South Carolina Department of Health and
Environmental Control
Bureau of Land and Waste Management

Proposed Plan for Site Remediation J.P. Stevens Chemical Plant #1 (Piedmont) Site 410 Old Pelzer Road Piedmont, South Carolina

Transcript

of

Public Meeting

Date: November 9, 2017

Time: 6:35 p.m. - 7:35 p.m.

Location: Piedmont Community Center

1 Main Street

Piedmont, South Carolina

Reported by Vickie M. Hester

APPEARANCES

For DHEC: Pat Vincent

Community Information Coordinator

Judy Canova

Project Manager

R. Gary Stewart

State Remediation Section Manager

SC Department of Health and Environmental Control

2600 Bull Street

Columbia, South Carolina 29201

INDEX

Introductions by Pat Vincent:

Proposed Plan Presentation by Judy Canova:

Question and Answer Session:

24

ATTACHMENTS

There are no attachments to this hearing.

1	PROCEEDINGS
2	PAT VINCENT: Hello there. I want to thank you for
3	coming out tonight for the South Carolina
4	Department of Health and Environmental Control's
5	meeting regarding a former JP Stevens site in
6	Piedmont. The address for the site is 410 Old
7	Pelzer Road in Piedmont. We're here today for
8	several things. We wanted to share some
9	information about the facility, what's been
10	discovered as far as contamination at the site, and
11	also to provide an opportunity to answer your
12	questions and receive some comments from you
13	regarding the proposed cleanup options that the
14	Department has suggested that we use. So we're
15	here to get your comments. We are very interested
16	as an agency in hearing from you regarding the
17	selection that we have. My name is Pat Vincent,
18	and I am with the South Carolina Department of
19	Health and Environmental Control. And I am with
20	the Bureau of Land and Waste Management, one of the
21	many branches of the of the Department. I
22	assisted the site team today with the logistics.
23	We've got a beautiful place here at this community
24	center. We have also Judy Canova. Judy is our
25	engineer, and she has been the project manager for

	1	the site for since the early nineties. So she
	2	does have a good history with the facility. We
	3	also have she will doing the presentation in a
	4	few minutes as well. We have Gary Stewart. He's
	5	our boss. And so he is the Manager of the State
	6	Remediation Section. We also have to my left
	7	and to your right is Vickie Hester. She is
	8	recording our meeting today. She will be providing
	9	us a transcript so that we will be able to put that
	10	on the website for you as well so that you can
	11	review that. Do we have any others that did
	12	Councilman Ballard make it? He was hoping he would
	13	be here and may have come in late. We have sign-in
	14	cards in the back. If you will kindly be sure that
	15	you sign that sign in for us. That will assure
	16	that you will be on our mailing list for future
	17	mailouts about the site. We have many
	18	environmental reports that we have provided to the
	19	Anderson County Library, their Piedmont Branch. We
	20	call that batch of environmental reports our
	21	administrative record. And you can go to the
	22	library and look at those. You can make copies of
	23	those. Before you hit the print key, let me tell
	24	you that some of those reports are quite large. So
	25	you may be I would suggest that you be selective
-1		

1		on what you print while you're at the library.
2		Let's see. We have our proposed plan in the back.
3		We have several copies. Please be sure you get one
4		of those. That might be handy to you as we're
5		going through the presentation. And I think that's
6		it. So, Judy, if you would like to come forward.
7	JUDY	CANOVA: Thank you guys for coming out tonight. I
8		appreciate your time. As Pat said, the purpose of
9		our meeting is to present to you some information
10		that we have on the JP Stevens site and to get your
11		comments and your thoughts and concerns about what
12		we would like to propose to do to clean up the
13		problem there. I'm going to talk a little bit
14		about the site history as well as some
15		investigations that have occurred at the site. I
16		will go over site conditions and some previous
17		remedial activities that have occurred out there.
18		And then we'll talk a little bit about the site
19		risks and the cleanup alternatives. And then we
20		will evaluate those alternatives and give you a
21		preferred cleanup alternative. And after that
22		there will be a time for comments and questions.
23		And I'm hoping that we will be able to complete my
24		part of the presentation in about 30 minutes. And
25		I hope that your butts don't get numb before I

	1	finish. Next slide, please. So this is a map.
	2	I'm sure everyone in here knows where the JP
	3	Stevens site is located. It is between Highway 20
	4	and the Old Pelzer Road. And we call it the JP
	5	Stevens site because that's how it started out. It
	6	has changed hands a few times. But that's what
	7	we're going to call it tonight.
	8	So the area that we're going to be talking
	9	about tonight is up here in the top half. It's the
	10	area within the fence line of the former JP Stevens
	11	property. We had a meeting probably back in 2004
	12	regarding this area off the site that is
	13	groundwater contamination. This blue area is the
	14	area of groundwater contamination. We call that a
	15	plume. And so this area already has groundwater
	16	recovery and treatment going on. But we want to
	17	talk to you about this area tonight. So it has
	18	the site has a pretty extensive history, and I'm
	19	just going to touch on a few key events. In 1970
	20	the plant was built and operated by JP Stevens and
	21	Company. They manufactured textile coating and
	22	finishing products. And then in '84 the ownership
	23	transferred to Intex Products who produced
	24	specialty chemicals. In 1988 the site was
	25	purchased by Air Products and Chemicals, and was
1	i .	

