,480	\$	30,403
18	0.294	\$ -	\$ 96,480	\$	96,480	\$	28,348
19	0.274	\$ -	\$ 96,480	\$	96,480	\$	26,431
20	0.255	\$ -	\$ 96,480	\$	96,480	\$	24,644
21	0.238	\$ -	\$ 96,480	\$	96,480	\$	22,978
22	0.222	\$ -	\$ 96,480	\$	96,480	\$	21,425
23	0.207	\$ -	\$ 96,480	\$	96,480	\$	19,976
24	0.193	\$ -	\$ 96,480	\$	96,480	\$	18,626
25	0.180	\$ -	\$ 96,480	\$	96,480	\$	17,366
26	0.168	\$ -	\$ 96,480	\$	96,480	\$	16,192
27	0.156	\$ -	\$ 96,480	\$	96,480	\$	15,098
28	0.146	\$ -	\$ 96,480	\$	96,480	\$	14,077
29	0.136	\$ -	\$ 96,480	\$	96,480	\$	13,125
30	0.127	\$ -	\$ -	\$	-	\$	-
Total		\$ -	\$ 2,894,400	\$	2,894,400	\$	1,293,748

AVX MB FS Costs - Draft final - Feb

AVX Corporation

Myrtle Beach, South Carolina

Source Area Saturated Zone & Downgradient - DGR	Unit	Ur	nit Price	Quantity	E	xtension
Mobilization/Demobilization	Lump Sum	\$	30,000	1	\$	30,000
Demolish Concrete Slab for saw cuts	Square Foot	\$	20	22,700	\$	454,000
Excavate to Depth for Trenching	Cubic Yard	\$	40	681	\$	27,259
Air Monitoring & Mitigation	Allowance	\$	100,000	1	\$	100,000
Backfill with Structural Fill	Cubic Yard	\$	45	681	\$	30,667
Site Restoration	1000 Feet	\$	1,500	11	\$	17,025
Hand augering	Location	\$	75	7	\$	525
Drilling - 8"Borehole Hollow Stem Auger	Linear Foot	\$	18	405	\$	7,290
Split Spoon 1.5" Outer Diameter	Spoon	\$	15	63	\$	945
6" 304 Stainless Steel screen	Foot	\$	80	70	\$	5,600
6" Schedule 80 Riser	Foot	\$	8	245	\$	1,955
Sand Pack for 6"Well in 8"Borehole	Linear Foot	\$	8	84	\$	672
Riser backfill neat cement grout 6"Well in 8"Borehole	Linear Foot	\$	5	105	\$	525
Choker Sand for 6"Well in 8"Borehole	Linear Foot	\$	10	126	\$	1,260
24"x24" surface vault completion	Each	\$	1,000	7	\$	7,000
Well development - one hour per well	Hour	\$	225	7	\$	1,575
Personal Protective Equipment	Per/Day	\$	10	5	\$	45
Per Diem	Crew/Day	\$	250	5	\$	1,125
Load cuttings into Truck	Hour	\$	150	4	\$	600
Decon Pad Construction	Pad	\$	200	2	\$	400
Decontamination Labor	Hour	\$	150	8	\$	1,200
Skid steer rental	Day	\$	500	5	\$	2,250
T&D Landfill Non-Hazardous	Ton	\$	100	4.2	\$	420
T&D Landfill Hazardous <60 mg/kg	Ton	\$	575	0.2	\$	127
T&D Incineration Hazardous >60 mg/kg	Ton	\$	1,300	0.0	\$	-
Routine Operation & Maintenance	Month	\$	5,000	240	\$	1,200,000
Sampling/Laboratory	Month	\$	5,000	240	\$	1,200,000
Electricity	kWh	\$	0.12	2,600,000	\$	312,000
Consumables/Equipment	Year	\$	3,000	20	\$	60,000
Piping	100 Feet	\$	775	23	\$	17,832
Pumps	Each	\$	2,500	7	\$	17,500
Reporting	Year	\$	20,000	20	\$	400,000
Monitored Natural Attenuation	Year	\$	10,000	10	\$	100,000
Project Management	Lump Sum	\$	3,901,797	0.05	\$	194,990
Engineering	Lump Sum		3,899,797	0.05	\$	194,990
Construction Management	Lump Sum	\$	3,899,797	0.05	\$	194,990
Total					\$	4,584,766

7%	Discount Rate	C.	apital Cost	(perating	т.	tal Costs	То	tal Net Present
Year	Discount Factor	U,	apitai Cost		Cost	10	itai Costs		Value Costs
0	1.000	\$	1,312,766	\$	158,600	\$	1,471,366	\$	1,471,366
1	0.966	\$	-	\$	158,600	\$	158,600	\$	153,176
2	0.901	\$	-	\$	158,600	\$	158,600	\$	142,821
3	0.840	\$	-	\$	158,600	\$	158,600	\$	133,165
4	0.783	\$	-	\$	158,600	\$	158,600	\$	124,162
5	0.730	\$	-	\$	158,600	\$	158,600	\$	115,768
6	0.681	\$	-	\$	158,600	\$	158,600	\$	107,942
7	0.635	\$	-	\$	158,600	\$	158,600	\$	100,644
8	0.592	\$	-	\$	158,600	\$	158,600	\$	93,840
9	0.552	\$	-	\$	158,600	\$	158,600	\$	87,496
10	0.514	\$	-	\$	158,600	\$	158,600	\$	81,580
11	0.480	\$	-	\$	158,600	\$	158,600	\$	76,065
12	0.447	\$	-	\$	158,600	\$	158,600	\$	70,923
13	0.417	\$	-	\$	158,600	\$	158,600	\$	66,128
14	0.389	\$	-	\$	158,600	\$	158,600	\$	61,657
15	0.362	\$	-	\$	158,600	\$	158,600	\$	57,489
16	0.338	\$	-	\$	158,600	\$	158,600	\$	53,602
17	0.315	\$	-	\$	158,600	\$	158,600	\$	49,978
18	0.294	\$	-	\$	158,600	\$	158,600	\$	46,599
19	0.274	\$	-	\$	158,600	\$	158,600	\$	43,449
20	0.255	\$	-	\$	10,000	\$	10,000	\$	2,554
21	0.238	\$	-	\$	10,000	\$	10,000	\$	2,382
22	0.222	\$	-	\$	10,000	\$	10,000	\$	2,221
23	0.207	\$	-	\$	10,000	\$	10,000	\$	2,070
24	0.193	\$	-	\$	10,000	\$	10,000	\$	1,931
25	0.180	\$	-	\$	10,000	\$	10,000	\$	1,800
26	0.168	\$	-	\$	10,000	\$	10,000	\$	1,678
27	0.156	\$	-	\$	10,000	\$	10,000	\$	1,565
28	0.146	\$	-	\$	10,000	\$	10,000	\$	1,459
29	0.136	\$	-	\$	10,000	\$	10,000	\$	1,360
30	0.127	\$	-	\$	-	\$	-	\$	-
Total		\$	1,312,766	\$	3,272,000	\$	4,584,766	\$	3,156,871

Total NPV Operating Costs \$ 1,844,105

Assumptions

- 1. Cost estimate is based on Arcadis U.S., Inc. (Arcadis') past experience and vendor estimates using 2018 costs.
- 2. Well quantities and associated numbers provided by Parratt-Wolff in 2018 cost estimate.
- 3. Assume Dynamic Groundwater Recirculation to operate for 20 years.
- 4. Transportation & Disposal (T&D) costs are provided based on T&D for excavated remediation activities at AVX's facility in Conway, SC in 2018.
- 5. Assume T&D costs include direct loading into highway trucks.
- 6. Milligram per kilogram (mg/kg).
- 7. Unit cost for Piping provided by 2013 RSMeans with 7.79% inflation to reflect 2019 costs.

AVX MB FS Costs - Draft final - Feb

APPENDIX C-2 Remedial Alternative Conceptual Layout and Supporting Information

FS Target Area Soil

LEGEND:

- 2008 WASTE PAD POST DEMOLITION SAMPLING LOCATION
- 2015 MB1 PHASE 2 POST DEMOLITION SAMPLING LOCATION
- 2018 RECLAIM AND RMM BLDG POST DEMOLITION SAMPLING LOCATION
- 2008 DATA GAP INVESTIGATION LOCATION

TCE CONCENTRATIONS IN SUBSURFACE SOIL (2-10FT BGS)

- NON-DETECT OR <0.01 mg/kg
- >/=0.01 mg/Kg AND <0.1 mg/Kg
- >/=0.1 mg/Kg AND <1.1 mg/Kg
- >/=1.1 mg/Kg AND <10.0 mg/Kg
- >/=10.0 mg/Kg AND <100.0 mg/Kg
- >/=100.0 mg/Kg

IN-SITU THERMAL CONCEPTUAL LAYOUT AND COSTS

AVX-Myrtle Beach

Site Background

Site Name: AVX Myrtle Beach

Remedial Objectives: Treatment of CVOC/TVOC source area impacts. (TCE and daughter products primary COCs)

Approximate Contaminant Mass: 10,000 lbs assumed as max. However, it appears that mass may be less than 2,000 lbs assuming representative concentration of 10 mg/kg across treatment zones.

Target Treatment Area Footprint:

Treatment Depth: 5 - 25 ft bgs

Generalized Geology

Unit	Depth (ft bgs)	Estimated Hydraulic Conductivity (ft/day)
Fill	0-2	NA
"Clay" 1	2-6	0.1-0.3
"Silt"	6-10	1-3
Sand	10-25	30-100
Lower Clay	25-30	0.1-1

Soil Impacts in Source Area

The light blue surface represents the water table The orange plume represents TCVOCs above 5 mg/kg in soil.

© Arcadis 2017

Groundwater in Source Area

Thermal Approach - Scenario 1

Thermal Treatment Approach

- ➤ Thermal treatment of entire ~58,000 ft² source area from 5-45 ft bgs see next slide
- ➤ Combination of Electrical Resistance Heating (ERH) and Steam Enhanced Extraction (SEE)
 - > ERH electrodes placed on 16 ft centers (272 total)
 - > SEE injection points placed on 32 ft centers (50 total)
 - > Horizontal extraction wells used as primary steam / vapor collection points (34 total)
 - ➤ MPE wells for pneumatic/hydraulic control (15 total)

Ex-situ Vapor and Liquid Treatment Approach:

- Vapor treatment using Granular Activated Carbon (GAC),
- > Extracted liquid and condensate treated using Granular Activated Carbon (GAC).