1	used to make acrylic polymers. And then in 2008
2	Ashland purchased the plant and continued to
3	manufacture acrylic polymers.
4	So the site has had quite a bit of
5	investigation as well as some pilot tests. Pilot
6	tests are small scale tests that we use to
7	determine if a particular technology will work, or
8	what the problems would be with a particular
9	technology. The site investigations include soil
10	and groundwater sampling, drinking water well
11	testing, surface water sampling, vapor intrusion
12	evaluation and, as I said, pilot testing of several
13	technologies for groundwater treatment.
14	And this figure is one of the figures that's
15	in the back of the room. And I do want to mention
16	that all the figures I'm showing you up here are in
17	your copy of the proposed plan. So if you have
18	difficulty reading from a distance I think it's
19	fairly legible. But if you would like to see it up
20	close and personal, you have a copy in your
21	proposed plan. And so this map shows the source
22	areas on the site there in the yellow boxes. And
23	when we call something a source, what that means is
24	it is releasing contamination. And in this case it
25	is soil releasing contamination to the underlying

1	groundwater. So we have a tank farm, the drumming
2	room, the oil retention basin and part of the
3	wastewater treatment plant are the yellow boxes
4	which are source areas. And then we have these
5	gray boxes that are former source areas; the sludge
6	field here and the sprayfield there. Those areas
7	have been addressed. The sludge field was
8	excavated in 1993 along with the drums that were
9	buried there. And the sprayfield had soil vapor
10	extraction from 1998 to 2002. So those areas have
11	already been addressed. The blue area is the
12	general outline of the groundwater contamination
13	within the fence line on this property.
14	And just in case you were not sure where the
15	tank farm was, I have an aerial photograph showing
16	the tank farm at the site. And this is a series of
17	tanks that are used to hold chemicals that the
18	facility uses to manufacture whatever they need.
19	And so this is what the tank farm is.
20	There are several contaminants of concern at
21	the site. I picked the ones that are the most
22	important to us. Tetrachloroethylene, which is
23	PCE, is the one that's the most common. It's
24	present throughout the area of groundwater
25	contamination. So you'll hear me talk a lot more

ı		
	1	PCE than some of the other ones. We also have
	2	trichloroethylene, cis-1,2-dichloroethylene, vinyl
	3	chloride, chlorobenzene, 1,4 dichlorobenzene and
	4	benzene. And our intention is to pick some remedy
	5	that will address all the contaminants of concern
	6	at the site.
	7	This is the a detailed map showing the
	8	groundwater contamination. Again we have the fence
	9	line here. The blue again is the extent of
	10	contamination. This is a color-coded scale. So
	11	the red dots right here and there are the areas
	12	where the highest contamination is present in
	13	groundwater. And this is where the tank farm is,
	14	and this is where the grease trap was.
	15	So there have been several soil remedial
	16	actions to date. As I mentioned before, in 1993
	17	the drum burial area and the sludge field was
	18	excavated. In 1998 there were two wastewater
	19	treatment basins that were excavated. And we have
	20	a third one that we are looking at as part of this
	21	action. In 2000 the accessible soil was removed
	22	from the drumming room. In 2002 the area below the
	23	grease trap was excavated. And from 1998 to 2002
	24	the sprayfield had soil vapor extraction.
	25	And this is a picture of the removal where
1	1	

1	they dug up the soil from the one of the former
2	lagoons on the site. That's a picture of what that
3	looked like.
4	There have also been some groundwater and
5	surface water remedial actions. In 1997 they
6	installed an in-stream sparging system to treat
7	contamination within the creek on the site. In
8	2003 a groundwater extraction and treatment system
9	was installed at the property boundary. And in
10	2007 the groundwater extraction system was expanded
11	to include the areas beyond the property boundary.
12	So based on these investigations, we have
13	found the following site risks. Contamination has
14	moved from the soil into the groundwater. Public
15	water is supplied and available in the area. We
16	have not found any drinking water wells or
17	irrigation wells within the area of groundwater
18	contamination. And we are expecting that deed
19	restrictions will prohibit future use of
20	groundwater on the facility property.
21	And this is one of the maps that you might
22	have to look at in your proposed plan to see all
23	the dots. But this is a well inventory within a
24	half a mile radius of the plume. The blue dots are
25	non-domestic wells. The green dots are domestic