Monitoring:

- > Temperature monitoring wells (40 wells) and pressure monitoring wells (11 wells) to track subsurface heating, pneumatic, and hydraulic control.
- > Vapor and liquid treatment system monitoring for mass removal and discharge compliance.

© Arcadis 2017 29 April 2019

Scenario 1 Source Zone and Treatment Area ARCADIS Pesign & Consultancy for ratural and built assets

Thermal Approach - Scenario 2

Thermal Treatment Approach

- Thermal treatment of 4 smaller/high mass areas (plus expanded footprint for better treatment) to 25 ft bgs +: Area 1 (6,100 ft²), Area 2 (1,700 ft²) and Area 3 (1,650 ft²) and Area 4 (2,000 ft²) see next slide
- > Combination of Electrical Resistance Heating (ERH) and Steam Enhanced Extraction (SEE) (more SEE/less ERH than Scenario 1)
 - > ERH electrodes placed on 16 ft centers (196 total)
 - > SEE injection points placed on 32 ft centers (59 total)
 - ➤ Horizontal extraction wells used as primary steam / vapor collection points (35 total)
 - ➤ MPE wells for pneumatic/hydraulic control (12 total)

Ex-situ Vapor and Liquid Treatment Approach:

- Vapor treatment using Granular Activated Carbon (GAC),
- > Extracted liquid and condensate treated using Granular Activated Carbon (GAC).

Monitoring:

- ➤ Temperature monitoring wells (40 wells) and pressure monitoring wells (16 wells) to track subsurface heating, pneumatic, and hydraulic control.
- > Vapor and liquid treatment system monitoring for mass removal and discharge compliance.

© Arcadis 2017

Scenario 2 Layout

© Arcadis 20'

Vapor and Liquid Treatment System

© Arcadis 2017 29 April 2019

Well Design

Well Type	Scenario 1	Scenario 2
Electrodes	35 ft deep (2 electrodes per borehole) – 10-12 inch boreholes	30 ft deep (2 electrodes per borehole) – 10-12 inch boreholes
Steam Injection Points	22-28 ft deep (2 inch SS well with 1 ft screen)	22 ft deep (2 inch SS well with 1 ft screen)
Horizontal Extractors	5-6 ft deep (50 ft long, SS WW screen)	5-6 ft deep (25-50 ft long, SS WW screen)
MPE Wells	30 ft deep (4 inch dia, 25 ft SSWW screen)	25 ft deep (4 inch dia, 20 ft SS WW screen)
Temperature Monitoring	35 ft deep (1.5 inch diameter steel)	35 ft deep (1.5 inch diameter steel)
Pressure Sensors	5 ft deep (1 inch diameter SS)	5 ft deep (1 inch diameter SS)

11

Utility Requirements

	Scen	ario 1	Scen	ario 2
	Rate	Total	Rate	Total
Electricity	Power 4,690 KW Load 5900 kVA	15,000,000 kWh	Power 4,690 KW Load 4,000 kVA	9,064,000 KWh
Gas	200 MM BTU/day	32,080 MM BTU	240 MM BTU/day	38,620 MMBTU
Potable Water	15 gpm	3,450,000 gallons	16 gpm	3,686,000 gallons
Sewer or NPDES Discharge	45 gpm	10,400,000 gallons	50 gpm	10,400,000 gallons

© Arcadis 2017

Cost Estimate

	Scenario 1	Scenario 2	Details
Design	\$ 290,000.00	\$ 290,000.00	Arcadis and subcontractor fees for design report/package
Procurement	\$ 160,000.00	\$ 140,000.00	purchase of expendable equipment/supplies (well materials, cabling, piping, etc)
Construction	\$ 5,700,000.00	\$ 4,400,000.00	Drilling, vapor cap, installation of treatment systems
Operation	\$ 1,900,000.00	\$ 1,900,000.00	rental of equipment, misc supplies, sub and Arcadis labor
Laboratory Analytical	\$ 50,000.00	\$ 50,000.00	GW and vapor samples for process monitoring
Utilities	\$ 1,960,000.00	\$ 1,320,000.00	electricity (\$.12/kWh) and gas \$3.12/MMBTU)
Demobilization	\$ 565,000.00	\$ 440,000.00	remove equipment and abandon wells
Total	\$10,625,000.00	\$ 8,540,000.00	

© Arcadis 2017 29 April 2019 12

300'

FIGURE

Groundwater Alternatives

Pumping and Treatment Conceptual Layout

Groundwater Alternatives

Dynamic Groundwater Recirculation Conceptual Layout

Arcadis U.S., Inc.

6041 Wallace Road Extension Suite 300 Wexford, Pennsylvania 15090 Tel 724 742 9180 Fax 724 742 9189

www.arcadis.com