1	wells. The yellow dots are wells that are not in
2	service. And then there are fire hydrants around
3	that show where the water lines are present for the
4	public water supply.
5	More about site risks. Contact with
6	contamination in groundwater, soil, soil vapor and
7	surface water is unlikely if you are outside the
8	fence line. But if you are inside the fence line
9	and you are a site worker, a construction worker or
10	a trespasser, it is possible that you would contact
11	some of the contamination at the site. Creeks
12	beyond the property boundary meet the standards for
13	surface water. And we have found no vapor
14	intrusion concerns for nearby residents. Vapor
15	intrusion happens when contamination in soil or
16	groundwater goes into the air. But we have not
17	found that to be an issue at this site.
18	We have established a number of remedial
19	action objectives for the site. And that guides
20	the selection of the remedial alternative. So our
21	objectives are to protect human health from
22	exposure to contaminants of concern, to prevent
23	transport of contamination from sources into the
24	underlying groundwater, to prevent migration of
25	contamination in groundwater and surface water. We

1	would like to restore groundwater throughout the
2	area to drinking water standards, which we call
3	those MCLs or maximum contaminant levels. We would
4	like to achieve site-wide compliance with surface
5	water quality goals. And we want to eliminate the
6	potential for contamination to discharge to
7	streams.
8	Now, we have established clean-up goals. And
9	again, these are for some of the selected chemicals
10	at the site. For PCE where it is present in soil
11	and it's acting as a source of groundwater
12	contamination our clean-up goal is 5 milligrams per
13	kilogram. And for groundwater the goal is .005
14	milligrams per liter for PCE.
15	So based on those objectives and goals, we
16	have six cleanup alternatives to talk about, and we
17	would like to hear from you about which ones you
18	are thinking you would like. The first alternative
19	would be no action. Second would be monitored
20	natural attenuation which we abbreviate MNA. Third
21	would be groundwater recovery and treatment with
22	MNA. Fourth, in-situ chemical oxidation or ISCO
23	with MNA. Fifth, in-situ bioremediation with MNA.
24	And sixth, zero-valent iron with MNA. And I'm
25	going to tell you what each one of those are.

1	So Alternative 1 is the no action alternative.
2	We have to evaluate that as a baseline for
3	comparison to everything else. It would include no
4	active remediation or monitoring. All groundwater
5	and surface water treatment would be discontinued.
6	The regular facility and site maintenance practices
7	would continue. There would be periodic regulatory
8	reviews. The estimated cost would be zero dollars.
9	And the time to reach our remedial goals would be
10	over 100 years. So if we chose this no action
11	alternative, we would have some environmental
12	concerns. If the sources in the soil are not
13	cleaned up, then releases of contamination to
14	groundwater would continue. If groundwater
15	continues to receive contamination from the soil
16	without any treatment or containment, the plume
17	which is the area of groundwater contamination
18	could expand, and it could affect water wells at a
19	distance from the site. And streams can also be
20	affected by contamination if the plume expands.
21	Alternative 2 is monitored natural
22	attenuation. We call that MNA. The way monitored
23	natural attenuation works is over time there is
24	dilution and dispersion and degradation of
25	contamination. It's just the natural process. And

1	so what this alternative would include would be
2	basically the no action alternative, but also
3	monitoring to show what the contamination is doing
4	and hoping that it would decline. It does work for
5	relatively low concentrations of contamination.
6	This alternative would continue groundwater and
7	surface water monitoring. It would discontinue all
8	groundwater and surface water treatment, and there
9	would be no active remediation for source areas or
10	groundwater. And the estimated cost for this would
11	be slightly over five million dollars. And the
12	time required to reach remedial goals would be over
13	100 years based on our best estimate.
14	Alternative 3 is groundwater recovery and
15	treatment with monitored natural attenuation. And
16	that is something that is already going on at the
17	site. They already have wells that are pumping
18	contaminated groundwater out of the ground and
19	treating it. So this alternative would maintain
20	and expand the current groundwater recovery and
21	treatment system. There would not be any active
22	remedial alternatives for source areas. Once the
23	bulk of the contamination is addressed with
24	groundwater recovery and treatment, there would be
25	a transition to monitored natural attenuation. The

1	estimated cost of this alternative is approximately
2	14 and a half million dollars. And the time
3	required to address the contamination would be 100
4	years. I would like to say that the existing
5	system is going to continue operating for the
6	remaining alternatives that I'm going to talk
7	about. So you're going to hear that again and
8	again.
9	The next thing is a map that shows the
10	conceptual layout for groundwater recovery and
11	treatment wells. All of the red dots are
12	groundwater recovery wells. The ones that are in
13	the blue circles are ones that are currently
14	operational or present. And the ones that are
15	circled in red would be the ones that are proposed
16	under this alternative.
17	The fourth alternative is in-situ chemical
18	oxidation with monitored natural attenuation. So
19	in-situ chemical oxidation is something that you
20	might be familiar with. I don't know how many of
21	you use hydrogen peroxide if you have a cut on your
22	finger to kill the bacteria. But that hydrogen
23	peroxide is actually an oxidant, and you get it at
24	low concentrations in the grocery store or drug
25	store. But if you get higher concentrations of

1	that or other oxidants that are even more powerful
2	than hydrogen peroxide, it can actually destroy the
3	contamination in place. We don't have to bring it
4	out of the ground. We can actually inject it into
5	the area of contamination. This had a successful
6	pilot test on the site, which was good news. So
7	this alternative, we use chemical oxidation to
8	treat the soil and the groundwater in areas of
9	concern. And as I said, we would keep the current
10	groundwater recovery and treatment system going.
11	This alternative also includes contingency measures
12	if additional treatment is determined to be
13	necessary. And once the bulk of the contamination
14	is addressed by this technology, the site will
15	transition to monitored natural attenuation. The
16	estimated cost for this option is slightly over 17
17	million dollars. The time estimated to address the
18	contamination at the site would be 15 years. And
19	chemical oxidation is a component of all the rest
20	of the alternatives I'm going to talk about because
21	it treats all the chemicals present at the site.
22	And so this is a map showing what it would
23	look like. These little red boxes are where in-
24	situ chemical oxidation would be used to treat
25	source areas. The purple rectangles are where

1	chemical oxidation would be used to treat
2	groundwater. And then the red dots again are the
3	groundwater recovery wells that would continue to
4	operate as part of this alternative.
5	The fifth alternative is in-situ
6	bioremediation. Believe it or not, there are
7	bacteria and microbes in the subsurface that like
8	to eat some of these chemicals. There are certain
9	ones that they like to eat. And so it is a
10	technology that could be possibly applied at the
11	site. And Clemson laboratory did some testing with
12	the groundwater at the site and discovered that in
13	some places it would work, and other places it
14	wouldn't work. So for this alternative we would
15	use in-situ bioremediation to treat the areas where
16	it was shown that it would probably work. And that
17	would be the groundwater and selected source areas.
18	And in-situ chemical oxidation would be proposed
19	for the remaining areas. Again, the groundwater
20	recovery and treatment system would continue to
21	operate, and there would be contingency measures if
22	additional treatment is needed. Again, once the
23	bulk of contamination is addressed, then the site
24	would transition to monitored natural attenuation.
25	The estimated cost for this alternative is 18.8

1	million dollars approximately, and it would take
2	about 20 years.
3	So this is the conceptual layout for
4	Alternative 5. Up here is where we would have the
5	in-situ chemical oxidation, because we do not
6	expect that bioremediation would work. The yellow
7	squares down here, the wastewater treatment plant
8	and the former oil retention basin would receive
9	in-situ bioremediation. And then the groundwater
10	in all of these areas would be treated using in-
11	situ bioremediation. The red dots are the
12	groundwater recovery wells. They're about the same
13	on every map.
14	And the final alternative is Alternative 6 is
15	zero-valent iron with monitored natural
16	attenuation. It's well-documented that zero-valent
17	iron works to destroy perchloroethylene under a lot
18	of different conditions. So in this case zero-
19	valent iron would be used to treat key source
20	areas. Because it won't treat all of them, we
21	would have to use in-situ chemical oxidation for
22	some of the other ones, and in-situ bioremediation
23	would be proposed for groundwater treatment. We
24	would maintain the current groundwater recovery and
25	treatment system. We would use contingency

- 1		
	1	measures if additional treatment is needed. Again,
	2	the site would transition to monitored natural
	3	attenuation once the bulk of the contamination has
	4	been addressed. The estimated cost for this option
	5	is slightly over 19 million dollars, and the time
	6	is about 20 years.
	7	And this next map is going to be the most
	8	complicated one of all. The in-situ chemical
	9	oxidation is up here in the grease trap, the tank
	10	farm and the drumming room in these little red
	11	squares. The zero-valent iron would be in the
	12	wastewater treatment plant and former oil retention
	13	basin. And then in-situ bioremediation would be in
	14	these purple rectangles. And the groundwater
	15	recovery wells would continue to operate.
	16	So that's quite a few options. We have a
	17	number of criteria that we look at when we choose
	18	what we think would be the best option to clean up
	19	a site. And that includes overall protection of
	20	human health and the environment, compliance with
	21	state and federal regulations, long-term
	22	effectiveness and permanence, reduction of
	23	toxicity, mobility or volume through treatment,
	24	short-term effectiveness, implementability, cost
	25	and finally community acceptance. And that's one

1 of the reasons we want to hear from you, because we 2 want to know what you think. 3 So I'm going to summarize these different 4 criteria and compare the different alternatives for 5 And I'm going to try to be fast. Protection you. 6 of human health and the environment; we're going to 7 prefer alternatives that are going to protect us. 8 We don't want anything that's going to be harmful 9 for people or harmful for the environment. 10 technologies that are faster at addressing the 11 problem would rank higher for this criteria. 12 this case no action and monitored natural 13 attenuation rank the lowest, and in-situ chemical oxidation ranks the highest. 14 15 The next criteria is compliance with state and 16 federal requirements. We can't pick a technology 17 that is against our laws or against our guidance 18 for -- for what's in our laws. So you have to 19 And those technologies that are consider that. 20 more likely to achieve state and federal 21 requirements, like our drinking water standards, 22 quickly would have a higher ranking. 23 have no action and monitored natural attenuation 24 being the lowest, and in-situ chemical oxidation 25 ranks the highest for this criteria.

1	Long-term effectiveness and permanence looks
2	at is it going to last. Are we just going to make
3	it better for a year and then everything's going to
4	go back, or is it going to stay is it going to
5	be a permanent change to the environment? And so
6	we prefer remedies that we're not going to have to
7	go back ten years from now and find out oops, the
8	contamination is back and we've got to do more. We
9	want to select ones that it's done. When we're
10	finished with it, we'll continue to monitor it.
11	But we're not expecting to see any more problems.
12	So the ones that rank the lowest with this are no
13	action, monitored natural attenuation and
14	groundwater recovery and treatment. And in-situ
15	chemical oxidation ranks the highest.
16	Reduction of toxicity, mobility or volume
17	through treatment is a bunch of words that mean we
18	want to use treatment to make the area of
19	contamination smaller or to make it less toxic or
20	to stop it from moving. Those technologies that
21	will do that rank higher. So again no action,
22	monitored natural attenuation, groundwater recovery
23	and treatment rank the lowest. In-situ chemical
24	oxidation ranks the highest.
25	Short-term effectiveness looks at do we get a

1	benefit quickly from the technology and is there a
2	risk to the community or to the construction worker
3	that's involved in installing the system. For
4	short-term effectiveness no action and monitored
5	natural attenuation rank the lowest. In-situ
6	chemical oxidation ranks the highest.
7	Implementability is an evaluation of how easy
8	it is to do something. So the more difficult
9	something is, if it takes a lot of permitting or
10	there's a lot of uncertainty about whether it will
11	work, if it's a new technology that hasn't been
12	tested, those are things that we look at with
13	implementability. So the easiest ones to implement
14	are the ones that don't require any action like no
15	action or monitored natural attenuation.
16	Groundwater recovery and treatment doesn't take a
17	lot of work because it's already been installed.
18	So those would rank highest for this category.
19	And finally, I have the costs put up here for
20	you. The cost goes up with the number of the
21	option. So 1 is cheapest, and 6 is the most
22	expensive.
23	And I put a little summary table together.
24	Across the top we have the different options
25	remedial options. On the side we have all the

1 criteria. And a red square means for that criteria that alternative is low or does not do well with 2 3 that criteria. The blue squares are the highest 4 So you can see Alternative 4 has most of ranking. 5 the highest rankings for the different criteria. 6 So for this reason our preferred alternative 7 is in-situ chemical oxidation with MNA. 8 this would be protective of human health and the 9 environment. It would reduce contamination in the 10 short and long-term. We believe it would meet regulatory requirements more rapidly. And it is 11 12 cost effective. We also feel this is a permanent 13 solution to the maximum extent practicable. meets our preference for remedies that involve 14 15 treatment as a principle element. 16 So our next steps would be -- this meeting is 17 the beginning of the 30-day public comment period. 18 We'd be glad to hear from you tonight. 19 comments are due to us on or before December 11th, 20 2017. After we get those comments from you, we may 21 modify the remedy or select another remedy if you give us new information. 22 And then the record of 23 decision will be written after the comment period 24 is over. And that will identify the selected 25 clean-up method. And we hope we have that done in

1	March of 2018. And after that record of decision
2	is written, then the process of designing the
3	remediation system and installing it will start.
4	As Pat said, there is what we call an
5	administrative record. If you want to read some of
6	the documents that were written that helped us make
7	a decision or the recommendation that we're making
8	tonight, you can read them at the Anderson County
9	Library - Piedmont Branch. You can also get them
10	at our Freedom of Information Office in Columbia.
11	And we do want to hear your questions or comments
12	tonight. But if you would like to write them to
13	me, you can send them by email or to my address.
14	And all this information is in the proposed plan,
15	so you don't have to worry about getting it written
16	down. It should be on the last page of the
17	proposed plan. And again we do ask that you submit
18	those to me by December 11th.
19	And with that, I wanted to give you all time
20	to comment or ask questions regarding what we are
21	proposing for the site.
22	PAT VINCENT: During the comment period if there are any
23	questions that you would like to ask, I will come
24	to you with the recorder so that our court reporter
25	will be able to pick up your conversation. So who

1 has the first question for us? Please give us your 2 name. 3 MIKE TAYLOR: Mike Taylor. Who will be participating 4 in the cost of all this cleanup, JP Stevens or who? 5 JUDY CANOVA: That was an excellent question, and I 6 meant to say that. But we are not spending 7 taxpayer money to do a cleanup. So we're not going to be taxing you a extra dollar tax to clean this 8 9 site up. But JP Stevens is a bankrupt facility. 10 Air Products entered into an agreement with the state to perform the work. And so you all nod your 11 12 heads and say yes, we're paying for the work back 13 there. Okay. 14 MIKE TAYLOR: Doesn't the state have a fund set up for 15 this cleanup? 16 JUDY CANOVA: We do have a contingency fund. If there 17 is not a financially viable and responsible party 18 and we feel like there is a risk to human health, 19 we will use our own money to address it. 20 MIKE TAYLOR: Yeah, that's what I was thinking. 21 PAT VINCENT: And Intex Products also was an operator 22 They also filed bankruptcy. at the site. 23 other questions? 24 MARSHALL BEASLEY: My question is how did it -- don't 25 DHEC supposed to go in and test this soil every so

1	often? How did it get this bad over these years, I
2	mean, without it being checked or, you know,
3	caught? How did it get this bad?
4	PAT VINCENT: And tell us your name, sir.
5	MARSHALL BEASLEY: Marshall Beasley.
6	JUDY CANOVA: That's a good question, and I would be
7	asking the same question myself. I think that
8	initially when the project began, contamination had
9	already been released to the environment when we
10	first found out about it. And then there was a
11	process of taking samples to see where had the
12	contamination gone and how far had it gone. And
13	it's one of those processes where you hope that you
14	get the area where it's contaminated. Your samples
15	come back you take samples and then they come
16	back and you realize we're still above our goals or
17	we're still too high, so we need to take more
18	samples further down. And so it's sort of a
19	process of collecting samples over time. And it is
20	an unfortunate thing that it took a while because
21	the area of contamination was bigger than we
22	expected. And the other thing that was part of the
23	equation was some of these areas of contamination
24	we didn't know about at the beginning. Like the
25	oil retention basin was something that we were not

1	aware of when they first started doing work out
2	there. And the drumming room and the grease trap
3	all were discovered as part of facility maintenance
4	practices and reported to us when they were
5	discovered. So unfortunately we didn't know about
6	all of the areas. So that's one reason that it was
7	that the contamination was as extensive as it
8	was or is as extensive as it is. The other part
9	is there's a period of time where we have to look
10	at how we're going to clean this material up. And
11	that takes a period of time also to do these pilot
12	tests and studies to see what will work. And this
13	site is particularly complicated because it has a
14	range of different chemicals. So there had to be
15	some pilot testing which also sort of slowed the
16	process down more than it would for another site
17	that maybe only had one or two contaminants.
18	PAT VINCENT: Any other questions?
19	RUBY CLARK: I do.
20	RUBY CLARK: My name is Ruby Clark. I got came in
21	here on the tail end of this. How dangerous is it
22	for us that is in the immediate neighborhood?
23	JUDY CANOVA: Yes. So within the property fence line
24	there is a problem if someone was to go into the
25	stream on the property within the fence line of the

1		property. But outside of the fence line we are not
2		aware of any risk to the community.
3	RUBY	CLARK: Okay. But now, your stream is not
4		restricted to inside the fence. Our streams are
5		connected.
6	JUDY	CANOVA: That's correct. We have a treatment
7		system at the property boundary that treats the
8		contamination in the stream. So samples of that
9		stream just past that treatment system meet all of
10		our requirements. So the streams are okay beyond
11		the fence line. Now, I'm not going to tell you to
12		go into that creek on the property. But I'm saying
13		off the beyond the fence line it's fine.
14	GARY	LABOMBAR: My name is Gary Labombar. I live about
15		800 feet from the plant. I don't have really any
16		questions. I've just got comments about JP Stevens
17		or the plant as I know it as Air Products. Now,
18		we've been having meetings with everybody from Air
19		Products on an average maybe every four months.
20		And I can tell you that they are really thorough at
21		making us feel comfortable living in the area.
22		They answer any questions that we have. They give
23		us a free meal. But it keeps our interest. They
24		give us and they have any questions that we
25		have, they attack them. If they can't answer them

1	then, they will by the next meeting. And I don't
2	work for them. I'm not getting paid to say this.
3	I'm just saying that I couldn't be any happier to
4	have a neighbor than we have than these people
5	here. DHEC ought to be very proud that they are
6	giving us the cooperation that they do, because
7	they make me feel comfortable living in the
8	neighborhood. This lady's concerns, if everybody
9	would come to the meetings that they would have
10	and they invite everybody that's concerned around
11	the neighborhood. If you would come to their
12	meetings, you would find what I'm telling you to be
13	true and you would get to know everybody. And they
14	feel almost like family. I almost know all of them
15	by name, to be honest with you. So if you want to
16	feel more comfortable about where you're living,
17	and your concerns, if you can't think of questions
18	right now, please attend their meetings and you'll
19	get information. If something comes up even if
20	you have odors, they have us call. Any kind of
21	strange odors we get, they they attack it right
22	off the bat and they go and find out if it has
23	anything to do with them. I can't tell you how
24	pleased I am to be next door to these people right
25	here.

1 1		
1	JUDY	CANOVA: They have done an outstanding job of
2		reaching out to the community. And so if you are
3		not on their mailing list for those meetings, I'm
4		sure that somebody back there would volunteer to
5		talk to you about getting on their list. I don't
6		know who Jerry in the very back, raise your
7		hand. Raise your hand.
8	JERR:	Y HARTIG: Yeah, I'm Jerry Hartig with Air Products,
9		and (inaudible) to my left here. And we both
10		participate in what's called the Community Advisory
11		Panel meetings that we have. And I would encourage
12		you as you know, it's not just about a meal.
13		I'm Jerry Hartig. I'm sorry. It really is about
14		sharing information and keeping the community
15		appraised of what's happening with the cleanup
16		project. So it's I think it is a really good
17		forum to exchange that kind of information.
18	JUDY	CANOVA: And you are of course always welcome to
19		call me. My number is in the proposed plan. If
20		ever you have any questions or concerns, you can
21		also contact me. And I am continuing to be
22		involved with this project, and I've worked on it
23		for a long time. And it's it's taken a long
24		time. But I'm happy that we're at this point where
25		we're able to make a choice about how to clean up

1		everything that's remaining out there. They have					
2		been pretty aggressive with putting in the recovery					
3		groundwater recovery wells, the groundwater					
4		treatment system and the surface water treatment					
5		system so that nothing goes beyond the fence line.					
6		And so we appreciate that. That has been very					
7		helpful.					
8	RUBY	CLARK: Again Ruby Clark. Based on what Mr.					
9		Taylor's question, in the worst scenario from the					
10		15 years to the hundred years the expense is not					
11		going to come back on the Piedmont us?					
12	JUDY	CANOVA: That would not be my expectation.					
13	RUBY	CLARK: Is that a maybe?					
14	GARY	STEWART: No. I will say flat out no, it will not					
15		come back on the residents or anyone like that. If					
16		push comes to shove, the state would use our					
17		what we call our Hazardous Waste Contingency Plan.					
18		We sometimes call it our State Superfund. It					
19		doesn't have as much money as we'd like for it to					
20		have. But it's got enough that we can protect					
21		human health and the environment if we had to.					
22	JUDY	CANOVA: And that's Gary Stewart, my supervisor.					
23		So he's right.					
24	UNID	ENTIFIED SPEAKER: You'd better say that.					
25	JUDY	CANOVA: I do want to keep my job.					

1 MIKE TAYLOR: I was, you know, raised over there, you 2 know, probably, you know, back when JP Stevens and 3 everybody had it. You know, used to you could -you know, you could just smell the odor, you know, 4 5 everybody in the neighborhood. In the afternoon, 6 especially when the humidity -- and the night, I 7 mean, you could just smell it. And I'm sure you're 8 breathed it in. You know, and it smelled -- it 9 smelled just like antifreeze. 10 I've smelled it too. You know, I've JUDY CANOVA: smelled it before too. It's a real sweet smell. 11 12 MIKE TAYLOR: Yeah, exactly. Yeah. 13 JUDY CANOVA: Yeah, I think that was the polyvinyl alcohol that smelled so sweet like that. 14 15 what I was told when I asked what that was. 16 UNIDENTIFIED SPEAKER: Smelled a little bit like 17 coolant, right? 18 MIKE TAYLOR: Yeah. 19 Well, I'm not aware of that. RUBY CLARK: Okay. 20 based on what Mr. Taylor just said, has there been 21 a health issue for people who have lived here 22 forever breathing? 23 JUDY CANOVA: Not to my knowledge. Or worked there? Or worked there? 24 MR. TAYLOR: 25 Or worked there? RUBY CLARK:

- 1 JUDY CANOVA: Not to my knowledge.
- 2 RUBY CLARK: Is that a maybe?
- 3 JUDY CANOVA: You know, I -- I would like to know
- 4 everyone's health of every individual within the
- 5 community. But that is not something that I'm
- 6 aware of. Nothing has been brought to my attention
- 7 regarding any health concerns from individuals that
- 8 live near the site.
- 9 GAIL STRICKLAND: I've lived there 50 years. I'm Gail
- 10 Strickland. I assume I'm healthy. The doctor says
- 11 I am.
- 12 PAT VINCENT: Any other questions?
- 13 JUDY CANOVA: I would like to hear from you regarding
- in-situ chemical oxidation. Are you comfortable
- 15 with that as an option based on the information I
- have presented to you, or do you want to take some
- time to look at it and let me know later? If you
- all are comfortable with that, I would appreciate
- it if you could let me know.
- 20 GARY LABOMBAR: You're talking about that Number 4,
- 21 right?
- 22 JUDY CANOVA: Yes.
- 23 GARY LABOMBAR: I'm comfortable with that.
- 24 RUBY CLARK: So am I.
- 25 MIKE TAYLOR: Yeah, me too.

1	PAT '	VINCENT: Any other questions?
2	MIKE	TAYLOR: You know, the fund all the companies
3		around participate in the cost of this, don't they?
4		You know, the fund for the cleanup over the whole
5		state or just federal?
6	GARY	STEWART: The fund that I'm speaking of, there's a
7		federal Superfund which was a tax on the chemical
8		and petroleum industry. I don't think there's
9		money much money coming into that fund these
10		days. The state fund was initially funded by a tax
11		on waste that was disposed at the Pinewood Landfill
12		in the center part of the state. That facility
13		closed in the year 2000. Right now we get a small
14		amount of money from the Legislature. We earn
15		interest on the existing funds, and money that we
16		recover when we excuse me. When we spend money,
17		we're required to try to recover it. So if the
18		parties stopped paying for this and we had to spend
19		money, we would try to recover that money from
20		those parties. That's where we get it from now.
21	JUDY	CANOVA: So again, it does not come from the
22		taxpayer.
23	RUBY	CLARK: Ruby Clark again. If JP Stevens was
24		liable, they've gone bankrupt, the state and
25		whoever is going to clean this up at their expense,

1		why the meeting? What is coming to us to be
2		concerned for health issues, to be concerned with
3		the water if you have a well? Why the meeting?
4	JUDY	CANOVA: So it's part of our process when we come
5		to a decision about how we're going to clean a
6		project up that we meet with the community to give
7		them a chance to ask questions and to have input.
8		Perhaps you would have preferred another
9		alternative for some reason. Maybe you would
10		prefer groundwater recovery and treatment for some
11		reason that I don't necessarily know about. So we
12		like to get input from the community so that we're
13		all on the same page when the system becomes
14		operational.
15	RUBY	CLARK: But if you did the research, you know
16		what's going to take care of everything. It's
17		really not we're not going to pay for it. You
18		let us know we're not going to be sick from it.
19		But it's almost like there's a hidden why coming
20		to us? Are we agreeing to something or we're not
21		agreeing to anything? And if you know what's the
22		best thing to do, why didn't you just do it? Why
23		did you
24	JUDY	CANOVA: Because it's part of our it's part of
25		our process.

1	GARY	STEWART: Actually, the law that we work under, the
2		state has adopted the Federal Superfund Law. And
3		under that law there are public participation
4		requirements. We're required to have a meeting
5		when we're selecting a remedy. We're required to
6		get input from the surrounding community. It's
7		your community and you deserve to know what's going
8		on in the community. And, you know, if you don't
9		agree with what we're proposing, it's an
10		opportunity for you to put that on the record and
11		for us to go back and evaluate those comments. And
12		sometimes we get to a meeting and people that are
13		living around the site for all their lives, they
14		know things that we don't know. They know what
15		went on back when the trucks were going back in
16		the woods over there, what was going on. You know,
17		we learn things that we didn't know before we made
18		the final decision. So it's an opportunity for the
19		community have input and know what's going on.
20	JUDY	CANOVA: So we do this for every project. Every
21		project that I work on, when we get to this point,
22		we have a community meeting. And we will be
23		available if you have more questions. We have some
24		of the main figures in the back; the one that shows
25		the areas of contamination, the one that shows the

1		plume and the one that shows the technology that
2		we're recommending. So we'd be glad to talk with
3		
		you further about anything. And we'll be available
4		back there in the back of the room. And thank you
5		so much for coming.
6	GARY	LABOMBAR: Just for the lady that's really
7		concerned, please consider going to the meetings.
8		I think it will make you feel more comfortable
9		about any concerns that you have. And they'll
10		address them immediately. If there's any questions
11		after you leave here, just write them all down.
12		And when they contact you and let you know when
13		they're having the next meeting, bring them there.
14		They'll be as thorough as they can possibly be. I
15		can't I can't tell you how it's made me I was
16		really upset when they had the first meeting. What
17		was it, about ten years ago or something like that.
18	PAT '	VINCENT: '05.
19	GARY	LABOMBAR: Oh, I thought it was
20	JUDY	CANOVA: No, it's about ten. It's been a while.
21	GARY	LABOMBAR: I asked them is this going to be like
22		Bhopal, India. Remember in Bhopal, India when they
23		had that catastrophe there near the plant that
24		killed all those people? I was concerned we had
25		that situation. But ever since going and listening

1	to these people, they don't have those chemicals
2	there and all kinds of they'll tell you exactly
3	what they've got. And they'll take you on a tour
4	there. And that's the best thing to do too. Go
5	take a tour of the plant. If you ask them that,
6	they'll take you on a personal tour. That's how
7	nice they are. But please don't feel threatened or
8	afraid to go and inquire about this.
9	RUBY CLARK: He referred to ten years ago. This has
10	been going on for over ten years? Okay. We sent -
11	- you sent a card out for this meeting about this
12	issue. Did we receive a card ten years ago?
13	JUDY CANOVA: Yes, a card actually we went door to
14	door and knocked on doors and handed them notices
15	of the meeting ten years ago.
16	RUBY CLARK: Okay. They must have missed our house.
17	PAT VINCENT: Any other questions? We're going to go
18	ahead and adjourn the meeting. And thank you all
19	so much for coming out.
20	(Whereupon, there being nothing further,
21	the public meeting was adjourned at 7:35
22	p.m.)
23	(*This transcript may contain quoted material.
24	Such material is reproduced as read or quoted
25	by the speaker.)

1	(**Certificate	accompanies	sealed	original	only.)